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ABSTRACT

Deep learning for Earth imagery plays an increasingly important
role in geoscience applications such as agriculture, ecology, and
natural disaster management. Still, progress is often hindered by the
limited training labels. Given Earth imagery with limited training
labels, a base deep neural network model, and a spatial knowledge
base with label constraints, our problem is to infer the full labels
while training the neural network. The problem is challenging due
to the sparse and noisy input labels, spatial uncertainty within
the label inference process, and high computational costs associ-
ated with a large number of sample locations. Existing works on
neuro-symbolic models focus on integrating symbolic logic into
neural networks (e.g., loss function, model architecture, and train-
ing label augmentation), but these methods do not fully address the
challenges of spatial data (e.g., spatial uncertainty, the trade-off be-
tween spatial granularity and computational costs). To bridge this
gap, we propose a novel Spatial Knowledge-Infused Hierarchical
Learning (SKI-HL) framework that iteratively infers sample labels
within a multi-resolution hierarchy. Our framework consists of a
module to selectively infer labels in different resolutions based on
spatial uncertainty and a module to train neural network param-
eters with uncertainty-aware multi-instance learning. Extensive
experiments on real-world flood mapping datasets show that the
proposed model outperforms several baseline methods. Codes are
available at https://github.com/ZelinXu2000/SKI-HL
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1 INTRODUCTION

Deep learning for spatial data (e.g., Earth imagery) plays an im-
portant role in many applications such as transportation [6, 8],
agriculture [25, 29], ecology [10], urban planning [16], and natural
hazards management [13, 30]. Unfortunately, one major bottleneck
is that deep learning models require a large number of training
labels (e.g., ImageNet), which is often unavailable in geoscience
domains [18]. This paper studies the integration of spatial domain
knowledge and deep learning to overcome limited training labels.

Given Earth imagery with limited training labels, a base deep
neural network model, and a spatial knowledge base with label
constraints, our problem is to infer the full labels while training
the neural network. Figure 1 provides an example of flooding ex-
tent mapping. Data samples are Earth imagery pixels in a raster
grid, and explanatory feature layers are spectral bands. Initial noisy
labels can be from volunteered geographical information (e.g., geo-
tagged tweets). These labels are sparse and limited, as collecting
complete high-quality labels through manual annotation is imprac-
tical (e.g., high time costs, obscured view due to tree canopies near
flood boundary). On the other hand, there exists spatial domain
knowledge related to topographical constraints on floodwater dis-
tribution, e.g., if location A is flooded and location B is at a nearby
lower location, then B is flooded. Similar examples exist in crop
type classification [29] and tree crown delineation in forest ecology
[10], land use classification [16], and ship detection [6].

However, the problem poses unique challenges. First, the input
labels are spatially sparse and noisy, making it difficult to directly
train a neural network on Earth imagery. For example, in flood
mapping, in-situ water sensors are often located at a few locations.
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rule: If location A is flooded and
location B is at a nearby lower
location, then B is flooded. \ inferred:

N N Location 1 is flooded.
known information: Location 2 is flooded.
Location 3 is flooded.

Location 3 is adjacent to location 1.
Location 1 is adjacent to location 2.

> Location 3 is higher than location 1.
s Location 1 is higher than location 2.

i [ :
(a) Map and labeled lo-
cation

(b) Logic inference

Figure 1: Spatial knowledge-infused problem illustration.

Second, spatial uncertainty is inherent in the knowledge-guided
label inference process, which comes from the noise and sparsity
of input labels, imperfect knowledge and rules, and grounding
spatial rules on a coarse grid. Third, there are high computational
costs associated with spatial logic inference on a large number of
raster pixels and a trade-off has to be made between computational
efficiency and spatial granularity.

The most closely related works are neural-symbolic systems,
which integrate symbolic logical reasoning with deep neural net-
works [9]. Existing methods focus on replace the search process
of symbolic reasoning to neural network [24, 26, 37], convert un-
structured data, e.g., images into symbols for relational learning
[28, 36], representing symbolic knowledge as a loss regulariza-
tion term [2, 4, 5, 14, 34, 35, 38], or the combination of logic in-
ference of pseudo-labels and neural network training iteratively
[3, 15, 21, 22, 31, 32, 40]. However, these methods do not fully
address the inherent challenges of spatial data, such as spatial un-
certainty and the substantial computational burdens associated
with logical inference over a massive number of samples (pixels).

To address the limitations of existing works, we propose Spatial
Knowledge-Infused Hierarchical Learning (SKI-HL) that integrates
deep learning techniques with spatial knowledge-infused label infer-
ence [1, 19]. SKI-HL consists of two main modules: the uncertainty-
guided hierarchical label inference module and the uncertainty-
aware deep learning module. The uncertainty-guided hierarchical
label inference module captures spatial relationships and depen-
dencies based on a spatial knowledge base and infers labels with
quantified uncertainty. To handle the continuous space issue, we
design a multi-resolution hierarchy to iteratively refine labels with
a trade-off between granularity and computational efficiency. The
uncertainty-aware deep learning module leverages complete but
uncertain labels from the label inference module, capturing infor-
mation from the data features that cannot be obtained through
logical reasoning alone. Both modules are trained iteratively to re-
fine inferred labels, reduce uncertainty, and improve deep learning
model performance. In summary, the contributions of this paper
are as follows:

e We propose SKI-HL, a spatial knowledge-infused framework
that integrates deep learning and logical reasoning to lever-
age both explanatory features and spatial knowledge derived
from domain logic rules.

e Our approach is designed to handle uncertainty in both the
original labels and the label inference process, making it
more robust and reliable.
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e We propose a strategy to balance the trade-off between spa-
tial accuracy and computational efficiency when discretizing
continuous spatial spaces for constructing logic rules and
training deep learning models.

o Taking the flood mapping problem as an example, extensive
experiments on real-world datasets demonstrate the superior
performance of our model compared to baseline methods.

