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ABSTRACT
Energy-efficient visual sensing is of paramount importance
to enable battery-backed low power IoT and mobile appli-
cations. Unfortunately, modern image sensors still consume
hundreds of milliwatts of power, mainly due to analog read-
out. This is because current systems always supply a fixed
voltage to the sensor’s analog circuitry, leading to higher
power profiles. In this work, we propose to aggressively scale
the analog voltage supplied to the camera as a means to sig-
nificantly reduce sensor power consumption. To that end,
we characterize the power and fidelity implications of ana-
log voltage scaling on three off-the-shelf image sensors. Our
characterization reveals that analog voltage scaling reduces
sensor power but also degrades image quality. Furthermore,
the degradation in image quality situationally affects the task
accuracy of vision applications.
We develop a visual streaming pipeline that flexibly al-

lows application developers to dynamically adapt sensor
voltage on a frame-by-frame basis. We develop a voltage
controller that programmatically generates desired sensor
voltage based on application request. We integrate our volt-
age controller into the existing RPi-based video streaming
IoT pipeline. On top of this, we develop runtime support
for flexible voltage specification from vision applications.
Evaluating the system over a wide range of voltage scaling
policies on popular vision tasks reveals that Squint imaging
can deliver up to 73% sensor power savings, while maintain-
ing reasonable task fidelity. Our artifacts are available at:
https://gitlab.com/squint1/squint-ae-public
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1 INTRODUCTION
Visual computing systems sense and perceive the world us-
ing cameras, enabling a variety of IoT and mobile applica-
tions. IoT systems use cameras to perform visual tasks such
as predicting irrigation patterns in AI-enabled farms [1],
detecting wildfires in forests [2], and monitoring animal
movements in wildlife sanctuaries [3, 4]. Energy-efficient
sensing is of utmost importance for such IoT systems, as they
are deployed in the wild and typically operate on miniscule
batteries. Energy-efficient sensing is also important for multi-
camera mobile systems, such as augmented reality headsets,
wherein several cameras, e.g., 18 cameras on the Magic Leap
v2 headset [5], perform tasks such as world tracking, eye
tracking, and body tracking, quickly draining the system’s
battery.

Unfortunately, modern image sensors are limited in their
energy efficiency due to analog readout and consume hun-
dreds of milliwatts of power while performing continuous
visual tasks. This is because existing systems (Fig. 1a) al-
ways supply a fixed voltage to the sensor’s analog circuitry
regardless of the frame. This work aims to improve the ca-
pabilities of visual computing systems by allowing them to
dynamically vary the analog voltage supplied to the sensor
on a frame-by-frame basis (Fig. 1b) for significant efficiency
gains.
While dynamic voltage scaling of image sensors leads to

large power savings, it also degrades the sensor’s imaging

https://gitlab.com/squint1/squint-ae-public
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Figure 1: Existing systems supply a fixed voltage to the
image sensor regardless of the frame. Squint adapts the
camera supply voltage per frame for energy efficiency.
fidelity due to reduced ADC output swing and increased
pixel noise (§2). To assess fidelity issues, we characterize
the energy and fidelity implications of analog voltage scal-
ing of three popular off-the-shelf cameras. In addition to
confirming the large sensor power savings created by ag-
gressive voltage scaling, our characterization reveals a useful
insight: degradation in imaging fidelity due to aggressive
voltage scaling does not significantly affect the task accu-
racy of modern neural network based vision workloads in
most situations. That said, we find that high fidelity is still
sporadically needed to precisely detect scene features for
tracking tasks, especially under challenging situations such
as low-light and crowded scenes.
The idea to dynamically scale a component’s voltage for

reduced energy usage is inspired by the CPU power savings
technique of dynamic voltage scaling (DVS) [6]. However,
unlike CPU DVS, analog voltage scaling here introduces
unique noise considerations, due to the direct reliance on the
analog circuitry’s fidelity for image readout. Sensor manufac-
turers have been moving towards designing sensors [7–10]
with lower pixel supply voltage, for lower energy consump-
tion. Such sensors typically include additional circuitry to
mitigate fidelity issues caused due to lower pixel voltage.

To design the system support (§3) to allow sensor dynamic
voltage scaling, we introduce a simple voltage controller
hardware interface that can programmatically generate de-
sired sensor voltage requested by applications. On top of that,
we introduce the Squint runtime that includes a software
API allowing application developers to seamlessly specify
voltage schedules directly from the vision applications on a
frame-by-frame basis. These interfaces integrate well with
existing and future visual computing systems, allowing for
an easier upgrade.
To evaluate our system, we design our implementation

(§4) around a RPi based streaming pipeline. We support vari-
ous visual workloads, including neural network-based peo-
ple detection and OpenCV-based camera pose estimation.
Through our evaluation (§5) across a range of voltage sched-
uling policies, we demonstrate the opportunity of Squint

(a) Pixel design (b) ADC design

Figure 2: Analog voltage variation affects pixel and
ADC circuits. A lower voltage (VDD) for pixels would
affect transistor settling times, resulting in noise. A
lower reference voltage (VREF) for ADC would decrease
the dynamic range, resulting in reduced contrast. Note:
VRST helps clear pixel charge on soft reset (RST) and is
unaffected by voltage scaling.

based imaging to decrease sensor power by up to 73%, while
only minimally degrading the visual task accuracy. Through
reduction in sensor power, Squint imaging techniques can
reduce the power of popular IoT and XR systems by 10%.

In summary, we make the following contributions:
• We explore the idea of dynamic voltage scaling for
image sensors, where different frames are captured at
different fidelities for overall system energy efficiency,
while respecting task needs.

• We characterize the energy and fidelity implications
of analog voltage scaling on off-the-shelf commercial
image sensors.

• We develop a lightweight and fully programmable volt-
age controller to generate desired analog supply volt-
age for the camera. On top of that, we develop a li-
brary and runtime to coordinate vision applications
with voltage controller operation.

• We augment our hardware and software support on
top of an existing commercial IoT streaming pipeline
built around the RPi platform. We evaluate the aug-
mented system on a variety of vision tasks to demon-
strate significant reduction in sensor power with con-
trollable accuracy loss.

