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Abstract—This paper presents a novel framework for designing
radar transmit sequences by shaping the radar Ambiguity
Function (AF) to a desired structure. The proposed approach
suppresses the average amplitude of the AF of the transmitted
signal in regions of interest by efficiently tackling a longstanding
optimization problem. The optimization criterion is quartic in
nature with respect to the radar transmit code. A cyclic iterative
algorithm is introduced that recasts the quartic problem as a
unimodular quadratic problem (UQP) which can be tackled
using power-method-like iterations (PMLI). Our numerical re-
sults demonstrate the effectiveness of the proposed algorithm in
designing sequences with desired AF which is of great interest
to the future generations of automotive radar sensors.

Index Terms—Ambiguity function, automotive radar, FMCW,
power-method-like iterations, unimodular quadratic program-
ming

I. INTRODUCTION

In radar signal processing, the range-Doppler response of
the transmitted waveform also known as the ambiguity func-
tion plays a critical role, as it governs the Doppler and range
resolutions of the system and regulates the interference power
from unwanted returns at the output of the matched filter to
the target signature. To put it another way, the radar designer
is faced with the problem of choosing signal waveforms
that yield desirable ambiguity functions. What is considered
desirable, of course, depends on the operational use of the
radar. While ambiguity function shaping is widely studied in
the literature, the topic remains unexplored in the context of
automotive radar [1].

In this paper, we study the ambiguity function shaping in
frequency-modulated continuous wave (FMCW) automotive
radar. Shaping radar ambiguity functions has long been consid-
ered difficult from a pure design or computational perspective
due to the fact that the two-dimensional nature of the ambi-
guity function implies the number of design constraints would
grow much faster than the design variables and that the design
objective (to be optimized) has a quartic nature [2]. In [2], a
method based on maximum block improvement is devised to
tackle the quartic objective in the ambiguity function shaping
problem. In a more recent work in [3], an algorithm based
on accelerated iterative sequential optimization is proposed to
minimize the weighted integrated sidelobes level (WISL) over
desired range-Doppler bins of interest. In This paper, inspired
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by the algorithm proposed in [4] for mutual interference miti-
gation, we devise a low-complexity algorithm based on power-
method-like iterations to minimize the ambiguity function in
the range-Doppler bins corresponding to echoes from clutters
in the environment.

The rest of the paper is organized as follows. In the next
section, we formulate the ambiguity function shaping problem
for FMCW radar. In section III, we propose our algorithm for
designing a radar code with desired ambiguity function. We
evaluate our method via numerical experiments in section IV
and conclude the paper in section V.

Throughout this paper, we use bold lowercase and bold
uppercase letters for vectors and matrices, respectively. R
represents the set of real numbers. (-)7 and (-)¥ denote
the vector/matrix transpose, and the Hermitian transpose,
respectively. Diag(.) denotes the diagonalization operator that
produces a diagonal matrix with the same diagonal entries as
the entries of its vector argument. The mn-th element of the
matrix B is B [m, n]. The minimum eigenvalue of the matrix
B is denoted by ~min (), respectively. The real, imaginary,
and angle/phase components of a complex number are Re {-},
Im (-), and arg{-}, respectively. Finally, ¢; ; is the extension
of Kronecker delta function with §; ; = 1if ¢ = jand §; ; = 0,
otherwise.

II. PROBLEM FORMULATION

We start by considering an FMCW automotive radar system
whose frequency is swept linearly over a bandwidth B in a
time duration 7. The transmit signal with an intra-pulse code
length N can be represented as

N
s(t) =Y wpu(t —nT.), 0<t < T, (1)

n=1
where x = [r1,...,7x5]|" € CV is the slow-time sequence

and the chirp is

u(t) = \/% exp(j(2m fut + mKt?))rect (;) S

where K = TE is the chirp rate, and

0<t<1,

rect (¢) = {1 (3)

0 otherwise.



In order to keep constant transmit power over the N chirps,
we constrain the code sequence to be unimodular i.e. |z,| = 1,
forn=1,...,N [5].