2 PROBLEM STATEMENT

2.1 Preliminaries

Spatial Raster Framework: A spatial raster framework is a tessel-
lation of a two-dimensional plane into a regular grid of N cells. The
framework can consist of m non-spatial explanatory feature layers
and one class layer. We denote the explanatory feature layers by
X = {x1,Xx2, -+ ,xN} and the class layer by Y = {y1,y2, - - ,yn},
where x; € R™*! and y; are the explanatory features, and class at
cell i respectively. Each cell in a raster framework is a spatial data
sample, note as x = (x;,y;), where i € N, 1 < i < N. For example,
in the flood mapping problem, the explanatory features are the
spectral bands from remote sensing imagery, the target classes are
flood and dry categories, and each pixel in the image is a spatial
sample.

Spatial Knowledge Base: Given a set of spatial samples, which
can represent physical objects, locations, events, or any entity rel-
evant to a spatial task, we can describe the relationships and de-
pendencies between these samples using logical statements. This
leads us to the concept of a spatial knowledge base. Before defining
it formally, we first introduce some fundamental concepts in the
logic framework.

DEFINITION 1. A predicate is a relation among objects in the
domain or attributes of objects (e.g., Neighbor), and an atom is a
predicate symbol applied to a tuple of terms (e.g., Neighbor (A, B)).

DEFINITION 2. A rule in logic is a clause recursively constructed
from atoms using logical connectives and quantifiers. An example
would be: Neighbor (A, B) A Neighbor(B,C) — Neighbor(A,C).

DEFINITION 3. A ground atom a and a ground ruler are specific
variable instantiations of an atom and rule, respectively. A grounding
of an atom or rule is a replacement of all of its arguments by constants.

With these preliminaries, we are now equipped to formally define
a spatial knowledge base, K8:

DEFINITION 4. A spatial knowledge base KB is a set of logic
rules: KB = {r1,ra, -+, KB }. Here, eachr; is a rule that represents
a spatial relationship, dependency, or constraint between entities in
the set of spatial samples S. The quantity |K'B| represents the number
of rules in the spatial knowledge base KB.

Table 1 provides an example of a spatial knowledge base used
for a flood mapping on earth imagery problem. Here the variable
si,sj stands for a location in the study area or a pixel of earth
imagery. It is important to clarify that these rules are probabilistic in
nature, reflecting the likelihood of a flood occurrence under certain
conditions, rather than providing an absolute certainty. In addition,
although the rules are represented here in first-order logic, they
can be converted into a Markov Logic Network [27] or Probabilistic
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Table 1: An example of a spatial knowledge base in flood
mapping.

Spatial Rules

Vs, sj (Flood(s;) A Adjacent (s, sj)) — Flood(s;)

Vsi, sj (River(s;) A Distance(s;,sj) < d) — Flood(s;)
Vsi, sj (Flood(s;) A River(s;) A Downstream(s;,sj)) — Flood(s;)
Vsi (LandCouver (s;, Wetlands) A HeavyRain(s;)) — Flood(s;)
Vs; (Slope(s;) > s) — =Flood(s;)

Vs; (Elevation(s;) > e) — =Flood(s;)

Soft Logic framework [1, 19], which are statistical relational models
that combines probabilistic graphical models and first-order logic.

2.2 Problem Definition

Formally, we define our problem as follows:

Input:

o A large-scale spatial raster framework with spatial samples S =

{s1.82,-- ,sn}

o A set of explanatory feature layers X in S

o A limited set of labels Y| = {y1, 42, - - ,y;}, usually I < N, each

label associated with a sample in S

e A spatial knowledge base K8

o A base neural network model (e.g., U-Net)

Output:

o Inferred labels Y with quantified uncertainty U

o A deep learning model DL : X — Y

Objective:

o Maximize the consistency between inferred labels Y and X8

o Maximize the prediction accuracy of deep learning model
Specifically, we assume the raster framework S contains a large

number of pixel samples but only with a limited set of labels Yj. The

main objective is to predict the class layer Y for all spatial samples.

To illustrate, consider the case of flood mapping on earth imagery.

In this scenario, the set of spatial samples S corresponds to Earth

imagery pixels. The explanatory feature layers X are the spectral

bands. The label set Y corresponds to the flood status of each pixel

(i.e., flooded or not). The spatial knowledge contains domain con-

straints on flood locations (e.g., terrains and topography), which is

used to infer flood labels Y. Considering the errors in the inference

process and the imperfect logic rules, uncertainty U naturally exists

in the inferred label.