2 BACKGROUND AND MOTIVATION
2.1 Analog readout is the bottleneck for

sensor energy efficiency
Modern IoT and mobile systems employ CMOS image sen-
sors for video analytics and photography. CMOS image sen-
sors exhibit higher efficiency compared to CCD sensors, but
they still consume hundreds of milliwatts, mainly due to
their power-hungry analog readout [11].
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Table 1: Characterized image sensors. Sensors can be
undervolted far below theminimum voltage limit spec-
ified in datasheets.

Camera
system Sensor Max.

res
Voltage range
(datasheet)

#cams
char

Actual
lower limit

RPi cam Sony
IMX219 [17] 4K 2.8 +/- 10% 5 1.2 - 1.5

Pixycam OmniVision
OV5647 [18] 1080p 2.8 +/- 10% 1 1.8

Python1300 OnSemi
Python1300 [19] SXGA 2.8 +/- 10% 1 1.7

Modern image sensors comprise three major elements: a
pixel array, an analog readout, and digital logic. The pixel
array converts light into voltage, consuming minimal en-
ergy [12]. Analog readout amplifies analog signals generated
by the pixel array and converts them into digital values. Fi-
nally, the digital logic oversees sensor operation, managing
timing generation and data preparation for external trans-
mission.
Notably, the analog readout consumes 50%-75% of over-

all energy in recent sensor designs [12–14]. This is due to
two factors: (i) Analog circuits need to operate all the time,
making them power hungry compared to their digital coun-
terparts which operate only on the active clock edge. (ii)
Technology scaling improvements for energy efficiency have
been much slower for analog components compared to digi-
tal.

2.2 Effects of analog voltage variations on
image sensor circuitry

Existing systems supply higher analog voltage, typically
2.8 V, for high fidelity imaging [15]. Higher analog voltage
(VDD) is needed to maintain sufficient drive strength of the
photodiode, source follower, and bitline components in the
pixel design, shown in Fig. 2a, for smoother charge transfer.
Lowering analog voltage would weaken the drive strength of
those components affecting transistor settling times [15, 16],
resulting in image noise. Lowering analog voltage would also
slow down [8, 9] the charge transfer process. This would not
significantly affect the imaging process if the photodiode
accumulates enough charge, e.g., well-lit scenes. However,
this would make the images dimmer in low-lit scenes where
photodiodes do not accumulate enough charge.
Higher analog voltage (VREF) is also needed for high fi-

delity ADC operation for maintaining high dynamic range.
Image sensors typically have a successive-approximation
(SAR) ADC (Fig. 2b) that performs a binary search for gener-
ating digital output by successively comparing input voltage
(VIN) against reference voltage (VREF) [20]. A higher VREF
would enable higher precision output supporting a wider
range of pixel intensity values leading to high dynamic range
images. A lower VREF, on the other hand, would decrease
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Figure 3: Lowering the supply voltage significantly re-
duces the sensor power. The flat region above 2.4 V is
due to strong voltage regulation inside the sensor.

the dynamic range forcing the pixels to saturate early and
decreasing the overall image contrast.

While the exact pixel and ADC designs might vary for dif-
ferent image sensors, the fundamental underlying phenome-
non of how the circuits behave at different analog voltage
levels would remain the same. Furthermore, the underlying
phenomena is agnostic to the shutter type, rolling or global,
of the image sensor as the shutter type does not affect the
charge transfer process and ADC operating mechanism.

2.3 Analog voltage scaling for energy
efficiency

Towards addressing the energy efficiency bottleneck, we
propose to scale analog voltage to promote camera energy
efficiency. We study the energy and fidelity implications of
voltage scaling by characterizing three different image sen-
sors from three popular manufacturers, as shown in Table 1.
These image sensors vary in terms of resolution, shutter type,
and pixel designs, and are representative of cameras avail-
able in typical IoT and mobile systems. In this section, we
mainly present the findings of RPi camera characterization;
while other cameras revealed similar insights.

We observe that image sensor manufacturers usually take
a conservative approach when it comes to specifying the
recommended operating analog voltage for stable camera
operation. They typically recommend a 10% tolerance band
around nominal voltage in the datasheets. In reality, however,
we find that we can undervolt the analog power rail to a value
that is far below the recommended limit, as shown in Table 1,
without affecting basic camera functionality. For instance,
we can aggressively undervolt the RPi’s analog power rail by
up to 50% of its nominal value with the camera still streaming
pixels.
The extent to which we can undervolt a camera strongly

depends on sensor design and the sensor’s sensitivity to
analog voltage changes. Among the three sensors we char-
acterize, we notice the RPi camera can be undervolted by
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Figure 4: Sensor brightness and noise levels increase
with lower analog voltage. Increased brightness is due
to decreased ADC output swing and increased noise
due to elevated shot noise levels.
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Figure 5: Images captured at different sensor voltages
and their histograms. Low voltage image is brighter
and grainier than its high voltage counterpart. This is
also reflected in the shift in mean and variance width
in the histogram. Images appear green because they
are captured raw, i.e., without white balance.

a large extent compared to other ones. In addition to vari-
ability across cameras from different vendors, we also notice
variability across cameras from the same vendor, as shown
in Table 1. This is due to the silicon lottery [21]: One RPi
camera can undervolt slightly better than the other and vice
versa.

2.3.1 Energy implications of voltage scaling. Aggressive un-
dervolting leads to significant energy savings, as dynamic
power quadratically varies with voltage (𝑃 ∝ 𝑉 2). Since ana-
log circuits are slow on technology scaling, dynamic power
still dominates the overall power consumption by contribut-
ing to about two thirds of total power. On the other hand,
static power, which is the less dominant power source in
analog electronics, is largely unaffected by voltage scaling.

To understand how camera power varies with analog volt-
age scaling, we intercept the analog power rail of the RPi
camera and instead connect it to an external variable power
supply. To compute overall power, we measure the current
drawn from different power rails while we vary analog volt-
age. We find that undervolting the camera voltage by 50%,
i.e. from 2.8 V to 1.4 V, yields more than 50% camera power
savings, as shown in Fig. 3.

