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Abstract

For a self-driving car to operate reliably, its perceptual system must generalize
to the end-user’s environment — ideally without additional annotation efforts.
One potential solution is to leverage unlabeled data (e.g., unlabeled LiDAR point
clouds) collected from the end-users’ environments (i.e. target domain) to adapt
the system to the difference between training and testing environments. While
extensive research has been done on such an unsupervised domain adaptation
problem, one fundamental problem lingers: there is no reliable signal in the target
domain to supervise the adaptation process. To overcome this issue we observe
that it is easy to collect unsupervised data from multiple traversals of repeated
routes. While different from conventional unsupervised domain adaptation, this
assumption is extremely realistic since many drivers share the same roads. We
show that this simple additional assumption is sufficient to obtain a potent signal
that allows us to perform iterative self-training of 3D object detectors on the target
domain. Concretely, we generate pseudo-labels with the out-of-domain detector
but reduce false positives by removing detections of supposedly mobile objects that
are persistent across traversals. Further, we reduce false negatives by encouraging
predictions in regions that are not persistent. We experiment with our approach on
two large-scale driving datasets and show remarkable improvement in 3D object
detection of cars, pedestrians, and cyclists, bringing us a step closer to generalizable
autonomous driving. Code is available at https://github.com/YurongYou/
Rote-DA.

1 Introduction

Autonomous vehicles and driver-assist systems require 3D object detectors to accurately identify
and locate other traffic participants (cars, pedestrians and so on) to drive safely [26, 31, 12, 25, 21].
Modern 3D object detectors achieve high accuracy on benchmark datasets [9, 11, 41, 35, 36, 33, 42].
However, most benchmark data sets train and test classifiers on essentially the same locations (city,
country), time, and weather conditions, and therefore represent the “best case” of an end-user using
the self-driving car in precisely the same conditions it was trained on. A more realistic scenario is
that self-driving cars trained in, for example, Germany will be driven in the USA. Unfortunately,
past work has shown that this domain gap results in a catastrophic drop in accuracy [32]. Given that
an end-user may choose to operate their car wherever they please, adapting the perception pipeline
effectively to such domain shifts is a critical challenge.

An obvious solution is to retrain the detector in the target domain (i.e., the end-user’s loca-
tion/environment). Unfortunately, this requires large amounts of labeled data, where expert human
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annotators painstakingly locate every object in LiDAR scans in every conceivable location. Such
labeled data is all but impossible to obtain in sufficient quantity. However, unlabeled data is not.
No matter where the end-user intends to use their car, likely thousands of cars drive there every day
already. By simply logging the data collected by cars with adequate drive-assist sensors, one obtains
a wealth of information about the local environment, which should be useful to adapt a detector to
this new domain. But it is unclear how to use this data: in particular, how can the detector learn to
correct its many mistakes in this new domain if it has no labels at all?

The key here is the fact that this unlabeled data is not just an arbitrary collection of unrelated scenes.
If we look at a population of cars driving around in a city, we observe that they all visit a shared set of
roads and intersections. Indeed, as pointed out by [40], any single vehicle will probably be driven on
the same route, day in and day out (e.g., commute, grocery shopping, patrol routes). Even when one
end-user takes their car on a new route, it is likely that other cars have taken that very route not long
before. This fact implies that the unlabeled data obtained from cars will typically contain multiple
traversals of the same route, obtained for free without any targeted data collection. Previous work
has already shown that aggregating data from multiple traversals can aid visual odometry [2] and
unsupervised object discovery [40].

In this paper we argue that multiple traversals are particularly suited for end-user domain adaptation.
We assume the existence of unlabeled LiDAR data from several repeated traversals of routes within
the target domain (e.g. collected a few hours or days apart). For a LiDAR point captured in any
one of these traversals, we use the other traversals to compute a persistency prior (PP-score) [40],
capturing how persistent this LiDAR point has been across traversals: persistent points are likely static
background. The PP-score thus yields a proxy signal for foreground vs background. This provides
a powerful signal to correct both false positives and false negatives: detector outputs that mostly
capture background points are likely false positives, and foreground points that are not captured by
any detection reveal false negatives. To formalize this intuition, we propose a new iterative fine-tuning
approach. We use the detector to generate 3D bounding boxes along the recorded traversals but
remove boxes with lots of persistent (and thus static) points as false positives. We fine-tune the
detector on this filtered data, and then “rinse and repeat”. To reduce false negatives during this
training, we introduce a new auxiliary loss that forces the detector to classify non-persistent LiDAR
points as foreground. We refer to our method as Rote Domain Adaptation (Rote-DA).

