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Abstract

Recent advances in computer vision has led to a growth
of interest in deploying visual analytics model on mobile
devices. However, most mobile devices have limited com-
puting power, which prohibits them from running large
scale visual analytics neural networks. An emerging ap-
proach to solve this problem is to offload the computation
of these neural networks to computing resources at an edge
server. Efficient computation offloading requires optimiz-
ing the trade-off between multiple objectives including com-
pressed data rate, analytics performance, and computation
speed. In this work, we consider a “split computation”
system to offload a part of the computation of the YOLO
object detection model. We propose a learnable feature
compression approach to compress the intermediate YOLO
features with light-weight computation. We train the fea-
ture compression and decompression module together with
the YOLO model to optimize the object detection accuracy
under a rate constraint. Compared to baseline methods
that apply either standard image compression or learned
image compression at the mobile and perform image de-
compression and YOLO at the edge, the proposed system
achieves higher detection accuracy at the low to medium
rate range. Furthermore, the proposed system requires sub-
stantially lower computation time on the mobile device with
CPU only.

1. Introduction

Offloading visual analytics computations (such as object

detection) from images captured by mobile devices to an

edge server can reduce the computation time and the power

consumption of the mobile device. Reduced computation

time is critical for real-time applications such as navigation

and robot control, while reduced power consumption can

extend the battery life of the mobile device. Research in this

direction has proposed two broad approaches. In one, a mo-

bile device directly compresses images which are then de-

compressed by the edge server for visual analytics [1, 2, 3].

The second approach is to perform a part of the visual ana-

lytics task on the mobile device and compress intermediate

features; the server then decompresses these features and

completes the remainder of the analytics task [4, 5, 6, 7, 8].

This approach is commonly known as the “split computa-

tion.”

In either approach, compression can be performed using

conventional, non-learnable compression methods. Such

approaches may have practical advantages, because they

can leverage existing hardware and software for com-

pression, but the impact of compression on the analytics

task performance cannot be controlled directly. Using a

learnable compression module allows one to directly op-

timize the rate-analytics trad-off. Furthermore, the “split-

computation” framework with learnable compression has

the potential to achieve a better rate-analytics trade-off, be-

cause it only needs to generate and compress the features

that are useful for the analytics task. The split computa-

tion approach can also reduce the computation at the server,

which could be important for applications where the server

has resource constraints.

In this paper, we propose a “split computation” system

with learnable feature compressor and decompressor. To

compress the multi-channel features at the split point of the

YOLO model, we perform channel reduction to reduce the

number of channels and furthermore decorrelate the result-

ing channels. We use the hyperprior idea of [9] to encode

the reduced features by introducing additional hyperprior

encoder and decoder. Our system is developed and evalu-

ated for object detection using the YOLOv5 model architec-

ture [10]. However, the general methodology is applicable

for other visual analytics tasks and model architectures.

We evaluate the performance of the proposed system for

a common object detection task: detecting 80 object classes

in the COCO dataset (testing set). Compared to applying
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a state-of-the-art image compression method (BPG) [11]

or the learned image compression model optimized for im-

age reconstruction [9], followed by the pretrained YOLOv5

model on the decompressed images, the proposed method

was able to achieve higher detection accuracy over a large

rate range. Compared to jointly refining the learned im-

age compression [9] and the YOLOv5 detection models, the

proposed method was able to achieve better performance at

the low to medium rate regime. We further show that when

only a limited set of objects (e.g. people, vehicle, traffic

lights, etc.) are relevant for a specific application (e.g. traf-

fic monitoring), the proposed approach provides substantial

gain over the very low bit-rate range, because the relevant

features can be captured by a very small number of chan-

nels. In addition to the rate-detection trade-off, the com-

putation complexity at the mobile device is a critical factor

for mobile applications. We demonstrate that our model has

significantly lower computation runtime per image than the

baselines, both at the mobile side, as well as the total com-

putation time.