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
Analog Voltage
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Figure 6: Brighter and noisier images do not signifi-
cantly affect visual task fidelity in well-lit scenes.

2.8 V 1.4 V

(a) Dimly-lit
2.8 V 1.4 V

(b) Well-lit

Figure 7: High fidelity is still needed for precise object
detection in challenging scenarios. Low fidelity suffices
otherwise.

2.3.2 Image fidelity implications of voltage scaling. While
aggressively reducing analog voltage helps significantly re-
duce camera power, it also impairs image quality by making
images brighter and noisier. Increased brightness is due to
reduction in ADC dynamic range. That is, image sensors
usually have a SAR ADC and lowering the ADC’s reference
voltage results in lowering the output signal swing. This
forces pixels to saturate early, brightening the image and
decreasing the overall contrast.
Increased noise is due to more pixel shot noise triggered

by reduction in pixel bias voltage as shot noise exponen-
tially varies with the negative of bias voltage. In addition
to brightness and noise artifacts, we also notice pixelation
artifacts appearing in images. This is due to pixels randomly
getting turned off possibly due to timing errors caused by
insufficient supply voltage.

We experimentally validate these claims by measuring the
standard dark signal [22] and temporal noise [23] of the RPi
camera while we vary sensor analog voltage. We capture 25
frames per voltage setting and average pixel values across
frames to determine the average frame. We average the pixel
values of the average frame to compute the dark signal. For
temporal noise, we compute variance of pixel values across
frames to determine the variance frame. Then we average
all the values in the variance frame to compute the temporal
noise.

As shown in Fig. 4, we notice the dark signal and the tem-
poral noise substantially increase as we decrease the sensor
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(a) Calibration
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Figure 8: Phases of Squint. During calibration, Squint sweeps voltage supplied to the camera to determine the
undervolting limit, as well as to profile noise. This information is stored in a configuration file. During execution,
the system uses the configuration file to translate the developer’s high-level fidelity request to actual low-level
camera voltage using the standard camera system stack.

voltage. We also noticed the sensor being insensitive to volt-
age changes until a certain point, which could be due to
strong voltage regulation inside the sensor. The brightness
and noise increase is also reflected in the histograms of ac-
tual images, as shown in Fig. 5. We can see that the peaks
shift rightwards and the distribution spreads outwards as we
switch from high voltage to low voltage.
On a side note, we can also see that the actual images in

Fig. 5 appear more green because they are captured RAW by
turning off most image signal processing (ISP) stages. No-
tably, we turn off automatic white balance (AWB) to avoid
color based artifacts produced by AWB. AWB algorithms [24–
27] estimate color temperature of a scene based on average
image intensity in order to determine appropriate gains that
need to be applied for individual color channels of an image.
As a result, AWB perceives brightness increase due to under-
volting as change in scene brightness and apply more gain
to the blue color channel resulting in bluish artifacts.

2.3.3 Task fidelity implications of voltage scaling. While ag-
gressive undervolting impairs image fidelity by adding bright-
ness and noise, we find that brightness and noise increases
do not affect visual task fidelity in most situations. However,
we see a noticeable degradation in task fidelity under chal-
lenging scene environments, e.g., low-light scenes, as shown
in Fig. 6. This creates an opportunity to situationally adapt
camera voltage based on scene illumination needs. That is,
we can aggressively undervolt the camera most of the time
for rapid power savings and occasionally bring the voltage
back to nominal under poor lighting conditions. Further-
more, we observe that there is no incentive to operate the
camera at intermediate voltages. This is because for well-lit
scenes, vision tasks perform reasonably well even at 1.4 V,

and for dimly-lit scenes, vision tasks perform reasonably
well only at 2.8 V, as shown in Fig. 6.

The insensitivity of vision tasks to brightness and noise in-
crease in most situations stems from the fact that neural net-
works running behind these tasks are usually trained tomake
themselves immune to intensity and noise changes [28]. That
being said, vision tasks still need high fidelity for perform-
ing precise object detection, especially under challenging
conditions such as dimly-lit scenes, as shown in Fig. 7a. For
less challenging scenes, we observe that low-fidelity images
provide comparable task performance to their high-fidelity
counterparts, as shown in Figs. 7b, 15a, 16a. For this analy-
sis, we experimentally capture images at different voltage
settings from the RPi camera for three different lighting con-
ditions. We then feed the images to a YOLO-based people
detection task and compare the detection results against
ground truth to determine accuracy.
2.4 Motivational observations
To summarize, we have the following insights for image
sensor voltage scaling:

• We can aggressively undervolt image sensors far be-
yond specified operating ranges in the datasheets.

• Aggressive undervolting results in significant camera
power savings.

• Aggressive undervolting also makes images brighter
and noisier due to the reduced upper bound of the
analog voltage range.

• Raised brightness and noise levels in images does not
significantly affect vision task accuracy in most situa-
tions.

These observations motivate the need for dynamic voltage
scaling strategies for image sensors to save energy at suffi-
cient task fidelity.
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Edge 
Device

Voltage 
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1.5 V setVoltage(1.5)
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Figure 9: Different Squint system configurations.
Server-based: vision apps running on server issue volt-
age request to the voltage controller. Edge- based: vi-
sion apps run on the edge device itself and directly
issue requests to the voltage controller.

3 DESIGN
Design aspirations:We set three goals that guide the de-
sign of system support for sensor dynamic voltage scaling
through our hardware and software extensions.

• Seamless: Vision applications should be able to recon-
figure camera voltage on a frame-to-frame basis with-
out any frame drops

• Lightweight: Our hardware extension should be light-
weight with minimal system overhead

• Flexible: Our runtime should allow developers to flexi-
bly specify camera voltage needs on a per-frame basis.

Calibration and Execution Phases: We propose two
phases for Squint to seamlessly workwith existing and future
visual computing systems, as shown in Fig. 8.

(1) To account for variations across sensors, the system
goes through a one-time calibration phase to deter-
mine the actual voltage limits and noise profile of the
image sensor.

(2) The system then enters an execution phase to guide
policy based voltage selection based on the calibration
information.