The resulting approach is a simple modification of existing object detectors, but offers substantial
accuracy gains in unsupervised domain adaptation. We demonstrate on the Lyft [11] and Ithaca-
356 [5] benchmark data sets that our approach consistently leads to drastic improvements when
adapting a detector trained on KITTI [9] to the local environments — in some categories even
outperforming a dedicated model trained on hand labeled data in the target domain (which we
intended as an upper bound).

2 Related Works

We seek to adapt a 3D object detector from a source to a target domain with the help of unlabeled
target data of repeated traversals.

Unsupervised Domain Adaptation in 3D. Improving generalizability of visual recognition systems
(trained on a source domain) without annotated data from the testing environment (target domain)
falls under the purview of unsupervised domain adaptation (UDA). The key to successful adaptation
is leveraging the right information about the target domain. After all, without any knowledge of the
target domain, adapting any learning systems would be extremely challenging, if not impossible.
The most common source of information used for adaptation in the literature is the unlabeled data
from the target domain; ST3D [37] improves conventional self-training adaption using stronger
data augmentations and maintaining a memory bank of high quality predictions for self-training
throughout adaptation; inspired by success in 2D UDA approaches that leverage feature alignment
techniques [16, 29, 10, 20, 23], MLC-Net [17] proposes to encourage domain alignment by imposing
consistency between a source detector and its exponential moving average [28] at point, instance,
and neural-statistics-level on the target unlabeled data.

Other than unlabeled data, other work has also sought to use other information from the target domain
to improve adaptation. One notable work along these lines is statistical normalization [32] where
the authors identify car size difference as the biggest source of domain gap and propose to scale
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Figure 1: A schematic layout of Rote-DA. The PointRCNN Proposal network classifies each input
LiDAR point as car/pedestrian/cyclist (Class Predictions) with three binary classifiers. The PP-
Score is used during fine-tuning in an auxiliary loss function L

cls

prop
to reduce false-negatives. The

Refinement network produces bounding boxes for the target data (Raw Detection Outputs). For
the next self-training round, these are filtered with posterior and foreground/background filtering to
reduce false positives, giving rise to the next pseudo-labels (bottom right).

the source data with the target data car size for adaptation. Knowing that the difference in weather
conditions between source and target domain would cause changes in point cloud distributions, SPG
[36] seeks to fill in points at foreground regions to address the domain gap. In addition to unlabeled
data, other work [24, 38] has also explored temporal consistency — or more precisely, tracking of
rigid 3D objects — to improve adaptation. Our work explores another rich yet easily attainable
source of information — repeated traversals. In principle, one could combine our approach with prior
UDA methods that use only the unlabeled data [37, 17] for additional marginal gains at the cost of
increased algorithmic complexity. We choose to keep our contribution simple and clear and focus
only on self-training with repeated traversals, which in itself is very effective and straightforward to
replicate.

Repeated Traversals. Repeated traversals contain rich information that have already been used in a
variety of scenarios. Early works utilize multiple traversals of the same route for localization [2, 14].
Repeated traversals of the same location allows discovering of non-stationary points in a point cloud
captured by modern self-driving sensor since non-stationary points are less likely to persist across
different traversals of the same location. To formalize this intuition, [2] develop an entropy-based
measure, termed ephemerality score (see background 3.1) to determine dynamic points in a scene and
subsequently, uses the signal to learn a representation for 2D visual odometry in a self-supervised
manner. Building upon ephemerality, [40] utilize multiple common sense rules to discover a set of
mobile objects for self-training a mobile object detector without any human supervision. Similar to
[40] we leverage information from repeated traversals and use self-training; however in contrast to
our work they focus on single class object discovery and our work is the first to show how multiple
traversals can be used for domain adaptation. In addition to detecting foreground points/objects,
repeated traversals have also been utilized by Hindsight [39] to decorate 3D point clouds with learned
features for better 3D object detection. In principle, we could combine our approach with Hindsight
to bring forth better generalizability but we did not explore such combination for simplicity and leave
the exploration for future work.