3 THE PROPOSED APPROACH

3.1 Overview

Our task is to train the deep learning model and infer sample la-
bels based on the spatial knowledge base. The task is non-trivial
for several reasons. First, spatial knowledge inference on labels is
computationally expensive due to the immense volume of spatial
samples in high-resolution imagery and complex spatial dependen-
cies and interactions. This process quickly becomes computation-
ally infeasible due to the exponential increase in the number of
ground atoms and rules. Therefore, scalable grounding strategies
are required that can effectively handle these issues by balancing
computational efficiency and grounding granularity. In addition,
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Figure 2: Framework of SKI-HL.

the label inference is complicated due to incomplete and sparse
initial labels compared with the large study area. Such a low pro-
portion of known data make logic inference difficult. Furthermore,
the labels inferred are not deterministic; instead, they come with
uncertainty at different granularity levels, which is non-trivial for
the training of a deep learning model.

To address these challenges, we propose a Spatial Knowledge-
Infused Hierarchical Learning (SKI-HL) framework. Our SKI-HL
framework, illustrated in Figure 2, consists of two interdependent
modules: a hierarchical label inference module and an uncertainty-
aware deep learning module. The former infers sample labels in
the raster framework with a trade-off between computational effi-
ciency and spatial granularity. We formulate the inference process
as an optimization problem with an objective based on the distance
loss from Probabilistic Soft Logic (PSL) [1, 19], a probabilistic logic
framework to capture spatial relationships and dependencies, and
the spatial grounding configuration in a multi-resolution hierar-
chical grid structure. We design a greedy heuristic to iteratively
refine the inferred labels based on inferred spatial uncertainty. The
uncertainty-aware deep learning module trains neural network
parameters from uncertain labels in multiple resolutions by an
uncertainty-aware loss function and multi-instance learning. The
two modules run in iterations: the outputs of the deep learning
model will serve as the initialization of the hierarchical label infer-
ence module in the next iteration.

3.2 Hierarchical label inference with spatial
knowledge

The hierarchical label inference module is designed to leverage
spatial knowledge within a hierarchical framework to drive the label
inference process. Given a raster framework, a spatial knowledge
base with logic rules on sample labels, and a subset of initial labels,
our goal is to infer the labels of all samples in the framework.
We need to find a spatial grounding of the rules within the raster
framework (e.g., on sample pixels or pixel blocks) and infer the
optimal sample class probabilities according to the grounded rules.
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For large-scale spatial data (e.g., high-resolution Earth imagery),
we need to strike a balance between granularity, computational
efficiency, and inference accuracy. If we ground the rules on all
high-resolution pixels will lead to too many atoms, making the
logic inference computationally expensive. On the other hand, if
we ground rules only in low-resolution pixel blocks, the inferred
labels are too coarse to train effective deep-learning models.

We formulate this sub-problem as an optimization problem.
There are two specific objectives: the first is to generate accurate
sample labels that are consistent with spatial knowledge (expressed
by logic rules); the second is to balance computational efficiency
and inference granularity in the spatial grounding process. We next
discuss the specifics of our optimization objective and the proposed
greedy strategy.

0(Dry) 0.2 0.4 0.6 0.8 1(Flood)

(a) An example for three resolution levels.

(b) Tree structure of the 3-layer hierarchy.

Figure 3: Illustration of hierarchical structure.

3.2.1 Optimization objective. We now formulate the spatial logic
inference of sample labels in a raster framework as an optimization
problem. First, we need to define the candidate feasible solution
of spatial grounding. The process of spatial grounding refers to
substituting the variables in the knowledge base rules with specific,
concrete instances, which in our case are spatial samples such as
pixels in earth imagery. Given a set of spatial samples and rules
from a spatial knowledge base, we substitute each possible sample
into the rules to generate candidate feasible solutions for spatial
grounding. Let’s illustrate this with an example. Suppose we have
a spatial raster comprising 1 million pixels (size of 1000 by 1000)
and a spatial logic rule that involves two variables. The process
of grounding would mean substituting these variables with every
possible pair of pixels. Thus, if we exhaust all possible substitutions,
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we would end up with a whopping 1 trillion ground rules, derived
from each possible combination of the 1 million pixels.

Spatial hierarchical structure: Based on the observation that
spatial relationships often exhibit hierarchical characteristics and
fractal patterns, we exploit a hierarchical framework to address
these challenges. Given a large-scale spatial raster framework com-
posed of pixels, we can represent the raster at multiple resolutions.
At the coarse level, we can treat each cell as a condensed representa-
tion of many pixels. For example, in Figure 3a, if the original raster
is 8x 8 pixels (the rightmost grid), a coarser level representation (the
leftmost grid) could be a 2 X 2 cell grid, where each cell represents
a 2 X 2 pixel area of the original raster.

In the hierarchical structure of the spatial raster, the coarsest
level grid represents the root of the hierarchy, and each subsequent
refinement to a finer resolution represents a branching in the hier-
archy. As shown in Figure 3b, in this tree-like structure, each node
represents a region with different sizes of the original spatial raster
at the finest resolution. With the hierarchical structure, we can
start the logic inference from coarse resolution, which decreases
the proportion of unlabeled data and make the inference practi-
cal. In the following, we provide a more formal description of the
architecture.