(1) Calibration phase: During this phase, the system runs
a script that automatically sweeps through different camera
voltages and determines what set of voltages are usable. The
script starts with the default nominal voltage specified in
the datasheet and keeps decreasing the voltage in steps of
one tenth of a volt until the camera freezes, at which point
the camera voltage is restored to nominal. While it does so,
the script also captures several frames for noise assessment.
The system commits the voltage limits and noise data into

1.5 VsetVoltage(1.5) Digital-to-
Analog 

converter

Voltage 
buffer

1.5 V
1 uA

1.5 V
1 mA

Figure 10: Voltage controller comprises a DAC to trans-
late digital voltage requests into corresponding analog
voltage and a voltage buffer to generate sufficient cur-
rent flow for reliable camera operation.

a configuration file, which could be stored in the hardware
abstraction layer of the system stack.
(2) Execution phase: During this phase, the system uses

the configuration file generated during the calibration step
to translate the application’s high-level fidelity requirements
into actual set of voltages that needs to be applied to the
camera. These voltages are sent to the voltage controller
which enacts them on the camera using standard device-
driver mechanisms.
System support for Squint: To efficiently run the cali-

bration and execution phases, we build system support for
Squint by extending the existing IoT pipeline with neces-
sary hardware and software extensions. These extensions
could be integrated into different system incarnations, such
as server-based and edge-based, depending on where the
vision application runs in the system, as shown in Fig. 9. The
resulting Squint system architecture centers around the idea
of adaptively scaling camera voltage for vision application
usage. We describe the design of our voltage controller and
its integration with the existing IoT streaming pipeline, as
shown in Fig. 9. We also discuss the software runtime for vi-
sion application developers to leverage the voltage controller
through policy specification.

3.1 Programmable Voltage Controller
The voltage controller module, shown in Fig. 10, intercepts
the incoming voltage reconfiguration command from a server
and produces appropriate analog voltage to power the cam-
era. The vision application specifies voltage needs using the
designed runtime support in §3.2.

We design a fairly simple voltage controller comprising a
digital to analog converter (DAC) and a voltage buffer. The
DAC programmatically takes desired voltage from vision
application and converts that into equivalent analog voltage
to power the camera. The DAC is supported by the volt-
age buffer which is a unity-gain amplifier that generates
sufficient current for stable camera operation.

3.1.1 Integration with edge device. The voltage controller
could be easily integrated as a standalone integrated circuit
on top of the edge device. Alternatively, we could repurpose
existing DVFS controllers inside SoCs of edge devices to
generate desired voltages for the camera. That would entail
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Figure 11: Timing different voltages in tandem with
camera capture schedule leads to different fidelity pat-
terns across the frames and within a frame.

adding a few extra power modes to meet camera power
supply requirements.

3.2 Developer support
We develop runtime support to allow the developers to flex-
ibly specify voltages. This consists of a SetCamVoltage()
function for developers to set a voltage. Voltage can be set
on a per-frame basis or persist across frames. A runtime
service receives these calls to send the voltage to the voltage
controller.

SetCamVoltage(float val, string spec="SNR/Rel/Abs")

In order to facilitate development, we provide multiple lev-
els of abstraction for voltage specification.We provide sensor-
agnostic ways to configure voltage such as through "SNR"
and relative voltage specification ("Rel"), allowing developers
to be unconcerned with the intricacies of imaging and power
trends. Additionally, we also provide sensor-specific ways to
configure voltage to allow developers to directly set absolute
("Abs") camera voltages.

For relative voltage specification, we let developers specify
their desired voltage in [0, 1] range with 0 denoting the low
voltage limit and 1 denoting the high voltage limit, regardless
of the camera. Our decision to abstract this information is
grounded in the observation of the monotonicity of imaging
(Fig. 4) and power (Fig. 3) trends.

Our runtime service translates the specification into appro-
priate hardware voltage with the help of the configuration
file generated during the calibration phase of the system. The
final voltage is then enacted to the sensor hardware through
device driver, similar to how it is done in standard Android
and iOS mobile systems architecture.

3.2.1 Integration with CameraAPI and sysfs interface. Our
voltage configuration method could be easily integrated as
part of standard CameraAPI. The CameraAPI is an applica-
tion programming interface that allows software developers
to interact with a device’s camera hardware, including con-
trolling camera settings such as exposure, focus, and zoom,
in a platform agnostic manner. By integrating voltage control
into the existing CameraAPI, developers can easily configure
voltage through a familiar interface.

VideoCapture cap(0);
cap.set(cv::CAP_PROP_EXPOSURE, 0.0167);
cap.set(cv::CAP_PROP_VOLTAGE, 0.5);

The above snippet shows an example integration using
the popular OpenCV-based Linux CameraAPI. In this ap-
proach, voltage can be defined as a camera property and set
to a desired value, similar to other camera settings such as
exposure. This method of integration can also be adapted to
Android and iOS cameraAPIs.

Alternatively, voltage control can be integrated as part of
sysfs interface to allow developers to configure and query
sensor voltage through a standardized interface controlled
by the operating system. This approach involves modifying
the camera device driver to create voltage as a sysfs file
node, which can then be exported to userspace using the
sysfs interface. Developers can also directly specify voltage
scheduling policy, instead of voltage, to enable automatic
voltage control by OS, reducing developer burden.

echo 0.5 > /sys/devices/camera/sensor/voltage
echo "Perf" > /sys/devices/camera/sensor/policy

3.2.2 Voltage scheduling policies. Developers can build vari-
ous policies that autonomously guide the voltage configura-
tion, in the similar spirit to issuing voltage configurations
with the Linux DVFS API on desktop systems and Android’s
Frequency API on mobile systems. Policies can incur differ-
ent system overheads, leading to system trade-offs.

A policy should predict voltage progression with time as
well as image quality requirements to maximize task accu-
racy. A simple policy could occasionally operate a camera
at high voltage to detect frames and undervolt the camera
for tracking the detected objects across frames. Develop-
ers can also introduce improved application-specific proxies
with other prediction strategies, e.g., with optical flow based
voltage reconfiguration.