The ambiguity function is defined as [6],

x(7,v) “)

= /_OO s(t)s™(t — ) exp (—j2nv(t — 7)) dt

N N
(Z Tru(t — nTc)> <Z Tmu” (t —mT, — 7')>

-exp (—j2mv(t — 7)) dt

where 7 is the time delay and v is the Doppler frequency shift.
With an aim to discretize the AF in (4), by setting 7 = kT,
fork=—-N+1,---,0,--- ,N —1and v = 3% for p =

N N _ _N-1 N-1
—, 77—.lfor(?venporp— —=5=,"+, 5 for odd
p, we can easily obtain,

ey T b
xlk, p] = x(kTe, NTC)

N
jiT2 . p * —in(n—
= /™" N sinc (ﬂﬁ) nEZIxnxn_ke jm(n—k)p/N_ (5)

where sinc(z) = sin(z)/z. We assume the target under study
is moving with low speed i.e. |v| < 1/T,. Therefore, it is safe
to confine our attention to values of |p| < N in which case

sinc (w%) ~ 1 and thus the discrete-AF can be defined as,

N
i) 23w e 2T ©)
n=1
_ __N N
fork=-N+1,--- ,O,-}V-LIN—landp——7,~-~ 5 =1

for even p or p = 5 ,---,% for odd p. In the
next section, we will primarily be focused on designing the
sequence {z,}N_, so as to minimize the sidelobes of the
discrete-AF in a certain region.

III. PROPOSED METHOD

The goal herein is to suppress the energy of the discrete-AF
in a region of interest defined by the index sets I, P for delay
and Doppler shift, respectively, by minimizing the criterion:

C=3> Irlkpl (7)
ke peP

In particular, the AF shaping problem that we are interested
in is

P miniinize C
s.t. X is unimodular. )
Note that the discrete-AF [k, p] can be reformulated as
[k, p] = x"D,J;x, 9)

T
(/ u(t — nTe)u”™ (t — mT, — T)efﬂm’(tfﬂdt) T,
0

where

D, = Diag ({e‘j2”%7 C emiam iR e—m%}) . (10)

and

(1)

3, =3I, = [0 INk]

I, 0

is the shift matrix that performs the shifting of the vector
being multiplied by k lags. Therefore the problem in (7) can

be recast as,
C= Z Z x"D,J;x|?
ke peP

= Z Z ‘XHAk,pXP

keK peP

(12)

where Ay, = D,Jj. Interestingly as one can observe, C' is
quartic with respect to x that makes P; in (8) a non-convex
problem. In order to recast the problem in a quadratic form,
let

(1>

- 1
Ak,p §(Ak,1) + Allj,p)a

i 1
ko & 5 (Akp — AL) (13)

and note that

1) Matrices A}, and jAj , are Hermitian and skew-
Hermitian matrices, respectively [7].
2) For any generic vector z,

ZMA 7 = zHAzypz + zHA};pz (14)
where
z"A; z€ R and jz"A} zcR. (15)
In particular, it follows from (15) that
|Z8 Ay 2| = |zHA27pz|2 + |ijA}‘w,z|2‘ (16)

Hence we can write,

> MA X =) XMAL P+ [xTjAL x|
k.p k.p
=> [x"(A}, + (In)x — ¢NJ?
k.p

+ |x" (A, + CLy)x — CNJ?
=3 [x"A} x — (NP + [x"A} x — (NJ?
k.p

a7
where
P = Az,p + CINv (18)
b =A%, + Iy (19)
and ¢ € R is chosen such that
¢ > —min U {’Ymin (Avl;,p) y Ymin (JA}c,p)} (20)

k,p



to ensure the positive definiteness of {A};’p} and {A};7p}. The
objective (17) is still quartic w.r.t. x. In order to make it
quadratic we resort to the equivalence properties of Hermitian
square roots.

Remark 1. For the positive definite matrix Azp, XHAZ pX IS
close to (N, if and only if (Agp)l/zx is clg;e to \/(Nuj_,
for a unit-norm vector ;. . Similarly, xT Al pX is close to
(N, if and only if (A};7p)1/2x is close to \/CNu?w,, for a
unit-norm vector u’,;_p [7].