3 Rote Domain Adaptation (Rote-DA)

We seek to adapt a 3D object detector pretrained on a certain area/domain (e.g. KITTI [8] in Germany)
for reliable deployment to a different target area/domain (e.g., Lyft [11] in the USA). Without loss of
generality, we assume all objects of interest are dynamic (e.g., cars, pedestrians, and cyclists). Similar
to prior work [37, 36, 17, 32], we assume access to unlabeled target data for adaptation. Crucially
different from previous work, we assume that the unlabeled target data are collected from the same
routes repeatedly, and the localization information is available for adaptation. We note that such an
additional assumption is highly realistic, since with current localization technology [4, 39] these data
could be easily collected by the end-users going about their daily lives. For simplicity, we will focus
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on adapting point-based detectors [30, 38, 39, 40, 18, 24], specifically PointRCNN [26] which is one
of the current state-of-the-art 3D object detectors.

3.1 Background

Our work leverages persistence prior score (PP-score) from multiple traversals [40] to adapt PointR-
CNN to a new, target domain. We review key concepts relevant to the understanding of our approach.

Persistence prior score (PP-score) from multiple traversals. The PP-score [40, 2] is an entropy-
based measure that quantifies how persistent a single LiDAR point is across multiple traversals. We
assume access to unlabeled LiDAR data that are collected from multiple traversals of a set of location
L; each traversal contains a series LiDAR scans. To calculate the PP-score, we further assume that
these LiDAR scans of a traversal t have been pre-processed, such that the LiDAR points around a
location g 2 L are aggregated to form a dense point cloud St

g
. We note that St

g
is only used for

PP-score computation, not as an input to 3D object detectors.

Given a single 3D point q around location g, we can calculate its PP-score by the following steps.
First, we count the number of its neighboring points within a certain radius r (say 0.3m) in each St

g
:

Nt(q) =
��{pi | kpi � qk2 < r,pi 2 St

g
}
�� . (1)

We then normalize Nt(q) across traversals t 2 {1, · · · , T} into a categorical probability:

P (t; q) =
Nt(q)P

T

t0=1 Nt0(q)
. (2)

With P (t; q), we can then compute the PP-score ⌧(q) by

⌧(q) =

(
0 if Nt(q) = 0 8t;
H(P (t;q))
log(T ) otherwise,

(3)

where H is the information entropy. Essentially, the more uniform P (t; q) is across traversals, the
higher the PP-score is. This happens when the neighborhood of q is stationary across traversals; i.e.,
q is likely a background point. In contrast, a low PP-score indicates that some traversals t have much
higher P (t; q) than some other traversals. This suggests that the neighborhood of q is sometimes
empty (so low probability) and sometimes occupied (e.g., by a foreground car, so high probability),
and when q is detected by LiDAR, it is likely reflected from a foreground object.

PointRCNN. PointRCNN [26] is a two-stage detector. In the first stage, each LiDAR point is classified
into a foreground class or background, and a 3D box proposal is generated around each foreground
point. The proposals are then passed along to the second stage for bounding box refinement, which
refines both the class label and box pose. It is worth noting that this two-stage pipeline is widely
adopted in many other detectors [6, 22, 34, 1]. An understanding and solution to the error patterns of
PointRCNN, especially when it is applied to new environments, are thus very much applicable to
other detectors.

By taking a deeper look at the inner working of PointRCNN, we found that if a foreground LiDAR
point is misclassified as the background in the first stage, then it is removed from consideration for
the refinement (i.e., bound to be a false negative). In our approach, we thus propose to incorporate the
PP-score to correct this error during iterative fine-tuning. In the following, we describe the original
loss function used to train PointRCNN’s first stage.

