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AbstractÐConventional sensing applications rely on electro-
magnetic far-field channel models with plane wave propagation.
However, recent ultra-short-range automotive radar applications
at upper millimeter-wave or low terahertz (THz) frequencies
envisage operation in the near-field region, where the wavefront
is spherical. Unlike far-field, the near-field beampattern is de-
pendent on both range and angle, thus requiring a different
approach to waveform design. For the first time in the litera-
ture, we adopt the beampattern matching approach to design
unimodular waveforms for THz automotive radars with low
weighted integrated sidelobe levels (WISL). We formulate this
problem as a unimodular bi-quadratic matrix program, and
solve its constituent quadratic sub-problems using our cyclic
power method-like iterations (CyPMLI) algorithm. Numerical
experiments demonstrate that the CyPMLI approach yields the
desired beampattern with low autocorrelation levels.

Index TermsÐBeampattern matching, near-field, spherical
wave, THz automotive radar, unimodular waveform.

I. INTRODUCTION

The shape of the propagating wavefront varies depending

on the observation distance [1±3]. Accordingly, three distance

regions have been identified [4]: near-field, Fresnel, and the

far-field (Fraunhofer). The channel reciprocity phenomenon

usually implies that these region categories may be effectively

applied in a bidirectional manner, from both transmitter and

receiver perspectives [5]. In the near-field, amplitude variations

over the antenna aperture are noticeable [6]. In contrast, these

variations are negligible in the Fresnel region, but phase varia-

tions still occur because of the signal’s wavelength. In the far-

field, both amplitude and phase variations are negligible; the

amplitude (phase) depends only on the propagation distance

(signal’s incident angle) and the wavefront is approximated as

locally planar. This leads to a linear propagation model via

the Fourier theory.

Radar systems at lower sub-6 GHz frequencies rely on

far-field plane-wave models as the antenna array is typically

smaller than the operating wavelength [7]. However, with the

advent of automotive radar applications at millimeter-wave

and terahertz (THz) frequencies [8, 9] that employ electrically

large arrays, the far-field assumption breaks down for short-

range operation [10, 11]. At such ranges, the wavefront

becomes spherical in the near-field [2±4], thereby requiring the

use of Weyl’s decomposition [12] of the spherical wave into

several plane waves [7, 13]. This manifests itself in the array

beampattern becoming a function of both angle and range [14].

Some far-field applications such as frequency diverse array

(FDA) radars [15, 16] also exhibit range-dependent beampat-

terns, wherein linear frequency offsets in the carrier frequency

across array elements results in a range-dependent beampattern

without a spherical wavefront. Similar complex patterns are

observed in quantum Rydberg arrays [17, 18]. In this paper,

we focus on near-field THz-band automotive radars [19]

that require consideration of range-dependent beampattern in

system design [11, 20, 21]. THz-band automotive radars have

attracted considerable research interest in recent years because

of their potential for a near-optical resolution [11, 19]. While

the literature indicates that a maximum range of 200 m is

possible for THz automotive radars [22], most applications

envisage their operation to be in the 10-20 m range [19].

Prior works on THz automotive radar waveform design have

included distance-dependent channel models [19] and large

arrays [9], but have ignored the near-field range-dependent

beampattern shaping. Contrary to these works, we include

near-field effects in our waveform design formulations. In

particular, we focus on designing transmit signals with low

correlation levels under the constraint of unimodularity [23,

24]. The upshot of this approach is the minimal peak-to-

average-ratio (PAR) and avoiding gain non-linearities with

low-cost amplifiers [25, 26]. Automotive radars often employ

multiple-input multiple-output (MIMO) arrays to improve res-

olution without using many antennas [11]. In this case, the

design problem requires obtaining a set of mutually (quasi-

)orthogonal waveforms via minimization of the low integrated

sidelobe level (ISL) or weighted ISL (WISL) [27±29] thereby

leading to improved target extraction [30], resolution [31], and

robustness [27].