Let Sg be an original large-scale spatial raster framework at the
finest resolution. We define a constant n where € Nand 5 > 1,
then we can get a set of resolutions {1, 7,72 ..., 7K} which denotes
the grid sizes at K + 1 levels. We use the power number to represent
the indexes of the layers k in the hierarchical structure, 1e., k =
0,1,2,...,K. The set of samples in each layer S, for k € {1,--- ,K},
represents the spatial raster at a specific resolution. The highest
layer K corresponds to the coarsest resolution and the lowest layer 0
corresponds to the finest resolution, usually the original resolution.
Each spatial sample s ; at layer k corresponds to a group of cells at
the next finer layer k—1. To exemplify the hierarchy, consider Figure
3 representing 3 varying resolution levels. In this example, the grid
size constant n = 2 and we have 3 layers in the hierarchy, i.e, k =
0,1, 2. We select a subset of cells from layer 2 to "zoom in" further
into smaller cells. This partitioning process results in layer 1, which
contains both the original cells and the divided ones. The process is
then repeated on the second grid, creating layer 0, which symbolizes
the finest resolution layer. Through this hierarchical approach, each
cell sy ; in layer k corresponds to a group of cells in the next finer
layer k — 1, e.g., cell 532 corresponds to cell 51,2, 1,3, 51,4, and s1 5 in
Figure 3. At a certain level, we only need to ground the "leaf node”,
as shown in Figure 3b, which significantly decreases the number of
ground atoms. Each layer in the hierarchy form a ground knowledge
base KBy = {re.1, k2 s Tk,|% B, |} and then generates a set of
inferred labels Y, = {Gk 15 Uk25 s Uk N, ) and their corresponding
uncertainties Uy = {ug 1, ug 2, -+ , tg Ny }> where N is the number
of samples, i.e, grid cells at the k-th resolution level.

Second, we need to define the loss function based on the spatial
grounding and inferred label probabilities. To make inferences that
are consistent with spatial knowledge, we adopt t-norm fuzzy logic
to define the extent of a rule as satisfied, which relaxes binary truth
values to a continuous value between [0, 1]. These relaxations are
exact at the extremes but provide a consistent mapping for values in
between. The logical conjunction (A), disjunction (V) and negation
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(—) are as follows:
I(a1 A az) = max{I(a1) +I(az) — 1,0}
I(ay V a2) = min{I(ay) + I(az), 1} (1)
I(=a1) =1-I(a1)

where I is the soft truth value function that can map an atom a or a
rule r to an interval between [0, 1], indicating the probability that
the atoms or rule holds. Then, following the structure of Probabilis-
tic Soft Logic (PSL), we can induce the distance d (I) to satisfaction
foraruler:rpoqy = rpead:

dy (I) = max{0, I(rpody) = I(rhead)} 2
where r is composed of atoms or negative atoms. PSL determines a
rule r as satisfied when the truth value of I(rpoay) = I(rheqq) = 0.
To this end, we can convert logical sentences into convex combi-
nations of individual differentiable loss functions, which not only
improves the training robustness but also ensures monotonicity
with respect to logical entailment, i.e., the smaller the loss, the
higher the satisfaction. Therefore, given a set of ground rules in
the ground knowledge base KB, we can obtain the truth value for
all ground atoms, which can serve as inferred labels for the spatial
samples.
¥ = arg min Z wrdy(I) 3)
reK8
It is noted that here the inferred labels Y are not binary values but
soft truth values between [0, 1].

Therefore, in our hierarchical framework, our optimization prob-
lem can be summarized as searching for an optimal grounding
strategy and minimizing the overall distance to satisfaction for the
ground atoms. we formally define the objective to minimize in the
hierarchical label inference module as:

K
Liggic = D D @rdr () + KB ) @
k=1 \re KBy

where KBy stands for the ground knowledge base in the k-th layer,
A is a balancing coefficient. The summation over k stands for the
overall objective of all layers in the hierarchical structure. The first
term is the loss defined by PSL distance, which can drive accurate
inference. The second term is used to decrease the ground atoms
in each layer.

3.2.2 A greedy algorithm. To make a balance between inference
accuracy, efficiency, and granularity, we proposed a greedy heuristic
grounding strategy. Intuitively, uncertain atom inference always
causes a higher distance to the satisfaction of a rule, so here we
choose uncertain cells in a coarse layer to refine. The quantified
uncertainty uy ; for each cell i at the k-th resolution level can be
calculated using the entropy of the inferred label g ; as follows:

upi = —Jk;1og G — (1= ;) log(1 — G ;) ®)
We select a subset of cells with the highest uncertainty at each
resolution level to refine the spatial partitioning. Let Ty be a thresh-
old for selecting high-uncertainty cells at the k-th resolution level.
We define a set of cells {s; | ux; > Tj} that will be refined to
the next finer resolution level (k — 1). Taking layer 2 in Figure 3
as an example, each cell in this grid is color-coded to denote the
probability to dry (dark) and water (light). We view the cell with the
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Algorithm 1 SKI-HL algorithm

Input: Spatial knowledge base K'8, Maximum resolution level K,
Resolution constant 7, Existing sparse label Y, rule weights o,
Deep learning model DL, Explanatory features X

Output: Fine resolution predicted labels Y, trained deep learning
model DL

1: Initialize resolution level k « K
2. while k! =0 do
3:  Grounding rules in current resolution level

4 Infer the uncertain labels Y, based on Equation 3

5. Calculate the uncertainty Uy based on Equation 5

6 Train the deep learning model DL using Y} based on Equa-
tion 8

7: k—k-1

8: return DL, ?k

leftmost and rightmost color (certain Dry and Flood) in the color
bar as certain cells, and others as uncertain cells, i.e., only the s3 1
can be view as a certain cell in layer 2.

