

Ambiguity Function Shaping in FMCW Automotive Radar

Zahra Esmaeilbeig^{*1}, Arindam Bose^{*2†}, Mojtaba Soltanalian³

¹University of Illinois at Chicago, ²KMB Telematics Inc.

{¹zesmae2, ³msol}@uic.edu, ²abose@kmb.ac

Abstract—This paper presents a novel framework for designing radar transmit sequences by shaping the radar Ambiguity Function (AF) to a desired structure. The proposed approach suppresses the average amplitude of the AF of the transmitted signal in regions of interest by efficiently tackling a longstanding optimization problem. The optimization criterion is quartic in nature with respect to the radar transmit code. A cyclic iterative algorithm is introduced that recasts the quartic problem as a unimodular quadratic problem (UQP) which can be tackled using power-method-like iterations (PMLI). Our numerical results demonstrate the effectiveness of the proposed algorithm in designing sequences with desired AF which is of great interest to the future generations of automotive radar sensors.

Index Terms—Ambiguity function, automotive radar, FMCW, power-method-like iterations, unimodular quadratic programming

I. INTRODUCTION

In radar signal processing, the range-Doppler response of the transmitted waveform also known as the ambiguity function plays a critical role, as it governs the Doppler and range resolutions of the system and regulates the interference power from unwanted returns at the output of the matched filter to the target signature. To put it another way, the radar designer is faced with the problem of choosing signal waveforms that yield desirable ambiguity functions. What is considered desirable, of course, depends on the operational use of the radar. While ambiguity function shaping is widely studied in the literature, the topic remains unexplored in the context of automotive radar [1].

In this paper, we study the ambiguity function shaping in frequency-modulated continuous wave (FMCW) automotive radar. Shaping radar ambiguity functions has long been considered difficult from a pure design or computational perspective due to the fact that the two-dimensional nature of the ambiguity function implies the number of design constraints would grow much faster than the design variables and that the design objective (to be optimized) has a quartic nature [2]. In [2], a method based on maximum block improvement is devised to tackle the quartic objective in the ambiguity function shaping problem. In a more recent work in [3], an algorithm based on accelerated iterative sequential optimization is proposed to minimize the weighted integrated sidelobes level (WISL) over desired range-Doppler bins of interest. In This paper, inspired

by the algorithm proposed in [4] for mutual interference mitigation, we devise a low-complexity algorithm based on power-method-like iterations to minimize the ambiguity function in the range-Doppler bins corresponding to echoes from clutters in the environment.

The rest of the paper is organized as follows. In the next section, we formulate the ambiguity function shaping problem for FMCW radar. In section III, we propose our algorithm for designing a radar code with desired ambiguity function. We evaluate our method via numerical experiments in section IV and conclude the paper in section V.

Throughout this paper, we use bold lowercase and bold uppercase letters for vectors and matrices, respectively. \mathbb{R} represents the set of real numbers. $(\cdot)^\top$ and $(\cdot)^H$ denote the vector/matrix transpose, and the Hermitian transpose, respectively. $\text{Diag}(\cdot)$ denotes the diagonalization operator that produces a diagonal matrix with the same diagonal entries as the entries of its vector argument. The mn -th element of the matrix \mathbf{B} is $\mathbf{B}[m, n]$. The minimum eigenvalue of the matrix \mathbf{B} is denoted by $\gamma_{\min}(\cdot)$, respectively. The real, imaginary, and angle/phase components of a complex number are $\text{Re}\{\cdot\}$, $\text{Im}\{\cdot\}$, and $\arg\{\cdot\}$, respectively. Finally, $\delta_{i,j}$ is the extension of Kronecker delta function with $\delta_{i,j} = 1$ if $i = j$ and $\delta_{i,j} = 0$, otherwise.

