SCALABLE FEATURE COMPRESSION FOR EDGE-ASSISTED OBJECT
DETECTION OVER TIME-VARYING NETWORKS

Zhongzheng Yuan' Siddharth Garg' Elza Erkip' Yao Wang'

ABSTRACT

Split-computing has recently emerged as a paradigm for offloading computation of visual analytics models
from low-powered mobile devices to edge or cloud servers, by which the mobiles execute part of the model
and compress and send the intermediate features, and the servers complete the remaining model computation.
Prior feature compression approaches train different compression models and possibly visual analytics models
to reach different target bit rates. We propose a scalable compression model that compresses the intermediate
features of the YOLO object detection model into a layered bitstream, which can be easily adapted to meet the
rate constraint of a dynamic network. Our approach achieves comparable rate-accuracy performance compared to
prior non-scalable compression approaches over a large bitrate range.

1 INTRODUCTION

Large scale deep learning models have led to remarkable
performances in various visual analytics tasks. The ability to
run computationally intensive neural networks at high frame
rate is pivotal for wide spread adoption of these models
in applications such as autonomous driving, navigation for
blind and visually impaired people, and augmented reality.
However, the end-user mobile devices that captures the raw
visual data are often limited in their computation power
and unable to execute these models at real-time. Moreover,
running these models consumes significant energy, which
shortens the battery life of the mobile devices.

Recent works have proposed to address this problem through
offloading the model computation to an edge or cloud server.
One popular approach is to split the task network between
the mobile and the server (Matsubara et al., 2022). The
mobile device runs its part of the network and sends the
compressed intermediate feature to the server. The server
finishes the computation of the rest of the task network and
sends the result back to the mobile device.

Using learned compression methods for compressing the
intermediate feature (typically jointly trained with the task
network) has shown promising results in achieving good
trade-offs between the task performance and the bitrate.
However, prior approaches train different compression mod-
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els and possibly visual analytics models to reach different
target bitrates. This requires the mobile device to store many
different versions of the model in order to operate under
a dynamically varying wireless network, which not only
consumes large memory space but also requires switching
between models, increasing the latency. Few works have
explored using a single encoder model (including the mo-
bile part of the task network plus the feature compression
module) to achieve variable bitrates (Datta et al., 2022). To
the best of our knowledge, no prior work has considered
how to compress the intermediate features into a layered
bitstream. With scalable or layered compression, the model
can efficiently adapt to changing bandwidth, by generat-
ing different number of layers. The layered bit stream can
be further paired with unequal error protection, so that the
lower layers (more important) can be better protected with
guaranteed delivery and consequently a base level of task
performance.

In this work, we propose a scalable compression model
for split computing. We generate a layered bitstream by
transforming the original intermediate feature tensor into
multiple groups of feature channels; The first group forms
the base layer operating at the lowest rate with a corre-
sponding low analytics performance, and each subsequent
group forms a higher enhancement layer. Adding each en-
hancement layer to the previous layers leads to an increased
bitrate and improved analytics performance. We implement
this scalable compression framework for the task of object
detection using the YOLO model (Redmon et al., 2016) as
the task network. We further investigate two options. In
Option 1, both the mobile and server parts of the task net-
work are fixed (jointly trained with the compression part)
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regardless the target bit rate (or how many layers are sent).
In Option 2, the server part of the task network is allowed
to change, depending on the target bit rate range. Option 2
achieved comparable rate-detection performance with the
non-scalable approaches over a large bit rate range, while
having the benefits of scalability.

2 RELATED WORKS
2.1 Split Computing with Feature Compression

A main challenge in achieving good task performance in
split-computing model is designing the method for com-
pressing the intermediate feature at the point of split. Sev-
eral works have proposed using learned compression meth-
ods for compressing the intermediate feature at the split
point. Learned feature compression model with hyperprior
network was proposed by (Singh et al., 2020). The interme-
diate feature at the point of split was quantized and entropy
coded using a hyperprior network. The model had to be
trained end-to-end so that different networks have to be
trained for each bitrate. Moreover, the model considered a
very late split point, so that most computation still has to be
performed by the mobile.

