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AbstractÐThis paper presents a novel framework for designing
radar transmit sequences by shaping the radar Ambiguity
Function (AF) to a desired structure. The proposed approach
suppresses the average amplitude of the AF of the transmitted
signal in regions of interest by efficiently tackling a longstanding
optimization problem. The optimization criterion is quartic in
nature with respect to the radar transmit code. A cyclic iterative
algorithm is introduced that recasts the quartic problem as a
unimodular quadratic problem (UQP) which can be tackled
using power-method-like iterations (PMLI). Our numerical re-
sults demonstrate the effectiveness of the proposed algorithm in
designing sequences with desired AF which is of great interest
to the future generations of automotive radar sensors.

Index TermsÐAmbiguity function, automotive radar, FMCW,
power-method-like iterations, unimodular quadratic program-
ming

I. INTRODUCTION

In radar signal processing, the range-Doppler response of

the transmitted waveform also known as the ambiguity func-

tion plays a critical role, as it governs the Doppler and range

resolutions of the system and regulates the interference power

from unwanted returns at the output of the matched filter to

the target signature. To put it another way, the radar designer

is faced with the problem of choosing signal waveforms

that yield desirable ambiguity functions. What is considered

desirable, of course, depends on the operational use of the

radar. While ambiguity function shaping is widely studied in

the literature, the topic remains unexplored in the context of

automotive radar [1].

In this paper, we study the ambiguity function shaping in

frequency-modulated continuous wave (FMCW) automotive

radar. Shaping radar ambiguity functions has long been consid-

ered difficult from a pure design or computational perspective

due to the fact that the two-dimensional nature of the ambi-

guity function implies the number of design constraints would

grow much faster than the design variables and that the design

objective (to be optimized) has a quartic nature [2]. In [2], a

method based on maximum block improvement is devised to

tackle the quartic objective in the ambiguity function shaping

problem. In a more recent work in [3], an algorithm based

on accelerated iterative sequential optimization is proposed to

minimize the weighted integrated sidelobes level (WISL) over

desired range-Doppler bins of interest. In This paper, inspired

* First two authors have equal contributions.

by the algorithm proposed in [4] for mutual interference miti-

gation, we devise a low-complexity algorithm based on power-

method-like iterations to minimize the ambiguity function in

the range-Doppler bins corresponding to echoes from clutters

in the environment.

The rest of the paper is organized as follows. In the next

section, we formulate the ambiguity function shaping problem

for FMCW radar. In section III, we propose our algorithm for

designing a radar code with desired ambiguity function. We

evaluate our method via numerical experiments in section IV

and conclude the paper in section V.

Throughout this paper, we use bold lowercase and bold

uppercase letters for vectors and matrices, respectively. R

represents the set of real numbers. (·)⊤ and (·)H denote

the vector/matrix transpose, and the Hermitian transpose,

respectively. Diag(.) denotes the diagonalization operator that

produces a diagonal matrix with the same diagonal entries as

the entries of its vector argument. The mn-th element of the

matrix B is B [m,n]. The minimum eigenvalue of the matrix

B is denoted by γmin (), respectively. The real, imaginary,

and angle/phase components of a complex number are Re {·},
Im (·), and arg {·}, respectively. Finally, δi,j is the extension

of Kronecker delta function with δi,j = 1 if i = j and δi,j = 0,

otherwise.

II. PROBLEM FORMULATION

We start by considering an FMCW automotive radar system

whose frequency is swept linearly over a bandwidth B in a

time duration Tc. The transmit signal with an intra-pulse code

length N can be represented as

s(t) =
N∑

n=1

xnu(t− nTc), 0 ≤ t ≤ Tc (1)

where x = [x1, . . . , xN ]⊤ ∈ CN is the slow-time sequence

and the chirp is

u(t) =
1√
Tc

exp(j(2πfct+ πKt2))rect

(
t

Tc

)
, (2)

where K = B
Tc

is the chirp rate, and

rect (t) =

{
1 0 ≤ t ≤ 1,

0 otherwise.
(3)



In order to keep constant transmit power over the N chirps,

we constrain the code sequence to be unimodular i.e. |xn| = 1,

for n = 1, . . . , N [5].

The ambiguity function is defined as [6],

χ(τ, ν) (4)

=

∫

∞

−∞

s(t)s∗(t− τ) exp (−j2πν(t− τ)) dt

=

∫

T

0

(

N
∑

n=1

xnu(t− nTc)

)(

N
∑

m=1

x
∗

mu
∗(t−mTc − τ)

)

· exp (−j2πν(t− τ)) dt

=

N
∑

m=1

N
∑

n=1

x
∗

m

(
∫

T

0

u(t− nTc)u
∗(t−mTc − τ)e−j2πν(t−τ)

dt

)

xn.

where τ is the time delay and ν is the Doppler frequency shift.

