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Abstract

This paper proposes a Bellman Deviation algorithm for the detection of man-in-the-middle
(MITM) attacks occurring when an agent controls a Markov Decision Process (MDP) system using
model-free reinforcement learning. This algorithm is derived by constructing a “Bellman Devia-
tion sequence” and findind stochastic bounds on its running sequence average. We show that an
intuitive, necessary and sufficient “informational advantage” condition must be met for the pro-
posed algorithm to guarantee the detection of attacks with high probability, while also avoiding
false alarms.
Keywords: Cyber-Physical Systems, Learning Based Attacks, Man-in-the-Middle Attacks, Model-
Free Reinforcement Learning.

1. Introduction

Recent advancements in wireless technology and computation have enabled the possibility of per-
forming networked control in cyber-physical systems (CPS), leading to a multitude of applications
such as cloud robotics, autonomous navigation and industrial processes (Kehoe et al., 2015). These
modern learning and decision making systems are inherently online as they make decisions on the
fly, in a closed-loop fashion and based on past observations. However, the distributed nature of
CPS leads to security vulnerabilities that drives a need for developing secure optimal control strate-
gies. The consequences of security breaches can be catastrophic as the attackers’ target can range
from systems for financial gain, to hijacking autonomous vehicles or unmanned aerial vehicles, to
breaching life-critical systems as an act of terror (Urbina et al., 2016; Dibaji et al., 2019a; Jamei
et al., 2016). Some instances of attacks that were discovered and made public include the Ukraine
power grid cyber-attack, the German steel mill cyber-attack, the revenge sewage attack in Australia,
the David Besse nuclear power plant attack in Ohio and the Iranian uranium enrichment facility at-
tack by the Stuxnet malware (Sandberg et al., 2015). These recent events motivated several studies
on prevention of security breaches at a control-theoretic level (Bai et al., 2017; Dolk et al., 2017;
Shoukry et al., 2016; Chen et al., 2016; Shi et al., 2018; Dibaji et al., 2018; R. et al., 2018; Niu
et al., 2021; Chong et al., 2019; Tomić et al., 2018; Ding et al., 2019; Teixeira et al., 2015; M. Xue
and Das, 2012; Cetinkaya et al., 2017; Brown et al., 2019; Law et al., 2015; Pirani et al., 2021;
Hashemi et al., 2018). In this general framework, the “man-in-the-middle” (MITM) class of attacks
in CPS is an important paradigm that has been widely studied (Smith, 2011). An adversary over-
rides the sensor feedback signals transmitted from the physical plant to the legitimate agent with
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spoofed signals that mimic safe and stable operation. Simultaneously, the plant is pushed towards a
catastrophic trajectory by overriding the control signal with malicious inputs. The legitimate agent
must therefore constantly monitor the plant outputs and look for statistical anomalies in the spoofed
feedback signals to detect such attacks. The adversary, on the other hand, aims to generate spoofed
sensor readings in a way that would be indistinguishable, in a statistical sense, from the legitimate
ones while at the same time attempting to drive the system to a catastrophic state.

Two special cases of the MITM attack have been studied extensively. The first case is the re-

play attack, in which the adversary observes and records the true system behavior for a given time
period and then replays this recording periodically at the agent’s input (Mo et al., 2015; Zhu and
Martı́nez, 2014; Miao et al., 2013). The second case is the statistical-duplicate attack, here the
adversary is assumed to have perfect knowledge of the system dynamics therefore allowing the
adversary to construct arbitrarily long trajectories that are statistically identical to the true system
(Smith, 2011; Satchidanandan and Kumar, 2017; Hespanhol et al., 2018). The replay attack, by
nature, is relatively easy to detect as it assumes no knowledge of system parameters. One strategy
to counter replay attacks is to superimpose a watermark signal on the control signal, unbeknownst
to the adversary (Hespanhol et al., 2018; Fang et al., 2017; Hosseini et al., 2016; Ferdowsi and
Saad, 2019; Liu et al., 2018). The statistical-duplicate attack assumes full knowledge of the system
dynamics and parameters. As a consequence, it is barred from observing the control actions, as oth-
erwise it would be omniscient and undetectable. Due to the adversary having complete information,
it requires a more sophisticated detection procedure to ensure it can be detected. To combat the
adversary’s full knowledge, the agent may adopt moving target (Weerakkody and Sinopoli, 2015;
Kanellopoulos and Vamvoudakis, 2020; Zhang et al., 2020; Griffioen et al., 2019) or baiting (Dibaji
et al., 2019b; Hoehn and Zhang, 2016) techniques. Alternatively, introducing private randomness
through watermarking also proves to be a viable strategy (Satchidanandan and Kumar, 2017).