A split-computing model was proposed for object detection
in (Yuan et al., 2022), which considered early split-point
to reduce the mobile run-time. Light-weight spatial and
channel reduction was proposed to reduce the feature di-
mension and hyperpriors are used to facilitate the entropy
coding of reduced features. The proposed split computing
model achieved significant speed up, while achieving better
rate-accuracy performance than benchmark methods such
as compressing the image using learnt compression at the
mobile, and decompressing the image and running the ob-
ject detection at the server. But because the models were
trained end-to-end separately for each rate point, the mobile
device and server both need to store and operate a collection
of models in order to operate under a variable rate channel.

In (Datta et al., 2022), a feature dimensionality reduction
layer was also proposed, and entropy coding was performed
through Huffman Coding. The paper proposes to swap
only the compression modules for variable rate compres-
sion, while keeping the task networks fixed. Nevertheless,
the paper’s results show that training only the compression
modules sacrifices the accuracy-rate performance quite sub-
stantially compared to end-to-end training.

2.2 Scalable Compression

Scalable image compression (also known as layered com-
pression or coding) encodes an image into a base layer z;
and additional enhancement layers 23, 23, ..., 237 for a total
of M layers. The layers are embedded in that layer m is use-
ful and contributes to improved quality only if all previous

layers up to m — 1 are available.

In the case of feature compression for analytics, scalability
refers to generate a bitstream with multiple layers, so that
each additional layer leads to improvement in the analytics
performance. In practical applications, the mobile device
is often deployed in areas with weak and unstable internet
connection. In such scenarios, scalable compression can
be particularly useful. In the case of a sudden drop in the
network throughput (e.g., switching from 5G to 4G wireless
network), the base layer can be transmitted to ensure a
basic performance in analytics. When the network condition
improves, additional layers can be generated and sent.

There have been several works on learned scalable compres-
sion of images for human visualization. In (Jia et al., 2019),
scalability is achieved by using multiple encoder networks
to successively compress the residual of the reconstructed
image and send the residual latent information in layers.
Another model propoesd by(Mei et al., 2021) encodes the
input image to layered latent features and uses lower layer
latents to predict and enhance the higher layer bitstreams.
More recently, a fine grained scalable model is proposed
by (Ma et al., 2022). The model generates a base and an
enhacement feature tensor. The base feature is sent as a
whole, while the enhancement feature tensor is split along
the channel dimension, and each channel is sent one-by-one
for each enhancement layer.

Several prior works have considered scalable compression
for analytics, such as (Yan et al., 2020), and (Choi & Bajié,
2022). But the scalability proposed by these works refers
to the ability of the server network to perform additional
analytics tasks as it receives each additional bitstream, while
our proposed scalable model aims at increasing the accuracy
of a single task with each additional layer. To the best of
our knowledge, this work is the first to propose a scalable
feature compression model for analytics task.

3 PROPOSED METHODS
3.1 Split-Computation Model

The task network is split at an intermediate point of the net-
work into two parts, the first part is ran on the mobile device
and the second part on the server. We will refer to the mobile
part of the network as the task encoder F(z) and the server
part of the network as the task decoder G(x). The interme-
diate feature at the output of the task encoder y = F(z)
is compressed and delivered to the server, which is then
decompressed and sent to the task decoder for inference.

Choosing the point of split is an important consideration,
because it affects the amount of computation needed to be
done by the mobile device. In order to keep the computa-
tion at the mobile side low, we choose a split point that is
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Figure 1. Overview of the proposed model. The task network is split into two parts that separately runs on the mobile device and the
server. The model generate different layers by generating and entropy coding different groups of reduced feature channels from the task
encoder. In this example, the original feature y with 256 channels is first reduced into 4 tensors of 8 channels each. The first tensor
is further split into 8 tensors of 1 channels each for the low-bitrate region, forming a total of 11 layers. The model uses different task

decoders depending on the number of layers received.

relatively early in the network. For the YOLOVS network,
we experimented with the point of split D4, which is the
point after the fourth downsample convolution.