For the selected cells in Sg, we construct a new spatial partition-
ing with a smaller cell size and update the grounding atoms set
accordingly. As shown in Figure 3, the uncertain coarser cells in
layer 2 are split into 2 X 2 finer cells, respectively. We then per-
form PSL inference using the hierarchical label inference module
at the (k — 1)-th resolution level with the leaf node in the hierar-
chy (yellow cells) only. Since the distance-based loss is convex, we
can use gradient descent to optimize it. To initialize I at different
resolutions, in the first iteration, i.e., we pre-train the deep learning
model with limited labels and use the output probabilities as the
initialization. In the following iterations, the predicted probabilities
of the corresponding deep learning model are regarded as the initial
soft truth value of the ground atom in each r.

Starting from the coarsest resolution (k = K), the process con-
tinues iteratively until the finest resolution (k = 0) is reached. By
employing this iterative hierarchical approach, our framework ef-
fectively improves the resolution of sparse labels from coarse to fine
while efficiently handling the computational challenges associated
with high-resolution spatial analysis and decision-making prob-
lems. Moreover, the method focuses computational resources on
high-uncertainty regions, ensuring accurate label inference in these
critical areas. Then, these inferred labels will serve as the training
label in the uncertainty-aware deep learning module, which we
will introduce in the next section. The overall process is described
in Algorithm 1.

By observing the hierarchical structure and the figures, it be-
comes evident that this approach provides a computationally ef-
ficient way to handle large-scale spatial data, making a trade-off
between granularity and efficiency. This is especially crucial in
real-world applications like flood mapping, where both precision
and computational resources are of prime importance.

As we mentioned before, there is a fundamental trade-off be-
tween computational efficiency and inference granularity in the
grounding process. Therefore, given this hierarchical structure, the
problem is how to select cells at each level of the hierarchy for
refinement to the next finer resolution. We need to select cells for
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refinement in such a way that balances the need for detailed infor-
mation (i.e., higher resolution) against the computational cost of
refining cells (i.e., efficiency). This problem also involves determin-
ing which cells to refine based on the potential benefit in terms of
inference accuracy. The challenge lies in making these decisions
efficiently and effectively, given the large scale of the spatial raster
and the complexity of the spatial relationships represented in the
spatial knowledge base.

3.3 Uncertainty-aware deep learning

The uncertainty-aware deep learning module, another component
of SKI-HL, is capable of capturing information from the explana-
tory features, which is not accessible via logic inference alone. In
addition, it plays a significant role in handling the uncertainty of
inferred labels and variations in resolution. In traditional deep learn-
ing models, the model makes a prediction for each sample, but it
doesn’t utilize any information about how confident the model is
about that prediction [11]. This could lead to overconfident predic-
tions in regions with scarce or noisy labels. The module employs
a modified version of the Binary Cross Entropy loss, offering a
method to manage the uncertainty from the spatial knowledge
and inferred label. In this module, all the deep learning predictions
are at the finest resolution, i.e., under the original spatial raster
framework and using original explanatory features.

3.3.1 Incorporating Uncertainty in Labels. The initial phase of train-
ing employs the Binary Cross Entropy loss function, defined as:

N
Lpr == yilogp; + (1 - y;) log(1 - p;) ©)
i=1
where y; is the ground truth label, p; signifies the predicted prob-
ability output by the deep learning model, and N represents the
number of spatial samples in a particular layer of the hierarchy.

The key challenge in our problem scenario is dealing with the
inherent uncertainty associated with inferred labels. This stems
from the fact that we start with a sparse and limited set of labels and
then attempt to extrapolate this information to the entire spatial
domain. A common approach would be to predict binary labels
(flooded vs non-flooded) for each location. However, this ignores
the degree of confidence (or uncertainty) in these predictions.

To better handle this, we replace the ground truth labels y; in
the Binary Cross Entropy loss function with the inferred uncertain
labels gj;. This allows us to directly optimize for the accuracy of the
predicted probabilities, rather than merely the binary labels. The
loss function thus becomes:

N
Lpr ==Y gilogp; + (1 g;) log(1 - p;) ™
i=1
where §; € Y is the inferred uncertain label. Currently, the cross
entropy measures the difference between the predicted probability
distribution of deep learning model and the probability distribution
of inferred labels. This modification effectively incorporates uncer-
tainty information into the training process and can improve the
model’s performance when dealing with ambiguous cases.