Another class of MITM attacks are learning-based attacks, which are related to the broader
study of learning based control (Fisac et al., 2019a; Berkenkamp et al., 2017; Fisac et al., 2019b;
Yuan and Mo, 2015; Tu and Recht, 2018). In learning based attacks, the adversary initially has
no knowledge of the system dynamics, but spends some time learning the system from observa-
tion before it hijacks the control signal to achieve catastrophic effects while attempting to remain
undetected. This paradigm is more practical, as it is unreasonable to assume perfect knowledge of
system models as is done in a statistical duplicate attacks. Yet, it remains powerful, as the adversary
learned model may allow sophisticated deception schemes instead of relying on simple techniques
like the replay attack. Using an information theoretic approach, upper and lower bounds were drawn
on the asymptotic probability of deception for scalar and vector linear time invariant systems (Kho-
jasteh et al., 2021). Similar approaches were used to draw bounds on the time required by an agent
to declare a deception attack or no breach with a certain confidence, along with lower bounds on
the adversaries training time and energy spent by the agent to guarantee a certain confidence in
detection (Rangi et al., 2021).

Our contributions are as follows: we extend the model of learning-based attacks to include the
learning of the agent itself. Specifically, we consider a legitimate agent performing model-free
control through reinforcement learning (RL). In this context, since the agent has no explicit model
of the system, attack detection (AD), which typically occurs through the observation of anoma-
lous behavior, becomes particularly challenging. Detection, in our case, is performed by careful
monitoring of the Q-function, which provides an implicit model of the system. We propose an AD
algorithm, named the “Bellman Deviation Detection” algorithm. The proposed algorithm asymptot-
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ically guarantees AD with high probability while also avoiding false alarms, when an “informational
advantage” condition is met. The informational advantage condition relates the error in the agent’s
Q-function to the adversary’s error in the model parameters. The analysis also provides useful in-
sights into the nature of the problem in terms of the information pattern required for successful
detection. Finally, we point out that our analysis accounts for errors in the learning techniques of
both the agent and the adversary, models the system as an MDP rather than a deterministic system,
and assumes that the reward function is unknown and rewards are subject to added white noise.
These assumptions are made in an effort to make the analysis closer to real-world scenarios.

2. Mathematical Preliminaries and Notation

A Markov Decision Process is defined by the quadruple (X ,U ,P, r), where X is the set of states
with cardinality |X | = N and U is the set of actions with cardinality |U| = M, while P is the
transition probability matrix and r() is the reward function. The probabilistic transitions from state
to state are Markov and are given by

Pr(xt+1|xt, ut) ⇠ pxt,ut ⌘ [pxt,ut(x1), . . . pxt,ut(xN )] (1)

and P =

2

64
px1,u1

...
pxN ,uM

3

75 .