3.2 Feature Dimension Reduction and Compression
for Non-scalable Compression

The feature y typically consists of a large number of chan-
nels. While this is beneficial for the task performance, there
is significant redundancy among the channels. Coding these
channels directly and independently are not efficient. Fol-
lowing the approach in (Yuan et al., 2022), we use a 1x1
convolution layer to reduce the channel dimension of the fea-
ture tensor before performing entropy coding. Furthermore,
we found that for the lower scalable layers, it is beneficial to
also reduce the spatial redundancy of the features by down-
sampling the features in the spatial dimensions. Therefore,
for the lower scalable layers, we use a 5x5 stride-2 convolu-
tion layer to reduce both the channel and spatial dimension
of the feature tensor. Specifically, the reduction layer takes
the feature y with [V channels and generates the reduced
feature z = R(y) with Ng channels. For the lower scalable
layers, z will be downsampled to half the spatial resolution
of y.

The reduced feature tensor is quantized through z = |z|
and encoded into a bitstream using an arithmetic encoder.
Following the hyperprior image compression model pro-
posed by (Ballé et al., 2018), we train a hyperprior network
which generates a side bitstream for estimating the mean
and variance of the to-be-coded features.

3.3 Generating Scalable Feature Layers

To achieve scalability, we transform the original feature ten-
sor with multiple feature channels into groups of channels,

each with a small number of channels, to form different scal-
able layers. We draw inspiration from principal component
analysis (PCA) to perform dimensionality reduction along
the channel dimension through linear transform. Essentially
each layer consists of a subset of transform coefficients. But
whereas the transform in PCA is determined to minimizes
the MSE of the reconstructed signal, our model is trained
end-to-end to minimize the rate-detection loss.

We first perform dimensionality reduction to the interme-
diate feature at the split point to reduce the features into
M groups of features z; = R;(y),i = 1,2,..., M, each
with a small number of channels. Unlike the single di-
mensionality reduction layer in the non-scalable model,
the scalable model uses M separate convolution layers
Rivi = 1,2,..., M, to generate M groups of features
zi = Ri(y) with Ng, channels. A separate hyperprior
network is trained to estimate the mean and variance pa-
rameters for each z;, which are individually quantized and
entropy encoded using their respective hyperpriors.

At the server side, M separate dimension expansion layers
&; are used to expand all received dequantized features Z;
back to IV channels and the original spatial dimension of
y. The expanded tensors are added together to produce
the input to the task decoder. During inference, depending
on how many scalable layers are sent and received, the
recovered feature g is the sum of all expanded tensors:

gzzgz(ét)7me {1727M}7 (1)
i=1

where m is the number of scalable bitstreams received. This
combined feature is then input to the task decoder network

to produce the analytics result ¢t = G(%).

We noticed that using a single task decoder for a large bitrate



Scalable Feature Compression for Edge-Assisted Object Detection Over Time-Varying Networks

range will lead to suboptimal performance. Since computa-
tion and storage is less constrained on the server side, the
server can run multiple decoder networks for different bit
rate ranges. We therefore use one task decoder network Gy,
for the high rate range and another task decoder network
G, for the low rate range. The task encoder network and
the feature dimension reduction layers is shared for both
bitrate ranges. An overview of our scalable model is shown
in Figure 1.

3.4 Training

The task model (including the task encoder F and decoder
G) is first initialized with pre-trained weights that were
trained on the entire dataset without compression. Then
we follow a three-step approach for converting the model
for split-computing and training the model end-to-end for
rate-task performance.