II. PROBLEM FORMULATION

We start by considering an FMCW automotive radar system whose frequency is swept linearly over a bandwidth B in a time duration T_c . The transmit signal with an intra-pulse code length N can be represented as

$$s(t) = \sum_{n=1}^N x_n u(t - nT_c), \quad 0 \leq t \leq T_c \quad (1)$$

where $\mathbf{x} = [x_1, \dots, x_N]^\top \in \mathbb{C}^N$ is the slow-time sequence and the chirp is

$$u(t) = \frac{1}{\sqrt{T_c}} \exp(j(2\pi f_c t + \pi K t^2)) \text{rect}\left(\frac{t}{T_c}\right), \quad (2)$$

where $K = \frac{B}{T_c}$ is the chirp rate, and

$$\text{rect}(t) = \begin{cases} 1 & 0 \leq t \leq 1, \\ 0 & \text{otherwise.} \end{cases} \quad (3)$$

* First two authors have equal contributions.

In order to keep constant transmit power over the N chirps, we constrain the code sequence to be unimodular i.e. $|x_n| = 1$, for $n = 1, \dots, N$ [5].

The ambiguity function is defined as [6],

$$\begin{aligned} \chi(\tau, \nu) & \quad (4) \\ & = \int_{-\infty}^{\infty} s(t)s^*(t-\tau) \exp(-j2\pi\nu(t-\tau)) dt \\ & = \int_0^T \left(\sum_{n=1}^N x_n u(t-nT_c) \right) \left(\sum_{m=1}^N x_m^* u^*(t-mT_c-\tau) \right) \\ & \quad \cdot \exp(-j2\pi\nu(t-\tau)) dt \\ & = \sum_{m=1}^N \sum_{n=1}^N x_m^* \left(\int_0^T u(t-nT_c) u^*(t-mT_c-\tau) e^{-j2\pi\nu(t-\tau)} dt \right) x_n. \end{aligned}$$

where τ is the time delay and ν is the Doppler frequency shift. With an aim to discretize the AF in (4), by setting $\tau = kT_c$ for $k = -N+1, \dots, 0, \dots, N-1$ and $\nu = \frac{p}{NT_c}$ for $p = -\frac{N}{2}, \dots, \frac{N}{2}-1$ for even p or $p = -\frac{N-1}{2}, \dots, \frac{N-1}{2}$ for odd p , we can easily obtain,

$$\begin{aligned} \chi[k, p] & \triangleq \chi(kT_c, \frac{p}{NT_c}) \\ & = e^{j\pi\frac{p}{N}} \text{sinc}\left(\pi\frac{p}{N}\right) \sum_{n=1}^N x_n x_{n-k}^* e^{-j\pi(n-k)p/N}. \quad (5) \end{aligned}$$

where $\text{sinc}(x) = \sin(x)/x$. We assume the target under study is moving with low speed i.e. $|\nu| \ll 1/T_c$. Therefore, it is safe to confine our attention to values of $|p| \ll N$ in which case $\text{sinc}\left(\pi\frac{p}{N}\right) \approx 1$ and thus the discrete-AF can be defined as,

$$r[k, p] \triangleq \sum_{n=1}^N x_n x_{n-k}^* e^{-j2\pi\frac{(n-k)p}{N}}. \quad (6)$$

for $k = -N+1, \dots, 0, \dots, N-1$ and $p = -\frac{N}{2}, \dots, \frac{N}{2}-1$ for even p or $p = -\frac{N-1}{2}, \dots, \frac{N-1}{2}$ for odd p . In the next section, we will primarily be focused on designing the sequence $\{x_n\}_{n=1}^N$ so as to minimize the sidelobes of the discrete-AF in a certain region.

III. PROPOSED METHOD

The goal herein is to suppress the energy of the discrete-AF in a region of interest defined by the index sets \mathcal{K}, \mathcal{P} for delay and Doppler shift, respectively, by minimizing the criterion:

$$C = \sum_{k \in \mathcal{K}} \sum_{p \in \mathcal{P}} |r[k, p]|^2. \quad (7)$$

In particular, the AF shaping problem that we are interested in is

$$\begin{aligned} \mathcal{P}_1 : \text{minimize}_{\mathbf{x}} \quad & C \\ \text{s.t. } \mathbf{x} \text{ is unimodular.} \quad & (8) \end{aligned}$$