We approach the near-field waveform design by adopting

the beampattern matching approach [23, 32]. The WISL

metric for beampattern matching leads to a unimodular quar-

tic matrix program (UQMP). We then formulate the near-

field waveform design problem as a unimodular bi-quadratic

matrix program (UBQMP). Here, a quartic-to-bi-quadratic

transformation splits the emerging UQMP into two quadratic

matrix subproblems [33] that we solve using a low-complexity

cyclic power method-like iterations (CyPMLI) algorithm [34,

35]. This is inspired by the power iteration method [24,

36, 37], which benefits from simple matrix-vector multi-

plications thereby yielding a lower complexity than certain

non-parametric [23] and pipe-line methods [38]. Numerical



experiments demonstrate that our proposed method achieves

the desired beampattern while minimizing the WISL.

Throughout this paper, we use bold lowercase and bold

uppercase letters for vectors and matrices, respectively. We

represent a vector x ∈ CN in terms of its elements {xi} as

x = [xi]
N
i=1. The mn-th element of the matrix B is [B]mn. The

sets of complex and real numbers are C and R, respectively;

(·)⊤, (·)∗and (·)H are the vector/matrix transpose, conjugate

and the Hermitian transpose, respectively. Trace of a matrix

is denoted by Tr(.); the function diag(.) returns the diagonal

elements of the input matrix. The Frobenius norm of a matrix

B ∈ CM×N is defined as ∥B∥F=
√∑M

r=1

∑N
s=1 |brs|

2
,

where brs is the (r, s)-th entry of B. The Hadamard (element-

wise) and Kronecker products are ⊙ and ⊗, respectively. The

vectorized form of a matrix B is written as vec (B). The s-

dimensional all-ones vector, all-zeros vector, and the identity

matrix of size s×s are 1s, 0N , and Is, respectively. The real,

imaginary, and angle/phase components of a complex number

are Re(·), Im(·), and arg (·), respectively.

II. SYSTEM MODEL

Consider a MIMO radar with M linearly-spaced isotropic

array elements, with the uniform inter-element spacing of d.

The transmit antennas emit mutually orthogonal elements. The

baseband signal transmitted by the m-th antenna is denoted

by xm(t) with spectral support
[
−B
2 , B

2

]
, and continuous-time

Fourier transform (CTFT),

ym(f) =

∫ ∞

−∞

xm(t)e−j2πft dt, f ∈
[
−B

2
,
B

2

]
. (1)

The baseband signal is then upconverted for transmission, in

the form sm(t) = xm(t)ej2πfct, where fc denotes the carrier

frequency. The utilization of an extremely small array aperture

that is electrically large compared to the wavelength leads to

near-field interactions with targets in close proximity. When

the transmit range is shorter than the Fraunhofer distance F =
2D2

λ , where D = (M − 1)d is the array aperture and d = λ
2

with λ = c0
f being the wavelength, the wavefront is spherical.

At THz-band, the distance pk from the k-th target to the array

origin (defined as the middle of the array) follows the relation

pk < F thereby requiring a near-field model [39].

The near-field steering vector a(θk, pk) corresponding to

physical direction-of-arrival (DoA) θk and range pk, is

a (θk, rk) =
1√
M

[
e−j2π d

λ
p
(1)
k , · · · , e−j2π d

λ
p
(M)
k

]⊤
, (2)

where θk = sinφk, with φk ∈
[
−π
2 , π

2

]
and p

(m)
k is the

distance between the k-th target and the m-th antenna:

p
(m)
k =

√
p2k + 2(m− 1)2d2 − 2rk(m− 1)dθk. (3)

According to the Fresnel approximation [1, 40], we can

approximate (3) as

p
(m)
k ≈ pk − (m− 1)dθk + (m− 1)2d2ζk, (4)

where ζk =
1−θ2

k

2pk
is a function of both range and DoA.