Instead of using the rate-distortion loss as for learnt im-
age compression in (Ballé et al., 2017), we minimize the
following rate-task loss, following (Yuan et al., 2022):

L= LRate +A- LTask

LRate = Eqnp, [—logy p(2)] ()
LTask = Lcoord + Lobj + Lclass

The rate loss L4t measures the rate needed to encode
the quantized tensor Z, the task loss Lr,s; measures the

performance of the task network, and the hyperparameter A
controls the trade-off between rate and task performance. In
the case of object detection, the task loss is defined as the
combination of bounding box coordinate loss L4, Objec-
tiveness loss Ly, and object class loss L;q55 proposed by
(Redmon et al., 2016). The above loss considers a single
feature tensor z. In the following, we discuss how to train
the multiple embedded feature layers z;,¢ = 1,2,..., M.

3.4.1 Pre-Training of Feature Reduction and Expansion
Modules

The pre-trained task network assumes that the original fea-
ture y generated by the task encoder is received intact at
task decoder. Ideally, the reconstructed features ¢ from the
reduced features z; should be similar to the original feature
y. Therefore, we pre-train the feature reduction and expan-
sion modules, R; and &;, by minimizing the mean square
error between y and g in the absence of quantization of z;.

3.4.2 Multi-Round Refinement of Scalable Layers Using
Rate-Task Loss

We then refine the model end-to-end with the rate-task loss
using a training strategy that updates all scalable layers
iteratively. For each batch of training data, we input the
batch into the network over M rounds. In round [, only
layers 1 to [ are activated, for [ from 1 to M. The network is

updated using the loss corresponding to having only layers
up to [:
l
L= Z( é"ask + A L%ate)’ (€)

i=1

where L., ., and L%, . are the task loss and rate loss re-
spectively when using scalable layers up to the ¢th layer.
Note that the rate term for the 4th layer includes the rate for
the layers 1 to ¢. After going through M rounds, the com-
pression and decompression modules corresponding to all
layers will be updated. We experimented with different \;
values for training and reported the best performing model.
We found that using \; = 0.1, \; = %, fori > 11led to
good results.

Note that with this strategy, the modules for the lower lay-
ers are updated more times than the higher layers. This is
appropriate because of the embedded nature of the layered
bit stream. We have found that this training strategy yields
better performance over the entire rate range than some al-
ternative approaches, including progressive training, where
we first train only the base layer modules, and then train the
second layer, while fixing the base layer, and so on.

3.4.3 Separate Decoder Training

Initially we used the strategy in Sec. 3.4.2 to directly train
M layers with each layer having the same number of chan-
nels. But we found that the rate-detection performance is
always lacking at some part of the entire rate range when
compared to the performance of non-scalable coding. For
example, with 4 layers each with 8 channels, the perfor-
mance is good at the higher rate range including at least
two layers, but the performance is poor at the lower rate
range including only the first layer. In order to solve this
problem, we tried to split the first layer (8 channels) into 8
layers (each with 1 channels), yielding a total of 11 layers.
This still did not lead to satisfactory results at the lower rate
range. We suspect that it is hard for the same task encoder
and task decoder to perform object detection accurately over
the entire rate range. Therefore, we choose to train a differ-
ent task decoder when less than four layers (each 1 channels)
are delivered, while the task encoder is fixed (see Fig. 1).

More generally, starting with a trained model that gener-
ates M layers, the original base feature tensor that consists
of Ng, channels is subdivided into M’ tensors with N, ,
Npg,» s Np, channels respectively. This has the effect of
splitting the original base layer into M’ scalable layers for
the lower bitrate range, and the entire model will consist of
M + M’ — 1 scalable layers. We use the same training loss
in Eq. 3 for training the expansion modules for layers 1 to
M’ — 1 and a single low rate task decoder, to be used when
only up to M’ — 1 layers are delivered. For this training
stage, the task encoder, channel reduction and expansion
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Figure 2. Rate vs. Detection Accuracy on the COCO-Traffic
dataset. Only the scalable compression models allow for run-
ning a single task encoder for all the rate points.

layers, and the hyperprior networks for the high rate scalable
layers are not updated. This makes the performance of the
high bitrate scalable layers unchanged.