According to Remark 1,

S Ve,
k,p

- 2
+ H( k,p)l/QX Y CNu;c,p 2}
s.t. x is unimodular,

ukpll2 = ||uf€p||2 =1forallke K,peP,
2y

Py :  minimize

2
x{up ) {ul 2

which is quadratic w.r.t. x, {uj}, } and {uj ,} and equivalent
to Py in (8). In the following, we follow a cyclic optimization
approach to tackle the problem (8) in an alternating manner
over x, {uj, ,} and {uj,_}.

A. Optimization w.r.t. X

The objective function in P is recast as

Cyx = xH Z(~£@+Ai’p) X

k,p
—2y/¢(NRe{ x Z(Azyp)Hﬂuz’p
k,p
—2\/(NRe{ x> (A} )/%uj, , ¢ + const. (22)
k,p
Or simply,
Cx = x"Ryx + 2Re {x"sx} + const. (23)
where
R. =Y (A;,+AL,) 24)
k,p
and
(25

Sx = —V gNZ (( A k,p)H/2uZ>,p + ( A ;-c,p)H/zu?c,p>
k.,p

By dropping the constant term, the objective function can be
reformulated as,

Cy = x"TR,x + 2Re {stx}

_|x a Ry s« |x
Tl [sE o)1
HB. x (26)

=X

Hence, the P, w.r.t x is equivalent to the following,

min X7 Byx
X

st |xy|=1, n=1,--- N,

% = m . Q27)
Which is equivalently,
max XTDyx
st. |z,|=1, n=1,--- N,
% = m . (28)

where D, £ YxI(n+1) — Bx, with v« being larger than the
maximum eigenvalue of By. The above problem is called
unimodular quadratic programming (UQP) and the power-
method-like iterations,

T
x(8:) — exp {J arg { |})]\1];<1[\\;:| Dxf((sat—l) }} 29)

introduced in [8] leads to a monotonically decreasing objective
value for UQP. The iterations can be initialized with the latest
design of x (used as x(s’o)) and ¢ denotes the internal iteration
number

B. Optimization w.r.t. {u}, ,} and {u}, ,}

We have the closed-form solution for {uj, ,} and {u}‘c)p} :
Corresponding to each k € K,p € P:

A 1/2
q (B (30)
T AL) Y]
A 1/2
qie) - (B G31)
(AL )2

The algorithm for shaping ambiguity function in SISO radar
is summarized in Algorithm 1. The number of iterations in
the algorithm is chosen such that |(C(*+1) — C())/C)| < ¢,
where C'(®) the objective value introduced in (7), is satisfied
at the final iteration.
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Figure 1. The objective value in (7) versus the iterations of Algorithm 1

Algorithm 1 Radar code design for shaping the ambiguity
function

Input: Index sets K and P, x(%:0), qug), uz(’(;) for k € K
and p € P.
Output: x

I: fort=0:T1y —1do

2: for s=0:T2—1do ‘
3: Update D, by plugging in ﬁ;f;) and ﬁ;c(’tg in (25)-
(28).
I T
O1><N
) A’I‘(tJrl) (Az, )1/2x(t,s)
S: U o ”(A{‘J:;l/?x(t,s)”z’
~i(t+1) (Aj ) /2x0®)
k.p (AL )/ 2xE9) 2

8: return x + x(':I'2)

IV. NUMERICAL EXPERIMENTS

In this section, we will examine the capability of Algorithm
1 which has been proposed to design a radar phase code that
has an ambiguity function with the desired shape. The region
of interest is defined by the sets KC and P as

K ={5,6,7} and

P = {-15,—14,—13,11,12, 13, 14}. (32)

We start from random initializations used for Algorithm 1;
moreover, we execute the UQP subroutine for I'y = 500 times
and allow for at most I';y = 102 runs of the outer iterations. As
illustrated in Fig. 2, the radar code synthesized by algorithm
1 has the desired ambiguity function values in the chosen bin
corresponding to interference.

V. SUMMARY

In this letter, we addressed the unimodular radar code design
for FMCW radar ambiguity function shaping. We devised
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Figure 2. Ambiguity function, in dB, of (a) the initial random code and (b)
the synthesized FMCW code with N = 16 and in green the assumed regions
of interest.

the radar codes by minimizing a criterion obtained from the
absolute value of the ambiguity function in the regions of
interest. We addressed the quartic optimization problem using
the PMLI iterations.
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