Let us denote by Nc the number of foreground classes and by Np the number of points in a scene. An
annotated point cloud can be represented by a set of tuples {(qi,yi, bi)}

Np

i=1, where yi is a one-hot
Nc-dimensional class label vector and bi is the bounding box pose that encapsulates qi. The loss
function can be decomposed into two terms:

L({qi,yi, bi}
Np

i=1) =

NpX

i=1

Lcls(qi,yi) + Lreg(qi, bi). (4)
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The first term Lcls is for per-point classification (or equivalently, segmentation of the point cloud).
The second term Lreg is for proposal regression. For the former, a focal loss [15] is used:

1

↵
Lcls(qi,yi) =

NcX

c=1

yic(1� pc)
� log(pc) + (1� yic)(pc)

� log(1� pc) (5)

where pc is the one-vs-all probability of class c, produced by PointRCNN’s first stage; yic indexes
the c-th position of yi; ↵ and � are hyperparameters for the focal loss (we use default value ↵ = 0.25
and � = 2.0).

3.2 Adaptation Strategy

Approach overview. Our adaptation approach is built upon the conceptually-simple but highly
effective self-training for adaptation [13, 38]. The core idea is to iteratively apply the current model
to obtain pseudo-labels on the unlabeled target data, and use the pseudo-labels to fine-tune the current
model. The current model is initialized by the source model (i.e., a pre-trained PointRCNN). Self-
training works when the pseudo-labels are of high quality — in the ideal case that the pseudo-labels
are exactly the ground truths, self-training is equivalent to supervised fine-tuning. In practice, the
pseudo-labels can be refined through the iterative process, but errors may also get reinforced. It is
therefore important to have a “quality control” mechanism on pseudo-labels.

In this section, we propose a set of novel approaches to improve the quality of pseudo-labels, taking
advantage of the PP-scores, illustrated in Figure 1.

Pseudo-label refinement for false positives removal. Pseudo-labels generated by the source model
are often noisy when the source model is first applied to the target data that are different from the
source data. As shown in [32] and our experiments, PointRCNN suffers a serious performance drop
in new environments. Many of the detected boxes are false positives or false negatives. To control the
quality, we first leverage the PP-score to identify and filter out false positives.

To assess the quality of a bounding box b, we first crop out the points {qj}j2b in it, and query
their PP-scores {⌧(qj)}j2b. A bounding box is highly likely to be a false positive if it contains so
many persistent points, i.e., points with high PP-scores. To this end, we summarize the PP-scores
{⌧(qj)}j2b of a box by the ↵FB-F percentile, and remove the box if the value is larger than a threshold
�FB-F. In our experiments, we set ↵FB-F = 20 and �FB-F = 0.5 (We find these values are not sensitive).
Since we are effectively filtering out boxes that do not respect the foreground/background segmen-
tation obtained from multiple traversals, we term this filtering approach Foreground Background
Filtering(FB-F).

In addition, we present another complementary way to identify another kind of false positives.
Essentially, FB-F can effectively identify false positives that should have been detected as background.
However, it cannot identify false positives that result from wrong classification or size estimates.
Indeed, after FB-F, we still see a decent amount of this kind of false positives; the remaining
pseudo-labels are more numerous than the ground-truth boxes. One naive way to remove them is by
thresholding the model’s confidence on them. However, setting a suitable threshold is nontrivial in
self-training, since the model’s confidence will get higher along the iterations.

We thus propose to directly set a cap on the average number of pseudo-labels per class c in a scene.
We make the following assumption: as long as the source and target domains are not from drastically
different areas (e.g., a city vs. barren land), the object frequency in the source domain can serve as a
good indicator for what a well-performing object detector should see in the target domain. To this end,
we set the cap by �⇥ N

S
c

NS
scenes

, where NS
scenes and N

S
c

are the total number of source training scenes and
the ground-truth objects of class c in them, respectively. The value � 2 [0, 1] is a hyperparameter that
controls the tightness of the cap. With this cap, after creating pseudo-labels on N

T
scenes target scenes

we keep the top � ⇥ N
S
c

NS
scenes

⇥N
T
scenes of them for each class c according to the model’s confidence.