Substituting (4) into (2) gives

a (θk, pk) ≈ e−j2π fc
c0

pk ã (θk, pk) , (5)

where the m-th element of ã ∈ CM is [ã (θk, pk)]m =

ej2π fc
c0
((m−1)dθk−(m−1)2d2ζk).

The (near-field) transmit signal at the location (θk, pk) is

z
θk,pk

(t) =
M∑

m=1

sm

(
t− dp

(m)
k

c0

)
,

=

M∑

m=1

xm

(
t− dp

(m)
k

c0

)
e

j2πfc

(

t−
dp

(m)
k
c0

)

.

(6)

Using the inverse CTFT of (1), we can rewrite z
θk,pk

(t) as

z
θk,pk

(t) =

∫ B/2

−B/2

Y (θk, pk, f)e
j2π(f+fc)t df, (7)

where Y (θk, pk, f) =
∑M

m=1 ym(f)e−j2π(f+fc)
dp

(m)
k
c0 . As a re-

sult, the beampattern at location {θk, pk} and frequency f+fc
is P (θk, pk, f) = |Y (θk, pk, f)|2 =

∣∣αH(θk, pk, f)y(f)
∣∣2,

where f ∈
[
−B

2 ,
B
2

]
and α is obtained based on the approxi-

mated near-field steering vector (5):

α(θk, pk, f) = e−j2πfa⋆(θk, pk), (8)

and y(f) =
[
y1(f) y1(f) · · · yM (f)

]⊤
. Sampling the

signal xm(t) at the Nyquist interval Ts = 1/B, we obtain

xm(n) = xm(nTs). The discrete Fourier transform (DFT) of

xm(t) is

ym(u) =

N−1∑

n=0

xm(n)e−j2π nu
N , u ∈ {0, 1, · · · , N − 1} . (9)

For ease of representation, we define the vector yu =[
y0(u) y1(u) · · · yM−1(u)

]⊤
which is comprised of

the above DFT values.

We assume that the DoAs and ranges/delays {θk, pk} are

aligned to the grid points {θk1
}K1

k1=1 and {pk2
}K2

k2=1, where

θk1
= sinφk1

with φk1
= π

(
k1

K1
− 1

2

)
, 1 < k1 < K1, and

pk2 = k2

K2
, 1 < k2 < K2. The grid size K1 and K2 are

determined by the temporal and spatial sampling rates. The

discretized α is

α
k1,k2,u

= α

(
θk1

, pk2
,

u

NTs

)
. (10)

The discretized beampattern becomes

P
k1,k2,u

=
∣∣∣αH

k1,k2,u
yu

∣∣∣
2

. (11)

Our goal is to design the waveform matrix X =
[x1, · · · ,xM ] ∈ CM×N that focuses the beam in a desired

direction.

III. PROBLEM FORMULATION

A two-stage algorithm for far-field wideband MIMO wave-

form design was suggested in [41] based on the Gerchberg-

Saxton algorithm [42]. The key idea here is to obtain a

complex-valued waveform in the spectral domain such that

yu matches the magnitude of the desired beampattern as

in (11). Related techniques also include phase-retrieval-based

waveform design [43, 44]. We address the near-field version

of this problem without resorting to phase retrieval methods.



A. Beampattern Matching Formulation

Denote the desired beampattern by
{
P̂ k1,k2,u

}
. The set of

complex unimodular sequences is identified as

ΩN =
{
s ∈ C

N |s(l) = ejωl , ωl ∈ [0, 2π), 0 ≤ l ≤ N − 1
}
.

(12)

The beampattern matching optimization problem is [45],

minimize
xm∈ΩN

K1∑

k1=1

K2∑

k2=1

N−1∑

u=0

[
P̂ k1,k2,u −

∣∣∣αH
k1,k2,u

yu

∣∣∣
2
]2

.

(13)

To directly tackle (13) with respect to X,

we write yu as yu = X⊤fu, where fu =[
1 e−j2π u

N · · · e−j2π
(N−1)u

N

]⊤
is the DFT vector.