Notably, depending on how the voltage schedule is aligned
with the camera’s capture schedule, different fidelity granu-
larities could be achieved within a single image, as shown in
Fig. 11. Modern cameras employ a rolling shutter mechanism
that exposes and streams one line of pixels at a time. For
coarse-grained fidelity control, the system should sustain
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Table 2: System components in the IoT streaming
pipeline

Component Specification
Camera RPi Cam v2.1, Sony IMX219, 4K @ 60 fps
Edge device RPi v 3B, quad-core Cortex-A53, 1GB RAM
Network 300 Mbps Ethernet
Server Intel Xeon CPU E5-1620, 32 GB RAM

the voltage for the entirety of the active frame capture du-
ration. On the other hand, for fine-grained fidelity control,
the system could apply different voltages to different parts
of the frame.

4 IMPLEMENTATION
Platform:We build our IoT system (Fig. 12a) as a gstreamer
pipeline around RPi to be representative of a standard video
streaming system. As shown in Table 2, we use RPi v2 cam-
era [29] as the capture device, connected to a RPi v3B. The
RPi forms the edge device that consumes the incoming pixel
stream from the camera and compresses the stream into a
compact representation using standard H264 compression
techniques. We run a real-time streaming protocol (RTSP)
server [30] on the Pi that transmits the compressed pixel
stream from the edge device over Ethernet to the server. Fi-
nally, we utilize a server class Intel Xeon CPU desktop that
decompresses the compressed pixel stream for performing
video analytics, e.g., people detection. The entire pipeline
runs in real-time at 24 fps.
Voltage controller: We design our voltage controller

(Fig. 12b) as a fully programmable module by using off-the-
shelf components. Specifically, we use Microchip’s MCP4725
12-bit DAC [31] as our digital-to-analog converter and Texas
Instruments OPA551PA operational amplifier [32] to build
the voltage buffer that generates sufficient current for stable
camera operation. We integrate the voltage controller as a
standalone module, powered and interfaced through the I2C
interface of the Pi. The voltage controller takes voltage con-
figuration commands from the Pi and generates the desired
voltage to power the camera’s analog voltage rail.

Runtime:We implement our runtime as a filesystem in-
terface (§3.2) using a stateless networking service protocol.
Specifically, we implement a RESTful API [33, 34] to handle
voltage configuration requests from the vision applications
running on the server. A simple web service running on
the Pi forwards these voltage configuration requests to the
voltage controller over the I2C interface.

4.1 RPi based system integration
4.2 Workloads
We study YOLO-based people detection that localizes and
tracks people in a scene to allow for counting analytics and
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board

Pi Cam
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Volt. Buffer

ADC
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Ports
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Vout

GPIO Pins

(b) Voltage Controller

Figure 12: Squint system setup

potential security responses. This would be representative
of multiple IoT video analytics applications such as counting
people entering and leaving a trail entrance and analyzing
shoppers’ buying activity [35] for automated checkout. Addi-
tionally, we perform a preliminary investigation of OpenCV
marker based camera pose estimation that is the backbone
for augmented reality tracking tasks. This would be rep-
resentative of multi-camera AR systems such as Microsoft
Hololens [36].

4.2.1 Benchmarks. Since existing datasets contain images
taken at nominal camera voltage and the undervolting im-
age artifacts are difficult to simulate, we construct our own
dataset based on real image captures at different camera
voltages. Specifically we stage our dataset representing two
real-life scenarios:

• Entrance detection: people entering and leaving a scene
• Person tracking: people randomly standing around in
a room holding casual discussions in places such as
office cafeterias

Our dataset contains variations in lighting, object density,
and object proximity, making it a viable proxy for real life
scenarios. We recruit five people and take their consent for
staging the dataset. We instruct the participants to move in
specific patterns that emulate the entrance detection and
the person tracking in cafeteria scenarios mentioned above.
During the movements, we vary the ambient light using a
controllable analog light source. Specifically, each capture
consists of six minutes with two minutes of high light, then
two minutes of medium light, and finally two minutes of low
light.

We use our experimental RPi camera to stage the dataset
at different voltages, while the participants emulate the sce-
narios. In addition to the experimental camera, we also use a
ground truth camera that always operates at nominal voltage
for ground truth captures. We place the experimental and
ground truth cameras in close proximity so that they see
the same scene with negligible parallax. Overall, the dataset
includes 73,066 images.



Squint: A Framework for Dynamic Voltage Scaling of
Image Sensors Towards Low Power IoT Vision ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

For the marker based pose estimation, we construct a lim-
ited dataset using the same setup as above. For this workload,
we place the marker at three different distances and three
different orientations with respect to the camera.

4.2.2 Baselines. We test our workloads against the follow-
ing baselines:

• Squint (Sq-X): The system supplies the desired voltage
to the camera based on the vision application’s fidelity
needs. Here “X” denotes the policy used for voltage
scaling. Notably, the system operates the camera at
extreme voltages, i.e., 2.8 V and 1.4 V, for RPi camera,
since there is no incentive to operate in between, as
discussed in §2.3.3..

• Reduced resolution (RR): Instead of modulating volt-
age, the system changes capture resolution based on
the fidelity needs. Analogous to Squint, the system
configures the camera at 1080p for high fidelity and at
480p for low fidelity.

4.2.3 Metrics. Here we discuss different evaluation metrics.
Task accuracy:We use the standard metrics from com-

puter vision literature to evaluate the workloads. For the
people detection workload, we use intersection over union
(IoU) as the metric. IoU measures the amount of overlap be-
tween estimated and ground truth detections. A detection
is considered a true positive (TP), if the IoU score is above a
certain threshold. Otherwise, it is considered a false positive
(FP). The final detection accuracy is obtained by determining
the number of true positives among all the detections, i.e.,
TP/(TP + FP), for each frame, which is known as mean aver-
age precision (mAP). The final mAP is obtained by averaging
individual mAP scores across all frames. On the other hand,
for marker-based camera pose estimation workload, we use
translational error and rotational error as the metrics. These
are derived by computing the L2 norm of estimated pose
against ground truth pose.

Power: We sample different camera power rails every 0.1
ms to measure their respective current draws. We multiply
the current draw with the voltage of each rail and sum them
over all the rails to get the sensor power. We analyze the
sensor power readings across different samples to report
power trends.