Note that the discrete-AF $r[k, p]$ can be reformulated as

$$r[k, p] = \mathbf{x}^H \mathbf{D}_p \mathbf{J}_k \mathbf{x}, \quad (9)$$

where

$$\mathbf{D}_p = \text{Diag}\left(\left[e^{-j2\pi\frac{p}{N}}, \dots, e^{-j2\pi\frac{(N-1)p}{N}}, e^{-j2\pi\frac{Np}{N}}\right]\right), \quad (10)$$

and

$$\mathbf{J}_k = \mathbf{J}_{-k}^H = \begin{bmatrix} \mathbf{0} & \mathbf{I}_{N-k} \\ \mathbf{I}_k & \mathbf{0} \end{bmatrix} \quad (11)$$

is the shift matrix that performs the shifting of the vector being multiplied by k lags. Therefore the problem in (7) can be recast as,

$$\begin{aligned} C & = \sum_{k \in \mathcal{K}} \sum_{p \in \mathcal{P}} |\mathbf{x}^H \mathbf{D}_p \mathbf{J}_k \mathbf{x}|^2 \\ & = \sum_{k \in \mathcal{K}} \sum_{p \in \mathcal{P}} |\mathbf{x}^H \mathbf{A}_{k,p} \mathbf{x}|^2 \end{aligned} \quad (12)$$

where $\mathbf{A}_{k,p} = \mathbf{D}_p \mathbf{J}_k$. Interestingly as one can observe, C is quartic with respect to \mathbf{x} that makes \mathcal{P}_1 in (8) a non-convex problem. In order to recast the problem in a quadratic form, let

$$\begin{aligned} \mathbf{A}_{k,p}^r & \triangleq \frac{1}{2}(\mathbf{A}_{k,p} + \mathbf{A}_{k,p}^H), \\ \mathbf{A}_{k,p}^i & \triangleq \frac{1}{2}(\mathbf{A}_{k,p} - \mathbf{A}_{k,p}^H) \end{aligned} \quad (13)$$

and note that

- 1) Matrices $\mathbf{A}_{k,p}^r$ and $j\mathbf{A}_{k,p}^i$ are Hermitian and skew-Hermitian matrices, respectively [7].
- 2) For any generic vector \mathbf{z} ,

$$\mathbf{z}^H \mathbf{A}_{k,p} \mathbf{z} = \mathbf{z}^H \mathbf{A}_{k,p}^r \mathbf{z} + \mathbf{z}^H \mathbf{A}_{k,p}^i \mathbf{z} \quad (14)$$

where

$$\mathbf{z}^H \mathbf{A}_{k,p}^r \mathbf{z} \in \mathbb{R} \quad \text{and} \quad j\mathbf{z}^H \mathbf{A}_{k,p}^i \mathbf{z} \in \mathbb{R}. \quad (15)$$

In particular, it follows from (15) that

$$|\mathbf{z}^H \mathbf{A}_{k,p} \mathbf{z}|^2 = |\mathbf{z}^H \mathbf{A}_{k,p}^r \mathbf{z}|^2 + |\mathbf{z}^H j\mathbf{A}_{k,p}^i \mathbf{z}|^2. \quad (16)$$

Hence we can write,

$$\begin{aligned} \sum_{k,p} |\mathbf{x}^H \mathbf{A}_{k,p} \mathbf{x}|^2 & = \sum_{k,p} |\mathbf{x}^H \mathbf{A}_{k,p}^r \mathbf{x}|^2 + |\mathbf{x}^H j\mathbf{A}_{k,p}^i \mathbf{x}|^2 \\ & = \sum_{k,p} |\mathbf{x}^H (\mathbf{A}_{k,p}^r + \zeta \mathbf{I}_N) \mathbf{x} - \zeta N|^2 \\ & \quad + |\mathbf{x}^H (j\mathbf{A}_{k,p}^i + \zeta \mathbf{I}_N) \mathbf{x} - \zeta N|^2 \\ & = \sum_{k,p} |\mathbf{x}^H \tilde{\mathbf{A}}_{k,p}^r \mathbf{x} - \zeta N|^2 + |\mathbf{x}^H \tilde{\mathbf{A}}_{k,p}^i \mathbf{x} - \zeta N|^2 \end{aligned} \quad (17)$$

where

$$\tilde{\mathbf{A}}_{k,p}^r = \mathbf{A}_{k,p}^r + \zeta \mathbf{I}_N, \quad (18)$$