4 RESULTS
4.1 Experimental Setup

We used the Ultralytics YOLOVS implementation (Ultralyt-
ics, 2020) as the basis of our split-computing model. The
smaller-sized YOLOvVSs model with 7.2 million parameters
was chosen for faster training and inference speed. The
model was initalized with weights provided by the imple-
mentation, which were trained with images from the entire
COCO training set (Lin et al., 2014). We used the same
strategy of data augmentation as in the pretrained model.
All training and test images were resized to 640 x 640 as
input to the model.

Instead of detecting all the classes in the COCO dataset,
we consider a case where the detection network is focused
on detecting 9 classes of objects that are relevant to traffic
applications: Person, Car, Bus, Truck, Motorcycle, Traffic
Light, Fire Hydrant, Stop Sign, and Parking Meter. The
detection heads of our model is modified to detect only
these classes, and we train the model using the subset of
COCO that contains these classes.

4.2 Rate vs. Detection Accuracy Performance

We compare our results to two non-scalable baselines. The
first one is the non-scalable split computing approach pro-
posed in (Yuan et al., 2022). With the second baseline,
the mobile compresses an image using the learned image
compression model by (Ballé et al., 2018), then the server
runs the object detection model on the decompressed im-
age. With both baselines, different task modules and the
compression/decompression modules are trained using the
rate-task loss for different rate points.

The rate vs. detection accuracy performance is shown in
Figure 2. The detection accuracy is measured in mAP50,
or mean-Average-Precision using a 0.50 IOU bounding box
threshold. We show results from two options of the pro-
posed scalable compression approach. The first one uses a
single task decoder regardless of the number of layers sent,
trained directly with steps described in Section 3.4.2. This
option used 4 layers, each with 8 channels. The second
option uses the same encoder as option 1, but split the base
layer of option 1 into 8 layers of 1 channel each, as shown
in Fig. 1. And an additional decoder is trained using the
steps described in Section 3.4.3. The two-decoder approach
achieved higher performance over the lower bitrate range
than the single-decoder model.

With the two-decoder scalable model, our results is compara-
ble to the non-scalable split-computing method throughout
the entire bitrate range, and even managed to outperform
the non-scalable models at high bitrate range. We suspect
that this is due to the non-scalable model have not searched
for the optimal hyperparameter (lambda, number of down-
samples, and channels) during training.

Note that for all the compared baseline methods, different
points on the curve require a different set of task encoder,
task decoder, compression and decompression modules. On
the other hand, our scalable compression approach achieves
all the rate points with a single task encoder. This makes
our scalable approach much more practical for real-world
applications. Additionally, the use of scalable bitstream
means that the sender can adaptively generate and send
layers at a rate that matches with the estimated network
throughput. Furthermore in the case that some enhancement
layer packets are dropped, the task decoder can still rely on
the received base layer and lower enhancement layers to
perform object detection, albeit at a lower accuracy.

5 CONCLUSION

In this paper, a scalable feature compression approach for
split-computing is proposed. Our approach utilizes multiple
channel reduction modules to generate different layers of the
feature tensor to achieve rate scalability. The performance of
our model is comparable to non-scalable approaches, while
enjoying the benefits of scalable bitstream and requires a
single task encoder. Although we only demonstrated the
performance of the proposed approach on the COCO-Traffic
dataset, we expect similar performance to hold for the full
COCO dataset. The current approach generates different
feature layers by simple linear transform with a single con-
volution layer. Our future research will explore more so-
phisticated methods to generate the different layer features
and reduce the redundancy between different layers.
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A  DETECTION RESULTS FOR DIFFERENT
SCALABLE LAYERS

In Figure 3, we show some examples of images with bound-
ing boxes that were detected using the scalable model. When
only the base layer is available, the model is able to detect
some objects in the scene. Although the model can con-
fuse some object classes such as Truck (labeled as 3) and
Car (labeled as 1), the results would still be useful for ap-
plications such as obstacle avoidance. As the number of
layers increase, the number of correctly detected objects in
the image increase, and some objects that were previously
incorrectly classified are corrected.
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Figure 3. Examples of detection results for different scalable layers.