Similarly, the reward for each transition from state xt by action ut is given by

r(xt, ut) , rxt,ut = Ext+1⇠P r(xt, ut, xt+1). (2)

The model-free control objective is to learn a policy function ⇡(x) : X ! U such that the following
discounted reward is maximized

⇡⇤(x) = argmax
⇡

= E
" 1X

t=0

�tr(xt,⇡(xt), xt+1)

#
, x0 2 X , (3)

where � is the discount factor and represents how much the future reward is discounted. This
problem is termed the infinite time horizon discounted reward problem. This objective is achieved
by learning the optimal Q-function of the problem, which is

Q⇤(x) = max
⇡

= E
" 1X

t=0

�tr(xt,⇡(xt), xt+1)

#
, x0 2 X . (4)

The optimal Q-function relates to the optimal policy as ⇡⇤(x) = argmaxuQ⇤(x, u) and the optimal
value function, which describes the total accrued reward of an optimal trajectory, is defined as

V ⇤(x) = max
x

Q⇤(x, u), (5)

v = [V ⇤(x1) . . . , V
⇤(xN )],

where v denotes the optimal value function as a vector. Finally, we note that the optimal Q-function
can be recursively written using the Bellman equation as
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Q⇤(x, u) =r(x, u) + �
X

x02X
p(x, u, x0) ·

�
maxu0Q⇤(x0, u0)

�
(6)

=r(x, u) + �
X

x02X
p(x, u, x0) · V ⇤(x0)

=r(x, u) + � px,uv
T .

Throughout out the paper we describe vectors using bold face and vectors are row vector by
default (to align with MDP convention). Matrices are bold face and capitalized, k · k2 refers to the
vector euclidean norm. Finally, we say that an event occurs with high probability (w.h.p.) if its
probability pn tends to one as the parameter n tends to infinity.

3. Problem Setup

The system is modeled as an MDP that is controlled by an agent receiving a reward that is corrupted
by additive white noise. The reward noise wt, is i.i.d., with zero mean and variance maybe infinite.
We assume that the agent has learned an estimate of the optimal Q-function of the system using a
trajectory ⌧A described as

⌧A = (xA1 , u
A
1 , . . . x

A
tA , u

A
tA), (7)

where tA is the agent training time. No additional assumption is made on ⌧A itself and the trajectory
can be controlled by the agent. The agent has no information about the system model or reward
function and uses a generalised learning algorithm with the following stochastic guarantee

|Q̂tA(x, u)�Q(x, u)|  "(tA),w.h.p (8)
and 8x 2 X , u 2 U

s.t ✏(t)! 0 as t!1.

As described in Figure 1(a)subfigure, the adversary initially is in its learning phase where it
observes a trajectory ⌧B and it learns the system giving it an estimate of the transition model P̂.
During its learning phase the adversary has no control over its learning trajectory ⌧B , as it merely
learns by observing and does not control the system. Therefore, no asymptotic convergence guar-
antees are placed on its estimate P̂. In the attack phase (as described in Figure 1(b)subfigure) the
agent takes control of the system and feeds the agent a spoofed state feedback signal. This feedback
signal is statistically consistent with its transition model estimate P̂. Note that P̂ need not be an
be an explicit estimate made by the adversary (for example the adversary may also use model-free
learning), however there exists an implicit statistical model it follows. The trajectory ⌧Cformed
during the attack phase is used by the agent to detect for perform AD. The adversary in this phase
steers the true system towards catastrophe and the agent is tasked with detecting the attack and
declaring a breach. The adversary’s strategy to lead the system to catastrophe does not affect AD,
namely the adversary’s closed feedback with system is not of strict concern to the detection problem.

Problem Statement: Given the agent has a learned estimate of the optimal Q-function Q̂() and
the adversary spoofs the system with a transition model estimate P̂, devise a detection algorithm
that uses the trajectory during attack ⌧C and provides guarantees on AD as the trajectory length
tC !1.
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(a) Adversary Learning Phase: During this
phase, the attacker eavesdrops and learns
the system, without altering the feedback
signal to the agent.

(b) Adversary Attack Phase: During this
phase, the adversary hijacks the system
and intervenes as a MITM in two places:
acting as a fake system to the agent and
acting as a fake agent to the system.

Figure 1: Adversary Attack Model

4. A Detection Algorithm Based on “Bellman Deviation”

In this section we describe our proposed algorithm and prove its stochastic guarantees.