$$\tilde{\mathbf{A}}_{k,p}^i = j\mathbf{A}_{k,p}^i + \zeta \mathbf{I}_N \quad (19)$$

and $\zeta \in \mathbb{R}$ is chosen such that

$$\zeta > -\min \left(\bigcup_{k,p} \{\gamma_{\min}(\mathbf{A}_{k,p}^r), \gamma_{\min}(j\mathbf{A}_{k,p}^i)\} \right) \quad (20)$$

to ensure the positive definiteness of $\{\tilde{\mathbf{A}}_{k,p}^r\}$ and $\{\tilde{\mathbf{A}}_{k,p}^i\}$. The objective (17) is still quartic w.r.t. \mathbf{x} . In order to make it quadratic we resort to the equivalence properties of Hermitian square roots.

Remark 1. For the positive definite matrix $\tilde{\mathbf{A}}_{k,p}^r \mathbf{x}^H \tilde{\mathbf{A}}_{k,p}^r \mathbf{x}$ is close to ζN , if and only if $(\tilde{\mathbf{A}}_{k,p}^r)^{1/2} \mathbf{x}$ is close to $\sqrt{\zeta N} \mathbf{u}_{k,p}^r$, for a unit-norm vector $\mathbf{u}_{k,p}^r$. Similarly, $\mathbf{x}^H \tilde{\mathbf{A}}_{k,p}^i \mathbf{x}$ is close to ζN , if and only if $(\tilde{\mathbf{A}}_{k,p}^i)^{1/2} \mathbf{x}$ is close to $\sqrt{\zeta N} \mathbf{u}_{k,p}^i$, for a unit-norm vector $\mathbf{u}_{k,p}^i$ [7].

According to Remark 1,

$$\begin{aligned} \mathcal{P}_2 : \underset{\mathbf{x}, \{\mathbf{u}_{k,p}^r\}, \{\mathbf{u}_{k,p}^i\}}{\text{minimize}} \quad & \sum_{k,p} \left\{ \left\| (\tilde{\mathbf{A}}_{k,p}^r)^{1/2} \mathbf{x} - \sqrt{\zeta N} \mathbf{u}_{k,p}^r \right\|_2^2 \right. \\ & \left. + \left\| (\tilde{\mathbf{A}}_{k,p}^i)^{1/2} \mathbf{x} - \sqrt{\zeta N} \mathbf{u}_{k,p}^i \right\|_2^2 \right\} \\ \text{s.t. } \mathbf{x} \text{ is unimodular,} \quad & \|\mathbf{u}_{k,p}^r\|_2 = \|\mathbf{u}_{k,p}^i\|_2 = 1 \text{ for all } k \in \mathcal{K}, p \in \mathcal{P}, \end{aligned} \quad (21)$$

which is quadratic w.r.t. \mathbf{x} , $\{\mathbf{u}_{k,p}^r\}$ and $\{\mathbf{u}_{k,p}^i\}$ and equivalent to \mathcal{P}_1 in (8). In the following, we follow a cyclic optimization approach to tackle the problem (8) in an alternating manner over \mathbf{x} , $\{\mathbf{u}_{k,p}^r\}$ and $\{\mathbf{u}_{k,p}^i\}$.

A. Optimization w.r.t. \mathbf{x}

The objective function in \mathcal{P}_2 is recast as

$$\begin{aligned} C_{\mathbf{x}} = \mathbf{x}^H \left(\sum_{k,p} \left(\tilde{\mathbf{A}}_{k,p}^r + \tilde{\mathbf{A}}_{k,p}^i \right) \right) \mathbf{x} \\ - 2\sqrt{\zeta N} \operatorname{Re} \left\{ \mathbf{x}^H \sum_{k,p} (\tilde{\mathbf{A}}_{k,p}^r)^{H/2} \mathbf{u}_{k,p}^r \right\} \\ - 2\sqrt{\zeta N} \operatorname{Re} \left\{ \mathbf{x}^H \sum_{k,p} (\tilde{\mathbf{A}}_{k,p}^i)^{H/2} \mathbf{u}_{k,p}^i \right\} + \text{const.} \end{aligned} \quad (22)$$