2. Related Works

2.1 Analytics-aware Image Compression

One approach to computation offloading is to compress

the captured image at the mobile device and send the com-

pressed bitstream for analysis at the edge server. But lossy

compression of an image will invariably result in artifacts

that degrades analytics performance. There have been mul-

tiple works which proposed methods to alleviate this loss in

performance.

A task-aware JPEG compression model was proposed

in [1]. The work proposes to use a convolutional network

to predict the quantization table for DCT coefficients for

JPEG compression. Images compressed using the predicted

quantization table achieved better performance than when

the standard table was used. In [2, 3], the learned image

compression model with hyperprior [9] was used to com-

press images then feed the compressed image to a detection

or segmentation model. By end-to-end joint training of the

compression model and the task model, some of the per-

formance loss due compression is recovered. These prior

works require large convolutional networks to operate on

the mobile device, which still require substantial computa-

tion time and battery consumption.

2.2 Analytics-aware Feature Compression

Another approach to computation offloading is to split

the computation required for the analytics task between the

mobile device and the edge server. The intermediate fea-

ture at the point of split is compressed at the mobile side

and sent to the edge server. Intermediate feature compres-

sion using standard image/video codec was studied in [4, 5]

with HEVC, and in [6] with JPEG and additional dimen-

sionality reduction. Using standard codecs for feature com-

pression in general did not achieve good performance, as

the codecs were designed for compression of images and

not features. Feature compression with learned image com-

pression model was proposed in [7]. The hyperprior com-

pression model was used and the network was end-to-end

trained. However, the split point considered by [7] was at

the very end of the original deep learning model, so that

the mobile device still has to do majority of the computa-

tion task. In [8], knowledge distillation was used to teach a

light-weight student network to compress the intermediate

features of a large teacher detection network.

3. Method

3.1 The Overall System Architecture

We propose a split computing system to offload compu-

tation for the YOLO detection model. We split the YOLO

model into two parts: the first part runs on the mobile de-

vice and the second part runs on the edge server. The feature

maps generated by the first part will be compressed by a fea-

ture compressor, also running on the mobile device. At the

edge server, the received bits are decoded by a feature de-

compressor and then sent to the second part of the detection

model. See Figure 1 for the overall system architecture.

To choose the point of split, we have to consider the

trade-off between the mobile-side computation complexity

and the compressed feature rate. In general, feature maps

that are later in the detection model becomes more sparse

and easier to compress. However, compressing later into the

model requires more computation performed by the mobile

device, defeating the purpose of split computing. Further-

more, in a pyramidal model architecture like the YOLO,

shown in Figure 1, there are skip connections which con-

nect various layers in the “Backbone” to the “Head” of the

model. Compressing features after a skip connection would

require removal of that skip connection. This can limit the

detection performance, even though the bit rate is lower.

We experimented with two points of split: 1) after the 3rd

downsampling layer (designated as D3), and 2) after the 4th

downsampling layer (D4), as illustrated in Figure 1. Since

the 4th downsampling layer is after a skip connection, we

first removed the skip connection and finetuned the detec-

tion model before joint training for rate-constrained detec-

tion. We note that this has the effect of removing the high

resolution information into the object detection branch, re-

ducing the detectability of very small objects.

In our feature compressor, we first employ a channel re-

duction layer to both reduce the spatial dimension and the
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Figure 1: Overview of the proposed system. The YOLO network is split into two parts that separately runs on the mobile

device and the edge server. A feature compression model is used to compress the intermediate features at D3. Another split

point (D4) considered in our experiments is also labeled. When splitting at D4, the first skip connection of the YOLO model

has to be removed. The notation ↓2 and ↑2 refers to downsample by a factor of 2 and upsample by a factor of 2 respectively.

number of feature channels and to decorrelate the remain-

ing channels. We further adopt the hyperprior idea of [9],

to assist the entropy coding of the quantized feature maps

after the channel reduction layer. The decoded hyperprior

features are used to estimate the probability distribution pa-

rameters of the feature maps. Both the bits for the quantized

main features and those for the quantized hyperprior fea-

tures are sent to the edge server. The general architecture of

feature compressor and feature decompressor is illustrated

in Figure 1.