4.1. Algorithmic Description

Before we describe the detection algorithm, we start by defining all the required quantities. The
trajectory during attack is a tuple of the form

⌧C = (xC1 , u
C
1 , . . . x

C
tC , u

C
tC ). (9)

Let tC(i, j) be the number of times the state action pair (i, j) is observed and the sequence xi,j(k)
and the ui,j(k) are the respective states and actions that followed them each subsequent time. Sim-
ilarly let ri,j be the immediate reward doled out at that instant and wi,j(k) be its associated white
noise.

Definition 1 (Bellman Deviation Sequence) Let

di,j(k) =Q̂(i, j)� ri,j � wi,j(k) (10)

� �V̂ (xi,j(k)) , 8k 2 [1, tC(i, j)],

be the Bellman deviation sequence . This sequence represents the deviations from Bellman like

behavior in the observed trajectory during the attack phase.

The Bellman deviation sequence (BDS) is simply the temporal difference (TD) errors separated
by state-action pair to form M⇥N different sequence. Each representing the sequence of TD errors
measured in the trajectory when the system transitioned through the respective state-action pair.

Definition 2 (Bellman Deviation Average) Let

d̄i,j =

PtC(i,j)
k=1 di,j(k)

tC(i, j)
(11)
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be the Bellman deviation averages (BDAs). This average helps us eliminate the disturbances we

find due to noise in rewards and the stochastic transitions.

The Bellman deviation average (BDA) is simply an average of the BDS. We use bounds on
the BDA to determine if the system is under a MITM attack. A high BDA would suggest that the
system is under attack. To draw the exact bounds on the deviation averages however, we need to
define useful measures on the system and adversary model estimates as well.

Definition 3 (Maximum System Discernibility) Given an MDP system (X ,U ,P, r), we can de-

fine its system discernibility as

�(v) =
� · kv � µ(v)k2

p
N

, (12)

where v is the associated optimal value function represented as a vector and the function µ(·) is

a function that returns a vector (of same dimension 1 ⇥ N ) where all the elements are the simple

average of the input vector.

The above definition can be understood intuitively as a measure that tells us how easy it is to
observe deviation in that system’s trajectory during the attack phase. For example, if system with
�(v) = 0. This implies that the value function gives us no information about the different trajec-
tories as they have the same accrued reward. This makes the a deviation from optimal trajectory
indiscernible and hence AD infeasible. So the system discernibility measure is a key feature of the
system and should be kept in mind while designing secure systems.

Finally, we define a quantity to measure the minimum error in an adversary’s system model.

Definition 4 (Minimum Adversary Model Error) Given the system state transition model is P
and the adversary estimate is P̂ we define the minimum adversary model error as

�(P, P̂) = �2(P� P̂) = �2(P̃), (13)

where the function �2(·) returns the second smallest singular value of the matrix.

The minimum adversary model error gives us a measure of the minimum error of the adversary’s es-
timate of the conditional distribution p̂ across all state-action pairs. Note that the rows of probability
error matrix P̃ sum to 0, since its the difference of two stochastic matrices. Therefore its smallest
singular value is trivially 0 making the second smallest singular value a good measure of minimum
error. With the above quantities defined we are now ready to present the Bellman deviation detection
algorithm (see Algorithm 1) and prove its correctness.

In Algorithm 1 the division D
T is an element-wise division of the two matrices. The algorithm

essentially calculates the BDAs d̄i,j , takes the maximum value among them and compares it to the
bound ⇠ = � · � � (1 + �)✏. If it crosses this bound a breach is declared. Note that the condition
� · � >= 2 · (1 + �)✏ is the informational advantage condition that essentially puts an upper-bound
on the adversary errors with respect to the adversary’s model error. The algorithm guarantees AD
and no false alarms, with high probability, if and only if this condition is met.

