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AbstractÐThe large number of antennas in massive MIMO
systems allows the base station to communicate with multiple
users at the same time and frequency resource with multi-
user beamforming. However, highly correlated user channels
could drastically impede the spectral efficiency that multi-user
beamforming can achieve. As such, it is critical for the base
station to schedule a suitable group of users in each time and
frequency resource block to achieve maximum spectral efficiency
while adhering to fairness constraints among the users. In this
paper, we consider the resource scheduling problem for massive
MIMO systems with its optimal solution known to be NP-hard.
Inspired by recent achievements in deep reinforcement learning
(DRL) to solve problems with large action sets, we propose
SMART, a dynamic scheduler for massive MIMO based on
the state-of-the-art Soft Actor-Critic (SAC) DRL model and the
K-Nearest Neighbors (KNN) algorithm. Through comprehensive
simulations using realistic massive MIMO channel models as well
as real-world datasets from channel measurement experiments,
we demonstrate the effectiveness of our proposed model in vari-
ous channel conditions. Our results show that our proposed model
performs very close to the optimal proportionally fair (Opt-PF)
scheduler in terms of spectral efficiency and fairness with more
than one order of magnitude lower computational complexity in
medium network sizes where Opt-PF is computationally feasible.
Our results also show the feasibility and high performance of our
proposed scheduler in networks with a large number of users and
resource blocks.

Index TermsÐMassive MIMO, Resource Scheduling, Deep
Reinforcement Learning.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) is one

of the key technologies poised to radically improve the

spectral efficiency of the current 5G networks and beyond.

Through the use of tens or hundreds of antennas at the base

station, it can perform multi-user beamforming to serve tens of

users in the same time-frequency resource block (RB). How-

ever, scheduling which users to serve simultaneously in each

RB plays an important role in achieving the large throughput

gains promised by the massive MIMO technology. Beam-

forming performance can be significantly degraded if there

is a substantial correlation in the wireless channels among

the scheduled users, as this correlation makes it challenging

to effectively focus signal energy when transmitting toward

scheduled users. Similarly, separating the signals received

from multiple users becomes challenging when their channels

are correlated. In networks with high user mobility, the chan-

nels of individual users and their correlations with other users

within each RB are rapidly fluctuating. This dynamic nature of

channel characteristics substantially increases the challenges

associated with achieving optimal resource scheduling for

massive MIMO networks. Specifically, fair scheduling of radio

resources while maximizing spectral efficiency is essential in

real deployments. The formulation of the optimal Proportion-

ally Fair (Opt-PF) scheduling problem typically results in an

integer linear optimization (ILP) problem with an NP-hard

solution [1]. The large complexity associated with solving

an ILP, when the number of users and resource blocks is

large, prohibits designing optimal yet computationally feasible

schedulers that can work in the time-stringent 5G and beyond

standards. There is a large body of work [2]±[5] that design

heuristics or approximation algorithms with low complexity

to optimize the spectral efficiency of the networks. However,

they either do not evaluate fairness at all or demonstrate poor

fairness. This is due to the fact that designing low-complexity

approximation algorithms for multi-objective combinatorial

optimization problems is typically hard [6].

In the field of artificial intelligence and machine learning,

Markov Decision Processes (MDPs) [7] have emerged as

a powerful mathematical framework for modeling decision-

making problems under uncertainty. MDPs represent sequen-

tial decision processes as a set of states, actions, and transition

probabilities, where the goal is to find an optimal policy

that maximizes a predefined objective function, such as ex-

pected cumulative rewards. However, solving MDPs can be

computationally demanding, especially for complex problems

with large state and action spaces. To address this challenge,

Deep Reinforcement Learning (DRL) [8] has gained signifi-

cant attention in recent years. DRL combines reinforcement

learning algorithms with deep neural networks to approximate

value functions or policies, enabling the handling of high-

dimensional state spaces. By leveraging the representation

power of deep neural networks, DRL algorithms have achieved

remarkable successes in solving continuous and discrete action

space problems in various domains, including robotics [9],

game playing [10], and energy management [11]. Notably,

DRL has also been applied to solve complex combinatorial

optimization tasks. For instance, [12] has adopted DRL to

solve the traveling salesman problem, a classic combinatorial

optimization problem. Similarly, [13] solves the covering

salesman problem through a DRL model. This motivates

the need to explore DRL as a potential tool to solve the

optimal proportionally fair resource scheduling for massive

MIMO networks. Instead of using an explicit mathematical

model, decision optimization in a wireless resource scheduler
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bounded by a maximum value Nmax. We assume the BS uses

zero forcing (ZF) for beamforming. The BS calculates the ZF

beamformer using the estimated channel Ĥ as

W = Ĥ(Ĥ
H

Ĥ)−1. (2)

The BS then performs receive beamforming on the received

signal to estimate the transmit symbol vector x̂ as

û = WHy. (3)

For simplicity, we only consider the uplink, but the above

model is extendable to the downlink as well. The above signal

model is for a single subcarrier in an OFDM system, but the

same model applies to all subcarriers.