Given we control the distribution of objects (similar to posterior regularization [7]), we term this
filtering step Posterior Filtering (PO-F).

Foreground Background Supervision (FB-S) for false negatives reduction. FB-F, as discussed
above, can effectively filter out false positives that should have been background. Now we show
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that the PP-scores are also useful for correcting false negatives. As mentioned in subsection 3.1,
the first stage of PointRCNN is the key to false negatives: if a foreground point is misclassified as
background, then it is bound to be a false negative. To rectify this, we incorporate the PP-score into
the fine-tuning process. Specifically, we modify the pseudo-class-label ŷi of a point qi in Equation 5
with PP-score ⌧(qi):

yi =

8
<

:

0 if ⌧(qi) > ⌧U ,

1 if ⌧(qi) < ⌧L and ŷi = 0,
yi otherwise.

(6)

where 0 is a zero vector and 1 is an all-one vector. Essentially, if a point is persistent (i.e., high
⌧(qi)), we set the the pseudo-class-label as background 0. On the contrary, for a non-persistent point
(i.e., low ⌧(qi)) that is deemed as background (i.e., ŷi = 0) by the current model, we encourage the
scores of all the foreground classes to be as high as possible, so that a foreground proposal can be
generated. We note that while this foreground class label may be wrong, the subsequent refinement
by PointRCNN’s second stage can effectively correct it.

4 Experiments

Datasets. We validate our approach on a single source dataset, the KITTI dataset [8] and two target
datasets: the Lyft Level 5 Perception dataset [11] and the Ithaca-365 dataset [5]. The KITTI dataset
is collected in Karlsruhe, Germany, while the Lyft and Ithaca-365 dataset is collected in Palo Alto
(California) and Ithaca (New York) in the US respectively. Such setup is chosen to simulate large
domain difference [32]. To show good generalizability, we use exactly the same hyper-parameters for
adaptation experiments on these two target datasets.

To the best of our knowledge3, Lyft and Ithaca-365 are the only two publicly available autonomous
driving datasets that have both bounding box annotations and multiple traversals with accurate 6-DoF
localization. We use these two datasets to test out two different adaptation scenarios. The first
scenario is that the detector is trained on data from nearby locations, but not from the roads and
intersections it will be driven on. Thus, following [40], we split the Lyft dataset so that the “train”/test
set are geographically disjoint; we also discard locations with less than 2 traversals in the “train” set.
This results a “train”/test split of 11,873/4,901 point clouds for the Lyft dataset. We use all traversals
available (2-10 in the dataset) to compute PP-score for each scene.

The second adaptation scenario is when the detector uses unlabeled data from the same routes that it
sees at test time. This scenario is highly likely in practice since, as mentioned before, a self-driving
car can leverage data collected by other cars on the same route previously. To test this, we split the
Ithaca-365 dataset based on the data collection date, keeping the same geographical locations in both
train and test. This results in 4445/1644 point clouds. The “train” sets of these two target datasets are
used without labels. We use the roof LiDAR (40/60-beam in Lyft; 128-beam in Ithaca-365), and the
global 6-DoF localization with the calibration matrices directly from the raw data. We do not use the
intensity channel of the LiDAR data due to drastic difference in sensor setups between datasets. We
use 5 traversals to compute PP-score for each scene.

We pre-train the 3D object detection models on the train split (3,712 point clouds) of KITTI datasets
to detect Car, Pedestrian and Cyclist classes, and adapt them to detect the same objects in the Lyft
and Car, Pedestrian in the Ithaca-365 since there too few Cyclist in the dataset to provide reasonable
performance estimate. Since KITTI only provides 3D object labels within frontal view, we focus on
frontal view object detection only during adaption and evaluation.