Or simply,

$$C_{\mathbf{x}} = \mathbf{x}^H \mathbf{R}_{\mathbf{x}} \mathbf{x} + 2 \operatorname{Re} \{ \mathbf{x}^H \mathbf{s}_{\mathbf{x}} \} + \text{const.} \quad (23)$$

where

$$\mathbf{R}_{\mathbf{x}} = \sum_{k,p} \left(\tilde{\mathbf{A}}_{k,p}^r + \tilde{\mathbf{A}}_{k,p}^i \right) \quad (24)$$

and

$$\mathbf{s}_{\mathbf{x}} = -\sqrt{\zeta N} \sum_{k,p} \left((\tilde{\mathbf{A}}_{k,p}^r)^{H/2} \mathbf{u}_{k,p}^r + (\tilde{\mathbf{A}}_{k,p}^i)^{H/2} \mathbf{u}_{k,p}^i \right) \quad (25)$$

By dropping the constant term, the objective function can be reformulated as,

$$\begin{aligned} C_{\mathbf{x}} &= \mathbf{x}^H \mathbf{R}_{\mathbf{x}} \mathbf{x} + 2 \operatorname{Re} \{ \mathbf{x}^H \mathbf{s}_{\mathbf{x}} \} \\ &= \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}^H \begin{bmatrix} \mathbf{R}_{\mathbf{x}} & \mathbf{s}_{\mathbf{x}} \\ \mathbf{s}_{\mathbf{x}}^H & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix} \\ &= \bar{\mathbf{x}}^H \mathbf{B}_{\mathbf{x}} \bar{\mathbf{x}} \end{aligned} \quad (26)$$

Hence, the \mathcal{P}_2 w.r.t \mathbf{x} is equivalent to the following,

$$\begin{aligned} \min_{\bar{\mathbf{x}}} \quad & \bar{\mathbf{x}}^H \mathbf{B}_{\mathbf{x}} \bar{\mathbf{x}} \\ \text{s.t.} \quad & |x_n| = 1, \quad n = 1, \dots, N, \\ \bar{\mathbf{x}} = & \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}. \end{aligned} \quad (27)$$

Which is equivalently,

$$\begin{aligned} \max_{\bar{\mathbf{x}}} \quad & \bar{\mathbf{x}}^H \mathbf{D}_{\mathbf{x}} \bar{\mathbf{x}} \\ \text{s.t.} \quad & |x_n| = 1, \quad n = 1, \dots, N, \\ \bar{\mathbf{x}} = & \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}. \end{aligned} \quad (28)$$

where $\mathbf{D}_{\mathbf{x}} \triangleq \gamma_{\mathbf{x}} I_{(N+1)} - \mathbf{B}_{\mathbf{x}}$, with $\gamma_{\mathbf{x}}$ being larger than the maximum eigenvalue of $\mathbf{B}_{\mathbf{x}}$. The above problem is called unimodular quadratic programming (UQP) and the power-method-like iterations,

$$\mathbf{x}^{(s,t)} = \exp \left\{ j \arg \left\{ \begin{bmatrix} \mathbf{I}_{N \times N} \\ \mathbf{0}_{1 \times N} \end{bmatrix}^T \mathbf{D}_{\mathbf{x}} \bar{\mathbf{x}}^{(s,t-1)} \right\} \right\} \quad (29)$$

introduced in [8] leads to a monotonically decreasing objective value for UQP. The iterations can be initialized with the latest design of \mathbf{x} (used as $\mathbf{x}^{(s,0)}$) and t denotes the internal iteration number

B. Optimization w.r.t. $\{\mathbf{u}_{k,p}^r\}$ and $\{\mathbf{u}_{k,p}^i\}$

We have the closed-form solution for $\{\mathbf{u}_{k,p}^r\}$ and $\{\mathbf{u}_{k,p}^i\}$. Corresponding to each $k \in \mathcal{K}, p \in \mathcal{P}$:

$$\hat{\mathbf{u}}_{k,p}^{r(s)} = \frac{(\tilde{\mathbf{A}}_{k,p}^r)^{1/2} \mathbf{x}}{\|(\tilde{\mathbf{A}}_{k,p}^r)^{1/2} \mathbf{x}\|_2}, \quad (30)$$

$$\hat{\mathbf{u}}_{k,p}^{i(s)} = \frac{(\tilde{\mathbf{A}}_{k,p}^i)^{1/2} \mathbf{x}}{\|(\tilde{\mathbf{A}}_{k,p}^i)^{1/2} \mathbf{x}\|_2}. \quad (31)$$