An RB is the smallest scheduling granularity in 5GNR,

which contains resources in the time and frequency domain.

One RB in 5G is made up of 12 consecutive subcarriers in the

frequency domain [25]. In the time domain, the composition

of RBs in 5G is more flexible and can vary between one

OFDM symbol and the entire slot (1 ms in numerology 0). The

quality of the wireless channel changes dramatically over time,

across users, and among different frequency bands. It is shown

in [26] that wireless channel capacity might fluctuate by up to

9 times in 20 MHz LTE bandwidth with over 100 RBs. This

effect is more pronounced in 5G since it typically has a wider

bandwidth (i.e. 40 MHz to 400 MHz). Consequently, user

selection decisions will vary across RBs due to the frequency

selectivity of the channel. Thus, it is essential to take into

account resource scheduling for every RB individually. In our

design, we first focus on resource scheduler design on a single

RB and then extend to many RBs to show the adaptability of

our proposed scheduler to 5G massive MIMO networks.

Optimal Schedulers: In the literature, multiple schedulers

are defined as optimal. The rate-optimal scheduler, known as

emphOptimal Maximum Rate (Opt-MR), finds the resource

scheduling solution in each TTI that maximizes the sum rate

argmax
xt
l,b

B
∑

b=1

L
∑

l=1

rtl,b xt
l,b, (4)

s.t.

L
∑

l=1

xt
l,b ≤ Nmax

xt
l,b ∈ {0, 1}

where xt
l,b represents the binary selection of user l at TTI t

and RB b and rtl,b is the instantaneous rate achieved by user

l at TTI t and RB b. We calculate the instantaneous rate as

rtl,b = log2(1+SINRt
l,b), where SINRt

l,b is the received signal

to interference-plus-noise ratio from each beamformed user l
at TTI t and RB b. We consider B as the maximum number

of RBs being used in the system.

Simply maximizing the sum rate ignores the notion of

fairness where, depending on the channel conditions, some

users may never get selected. Therefore, a commonly used

scheduler, known as Optimal Proportionally Fair (Opt-PF)

scheduler, finds the resource scheduling solution that maxi-

mizes the following objective [27], [28]

argmax
xt
l,b

B
∑

b

L
∑

l

wt
l,b xt

l,b, (5)

s.t.

L
∑

l=1

xt
l,b ≤ Nmax

xt
l,b ∈ {0, 1}

wt
l,b =

rtl,b
∑B

b ptl,b
, (6)

ptl,b =

{

pt−1

l,b + rt−1

l,b , if xt−1

l,b = 1

pt−1

l,b , otherwise

where wt
l,b denotes the weighted rate, which we calculate as

the ratio of instantaneous rate rtl,b to received rate ptl,b until

TTI t on all RBs. Normalizing the instantaneous rate with

the total received rate guarantees that all users have a fair

chance of getting selected by the scheduler even when they

are experiencing a poor channel.

Both optimization problems in (4) and (5) are NP-hard since

they can be reformulated as an Integer Linear Programming

(ILP) problem [29]. Specifically, we can reformat (5) when

B = 1 as the following ILP problem,

argmax
x

w
T
x (7)

s.t. JL,Lx ≤ NmaxJL

x ∈ {0, 1}L

where w is a vector of all users instantaneous rates, x is user

binary selection vector. Also JL,L and JL are square matrix

and vector of all ones with size L, respectively.

Solving (7) by exhaustively searching through the combi-

nations of vector x has the complexity of O(2L). Solving

(4) and (5) through an exhaustive search, when B RBs are

considered, the complexity will increase to O(2LB). However,

there are approximate algorithms for the Opt-PF problem with

polynomial complexity, such as the one proposed in [28]. We

discuss and evaluate an approximate algorithm in §IV along

with other benchmarks.