Remark 5 We point out how the algorithm does not need exact estimates of the error bound on the

Q-function "(tA), the system discernibility �(v) or minimum adversary model error �(P, P̂), but

only an over estimate (✏) or under estimate (�, �) respectively. This allows for a more practical

scenarios where exact values of these quantities would be unavailable and could be obtained by

bootstrap methods.
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Algorithm 1: Bellman Deviation Detection
require:

tC � 0, length(⌧C)= tC // run when trajectory is non-empty

✏ � "(tA) // have an over estimate of agent error

�  �(P, P̂) // have an under estimate of adversary minimum error

�  �(v) // have an under estimate of system discernibility

� · � � 2 · (1 + �)✏ // meet informational advantage condition

initialize:

⇠  � · �� (1 + �)✏ // Set Bellman deviation bound

D [0]M⇥N // Initialize Bellman deviation averages

T [0]M⇥N // Initialize counter for state action pairs

for i 1 to tC do

i ⌧C [n][0] // current state

j  ⌧C [n][1] // current action

k  ⌧C [n+ 1][0] // next state

D[i, j] Q̂(i, j)� r(i, j, k)� �V̂ (k) +D[i, j] // sum TD errors in Bellman

deviation sequence

T[i, j] T[i, j] + 1 // increment counter

end

D D
T // normalize to get Bellman deviation averages

if max(D) > ⇠ // compare largest deviation average with bound

then

declare breach
else

declare no breach
end

4.2. Correctness of the Algorithm

In this section we prove the correctness of the proposed algorithm. We first start by proving an
asymptotic upper bound on the BDAs if no attack is underway. Complete proofs of the Theorems 6
and 7 can be found in the supplementary material (Rani and Franceschetti, 2022).

Theorem 6

In the case when no attack takes place, we have that the following inequality holds for all BDAs,

|d̄i,j |  (1 + �)"(tA),w.h.p as (14)
tC(i, j)!1 8(i, j) 2 X ⇥ U ,

where "(tA) is the error in the agent’s estimate of the optimal Q-function.

Proof Sketch
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We rearrange the terms of the Bellman equation (6) and subtract it from (11) to get,

d̄i,j =

PtC(i,j)
k=1 Q̂(i, j)� ri,j � wi,j(k)� �V̂ (xi,j(k))

tC(i, j)
(15)

�Q⇤(i, j) + ri,j + �pi,jv
T

=

PtC(i,j)
k=1

⇣
Q̂(i, j)�Q⇤(i, j)

⌘

tC(i, j)
�

 PtC(i,j)
k=1 ri,j
tC(i, j)

� ri,j

!

� �

 PtC(i,j)
k=1 V̂ (xi,j(k))

tC(i, j)
� pi,jv

T

!
�

PtC(i,j)
k=1 wi,j(k)

tC(i, j)
.

We then use the convergence bound on the Q-function from (8) along with the law of large numbers
(LLN) to show that the first term involving the Q̂(i, j)�Q⇤(i, j) is bound by ✏tA and the third term
involving V̂ (xi,j(k) and pi,jvT is also bounded by ✏tA .

������

PtC(i,j)
k=1

⇣
Q̂(i, j)�Q⇤(i, j)

⌘

tC(i, j)

������
 "(tA) (16)

�

�����

PtC(i,j)
k=1 V̂ (xi,j(k))

tC(i, j)
� pi,jv

T

�����  �"(tA) (17)

Clearly the term with rewards is trivially 0 and using the LLN we show that the term involving the
reward noise asymptotically tends to 0.

Therefore, by finally using triangular inequalities we can prove that,

|d̄i,j |  (1 + �)✏(tA),w.h.p as
tC(i, j)!1 8(i, j) 2 X ⇥ U .

Similarly we now prove a theorem that lower-bounds the largest BDA when the system is under
attack.

Theorem 7 Given the system is under attack, the largest BDA can be lower bounded as follows,

max
i,j

|d̄i,j | � �(v) ·�(P, P̂)� (1 + �)"(tA), (18)

w.h.p as tC(i, j)!1.
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Proof Sketch In a manner similar to the proof of Theorem 6 we subtract equation (6) from (11) but
also introduce additional terms as,

d̄i,j =

PtC(i,j)
k=1 Q̂(i, j)� ri,j � wi,j(k)� �V̂ (xi,j(k))

tC(i, j)
(19)

�Q⇤(i, j) + ri,j + �p̂i,jv
T + �p̃i,jv

T

=

PtC(i,j)
k=1

⇣
Q̂(i, j)�Q⇤(i, j)

⌘

tC(i, j)
�

 PtC(i,j)
k=1 ri,j
tC(i, j)

� ri,j

!