Then, (13) becomes

minimize
xm∈ΩN

K1∑

k1=1

K2∑

k2=1

N−1∑

u=0

[
P̂ k1,k2,u −

∣∣∣αH
k1,k2,u

X⊤fu

∣∣∣
2
]2

,

(14)

Expanding the objective P =

[
P̂ k1,k2,u −

∣∣∣αH
k1,k2,u

X⊤fu

∣∣∣
2
]2

,

we obtain a quartic formulation is

P = fHu X⋆α
k1,k2,u

αH
k1,k2,u

X⊤fuf
H
u X⋆α

k1,k2,u
αH

k1,k2,u
X⊤fu−

2P̂ k1,k2,uf
H
u X⋆α

k1,k2,u
αH

k1,k2,u
X⊤fu + P̂ 2

k1,k2,u.
(15)

Note that αH
k1,k2,u

X⊤fu is scalar. Hence,

f
H
u X

⋆
α

k1,k2,u
α

H

k1,k2,u
X

⊤
fu =

vec⊤
(
f
H
u X

⋆
α

k1,k2,u

)
vec

(
α

H

k1,k2,u
X

⊤
fu

)
,

(16)

where according to the identities of vectorization operator

[36], we have vec
(
fHu X⋆α

k1,k2,u

)
= fHu vec

(
X⋆α

k1,k2,u

)
=

fHu

(
α⊤

k1,k2,u
⊗ IN

)
vec (X⋆), and vec

(
αH

k1,k2,u
X⊤fu

)
=

αH
k1,k2,u

vec
(
X⊤fu

)
= αH

k1,k2,u

(
f⊤u ⊗ IM

)
vec
(
X⊤
)
. Conse-

quently,
f
H
u X

⋆
α

k1,k2,u
α

H

k1,k2,u
X

⊤
fu =

vec⊤ (X⋆)
(
α

k1,k2,u
⊗ IN

)
f
⋆
uα

H

k1,k2,u

(
f
⊤
u ⊗ IM

)
vec

(
X

⊤
)

(17)

Using the commutation matrix P, i.e., vec
(
X⊤
)
= P vec (X)

and the fact that vec⊤ (X⋆) = vecH (X), (17) becomes

fHu X⋆α
k1,k2,u

αH
k1,k2,u

X⊤fu = vecH (X)G vec (X), where

G =
(
α

k1,k2,u
⊗ IN

)
f⋆uα

H
k1,k2,u

(
f⊤u ⊗ IM

)
P. Thus, the ob-

jective of (14) is reformulated to

P = vecH (X)
(
G (X)− 2P̂ k1,k2,uG

)
vec (X) + P̂ 2

k1,k2,u

(18)

where G (X) = G vec (X) vecH (X)G. The beampattern

matching problem is now formulated as the following quartic

matrix program (QMP):
minimize
xm∈ΩN

vecH (X) Ĝ (X) vec (X) , (19)

with Ĝ (X) =
∑K1

k1=1

∑K2
k2=1

∑N−1

u=0

[
G (X)− 2P̂ k1,k2,uG

]
.

B. WISL Criterion for Unimodular Waveform Design

Consider a collection of M unimodular waveforms, each

with a code length of N . The cross-correlation between

the m-th and m′-th waveforms of sequences is rmm′(k) =∑N−k−1
l=0 xm(l)x⋆

m′(l+k) = r⋆mm′(−k) [45]. Denote τmmk =

|rmm(k)|2 and ηmm′k = |rmm′(k)|2. The WISL criterion of

waveform X is [45]

W =

M∑

m=1

N−1∑

k=−N+1
k ̸=0

ω
2
kηmmk +

M∑

m=1

M∑

m′=1m′ ̸=m

N−1∑

k=−N+1

ω
2
kηmm′k,

(20)

where {ωk}Nk=1 are weights.