With an aim to discretize the AF in (4), by setting τ = kTc

for k = −N + 1, · · · , 0, · · · , N − 1 and ν = p
NTc

for p =

−N
2 , · · · , N

2 − 1 for even p or p = −N−1
2 , · · · , N−1

2 for odd

p, we can easily obtain,

χ[k, p] ≜ χ(kTc,
p

NTc
)

= ejπ
p
N sinc

(
π
p

N

) N∑

n=1

xnx
∗
n−ke

−jπ(n−k)p/N . (5)

where sinc(x) = sin(x)/x. We assume the target under study

is moving with low speed i.e. |ν| ≪ 1/Tc. Therefore, it is safe

to confine our attention to values of |p| ≪ N in which case

sinc
(
π
p

N

)
≈ 1 and thus the discrete-AF can be defined as,

r[k, p] ≜

N∑

n=1

xnx
∗
n−ke

−j2π
(n−k)p

N . (6)

for k = −N +1, · · · , 0, · · · , N − 1 and p = −N
2 , · · · , N

2 − 1
for even p or p = −N−1

2 , · · · , N−1
2 for odd p. In the

next section, we will primarily be focused on designing the

sequence {xn}Nn=1 so as to minimize the sidelobes of the

discrete-AF in a certain region.

III. PROPOSED METHOD

The goal herein is to suppress the energy of the discrete-AF

in a region of interest defined by the index sets K,P for delay

and Doppler shift, respectively, by minimizing the criterion:

C =
∑

k∈K

∑

p∈P

|r[k, p]|2 . (7)

In particular, the AF shaping problem that we are interested

in is

P1 : minimize
x

C

s.t. x is unimodular. (8)

Note that the discrete-AF r[k, p] can be reformulated as

r[k, p] = x
H
DpJkx, (9)

where

Dp = Diag
([

e−j2π p
N , · · · , e−j2π

(N−1)p
N , e−j2πNp

N

])
, (10)

and

Jk = J
H
−k =

[
0 IN−k

Ik 0

]
(11)

is the shift matrix that performs the shifting of the vector

being multiplied by k lags. Therefore the problem in (7) can

be recast as,

C =
∑

k∈K

∑

p∈P

|xH
DpJkx|2

=
∑

k∈K

∑

p∈P

|xH
Ak,px|2 (12)

where Ak,p = DpJk. Interestingly as one can observe, C is

quartic with respect to x that makes P1 in (8) a non-convex

problem. In order to recast the problem in a quadratic form,

let

A
r
k,p ≜

1

2
(Ak,p +A

H
k,p),

A
i
k,p ≜

1

2
(Ak,p −A

H
k,p) (13)

and note that

1) Matrices A
r
k,p and jAi

k,p are Hermitian and skew-

Hermitian matrices, respectively [7].

2) For any generic vector z,

z
H
Ak,pz = z

H
A

r
k,pz+ z

H
A

i
k,pz (14)

where

z
H
A

r
k,pz ∈ R and jzHAi

k,pz ∈ R. (15)

In particular, it follows from (15) that

|zHAk,pz|2 = |zHAr
k,pz|2 + |zHjAi

k,pz|2. (16)

Hence we can write,
∑

k,p

|xH
Ak,px|2 =

∑

k,p

|xH
A

r
k,px|2 + |xHjAi

k,px|2

=
∑

k,p

|xH(Ar
k,p + ζIN )x− ζN |2

+ |xH(jAi
k,p + ζIN )x− ζN |2

=
∑

k,p

|xH
Ã

r
k,px− ζN |2 + |xH

Ã
i
k,px− ζN |2

(17)

where

Ã
r
k,p = A

r
k,p + ζIN , (18)

Ã
i
k,p = jAi

k,p + ζIN (19)

and ζ ∈ R is chosen such that

ζ > −min


⋃

k,p

{
γmin

(
A

r
k,p

)
, γmin

(
jAi

k,p

)}

 (20)



to ensure the positive definiteness of {Ãr
k,p} and {Ãi

k,p}. The

objective (17) is still quartic w.r.t. x. In order to make it

quadratic we resort to the equivalence properties of Hermitian

square roots.

Remark 1. For the positive definite matrix Ã
r
k,p, xH

Ã
r
k,px is

close to ζN , if and only if (Ãr
k,p)

1/2
x is close to

√
ζNu

r
k,p,

for a unit-norm vector u
r
k,p. Similarly, xH

Ã
i
k,px is close to

ζN , if and only if (Ãi
k,p)

1/2
x is close to

√
ζNu

i
k,p, for a

unit-norm vector u
r
k,p [7].

According to Remark 1,

P2 : minimize
x,{ur

k,p},{u
i
k,p}

∑

k,p

{∥∥∥(Ãr
k,p)

1/2
x−

√
ζNu

r
k,p

∥∥∥
2

2

+
∥∥∥(Ãi

k,p)
1/2

x−
√
ζNu

i
k,p

∥∥∥
2

2

}

s.t. x is unimodular,

∥ur
k,p∥2 = ∥ui

k,p∥2 = 1 for all k ∈ K, p ∈ P,
(21)

which is quadratic w.r.t. x, {ur
k,p} and {ui

k,p} and equivalent

to P1 in (8). In the following, we follow a cyclic optimization

approach to tackle the problem (8) in an alternating manner

over x, {ur
k,p} and {ui

k,p}.