Evaluation metric. On the Lyft dataset, we follow [39] to evaluate object detection in the bird’s-eye
view (BEV) and in 3D for the mobile objects by KITTI [9] metrics and conventions: we report
average precision (AP) with the intersection over union (IoU) thresholds at 0.7/0.5 for Car and
0.5/0.25 for Pedestrian and Cyclist. We further follow [32] to evaluate the AP at various depth ranges.
Due space constraint, we present APBEV at IoU=0.7 for Car and 0.5 for Pedestrian and Cyclist in the
main text and defer the rest of the results to the supplementary materials. On the Ithaca-365 dataset,
the default match criterion is by the minimum distance to ground-truth bounding boxes. We evaluate

3We note that though there are some scenes with multiple traversals in the nuScenes dataset [3] as used in
[39, 40], the localization in z-axis is not accurate (https://www.nuscenes.org/nuscenes#data-format).
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Table 1: Detection performance of KITTI ! Lyft adaptation. Given a PointRCNN detector [26]
pre-trained on the KITTI dataset, adaptation strategies improves its detection performance on the
target Lyft dataset. We breakdown their detection APBEV by depth ranges. We also show in-domain
performance of the same model (training and testing on the Lyft dataset) as a reference. Please refer
to supplementary material for corresponding AP3D results and results under other IoU metrics, where
we observe a similar trend. ⇤ ST3D’s adaptation involves 30 epochs of self-training by defaults so for
fair comparison, we show ST3D’s results early-stopped at the 10-th epoch.

Car Pedestrian Cyclist

Method 0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

No Adaptation 57.1 33.9 9.0 35.4 37.1 21.6 0.6 19.1 43.7 8.2 0.0 24.4
ST3D (R10)⇤ 64.8 52.7 27.7 49.2 35.6 25.6 0.0 19.3 56.9 15.0 0.0 33.3
ST3D (R30) 66.4 52.5 29.1 50.2 0.0 0.0 0.0 0.0 11.9 2.5 0.0 7.1
Rote-DA (Ours) 69.0 58.8 22.6 52.1 48.1 40.8 2.6 28.7 64.7 26.4 0.0 40.0

SN 75.4 59.9 23.2 54.5 41.4 32.8 1.8 24.2 39.7 8.7 0.0 22.4

In Domain 75.9 69.0 43.5 64.3 43.0 38.4 11.2 31.6 65.0 31.4 0.7 41.6

Table 2: Detection performance of KITTI ! Ithaca-365 adaptation. We evaluate the mAP as
described in section 4 by different depth ranges and object types. Please refer to Table 1 for namings.

Car Pedestrian

Method 0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

No Adaptation 54.3 32.1 1.2 29.3 52.1 21.1 0.0 25.4
ST3D (R10) 66.2 38.8 3.8 36.3 53.0 23.9 0.0 26.5
ST3D (R30) 65.4 28.5 9.9 33.3 47.9 24.9 0.0 25.7
Rote-DA (Ours) 66.9 43.5 15.6 43.5 53.6 33.0 0.2 31.2

SN 54.7 33.0 2.0 30.0 52.3 22.2 0.0 26.0

In Domain 72.4 50.1 24.4 50.5 55.3 29.9 2.6 32.7

the mean of AP with match thresholds of {0.5, 1, 2, 4} meters for Car and Pedestrian. We follow
[39] to evaluate only detection in frontal view.

Implementation of PointRCNN. We use the default implementation/configuration of PointR-
CNN [26] from OpenPCDet [19]. For fine-tuning, we fine-tune the model for 10 epochs with
learning rate 1.5⇥ 10�3 (pseudo-labels are regenerated and refined after each epoch). All models are
trained/fine-tuned with 4 GPUs (NVIDIA 2080Ti/3090/A6000).

Comparisons. We compare the proposed method against two methods with publicly available
implementation: Statistical Normalization (SN) [32] and ST3D [37]. SN assumes access to mean car
sizes of target domain, and applies object sizes scaling to address the domain gap brought by different
car sizes. Since there is less variability on box sizes among pedestrians and cyclists, we only scale the
car class using the target domain statistics. ST3D achieves adaptation via self-training on the target
data with stronger augmentation and maintaining a memory bank of high quality pseudolabels.