The unimodular waveform with good correlation properties

is obtained by solving the following optimization problem:

minimize
xm∈ΩN

W. (21)

Following [46], this WISL minimization boils down to

minimize
xm∈ΩN

2N∑

k=1

∥∥XH
((
βkβ

H
k

)
⊙ Γ

)
X
∥∥2
F
, (22)

where Γ ∈ RN×N is a Toeplitz matrix whose upper and lower

triangular parts are constructed by the weights {ωk}N−1
k=0 and

{ω−k}N−1
k=1 , respectively, i.e., Γ ≜




ω0 ω1 ··· ωN−1

ω−1 ω0

. . .
...

...
. . .

. . . ω1
ω−N+1 ··· ω−1 ω0


 and

βk =
[
1 ej2π

(k−1)
2N · · · ej2π

(N−1)(k−1)
2N

]⊤
.

C. Low-WISL Waveform Design via UQMP

To tackle the WISL minimization problem with our pro-

posed algorithm, which is a variant of the power iteration

method, we reshape the objective to bring it to the standard

form with sHRs, s ∈ CN , R ∈ RN×N . To do so, we

substitute Jk =
(
βkβ

H
k

)
⊙ Γ in the objective as∥∥∥XH

JkX

∥∥∥
2

F

= vecH (X)
(
IM ⊗ J

H
k XX

H
Jk

)
vec (X) . (23)

Define J (X) =
∑2N

k=1

(
IM ⊗ JH

k XXHJk

)
= IM ⊗(∑2N

k=1 J
H
k XXHJk

)
. The WISL minimization problem is

now recast as a UQMP as follows:

minimize
xm∈ΩN

vecH (X)J (X) vec (X) . (24)

Now, both (19) and (24) share the same form and can be

optimized together in a single optimization problem. Hence,

we consider the following optimization problem that designs

a unimodular waveform with a low-WISL while incorporating

beampattern matching requirements:

minimize
xm∈ΩN

γP + (1− γ)W (25)

where 0 ≤ γ ≤ 1 is the Lagrangian multiplier. The resulting

UQMP is

minimize
xm∈ΩN

vecH (X)
(
γĜ (X) + (1− γ)J (X)

)
vec (X) .

(26)

IV. PROPOSED ALGORITHM

Our approach to solve the low-WISL waveform de-

sign problem (26) is to cast it as a UBQMP and then

tackle it using the CyPMLI algorithm. Define R (X) =(
γĜ (X) + (1− γ)J (X)

)
. To transform (26) into two



quadratic optimization subproblems, we define two variables

vec (X1) and vec (X2). It is also interesting to observe that

if either X1 or X2 are fixed, solving (26) with respect to

the other variable can be done via a unimodular quadratic

programming (UQP) formulation [34, 47]:

minimize
vec(Xj)∈ΩNM

vecH (Xj)R (Xi) vec (Xj) , i ̸= j ∈ {1, 2} .
(27)

To ensure the convergence of X1 and X2 to the same wave-

form matrix, a connection needs to be established between

them in the objective. Adding the Frobenius norm error be-

tween X1 and X2 as a penalty with the Lagrangian multiplier

to (27) yields the following regularized Lagrangian problem:

minimize
vec(Xj)∈ΩNM

vecH (Xj)R (Xi) vec (Xj) + ρ ∥Xi −Xj∥2F ,

(28)

where ρ is the Lagrangian multiplier. The penalty ∥Xi −Xj∥2F
is also a quadratic function with respect to Xj . Consequently,

the UBQMP formulation for (26) is given by below:

minimize
vec(Xj)∈ΩNM

(
vec(Xj)

1

)H ( R(Xi) −ρ vec(Xi)

−ρ vecH(Xi) 2ρNM

)

︸ ︷︷ ︸
R̆(Xi)

(
vec(Xj)

1

)
,

(29)

To employ CyPMLI, we need to transform the problem to

a maximization problem using the diagonal loading process.