3.3.2 Addressing Multi-instance Learning Scenarios. In scenarios
where we partition the spatial domain into non-overlapping cells, or
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instances, and construct a hierarchical structure for label inference,
we encounter a multi-instance learning scenario [7, 23, 39]. Since we
have different resolution levels, here, instead of assigning a single
label to each pixel, we need to compute an aggregate probability
output for each pixel to capture the overall likelihood of the event
(e.g., flooding) occurring within the corresponding coarser cell.
As shown in the right-bottom of Figure 2, to make an alignment
between the structure of deep learning output and the inferred
label, we have to combine the predictions of some pixels together,
e.g,, aggregate the 4 X 4 pixels in the output mask to train with the
only 1 label inferred by logical reasoning.
In this context, the loss function should be updated again to
reflect the cell-level nature of the labels:
N
LpL == ) dkilogPei+ (1= ) log(1=Prs)  (8)
i=1

The probability output Py ; for each cell sample sy ; is computed as:

Pri= 1| Z pj ©)

Sy
|k,l 0.1 €Sk.i

where Py ; is the average of the predicted probabilities p; for all the
samples s; within the coarse cell sy ;. |sy ;| represents the number of
finest resolution pixels in the cell. This is a natural way to aggregate
the predictions of individual locations within a cell to produce a
cell-level prediction. It allows the model to handle different levels of
granularity in the spatial domain, making it flexible and adaptable
to various spatial scales.

4 EVALUATION

4.1 Experiments setup

Dataset Description: We use two real-world flood mapping datasets
collected from North Carolina during Hurricane Mathew in 2016.
The explanatory features comprise the red, green, and blue bands

within the aerial imagery obtained from the National Oceanic and

Atmospheric Administration’s National Geodetic Survey!. In ad-
dition, digital elevation imagery was sourced from the University

of North Carolina Libraries?. Each piece of data was subsequently

resampled to a 2-meter by 2-meter resolution to standardize the

information. For Dataset 1, the image has a shape of 2500 x 1800

with 4.5 million pixels. For Dataset 2, the image has a shape of
3400 X 8400 with 28.56 million pixels.

Candidate Methods: In our experiments, we compare our pro-
posed SKI-HL model with a variety of baselines that represent dif-
ferent approaches to handling spatial data and infusing knowledge
into deep learning.

e Pretrain: In this method, the deep learning model is trained
with the initially labeled pixels for each dataset.

o Self-training: The model adds patches with high confidence
from Pretrain to the training dataset and re-trains the model.

e DeepProbLog [22]: This is a programming language that in-
tegrates deep learning with probabilistic logic programming.
It allows for the incorporation of neural networks within
a logic program, and these neural networks can be used to
define probabilistic facts.

!https://www.ngs.noaa.gov/
Zhttps://www.lib.ncsu.edu/gis/elevation
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Table 2: Accuracy versus Uncertainty (AvU).

Uncertainty
Certain Uncertain
Accurate Accurate Certain (AC) Accurate Uncertain (AU)
Inaccurate | Inaccurate Certain (IC) | Inaccurate Uncertain (IU)

Accuracy

e Abductive Learning (ABL) [3]: This is a learning frame-
work that combines both reasoning and learning. It works
by training a model to make predictions, then using a logic
reasoner to validate these predictions against a set of given
logic rules. If the prediction contradicts the rules, the learn-
ing algorithm will revise its model based on the abductive
explanation

o SKI-HL-Base This is a simplified version of our model as a
candidate method that doesn’t implement the selection of
uncertain areas in the grounding process. Instead, it ground
all atoms for each layer in the hierarchy.

Classification evaluation metrics: We used precision, recall,
and F1 score on the flood mapping class to evaluate the pixel-level
classification performance.

Uncertainty quantification evaluation metrics: The perfor-
mance of uncertainty estimations in our model is quantitatively
evaluated using the Accuracy versus Uncertainty (AvU) measure, as
shown in previous work [12, 20]. We set an uncertainty threshold,
denoted by Ty, to group uncertainty estimations into ’certain’ and
‘uncertain’ categories. Predictions based on these estimations are
then grouped into four categories: Accurate-Certain (AC), Accurate-
Uncertain (AU), Inaccurate-Certain (IC), and Inaccurate-Uncertain
(IU). Let nac, nau, nic, niu represent the number of samples in the
respective categories. The AvU measure evaluates the proportion
of AC and IU samples, with the idea being that accurate predictions
should ideally be accompanied by certainty, and inaccurate predic-
tions should correspondingly indicate uncertainty. This measure
lies in the range [0, 1], with higher values indicating more reliable
model performance. Specifically, we compute AvUy for accurate
predictions and AvUr for inaccurate predictions as follows:

nac nuy

AovUy = ,AoUr = (10)
nac +nau nic + nuy

In our evaluation, we compute the harmonic average of AvUy and
AoUr to penalize extreme cases:
Aol = 2 x AoUy * AoUr (11)
AoUy + AoUp

This evaluation approach thus offers a comprehensive measure
of the reliability of our model’s uncertainty estimations.

Model configuration: When implementing our method and
baselines, we considered U-Net, a powerful deep learning model
for image segmentation, as the base model. We set the same set
of architecture for the U-Net model in all baselines with 5 down-
sample operations and 5 upsample operations. There is a batch
normalization within each convolutional layer and the dropout rate
is 0.2.

For Pretrain, we partitioned an image into 100 by 100 patches, and
then let the corresponding patches which contain the labeled pixel
as the training patches. We set the label of all pixels in the patches
to the label of the initially labeled pixel in it. The pre-training is
based on these patches. For self-training, it uses Pretrain predictions
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to augment the training dataset. Specifically, those patches with
high-confidence predictions were added to the training set. The
confidence of one image patch was calculated based on the average
predicted class probabilities over all pixels in the patch. This process
continues iteratively, gradually expanding the training dataset. we
set a set of confident thresholds and then add high confident patches
(which are measured by the prediction probabilities of Pretrain)
into the training set. For DeepProbLog, ABL, and our proposed SKI-
HL, we use the same pretrain U-Net to initialize the deep learning
model in these frameworks.