B. Existing Work and Motivation

Recent work on resource scheduling in massive MIMO

and MU-MIMO can be classified into two general categories:

heuristics schedulers, and AI-based schedulers. In this section,

we provide an overview of some of the most relevant works

in each category.

Heuristics Scheduler Designs: Many existing MU-MIMO

scheduling works provide heuristics-based approximations to

the Opt-PF scheduler [5], [30], [31]. While they try to strike

a balance between complexity and performance, often their

complexity does not scale to large networks or they signifi-

cantly underperform the optimal scheduling policies.

The scheduler proposed in [31] implements a multi-phase

optimization to solve Eq. (5) in MU-MIMO settings. It narrows

down the exhaustive search needed for the Opt-PF solution
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using some relaxations of the optimization problem. For e.g.,

it decouples the user selection in different RBs. Moreover,

in each RB, it reduces the number of choices based on the

channel quality of each user before deciding the user selec-

tion action based on the correlation of the remaining users.

Through these sub-optimal relaxations, their method can be

parallelized and efficiently implemented on a powerful GPU,

and hence can meet the stringent 5G-NR latency constraints

(i.e., nearly 1ms). Despite the low-latency implementation,,

this scheduler only scales to M = 12 and N = 4, and as a

result, it has limited scalability to massive MIMO. In [5], two

heuristics-based user scheduling algorithms are proposed and

evaluated on channel datasets collected from a dense indoor

massive MIMO network with stationary users. However, the

algorithms sacrifice fairness in favor of spectral efficiency.

They are also not evaluated under mobility scenarios. The

work in [32] proposed a scheduler for massive MIMO that

schedules users with low correlation channels in the same time

slot. It first partitions users into groups through a user grouping

algorithm. The scheduler then goes through all groups and

schedules all users in each group with a rate-fair method. As

we discuss later in the paper, this scheduling algorithm fails

to work well in fast-varying channel environments when inter-

user channel correlations are continuously changing and it is

unable to fairly allocate users across channel coherence blocks.

AI-based Scheduler Designs: Due to the huge complexity

of the optimization-based methods, several recent works [18],

[21], [22], [33]±[36] have proposed DRL models for MIMO

scheduling. A Q-learning-based DRL resource scheduling is

proposed in [34]. It models the user scheduling problem as a

Markov Decision Process (MDP) that outperforms the round-

robin scheduler in terms of sum rate. However, the discrete

DRL models are known to have difficulty in converging in

large action sets [37]. The convergence issue is also true

for more advanced discrete DRL models, such as DQN and

Double DQN. As such, discrete DRL models have limited

scalability to a large number of users for multi-user scheduling

in massive MIMO networks. We will also demonstrate these

limitations in §IV.

The work in [21] proposes a DDPG-based user scheduler

for massive MIMO networks. Its model outputs a probability

distribution over all selectable users and chooses the most

promising UE combinations at each TTI. However, it includes

a raw channel matrix in state space and the number of

elements in action space equals the number of UEs. Large

state and action spaces hinder its scalability. This algorithm

is extended in [22] for both user scheduling and transmit

precoding based on DDPG. It considers multiple antennas

and antenna correlation on the UE side as well. However,

their proposed scheduler has limited scalability and does not

consider the evaluation of user fairness. We implement a

DDPG-based scheduler as one of our benchmarks and discuss

its performance with respect to our proposed scheduler.

A pointer network is investigated in [18] as the actor

in an actor-critic framework to convert the combinatorial

problem in multi-user scheduling into a sequential selection

problem. However, sequential scheduling has slow inference,

which makes it undesirable for latency-sensitive 5G networks.

Additionally, applying the model to large networks results in

a complicated network structure and a long model update time

due to the use of a raw channel matrix as the input. This is

exacerbated further by complex-valued channels, which need

to be separated into real and imaginary parts before being fed

to the model. We implement a pointer network-based DRL

scheduler as a benchmark and discuss these limitations in more

detail in §IV.

Our Proposed Method: We propose SMART, a massive

MIMO user scheduler based on the recently proposed soft

actor-critic (SAC) DRL model [23], [24] and the KNN

algorithm [38]. SAC has gained attraction in several real-

time control problems such as robotic locomotion [39]. SAC

was originally designed to handle continuous action spaces.