3.2 Feature Reduction and Expansion

The YOLO model uses a pyramidal architecture to ex-

tract features at different scales. At each downsampling

layer, the spatial dimension is reduced and the channel di-

mension is increased. While having a large number of chan-

nels help improve object detection, it creates redundancy

among the channels which can be seen in the inter-channel

correlation matrix, as shown in Figure 2.

To reduce the inter-channel correlation, we introduce a

channel reduction layer in the feature compressor, and cor-

respondingly a channel expansion layer in the feature de-

compressor. The channel reduction layer reduces the num-

ber of channels from N to Nr < N . The channel expansion

layer takes the compressed features and expands it back to

N channels. The channel reduction is implemented by a

1×1 convolution layer, which transforms N features at each

pixel to Nr features. The channel expansion is implemented

by a reversal 1× 1 convolution layer, mapping Nr features

at each pixel to N features. The channel reduction layer

does not use nonlinear activation, while the channel expan-

sion layer uses the SiLU activation as in the original YOLO

model. This is because we want the reduced features to fol-

low a Gaussian distribution to facilitate the entropy coding,

while the SiLU activation would produce a one-sided distri-

bution.

In addition to channel reduction, spatial correlation can

also be reduced through downsampling the features using

strided convolution. For the split point D3, which has a

higher spatial resolution than D4, we additionally employ

a stride-2 convolution layer to reduce the spatial resolution,

before the 1 × 1 convolution layer for channel number re-

duction.

3.3 Rate-constrained Model Training

In the learned compression framework proposed by [12],

an input image x is transformed into a latent feature y,

which depend on x and model parameter θ. We express

this dependency by writing y as y(x; θ). The quantized

latent feature ŷ is decoded back to a reconstructed image

x̂(ŷ; θ). The compression model is trained through mini-

3
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mizing a rate-distortion loss,

L = LR + λ · LD

LR = Ex∼px [− log2 p(ŷ(x; θ))]

LD = Ex∼px [d(x, x̂(ŷ; θ))]

(1)

where λ is a hyper-parameter that controls the rate-

distortion trade-off, ŷ is the quantized latent, and d(x, x̂) is

the distortion between the original image x and the decoded

image x̂. The distortion metric d(·, ·) for image compres-

sion is typically Mean-Squared-Error (MSE) or MS-SSIM.

In our framework, y is the feature generated at the split

point of the YOLO network, which is further reduced to z
by the channel reduction layer. We use θ to denote YOLO

model parameters, and use φ to indicate the channel re-

duction and expansion layer parameters. Thus, we write

z(y(x; θ);φ) to indicate these dependencies. We modify the

rate-distortion loss in Eq. (1) to perform end-to-end training

of the entire system including the YOLO detection model

(parameterized by θ) and the feature compressor and de-

compressor (parameterized by φ) inserted at the split point,

for detection-aware compression. One approach of training

would be to use a distortion measure, such as MSE, between

the original feature y and the decompressed feature ŷ. How-

ever, minimizing such distortion may not bring optimal de-

tection performance under a constrained bit rate. Instead,

we replace the distortion loss by a detection loss Ldet that

directly measures the detection accuracy of the model’s out-

put:
L = LR + λ · Ldet

LR = Ex∼px [− log2 p(ẑ(y(x; θ);φ))]

Ldet = Lobj + Lclass + Lbox.

(2)

Ldet is the loss used for training the uncompressed YOLO

model, and it consists of the object detection loss Lobj , ob-

ject class loss Lclass, and bounding box loss Lbox, which

will depend on ŷ(ẑ;φ) and θ. A combination of rate and

detection loss allows us to perform end-to-end training of

the entire model including both the compression and detec-

tion components.