For the hierarchical structure of SKI-HL, we set the grid size
constant 7 = 10 and K = 2 which means there are 3 layers with
grid size 100 X 100, 10 X 10 and 1 X 1 respectively in this hierarchy.
And we construct the spatial knowledge base for the flood mapping
task based on distance and topology relationships. For the distance
relationship, we directly use the neighborhood pair to model. For
the elevation, we adopt a Hidden Markov Tree model [17, 33] which
can model the topological relationship of each location based on
the elevation.

4.2 Comparison on classification performance

We first test the performance of each model with 4 labeled pix-
els. In Table 3, the experimental results underscore the efficacy
of our proposed SKI-HL approach over the baseline models. We
observe that the Pretrain model exhibits the worst performance
in both datasets when the labeled data set is small. The reason
was that the explanatory features on the surface contained a large
number of obstacles that often confused a classifier, so it’s unlikely
to generalize a model from a small area to large-scale data. The
Self-training model demonstrates enhanced performance over the
Pretrain. However, “high confidence" predictions that were added
to the training set could still contain errors, which somehow con-
fused the model. Moreover, self-training cannot incorporate spatial
knowledge and focuses only on imagery features causing poor per-
formance. We notice that both DeepProbLog and ABL, models that
combine domain knowledge into learning, display better perfor-
mance than the previous models. This highlights the importance of
integrating spatial knowledge into learning. Yet, they still lag be-
hind the proposed SKI-HL. The main reason is that the limited label
cause the label inference in both DeepProbLog and ABL inaccu-
rate. Furthermore, the performance of ABL is generally lower than
DeepProbLog, the gap is due to that ABL only use first-order logic
as hard constraints to revise label and cannot deal with complex
spatial rules which inherently have uncertainty and cannot always
be perfectly satisfied. Our proposed SKI-HL method and its base
model consistently outshine the baseline models on both datasets.
The performance enhancement is likely due to the integration of
uncertainty-guided hierarchical label inference and explicit spatial
reasoning. These elements enrich the model’s capacity to encapsu-
late complex spatial dependencies and dynamically concentrate on
areas of uncertainty. Further, the hierarchical structure eases the
demand for dense labeling, a bottleneck for other baseline models.
It is noted that though we didn’t ground all the pixels in our SKL-HL
model, the performance on Dataset 1 is still parallel with its base
model that ground all atoms to achieve the best granularity, and
even higher on Dataset 2. Taken together, the superior performance
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Table 3: Comparison on classification.

Dataset 1 Dataset 2
Method Cl
etho S TP R Fl AvgFl Acc | P R Fl Avg.Fl Acc
. Dry | 0.79 0.62 0.70 0.88 0.76 0.81
Pret 0.74 0.75 0.74 0.76
retaim Flood | 0.73 0.86 0.79 059 0.77 067
.. Dry | 0.60 0.83 0.70 0.89 0.77 0.83
Self-t 0.78 0.81 0.76 0.78
CTHAMNE | plood | 093 081 0.86 0.61 0.80 0.69
Dry | 0.73 0.78 0.75 0.83 0.87 0.85
DeepProbL 0.81 0.83 0.82 0.82
CEPTIODLOB | Flood | 0.88 0.85 0.87 0.82 077 0.79
Dry | 0.66 0.78 0.72 0.76 0.86 0.81
ABL 0.79 0.81 0.79 0.79
Flood | 0.90 0.83 0.86 0.82 0.71 0.76
Dry | 095 0.93 0.94 092 094 0.93
SKI-HL-B 0.95 0.95 0.91 0.91
¢ | Flood | 0.96 0.97 0.96 091 0.88 0.90
Dry | 096 0.92 0.94 091 097 094
SKI-HL 0.95 0.95 0.92 0.93
Flood | 0.95 0.98 0.96 0.95 0.88 0.91
1.00 performance does show improvement with an increased number
of labels, its limited ability to handle complex spatial rules due to
0951 ™, —— the usage of hard logic for label revision makes it unable to rec-
oncile potential conflicts, then fail to achieve higher performance.
- 0-901 DeepProbLog’s accuracy incrementally improves and eventually
8 stabilizes at a higher level as the number of initial labels increases.
§ 0851 Owing to its logic-based framework for computing gradients, the
< 050 training process maintains a degree of consistency, irrespective of
. B Z:f‘_'tar;ning the ground knowledge base. In contrast to the other models, our
—+— DeepProblLo SKI-HL framework remains relatively unaffected by the number of
0.75- P 9
ABL initial labels, maintaining an accuracy rate of around 0.95. The un-
070 T Sk derlying reason lies in our model’s unique label inference process:
o 50 100 150 200 250 it starts from a coarse resolution and subsequently refines labels,

The number of initial labels

Figure 4: Accuracy comparison on different numbers of ini-
tial labels.

of the SKI-HL approach accentuates the importance of efficiently
integrating spatial domain knowledge with deep learning and har-
nessing the benefits of hierarchical label inference, especially in
the context of large-scale spatial applications with limited training
labels.