� �

 PtC(i,j)
k=1 V̂ (xi,j(k))

tC(i, j)
� p̂i,jv

T

!
�

PtC(i,j)
k=1 wi,j(k)

tC(i, j)

+ �p̃i,jv
T .

And similar to the proof of the Theorem 6 we show using arguments involving the LLN and the
convergence bound on Q̂(·) in (8) that the first term is bounded as in (16) , while

�

�����

PtC(i,j)
k=1 V̂ (xi,j(k))

tC(i, j)
� p̂i,jv

T

�����  �"(tA) (20)

since the trajectory of the spoofed system being controlled has parameters P̂. And unlike the pre-
vious the case the new term �p̃i,jvT can be lower bounded using the Cauchy- Schwartz inequality
and other further analysis as,

max
i,j

|�p̃i,jv
T
| � �(v) ·�(P, P̂). (21)

The term involving the reward is trivially 0 and the reward noise term tends to 0 due too the LLN.
Therefore by finally using triangular inequalities we can prove that,

max
i,j

|d̄i,j | � �(v) ·�(P, P̂)� (1 + �)"(tA),

w.h.p as tC(i, j)!1.

With an upperbound on the deviation proven, we finally prove the correctness of Algorithm 1
when the informational advantage condition is met.

Theorem 8 The informational advantage condition,

� · � > 2 · (1 + �)✏, (22)

is necessary and sufficient for Algorithm 1 to guarantee AD while avoiding false alarms with high

probability as tC ! 1. Here � and � are under-estimates of the adversary minimum model error

and maximum system system discernibility as, �  �(P, P̂) and �  �(v), and ✏ is an over-

estimate of agent error in Q-function as ✏ � "(tA)

9
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Proof

Due to Theorem 6,
|d̄i,j |  (1 + �)"(tA)  (1 + �)✏ (23)

with high probability as tC !1, since ✏ � "(tA). Similarly by Theorem 7,

max
i,j

|d̄i,j | � �(v) ·�(P, P̂)� (1 + �)"(tA) � � · � � (1 + �)✏ (24)

with high probability as tC !1, since �  �(v) and �  �(P, P̂). Therefore, we can guarantee
AD with no false alarms as tC !1 for Algorithm 1, if and only if

� · � � (1 + �)✏ > (1 + �)✏.

That is, when the lower bound on the largest BDA during attack exceeds the upper bound on all
BDAs during no attack. This allows us to detect if an attack takes place when the lower bound is
exceeded. We can now rewrite the above equation as

� · � > 2 · (1 + �)✏.

Since asymptotic AD with no false alarms with high probability can be achieved by Algorithm 1
if and only if Equation (22) is true. This proves that Equation (22) is a necessary and sufficient
condition.

Remark 9 (On Asynchronous Detection) We note here that Theorem 8 proves the detection guar-

antees for when the start of the adversary’s attack and the agent’s detection algorithm are synchro-

nized. However, it is easy to extend this proof to the case when the start of the attack and detection

are offset by finite time (by using the Cesaro Mean theorem).

5. Conclusion

In this paper we proposed a Bellman Deviation Detection algorithm that is a simple statistical test
that can be used by an agent that performs a model-free reinforcement learning to guarantee at-
tack detection in an asymptotic sense. We proved stochastic guarantees of the proposed algorithm
which reveal how an informational advantage condition can be exploited by the agent to guarantee
detection. Our Bellman Deviation Detection algorithm provides security guarantees against MITM
attacks in the context of model-free RL, while also account for the imperfect knowledge of the
system at both the agent and the adversary ends.
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