Instead of directly performing entropy coding on the

quantized version of the reduced feature ẑ, we follow the

hyperprior idea proposed in [9] to generate the hyperprior

feature that help the entropy coding of ẑ. As shown in Fig 1,

the hyperprior encoder generates quantized hyperprior fea-

ture ẑh, from ẑ. The hyperprior decoder predicts the mean

and variance of each element in ẑ, in the Gaussian model

used for entropy coding of ẑ. The additional rate for ẑh is

included in the rate loss LR.

Through our experiments, we find it beneficial to first

perform a pre-training step on the feature reduction and ex-

pansion layers, using the MSE loss between y and ŷ. This

step does not invoke quantization (through adding random

noise) on the reduced feature z, nor the hyperprior encoder

and decoder and the rest of the network. Pre-training allows

the feature reduction and expansion layers to learn to recon-

struct the features as much as possible before training with

the detection and compression objectives, which are more

difficult to optimize than the MSE loss.

4. Results

4.1 Experimental Settings

We adopted the Ultralytics YOLOv5 implementation to

perform our experiments [10]. We chose the smaller model

size YOLOv5s with 7.2M parameters for faster training and

inference. We initialized the model with weights from [10],

which were trained with the images in the entire COCO

dataset (training set only). All the original images were re-

sized to 640 × 640. All models were trained using SGD

with a learning rate of 1× 10−4 and a momentum of 0.937.

We used a batch size of 96 when training the traffic-specific

models and a batch size of 120 when training the full COCO

dataset models. We evaluated the achievable performance

by varying the split position (D3 vs. D4), the number of

channels after channel reduction (Nr), and λ in the loss

function. We show the Pareto front of these various set-

tings that achieves the highest detection performance under

the same bit rate.

We compare the performance of the proposed approach

with the following benchmarks: 1) Using the popular BPG

image compression algorithm [11] to compress the input

image, and then applying the original YOLO model for ob-

ject detection. The BPG implements the HEVC intra coding

algorithm and provides leading compression performance

among standard public codecs; 2) Using the pretrained

learned compression model of [9] to compress the input im-

age, followed by the original YOLO model for object detec-

tion; 3) Training the learned compression model of [9] and

the YOLO model jointly, using the same detection-aware

loss function in Eq. (2).

4.2 Detection vs. Rate Performance using the Full
COCO Dataset

First, we show that the channel reduction module was

able to reduce the correlation between channels. As shown

in Figure 2, the off-diagonal elements of the correlation ma-

trix becomes more sparse as the number of channels af-

ter reduction decrease, which means there is less correla-

tion among channels. Secondly, the variance plots show

that only a few channels have a large variance magnitude.

This suggests that it is possible reduce the number of feature

channels to a small value without losing much information

in the feature.

The rate vs. detection accuracy curves of our feature

compression model and the benchmark methods are shown

4
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Figure 2: Inter-channel correlation matrix (top row) and the

variance of each channel (bottom row) for the intermediate

feature map at the D3 split point.

in Figure 3 (a). The detection accuracy is measured by

the mean Average Precision under the Intersection over

Union threshold of 50 (mAP50). Our method performed

better than the baselines of image compression followed by

YOLO detection over the entire rate range considered, al-

though the difference is small at the higher rates. Com-

pared to jointly training the image compression model [9]

and the YOLO model for rate-constrained object detection,

our method is still better at the lower rate regime. We expect

that with more exhaustive search of the hyper parameters in

our feature compression layer, our method can be on-par

with this benchmark over the higher rate range.

4.3 Performance using the COCO-Traffic Dataset

The original YOLO model was trained with the COCO

dataset [13], which aims to detect 80 classes of objects

from various environments. However, in many practical use

cases, it is not necessary to consider such a wide variety

of classes, but rather to focus on detecting a small set of

objects. We hypothesize that in such a targeted use case,

we can significantly reduce the bit rate without sacrificing

the detection accuracy. Specifically, we consider a situa-

tion where only object classes that are relevant for traffic

surveillance or navigation applications need to be detected.