Overhead: We measure the voltage reconfiguration time
of our API by measuring the time difference between voltage
reconfiguration request sent by the vision application and
acknowledgement notification received from the Pi’s web
service. Wemeasure the reconfiguration time across multiple
voltage requests to report trends. On the other hand, to report
power overhead of the voltage controller module, we use
worst case power estimates from the component datasheets.

4.2.4 Policies/Parameter choices. We evaluate the following
policies, in a similar spirit as CPU’s DVFS policies [37, 38].

Performance (Perf): The system sets the sensor voltage
to the highest possible setting, providing maximum task
performance but potentially consuming more power and
generating more heat. This is representative of status-quo.

Powersave (Pwr): The system sets the sensor voltage to
the lowest possible setting to save power.
Random (Rand): To demonstrate the effectiveness of

flexible voltage reconfiguration, we map a random policy
whereby the system generates a random number from 1.4 to
2.8, and supplies that voltage to the image sensor.
Lightutil (Light): The system uses ambient light sen-

sor’s reading to determine the optimal voltage setting for
the current workload. The system uses a lighting - voltage
lookup table that is obtained from sensor characterization to
guide the voltage selection process.
For our evaluation, the system occasionally captures a

high fidelity image, computes its average pixel intensity, and
uses it as a proxy to estimate the ambient lighting of a scene.
If the light estimate is greater than a certain threshold, the
system supplies 1.4 V to the sensor; otherwise it supplies 2.8
V to the sensor, as guided by our characterization curves.

On-Demand (OD): The system sets the sensor voltage to
the lowest possible setting when the scene is idle and scale
the voltage up as scene complexity increases. Specifically,
the system computes IoU score across detection results of
previous frames to determine the staticness/dynamism of
a scene’s objects and uses the IoU score to appropriately
determine the desired sensor voltage.
A larger IoU score across frames indicates that the scene

is fairly static. In such scenarios, the system supplies 1.4 V to
the camera to continue to track the existing objects. On the
other hand, a lower IoU score across frames indicates large
motion in the scene, including people entering and exiting
the scene. In such scenarios, the system supplies 2.8 V to the
camera for high quality detections.
Distance based (Dist): We use a distance based policy

for marker based camera pose estimation workload, whereby
the system adapts voltage based on proximity of marker with
respect to the camera. The system supplies a low voltage (1.4
V) to the camera when the marker is close to the camera, and
supplies a high voltage (2.8 V) when the marker is located
far from the camera for precision.
5 EVALUATION
5.1 The usage of Squint is flexible, seamless,

and performant
Our runtime flexibly allows apps to configure full swing
of sensor voltages on a frame-to-frame basis without any
restrictions. The voltage schedule for random policy shown
in Fig. 13 indicates that the API is flexible enough to randomly



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Venkatesh Kodukula, Mason Manetta, and Robert LiKamWa

0 50 100
Time (s)

1.5

2.0

2.5
Vo

lta
ge

 (V
)

(a) Random

0 50 100
Time (s)

1.5

2.0

2.5

Vo
lta

ge
 (V

)

(b) Lightutil

0 50 100
Time (s)

1.5

2.0

2.5

Vo
lta

ge
 (V

)

(c) On-Demand

Figure 13: Bright Light Voltage schedules generated by different policies for Entrance detection dataset.
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Figure 14: Bright Light Voltage schedules generated by different policies for Person tracking dataset.

configure sensor voltage anywhere from 1.4 V to 2.8 V. On
the other hand, the system operates the image sensor at
extreme voltages, either 1.4 V or 2.8 V, for Lightutil and On-
Demand policies, as shown in Fig. 13, because there is no
power/performance incentive to operate at an intermediate
voltage, as mentioned in §2.3.3.

We find that the system chooses a different voltage sched-
ule for different policies for a given scenario. For instance,
we can see On-Demand policy schedule has a denser sched-
ule than Lightutil, because it’s motion adaptive, and motion
changes are frequent in both the entrance detection and
the office cafeteria scenes. Lightutil on the other hand has a
sparser schedule because it’s light adaptive and light changes
are less frequent in the scenes.
In addition to variation across policies, we find that the

same policy selects a different voltage schedule for differ-
ent scenarios. For instance, we can see On-Demand hav-
ing a denser schedule for the entrance detection scenario
(Fig. 13) compared to the person tracking in cafeteria sce-
nario (Fig. 14), as there is large motion involved in the former
due to people constantly entering and leaving the scene as
opposed to the cafeteria one where people are fairly static.
While the runtime configures different voltages for dif-

ferent policies, we find that Squint is able to stream frames
seamlessly without any noticeable frame drops. By doing
so, Squint is able to provide a consistent real-time pipeline
performance of 24 fps for all the evaluated workloads.
Notably, we find that voltage configuration requests exe-

cuted while the sensor is actively capturing an image results
in different parts of the frame possessing different qualities.

This is due to rolling shutter sensor operation whereby differ-
ent lines of pixels are read at different voltage configurations.
We notice such artifacts during the dataset collection with
more artifacts appearing when rapidly changing voltages.
This opens up an opportunity to design more fine-grained
voltage scheduling policies that can sample different parts of
a frame, as mentioned in §3.2. We plan to study the fidelity
effects of such policies deeply in a future work.

Algorithms are still reliable.We find that task accuracy
is fairly maintained for people detection workload, while
policies choose different voltage schedules during system
execution, as shown in Fig. 15a. Notably, On-Demand has
slightly better accuracy than Lighutil because it’s adaptive
to both light and motion in the scene. Random policy has
comparable performance to Lightutil because the system
randomly modulates the sensor supply voltage with an aver-
age operating voltage landing in the middle. At this average
intermediate voltage, the frame quality is comparable to the
frame quality at a nominal voltage. Lower accuracy for Pow-
ersave policy is due to continuous low voltage operation,
regardless of scene dynamics. On the other hand, reduced
resolution (RR) baseline also provides consistent accuracy as
neural networks, by design, are typically trained to perform
well at low input resolutions, e.g., 300x300 for YOLO.