Denote the maximum eigenvalue of R̆ (Xi) by λm, where

λmI ⪰ R̆ (Xi). Thus, R̂ (Xi) = λmI − R (Xi) is pos-

itive definite [34]. Note that a diagonal loading with λmI

has no effect on the solution of (29) due to the fact that

∥X∥2F = NM and vecH (Xj) R̂ (Xi) vec (Xj) = λmNM −
vecH (Xj)R (Xi) vec (Xj). Therefore, we have the following

equivalent form of (29):

maximize
vec(Xj)∈ΩNM

(
vec(Xj)

1

)H ( R̂(Xi) ρ vec(Xi)

ρ vecH(Xi) ρ̂

)

︸ ︷︷ ︸
R(Xi)

(
vec(Xj)

1

)
,

(30)

where ρ̂ = λm − 2ρNM . The desired matrix Xj of (30) is

readily evaluated by PMLI at convergence using the iterations

ν(t+1) = ej arg(R(Xi)ν
(t)) [34], where ν =

(
vec⊤ (Xj) 1

)⊤
.

This update process can be simplified as

vec
(
X

(t+1)
j

)
= e

j arg
(
R̂

(
X

(t)
i

)
vec
(
X

(t)
j

)
+ρ vec

(
X

(t)
i

))

. (31)

Such power method-like iterations are already shown to be

convergent in terms of both the objective and the signal [24,

35], implying that X1 and X2 will also converge to each other.

V. NUMERICAL EXPERIMENTS

We numerically evaluated the efficacy of our approach. We

used the following settings for our experiments: the number

of array elements is M = 4, the carrier frequency of the trans-

mitted signal is fc = 1 GHz, the bandwidth B = 200 MHz,

and the number of symbols is N = 64. The inter-element

spacing is d = c0/(2(fc + B/2)) (half wavelength of the

highest in-band frequency) to avoid grating lobes. The DoA

(normalized range) domain set of −π
2 ≤ φ ≤ π

2 (0 < p ≤ 1)

was discretized with K1 = 20 and K2 = 10 grid points.
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Figure 1. (a) The correlation level of the designed waveform with sequence
length N = 64 for antenna array with M = 4 elements. (b) The cross-
correlation between x1 and other sequences in the designed waveform; i.e.
x2, x3 and x4 with the same values of N and M as in (a). Note that the
sequences have been designed to suppress the correlation levels at lags from
k = −20 to k = 20.

(a) (b)

Figure 2. The obtained near-field beampattern with respect to (a) −π
2

≤
φk1

≤ π
2

and u for fixed k1 = k⋆1 , and (b) 0 < pk2
≤ 1 and u for fixed

k2 = k⋆2 . In all cases, we have N = 64 and M = 4.

The CyPMLI parameters are set as ρ = 2 and γ = 0.5. We

updated the value of λm according to [34, Theorem 1]. Fig. 1a

shows that the resulting waveform achieves a satisfactory

correlation level. Further, the designed sequences exhibit a

good cross-correlation property with each other (Fig. 1b). For

numerical evaluation, we consider the desired beampattern to

be 1 at the indices k⋆1 and k⋆2 and 0 elsewhere for all u.

Fig. 2a displays the (near-field) beampattern obtained for the

angular span of −π
2 ≤ φk1 ≤ π

2 and discrete frequency u
with fixed k1 = k⋆1 . On the other hand, Fig. 2b shows the

beampattern as a function of range 0 < pk2
≤ 1 and u

with fixed k2 = k⋆2 . Moreover, CyPMLI maintains good input

correlation properties as shown in Fig. 1 while obtaining the

desired beampattern with a small negligible error.
VI. SUMMARY

THz automotive radars are expected to provide near-optical

resolution approaching lidars. For the ultrashort range oper-

ation, near-field propagation needs to be considered in the

waveform design for these systems. We proposed CyPMLI

approach to obtain low-WISL unimodular waveforms and

realize the range-dependent beampattern in near-field.
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