From the COCO dataset we picked 9 relevant classes, in-

cluding Person, Car, Bus, Truck, Motorcycle, Traffic Light,

Fire Hydrant, Stop Sign, Parking Meter. All images with

occurrence of at least one of these 9 classes are drawn into

a dataset called the COCO-Traffic dataset. Since the person

class appears in many images with non-traffic related sce-

narios, we additionally require images containing the per-

son class to be coupled with at least one other traffic-related

classes for those images to be drawn. Using the COCO-

Traffic dataset, we perform the same experiments as for the

full COCO dataset and the results are shown in Figure 3(b).

For this experiment, we only evaluated models at the D4

split point and focused on the low bitrate region. By fo-

cusing on a more specific set of objects, the features can

be compressed to very low bitrates while still maintaining

(a) Full COCO Dataset (80 object classes)

(b) COCO-Traffic Datset (9 object classes)

Figure 3: Detection performance under various bitrates

for the full COCO dataset and the COCO-Traffic dataset.

Points on our results curve are labeled with their respective

compression configurations, e.g. D4C6 refers to compres-

sion at split point D4 and reduction to 6 channels.

high mAP. The results are significant for settings with low

communication bandwidth and require compression into

extremely low bitrates. It is possible to deploy a split de-

tector in these settings to have high detection performance

while using low bandwidth transmission.

4.4 Mobile and edge computing time

We performed an analysis of the runtime for each model

under a mobile-edge split computing setting. For the mo-

bile device we used a 2.9GHz CPU processor to perform

the computations from input image to encoded bit-stream.

For the edge server, we used the RTX8000 GPU to run the

detection network.

As shown in Table 1. Our method has a clear advantage

against the baselines in both the mobile computation time

as well as the total runtime. For example, with splitting

at D3, compared to using the learned image compression

model [9], the mobile computing time is reduced by 6.58x.

The server computing time is also reduced, as part of the

5
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[9] + YOLO BPG + YOLO D3C4 D4C4 YOLO on Mobile

Mobile Device
(CPU)

Image Compression 415.46 183.87
YOLO Pre-split 55.18 67.37

2791
Feature Compression 8.32 8.88

Edge Server
(GPU)

Image Decompression 1.82 84.39 Feature Decompression 0.27 0.25
0

YOLO 7.39 7.39 YOLO Post-split 6.60 5.30

Total time on Mobile 415.46 183.87 63.50 76.25 2791
Total time on Server 9.207 91.78 6.87 5.55 0

Table 1: Breakdown of runtime (milliseconds) per image (640 × 640 pixels) for proposed model and baselines. D3C4 and

D4C4 refer to models with channel reduction to Nr = 4 and split point at D3 and D4, respectively. The results here are

similar regardless of bitrate and the channels Nr.

YOLO model is already executed by the mobile, resulting a

total runtime saving of 6.06x. Compared to using the BPG

image coder, the mobile runtime is reduced by 2.91x, while

the total computation time is reduced by 3.93. The proposed

method is the only solution that can enable object detection

at a speed that is faster than 10 frames per second (requiring

total runtime ≤ 100 ms), required for most practical appli-

cations.

5. Conclusions

This paper proposed an approach for offloading deep-

learning based object detection by split computing between

the mobile device and the edge server. We propose a light-

weight trainable feature compression architecture, that in-

cludes feature channel/spatial reduction and expansion and

hyperprior-based entropy coding/decoding. With end-to-

end training of the feature compressor and object detector

using rate-detection loss, our approach can achieve higher

detection accuracy at low to medium rate range than base-

line methods that perform image compression at the mobile

device and object detection on the server. Furthermore, our

approach has significantly lower runtime at the mobile de-

vice than the baseline methods.

References

[1] J. Choi and B. Han, “Task-aware quantization network

for jpeg image compression,” in ECCV, pp. 309–324,

Springer, 2020.
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