From Fig. 15a, we also notice that the accuracy varies quite
a lot within a policy as indicated by the large error bars. This
variation is mainly because of varying scene dynamics per-
taining to occlusion, object proximity, and contrast difference
in the dataset. Specifically, we notice the difficult scene situa-
tions such as people occluding one another, people standing
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Figure 15: People detection task

far from the camera, and natural contrast differences due to
non-uniform illumination in the room result in lower task
accuracy, and vice-versa.

Formarker based pose estimationworkload, we find the ac-
curacy is also maintained for distance based policy, "Sq-Dist",
as the system adapts sensor voltage based on the marker’s
proximity with respect to the camera, as shown in Fig. 16a.
On the other hand, reduced resolution baseline adapts sen-
sor resolution based on marker distance from the camera.
We can see that reduced resolution baseline has a larger er-
ror than Squint, mainly because higher resolution does not
help with pose tracking in dimly-lit office environments. On
the other hand, Squint based imaging helps with tracking
because undervolting adds brightness to the signal.

5.2 The usage of Squint is energy-efficient
We find that Squint imaging leads to significant camera
power savings – up to 73% for our evaluated policies – due to
aggressive undervolting. The actual amount of power saved
directly depends on the voltage schedule chosen by a policy.
A sparser voltage schedule with more low voltage operation,
such as the one with Lightutil policy under "Bright" light,
results in more savings, whereas a denser voltage sched-
ule with more high voltage operation, such as the one with
On-Demand policy under "Bright" light, results in relatively
less savings. However, if we consider all lighting conditions,
Lightutil has an overall higher power consumption than
On-Demand, as shown in in Fig. 15b. This is because Ligh-
tutil always selects high voltage under low-light conditions,
whereas On-Demand selects both high and low voltage based
on scene dynamics. We observe similar trends for camera
pose estimation workload as can be seen from Fig. 16b.

Fig. 17 shows the experimental power trace corresponding
to two different voltages. As we can see, for a given supply
voltage, the image sensor alternates between active and idle
states with different timing and power profiles for each of
those states. While the system switches the sensor’s sup-
ply voltage, we notice only the power profiles of active/idle
states getting shifted keeping their timing intact. Decreasing
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Figure 16: Camera pose detection task.

the active state duration through aggressive standby tech-
niques [11] would lead to even more savings and we will
deeply study such mechanisms as future work.

Meanwhile, we find that reducing capture resolution (RR)
baseline also results in noticeable sensor power savings. This
is because the sensor samples fewer pixels at lower resolu-
tions, thereby reducing burden on analog readout. Image
sensors typically adopt a binning mechanism for image sub-
sampling, whereby low-resolution images are achieved by
averaging pixels over a window. This means all pixels in
the imaging array are activated, typically at a higher resolu-
tion, but only a few of them are readout after an averaging
process based on the desired resolution. Since readout is far
more power hungry than pixels, reducing resolution helps
with energy efficiency. Our voltage scaling techniques could
be combined with resolution adaptation techniques to com-
pound energy savings.
System-power saving estimates: Aggressive voltage

scaling in Squint can yield approximately 10% power sav-
ings for XR and IoT systems. While this may seem modest,
combining Squint with end-to-end system optimization tech-
niques such as sparse sensing holds the potential for signifi-
cantly higher savings. We provide first-order estimates.

XR systems such as the Meta Quest2 headset use four cam-
eras for inside-out tracking, consuming 120-130 mW each,
totaling 500 mW for the 4000 mW [39] system, while running
common use-cases such as Beat Saber. However, aggressive
voltage scaling can reduce camera power consumption by an
order of magnitude, bringing the total camera power down
to 50 mW. With a 90% occurrence of voltage scaling, the
average camera power would be around 95 mW, resulting in
approximately 10% system power savings.
In TrailGuard AI [40], an IoT system widely used for

wildlife tracking and anti-poaching, amotion sensor-triggered
camera and low-power vision processing unit are employed.
The overall system consumes around 700 mW, with the cam-
era contributing roughly 100 mW. By applying voltage scal-
ing, the camera’s power draw can be reduced to just 10 mW.
With a 90% occurrence of voltage scaling, this results in an
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Figure 17: Power trace for sensor voltage modes.

average camera power consumption of approximately 20
mW and overall system power savings of around 11%.

5.3 The Hardware and Software extensions
are Lightweight

Voltage controller is power and area efficient. Our volt-
age controller consumes < 1 mW of power during system
operation, which is negligibly small in comparison to the
camera power savings. We built our voltage controller as
a standalone PCB module mainly with three components,
which could be easily integrated into existing camera sys-
tems. Miniaturization efforts such as building the voltage
controller into an integrated circuit form factor using the
state-of-the-art fabrication technology would lead to much
higher power and area efficiency.

Voltage configuration API is performant.We find that
our API takes about 10 ms for switching the camera voltage.
Since 10 ms is within a frame period ( 33 ms), the API enables
the system to seamlessly switch sensor voltages on a frame-
by-frame basis.

6 RELATEDWORK
Dynamic voltage scaling in CPUs: The idea to dynami-
cally scale a component’s voltage has been extensively used
in microprocessors since the early 1990s [6, 41, 42]. For CPUs,
undervolting helps conserve processor power [43] and cools
down the chip, but at the cost of performance. Overvolting,
on the other hand, helps increase processor performance
allowing for higher frequency operation. CPU voltage scal-
ing is usually combined with clock frequency scaling for
power and performance gains, and the mechanisms to en-
able such gains are popularly referred to as DVFS [44, 45] in
the architecture community.

Similar to CPU undervolting, we undervolt image sensors
to conserve power. Furthermore, while undervolting CPUs
degrades application’s performance, undervolting image sen-
sors degrades application’s imaging fidelity. Finally, unlike
CPU voltage scaling techniques which adapt the voltage of

Table 3: Comparison of low-power imaging systems

Max.
Res

Frame
rate

Res.
Reconfig

Pwr/Battery
Savings

WISPcam [48] 176x144 0.001 fps No N/A
Battery-Free
HD Video [49] 1080p 60 fps No 1000X

Wireless Comp.
Vision [50] 160x120 1 fps Yes 62%

Glimpse [51] 480p 30 fps No 10X
Camroptera [52] 160x120 N/A No N/A
Squint (Ours) 4K 60 fps Yes 10X

digital circuits, our sensor voltage scaling techniques adapt
the voltage of analog circuits for significant power savings.