4.1 Adaptation performance on KITTI ! Lyft and Ithaca-365

In Table 1 and Table 2 we show the adaptation performance of adapting a KITTI pre-trained
PointRCNN detection model to the Lyft and the Ithaca-365 datasets. We observe that despite
its simplicity, Rote-DA outperforms all baselines on almost all metrics, across both datasets and
across object types, confirming the potent learning signal from multiple traversals. Note that the
hyper-parameters are kept as exactly the same between experiments in these two datasets, showing
the strong generalizability of Rote-DA. While SN is more accurate than Rote-DA for cars on Lyft, it
uses external information about car sizes that is unavailable to the other techniques, and that is not
useful for other classes.
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Table 3: Ablation study on different components in Rote-DA. Different from vanilla self-training,
Rote-DA includes two additional components: pseudolabels refinement and Foreground Background
Supervision (FB-S). In particular, the pseudo-labels refinement can be further subdivided into two
subcomponents: FB-F and PO-F. We show detection performance (APBEV) of variants of Rote-DA
without either of these two parts. We report performance at R10 for all variants.

Car Pedestrian Cyclist

PO-F FB-F FB-S 0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

58.3 38.3 14.0 38.3 22.7 12.4 0.2 10.7 27.6 0.2 0.0 9.4
X 68.8 52.7 12.3 46.0 46.3 30.9 0.0 22.5 66.3 6.3 0.0 35.2

X X 61.2 40.1 14.6 40.9 41.4 29.7 0.8 23.4 47.5 2.7 0.0 23.3
X X 68.4 55.4 19.6 49.0 41.7 30.8 1.4 21.8 43.3 1.7 0.0 21.2
X X 71.6 54.9 19.1 50.4 52.0 38.1 4.2 29.4 58.3 19.6 0.0 34.8
X X X 69.0 58.8 22.6 52.1 48.1 40.8 2.6 28.7 64.7 26.4 0.0 40.0

No Adaptation 57.1 33.9 9.0 35.4 37.1 21.6 0.6 19.1 43.7 8.2 0.0 24.4

Rote-DA works especially well on the challenging categories of pedestrians and cyclists, almost
doubling the performance on cyclists and even outperforming an in-domain detector in some scenarios
(pedestrians, 0-30 m range). In contrast, prior domain adaptation strategies actually hurt performance
for these categories. For e.g., ST3D through the course of self-training gradually over-fits to cars and
“forgets” pedestrians and cyclists (comparing row ST3D(R10) and ST3D(R30), see also Figure 4).

Interestingly, when Rote-DA has access to unlabeled data from past traversals of the test routes (as on
the Ithaca-365 dataset), the performance gains are even more significant, especially on the mid-to-far
ranges (30-80m), improving accuracy by more than 10⇥ for cars in the 50-80m range.

4.2 Analysis

Unless otherwise stated, we conduct the following study on the Lyft dataset.

Effects of different components. We ablate different components of Rote-DA: pseudo-labels
refinement and Foreground Background Supervision (FB-S) in Table 3. To start, vanilla self-training
without any of the components would only yield marginal improvements to detecting cars whereas
performance of the adapted detectors for the rarer classes (pedestrians, cyclists) degrade significantly
compared to no adaptation. Posterior Filtering (PO-F) is an effective strategy to prevent performance
degradation. Combining Foreground Background Filtering (FB-F) with PO-F would always yield
significant improvements regardless of classes, showing usefulness of using PP-score for filtering and
the efficacy of our filtering pseudo-label refinement strategy. Combining the Foreground Background
Supervision (FB-S) with only PO-F would not be effective always but combining FB-S with the full
pseudo-label refinement procedure would would bring forth significant improvements especially on
cyclist.

Effects of different rounds of iterative fine-tuning. As customary to any iterative approach, we
analyze the effect of the number of rounds of self-training in Figure 2. One conclusion is immediate:
vanilla self-training degrades (even underperforms no adaptation) over more rounds of self-training
potentially due to learning from erroneous pseudo-labels. Rote-DA (and its variants) improves for
the first few rounds of training (before the 10th round), and experience little to no performance
degradation over more rounds of training.