A. Optimization w.r.t. x

The objective function in P2 is recast as

Cx = x
H


∑

k,p

(
Ã

r
k,p + Ã

i
k,p

)

x

− 2
√
ζN Re



x

H
∑

k,p

(Ãr
k,p)

H/2
u
r
k,p





− 2
√
ζN Re



x

H
∑

k,p

(Ãi
k,p)

H/2
u
i
k,p



+ const. (22)

Or simply,

Cx = x
H
Rxx+ 2Re

{
x
H
sx

}
+ const. (23)

where

Rx =
∑

k,p

(
Ã

r
k,p + Ã

i
k,p

)
(24)

and

sx = −
√
ζN

∑

k,p

(
(Ãr

k,p)
H/2

u
r
k,p + (Ãi

k,p)
H/2

u
i
k,p

)
(25)

By dropping the constant term, the objective function can be

reformulated as,

Cx = x
H
Rxx+ 2Re

{
x
H
sx

}

=

[
x

1

]H [
Rx sx

s
H
x 0

] [
x

1

]

= x̄
H
Bxx̄ (26)

Hence, the P2 w.r.t x is equivalent to the following,

min
x̄

x̄
H
Bxx̄

s.t. |xn| = 1, n = 1, · · · , N,

x̄ =

[
x

1

]
. (27)

Which is equivalently,

max
x̄

x̄
H
Dxx̄

s.t. |xn| = 1, n = 1, · · · , N,

x̄ =

[
x

1

]
. (28)

where Dx ≜ γxI(N+1) − Bx, with γx being larger than the

maximum eigenvalue of Bx. The above problem is called

unimodular quadratic programming (UQP) and the power-

method-like iterations,

x
(s,t) = exp

{
j arg

{[
IN×N

01×N

]T
Dxx̄

(s,t−1)

}}
(29)

introduced in [8] leads to a monotonically decreasing objective

value for UQP. The iterations can be initialized with the latest

design of x (used as x(s,0)) and t denotes the internal iteration

number

B. Optimization w.r.t. {ur
k,p} and {ui

k,p}

We have the closed-form solution for {ur
k,p} and {ui

k,p} .

Corresponding to each k ∈ K, p ∈ P:

û
r(s)
k,p =

(Ãr
k,p)

1/2
x

∥(Ãr
l,p)

1/2x∥2
, (30)

û
i(s)
k,p =

(Ãi
k,p)

1/2
x

∥(Ãi
k,p)

1/2x∥2
. (31)

The algorithm for shaping ambiguity function in SISO radar

is summarized in Algorithm 1. The number of iterations in

the algorithm is chosen such that |(C(s+1)−C(s))/C(s)| ≤ ϵ,
where C(s) the objective value introduced in (7), is satisfied

at the final iteration.
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Figure 1. The objective value in (7) versus the iterations of Algorithm 1

Algorithm 1 Radar code design for shaping the ambiguity

function

Input: Index sets K and P , x(0,0), u
r(0)
k,p , u

i(0)
k,p for k ∈ K

and p ∈ P .

Output: x

1: for t = 0 : Γ1 − 1 do

2: for s = 0 : Γ2 − 1 do

3: Update Dx by plugging in û
r(t)
k,p and û

i(t)
k,p in (25)-

(28).

4: x
(t,s+1) ← exp

{
j arg

{[
IN×N

01×N

]T
Dxx̄

(t,s)

}}

5: û
r(t+1)
k,p ← (Ãr

k,p)
1/2

x
(t,s)

∥(Ãr
l,p)

1/2x(t,s)∥2
,

6:

7: û
i(t+1)
k,p ← (Ãi

k,p)
1/2

x
(t,s)

∥(Ãi
k,p)

1/2x(t,s)∥2
.

8: return x← x
(Γ1,Γ2)

IV. NUMERICAL EXPERIMENTS

In this section, we will examine the capability of Algorithm

1 which has been proposed to design a radar phase code that

has an ambiguity function with the desired shape. The region

of interest is defined by the sets K and P as

K = {5, 6, 7} and

P = {−15,−14,−13, 11, 12, 13, 14}. (32)

We start from random initializations used for Algorithm 1;

moreover, we execute the UQP subroutine for Γ2 = 500 times

and allow for at most Γ1 = 103 runs of the outer iterations. As

illustrated in Fig. 2, the radar code synthesized by algorithm

1 has the desired ambiguity function values in the chosen bin

corresponding to interference.

V. SUMMARY

In this letter, we addressed the unimodular radar code design

for FMCW radar ambiguity function shaping. We devised
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Figure 2. Ambiguity function, in dB, of (a) the initial random code and (b)
the synthesized FMCW code with N = 16 and in green the assumed regions
of interest.

the radar codes by minimizing a criterion obtained from the

absolute value of the ambiguity function in the regions of

interest. We addressed the quartic optimization problem using

the PMLI iterations.
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