Sensors for power efficiency: Designing image sensors
that can operate on lower analog power supplies has been
an emerging trend in the image sensors community to pro-
mote sensor’s power efficiency. Samsung recently designed
two such imagers [8, 9] with different resolution and pixel
sizes [7], which use 2.2 V supply to power all their analog
circuitry. Since lowering pixel voltage causes fidelity issues
stemming from decreased voltage swing and backflow of
charge into photodiodes, several circuit level changes have
been done to compensate for those issues.
Many researchers in academia designed power-efficient

sensors as well. Choi et al [10] designed a dual voltage-mode
camera that can operate in high-fidelity imaging mode (3.3
V) and low-power vision mode (0.9 V) to save power. Os-
awa et al [46] designed a low-power IoT camera that has
power consumption proportional to frame rate, using a hier-
archical column multiplexer and variable capacitance buffer.
LiKamWa et al [11] explore clock scaling and aggressive
standby techniques for sensor energy efficiency. Murakami
et al [47] proposes an approach to dynamically scale frequen-
cies and voltages of image sensor’s digital circuits within a
frame to save power during vertical blanking period.

Similar to these imagers, we also lower the sensor’s analog
voltage to save power consumption. Different from these
imagers, our undervolting mechanisms do not need explicit
changes to the sensor design and can be directly applied on
off-the-shelf cameras.
Systems for efficient visual computing: Many re-

searchers proposed visual systems that can programmatically
configure different sensors’ parameters to achieve desirable
system trade-offs. Stagioni [53] adapts the temperature of a
3D stacked sensor by varying the amount of near-sensor pro-
cessing, to trade thermal noise with system energy. Stagioni
migrates the vision task between near-sensor and far-sensor
VPU in a duty-cycled fashion to regulate temperature.

Banner [54] adapts sensor resolution on a frame-level
granularity to trade task accuracy with system energy, by
avoiding repeated memory allocation. Josephson et al. [50]
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adapt imaging resolution based on situational needs in ad-
dition to low-power backscatter streaming, improving the
battery efficiency by 62%, as shown in Table 3. Naderiparizi
et al. [48, 49] built a battery-free video streaming system by
eliminating expensive ADC and codecs from camera module.
Instead of adapting sensor resolution, Glimpse [51] and Ca-
maroptera [52] selectively captures and processes key frames
and discards the rest.
Rhythmic Pixel Regions [55] adapts sensor resolution on

a region-level granularity for fine-grained accuracy-energy
trade-offs, through a encoder-decoder architecture. Our work
is in the similar spirit as these works but we reconfigure the
sensor’s analog voltage to trade sensor energy with imaging
fidelity.

7 FUTURE DIRECTIONS
Network friendliness:Many IoT systems deployed in the
wild are constrained by network bandwidth and use ultra-
low bandwidth protocols such as LoRA to communicate be-
tween edge device and server. Our voltage reconfiguration
API requires only a few bytes of data per request, thereby not
burdening the network interface. To make our system even
more network friendly, we will explore better data transmis-
sion protocols and intelligent ways to configure voltage. For
instance, the system could occasionally send voltage requests
that hold for a bunch of frames instead of sending requests
on a per-frame basis.
Voltage scheduling policies:While we mainly explore

policies that generate coarse-grained voltage schedules en-
abling fidelity control on a per-frame basis, our system allows
generating fine-grained voltage schedules enabling fidelity
control on a per-line basis within a frame. Such fine-grained
schedules have to be generated in tandemwith rolling shutter
based camera capture schedules to allow sampling different
parts of the frame at different desirable fidelities, which could
be interesting for applications such as semantic segmenta-
tion. This fine-grained voltage scheduling would also lead to
more sensor power savings, and we will investigate policies
that would enable such control as future work.
Our policies also operate the sensor at extreme voltage

levels as there is no incentive to operate the sensor at an
intermediate voltage level for vision task. However, as men-
tioned in the characterization section, intermediate voltage
level might be useful in low-light situations whereby un-
dervolting adds brightness to the signal without adding too
much noise. We will investigate the usefulness of interme-
diate voltage control in applications that can tolerate some
accuracy loss as future work.

Image restoration: In this work, we focus on capturing
raw sensor imagery without extensive image processing on
undervolted images. However, we recognize the potential

of AI-based image restoration techniques, particularly de-
noising, in mitigating undervolting artifacts. It is essential
to consider the trade-offs associated with these denoising
techniques, as they tend to be resource-intensive in terms of
power consumption and latency, especially when deployed
on mobile devices. We will study the quality and system
implications of denoising techniques as future work.

Dynamic frequency scaling:While we exclusively focus
on studying the effects of voltage scaling on the sensor’s ana-
log circuitry in this work, as a natural extension, we would
like to study the power and performance implications of
clock frequency scaling on the sensor’s digital circuitry. No-
tably, we would want to explore how analog voltage scaling
would work in tandem with digital clock scaling to provide
desired fidelity and frame rate needed for vision applications.
Voltage scaling on other camera types: In this work,

we extensively studied the implications of voltage scaling
on 2D image sensors. We will extend this study to other
sensor modalities such as depth cameras and event cameras.
Specifically, we will study how voltage scaling would affect
different sensing and readout patterns of off-the-shelf depth
and event cameras in the context of emerging 3D vision and
eye tracking applications, respectively.
8 CONCLUSION
Existing visual computing systems supply fixed voltage to
power the sensor’s analog circuitry, limiting the sensor’s en-
ergy efficiency. Squint overcomes the limitation by allowing
systems to aggressively undervolt sensor’s analog voltage
for significant efficiency gains. We build system support
to dynamically adapt sensor voltage from vision applica-
tions through a programmable voltage controller hardware
and a voltage configuration API software. With our hard-
ware and software interfaces, we demonstrate the efficacy
of voltage scaling for image sensors through different sched-
uling policies. We foresee our work as early steps towards
imaging-aware voltage scheduling techniques for IoT and
AR systems.
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