Effect of Foreground Background Supervision (FB-F). FB-F seeks to reduce false negatives by
correcting the foreground predictions by the model. To validate this claim, we plot the precision-recall
curves of various detectors in Figure 3. Comparing Rote-DA and PO-F +FB-F, we observe that
the max recall for Rote-DA is much higher than PO-F +FB-F, suggesting FB-F is encouraging the
detector to produce more meaningful boxes at foreground regions, thus reducing false negatives.

Qualitative visualization. In Figure 4, we visualize the adaptation results of various adaptation
strategies in both Lyft and Ithaca-365 datasets. We observe that, aligning with quantitative results,
ST3D has a good coverage of cars but usually ignores pedestrians and cyclists and generates many

8



Figure 2: Performance of various detectors on KITTI ! Lyft for different rounds of self-training
(averaged across 3 runs with mean and one standard deviation reported). Van. ST stands for vanilla
self-training without any modification; Dir. Apply stands for direct applying the source detector
without any adaptation. We observe that the performance for vanilla self-training degrades over
more rounds of self-training whereas variants of Rote-DA experience little to no degradation in
performance after 10 rounds of training.

Figure 3: Precision-recall curves on the KITTI ! Lyft with 10 rounds of self-training. We show
the P-R curves of ablated Rote-DA, please refer to Figure 2 for naming. The precision and recall is
calculated under APBEV with IoU=0.7 for Cars, 0.5 for Pedestrians and Cyclists.

false positive cars; SN successfully corrects the car size bias, but can hardly improve the recall of the
detection; Rote-DA adapts to the object size bias in the target domain while having a good recall rate
of all three object classes.

Additional results, analyses, qualitative visualization. Please refer to the supplementary material
for evaluation with more metrics, results on a different detection model (PVRCNN [25]) and on a
different adaptation scenario (Waymo Open Dataset [27] to Ithaca-365), and more qualitative results.

5 Discussion

Privacy concerns. As our method relies on collecting unlabeled repeated traversal of the same
routes, there are privacy concerns that have to be addressed before public deployment. This could
be achieved by making data collection an opt-in option for drivers. Also, the collected data should
be properly annoymized, or reduced to random road segments to remove any potential personal
identifiable information.

Limitations. Our method currently focuses on adapting dynamic, i.e. mobile, object detectors to
target domains using multiple traversals. However, Rote-DA could be extended to static objects
easily via selecting the appropriate thresholds for Foreground Background Filtering and Foreground
Background Supervision. We leave this exploration for future work. Also, we assume the source
and target domain share the same object frequency for Posterior Filtering. However, this assumption
could be alleviated via querying local authorities for the object frequency or by estimating the object
frequencies from similar regions (we assume access to the locations of target domain).

9
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Figure 4: Qualitative visualization of adaptation results. We visualize one example scene
(up:LiDAR, bottom: image (not used in the adaptation)) in the Lyft and Ithaca-365 test split, and plot
the detection results with various adaptation strategies. Ground-truth bounding boxes are shown in
green, detection boxes of no adaptation, ST3D, SN and Rote-DA are shown in yellow, red, orange
and cyan, respectively. Zoom in for details. Best viewed in color.

6 Conclusion

End-user domain adaptation is one of the key challenges towards safe and reliable self-driving
vehicles. In this paper we claim that unlike most domain adaptation settings in machine learning,
the self-driving car setting naturally gives rise to a weak supervision signal that is exceptionally
well-suited to adapt 3D object detector to a new environment. As drivers share roads, unlabeled
LiDAR data automatically comes in the form of multiple traversals of the same routes. We show
that with such data we can iteratively refine a detector to new domains. This is effective because we
prevent it from reinforcing mistakes with three “safe guards”: 1. Posterior Filtering, 2.Foreground
Background Filtering, 3. Foreground Background Supervision. Although the experiments in this
paper already indicate that Rote Domain Adaptation may currently be the most effective approach for
adaptation in the self-driving context, we believe that the true potential of this method may be even
greater than our paper seems to suggest. As cars with driver assist features become common place,
collecting unlabeled data will become easier and cheaper. This could give rise to unlabeled data
sets that are several orders of magnitudes larger than the original source data set, possibly yielding
consistently more accurate detectors than are obtainable with purely hand-labeled training sets.
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