The algorithm for shaping ambiguity function in SISO radar is summarized in Algorithm 1. The number of iterations in the algorithm is chosen such that $|(C^{(s+1)} - C^{(s)})/C^{(s)}| \leq \epsilon$, where $C^{(s)}$ the objective value introduced in (7), is satisfied at the final iteration.

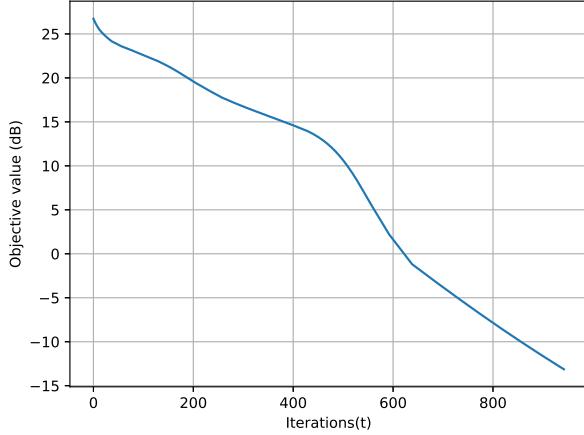


Figure 1. The objective value in (7) versus the iterations of Algorithm 1

Algorithm 1 Radar code design for shaping the ambiguity function

Input: Index sets \mathcal{K} and \mathcal{P} , $\mathbf{x}^{(0,0)}$, $\mathbf{u}_{k,p}^{r(0)}$, $\mathbf{u}_{k,p}^{i(0)}$ for $k \in \mathcal{K}$ and $p \in \mathcal{P}$.
Output: \mathbf{x}

- 1: **for** $t = 0 : \Gamma_1 - 1$ **do**
- 2: **for** $s = 0 : \Gamma_2 - 1$ **do**
- 3: Update \mathbf{D}_x by plugging in $\hat{\mathbf{u}}_{k,p}^{r(t)}$ and $\hat{\mathbf{u}}_{k,p}^{i(t)}$ in (25)-(28).
- 4: $\mathbf{x}^{(t,s+1)} \leftarrow \exp \left\{ j \arg \left\{ \begin{bmatrix} \mathbf{I}_{N \times N} \\ \mathbf{0}_{1 \times N} \end{bmatrix}^T \mathbf{D}_x \bar{\mathbf{x}}^{(t,s)} \right\} \right\}$
- 5: $\hat{\mathbf{u}}_{k,p}^{r(t+1)} \leftarrow \frac{(\tilde{\mathbf{A}}_{k,p}^r)^{1/2} \mathbf{x}^{(t,s)}}{\|(\tilde{\mathbf{A}}_{k,p}^r)^{1/2} \mathbf{x}^{(t,s)}\|_2}$,
- 6: $\hat{\mathbf{u}}_{k,p}^{i(t+1)} \leftarrow \frac{(\tilde{\mathbf{A}}_{k,p}^i)^{1/2} \mathbf{x}^{(t,s)}}{\|(\tilde{\mathbf{A}}_{k,p}^i)^{1/2} \mathbf{x}^{(t,s)}\|_2}$.
- 8: **return** $\mathbf{x} \leftarrow \mathbf{x}^{(\Gamma_1, \Gamma_2)}$