4.3 The effect of the number of initial labeled
samples

In order to thoroughly evaluate the effectiveness of our proposed
SKI-HL method, we conduct experiments using Dataset 1 with
varying numbers of initial labeled data, ranging from 4 to 256 in
multiples of 2. The classification accuracy over 5 runs is utilized as
the evaluation metric, with the mean value represented by markers
and standard deviation indicated by shadows in Table 4. All baseline
models, including Pretrain, Self-training, DeepProbLog, and ABL,
display an upward trend in accuracy with the increase in initial
labels. However, the Pretrain and Self-training models exhibit less
significant improvement. This phenomenon can be attributed to
the fact that these models use labeled pixels to represent the corre-
sponding whole patches during the training process. While ABL’s

ensuring accurate label inference. The slight variations in the re-
sults can be attributed to training randomness and the initialization
process.

4.4 Comparison on uncertainty quantification
performance

Table 4: Comparison on uncertainty quantification.

Method Accuracy - Dataset 1 Dataset 2
oUAJA0U;  AoU | AoUa/A0U;  AoU
e e |0 s | 07 o
Self-training I::s:lr;; g:gg 0.65 g:zg 037
DeepProblog | pi i | 03 00 | g5 oe
ABL macourate | 025 0% | gy 08
SKEHLBase | oo | o 0 | ga oo
SEHL | e | o8 7| om0

In Table 4, we notice a clear distinction in uncertainty estimation
between our proposed SKI-HL model and the baselines. While
Pretrain and Self-training models manifest a larger gap between
AovU4 and AoUj, this discrepancy is mitigated in DeepProbLog
and ABL, which effectively incorporate spatial knowledge into
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Figure 5: Performance with different resolution in Dataset 1.

learning. However, they still struggle to achieve a balanced AvUyg
and AoUj, particularly in situations of sparse and noisy labels. In
stark contrast, our proposed SKI-HL model exhibits a superior
performance on both datasets, signifying its robust ability to model
complex spatial dependencies and adjust to areas of uncertainty
dynamically. The integration of uncertainty-guided hierarchical
label inference further mitigates the impact of sparse labeling, a
bottleneck for other models. This finding emphasizes the pivotal
role of efficiently integrating spatial domain knowledge with deep
learning, especially under the constraints of limited training labels,
in achieving reliable uncertainty estimation for large-scale spatial
applications.

4.5 Case Study

In our case study, we visually analyze the effectiveness of our model
across varying resolution levels. As depicted in Figure 5a, we present
the aerial earth imagery, ground truth label, and digital elevation
map from Dataset 1. It is noted that we didn’t use the ground truth
to train our label, instead, it was only used for testing. Figures 5b
and 5c illustrate the evolution of inferred labels and deep learning
predictions at different resolution levels. The resolution of the in-
ferred labels refines progressively from a coarse resolution of 25 by
18 to the finest resolution of 2500 by 1800. This process allows for
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Figure 6: Comparison on time cost.

the accurate detection and refinement of uncertain areas, which
often represent flood boundaries. Simultaneously, the granularity
increase of the training labels results in an improved output from
the deep learning model. A clear reduction in misclassified pixels
can be observed, appearing as noise within each class of the area.
This improvement can be attributed to the fact that multi-instance
learning, used with coarse resolution labels, cannot provide su-
pervision to every pixel. Hence, as our approach refines the label
resolution, the deep learning model is able to generate more accu-
rate predictions.

4.6 Analysis of time costs with hierarchical
label inference

In order to demonstrate the computational efficiency of our pro-
posed approach, we conducted a set of experiments evaluating the
time costs of SKI-HL and its base model across different resolution
levels. These experiments were executed on a AMD EPYC 7742
64-Core Processor CPU and an NVIDIA A100 GPU equipped with
80 GB of memory.

Figure 6 presents the time costs associated with the uncertainty-
aware deep learning model training (blue bar) and the hierarchical
label inference module training (orange bar) at each resolution
level. Notably, the training time costs of the deep learning model
remain relatively stable across different iterations, whereas the label
inference process exhibits a strong dependency on the number of
ground atoms. In particular, the label inference module requires
the most significant computational resources when the number of
ground atoms is large.

To illustrate, in dataset 2, the label inference at the finest res-
olution consumed approximately 12.5 hours without implement-
ing a selective grounding process. However, when adopting the
uncertainty-guided grounding strategy, the model achieved a con-
siderable time-saving factor of 6.3 and 5.0 times compared to ground-
ing all atoms for datasets 1 and 2, respectively. This stark difference
in computational time underlines the necessity and effectiveness
of our proposed uncertainty-guided hierarchical label inference in
the context of large-scale spatial data.
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5 CONCLUSION AND FUTURE WORKS

In this paper, we proposed a novel Spatial Knowledge-Infused Hier-
archical Learning (SKI-HL) framework that successfully addresses
the limitations of existing neuro-symbolic models, particularly with
regard to spatial data, through a system of iteratively inferring la-
bels within a multi-resolution hierarchy. Our model outperformed
several baseline methods on real-world flood mapping datasets.

However, there is still a vast scope for further exploration and
improvement in various aspects of the work. First, the model can
incorporate temporal dynamics features and capture changes in
earth imagery over time, which is critical for many applications
such as deforestation tracking. Second, we can expand to other
geospatial applications to further validate the generalizability and
adaptability of the proposed SKI-HL framework.
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