IV. NUMERICAL EXPERIMENTS

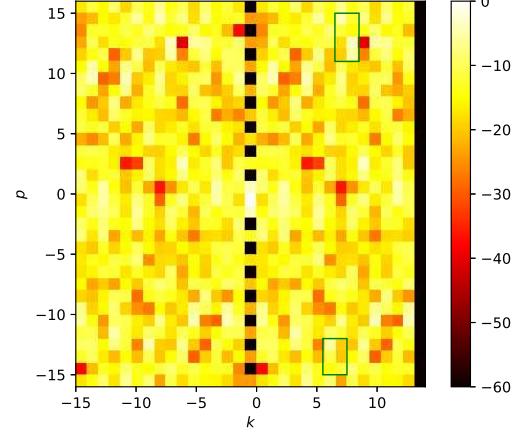
In this section, we will examine the capability of Algorithm 1 which has been proposed to design a radar phase code that has an ambiguity function with the desired shape. The region of interest is defined by the sets \mathcal{K} and \mathcal{P} as

$$\begin{aligned} \mathcal{K} &= \{5, 6, 7\} & \text{and} \\ \mathcal{P} &= \{-15, -14, -13, 11, 12, 13, 14\}. \end{aligned} \quad (32)$$

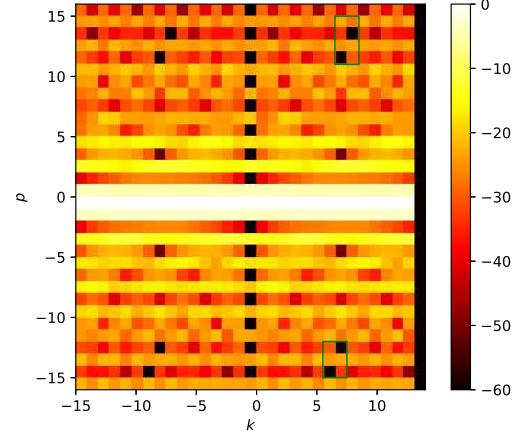
We start from random initializations used for Algorithm 1; moreover, we execute the UQP subroutine for $\Gamma_2 = 500$ times and allow for at most $\Gamma_1 = 10^3$ runs of the outer iterations. As illustrated in Fig. 2, the radar code synthesized by algorithm 1 has the desired ambiguity function values in the chosen bin corresponding to interference.

V. SUMMARY

In this letter, we addressed the unimodular radar code design for FMCW radar ambiguity function shaping. We devised



(a)



(b)

Figure 2. Ambiguity function, in dB, of (a) the initial random code and (b) the synthesized FMCW code with $N = 16$ and in green the assumed regions of interest.

the radar codes by minimizing a criterion obtained from the absolute value of the ambiguity function in the regions of interest. We addressed the quartic optimization problem using the PMLI iterations.

REFERENCES

- [1] S. Sussman, “Least-square synthesis of radar ambiguity functions,” *IRE Transactions on Information Theory*, vol. 8, no. 3, pp. 246–254, 1962.
- [2] A. Aubry, A. De Maio, B. Jiang, and S. Zhang, “Ambiguity function shaping for cognitive radar via complex quartic optimization,” *IEEE Transactions on Signal Processing*, vol. 61, no. 22, pp. 5603–5619, 2013.
- [3] G. Cui, Y. Fu, X. Yu, and J. Li, “Local ambiguity function shaping via unimodular sequence design,” *IEEE Signal Processing Letters*, vol. 24, no. 7, pp. 977–981, 2017.
- [4] A. Bose, B. Tang, M. Soltanalian, and J. Li, “Mutual interference mitigation for multiple connected automotive radar systems,” *IEEE Transactions on Vehicular Technology*, vol. 70, no. 10, pp. 11 062–11 066, 2021.
- [5] A. Bose, B. Tang, W. Huang, M. Soltanalian, and J. Li, “Waveform design for mutual interference mitigation in automotive radar,” *arXiv preprint arXiv:2208.04398*, 2022.

- [6] H. He, P. Stoica, and J. Li, "On synthesizing cross ambiguity functions," in *2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2011, pp. 3536–3539.
- [7] H. Hu, M. Soltanalian, P. Stoica, and X. Zhu, "Locating the few: Sparsity-aware waveform design for active radar," *IEEE Transactions on Signal Processing*, vol. 65, no. 3, pp. 651–662, 2017.
- [8] M. Soltanalian and P. Stoica, "Designing unimodular codes via quadratic optimization," *IEEE Transactions on Signal Processing*, vol. 62, no. 5, pp. 1221–1234, 2014.