However, the user scheduling is a discrete decision problem

where an appropriate set of users must be selected at each

TTI. The work in [40] provides a modification of SAC for

discrete action spaces, but we find that their modification is

still not suitable for large discrete action sets as it has serious

convergence issues in large-scale networks. Inspired by the

approach in [20], we use the KNN [38] to discretize SAC

to adapt it to discrete action spaces. The basic idea is to

use a continuous-based algorithm to generate an initial or

ªprotoº continuous action first. Then, the K nearest discrete

actions are found by using the KNN algorithm. Among the K

nearest discrete actions, the one with the maximum Q value

is selected. We further propose a novel dimension division

strategy that helps to scale up the size of the combinatorial

action set (i.e., number of users in the network) and enhance

model convergence capability. Using this approach, we enable

our model to dynamically select the users to maximize system

spectral efficiency and inter-user fairness. More details are

illustrated in §III-C. In contrast to prior work, our proposed

scheduler is more scalable and performs very close to the Opt-

PF solution.

III. SMART: A SCALABLE SAC-KNN-BASED MASSIVE

MIMO SCHEDULER

In this section, we first provide a brief introduction to

SAC. Subsequently, we describe the design of our proposed

scheduler based on the SAC DRL framework. We discuss how

we discretize the output of the SAC framework by applying the

KNN algorithm and propose a dimension division strategy to

scale up the supported size of the action set. We also propose

to reduce the complexity of the framework by using the user

grouping instead of the raw channel matrix as the input to

the framework. Additionally, we discuss how we scale up the

model to support as many RBs as needed for realistic 5G

networks.

A. A Primer on SAC

SAC is an off-policy Deep Reinforcement Learning (DRL)

model that employs a stochastic policy, in contrast to the

deterministic policy used in Deep Deterministic Policy Gra-

dient (DDPG). Instead of selecting the optimal action, a

stochastic policy outputs probabilities for all possible actions.
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the normalization factor. This will guarantee a value in [0, 1]

which then can be used in the reward function. To quantify

fairness, we use Jain’s fairness index (JFI) [45], which can be

expressed at each TTI t as

JFIt =

(

∑L
l=1

f t
l

)2

L
∑L

l=1
(f t

l )
2
. (10)

As such, we include the normalized spectral efficiency and

the JFI in the reward function of the MDP model. The reward

Rt achieved at TTI t can be then formulated as

Rt = βγtotal
t + (1− β)JFIt. (11)

In (11), β determines the relative importance of each item

in the reward function based on the preference of the system

operator. Note that, both items are the range [0, 1] so that we

can effectively adjust their weights in the reward function with

parameter β.

C. Discrete Action SAC Design

Originally, SAC is a continuous action space model and

thus, it cannot be directly applied to the massive MIMO user

scheduling problem. There are existing discrete action space

models, such as DQN [10] and Double DQN [14], that could

potentially be used to solve the problem. But as we will show

in §IV, none of these methods can handle the large action set in

massive MIMO user scheduling. Note that, the discrete action

space set in multi-user scheduling in massive MIMO increases

exponentially as the number of users grows. For example, with

M = 64 BS antennas and L = 64 single-antenna users, or

simply a 64× 64 network size, and Nmax = 16 in each TTI,

the action set size has up to
∑

16

i=1

(

64

i

)

≈ 7× 1014 actions.

Several recent works have attempted to solve the large

discrete action space problem by discretizing the continuous-

control-based DRL model. In this direction, [20] combines

DDPG with KNN to solve problems with large discrete action

sets (e.g., recommender systems and language models). More

precisely, a KNN approximation [38] is used because of its

agile search in logarithmic time. Its fundamental idea is to

first generate a so-called proto continuous action (i.e. a real

number in [−1, 1]) from the continuous action space DRL

model. Then, KNN is used to calculate the l2-norm between

the proto action with actions in the discrete space represented

by integer numbers corresponding to different actions, sort

them in ascending order, and pick the first K ones. Here, K
is a system hyper-parameter. Finally, after comparing the Q

values of these K discrete actions in the critic network, the

one with the highest Q value is chosen as the final action.

Similarly, we propose to augment the SAC model with a

KNN approximation model that can map the continuous action

space to a discrete one. However, the model in [20] is shown

to be effective for tasks with up to one million actions, far

below the number of scheduling actions encountered in a large

massive MIMO network. Next, we propose an idea to scale

the feasibility of the model to much larger action sets.

D. Dimension Division

One major drawback of mapping continuous actions to

discrete actions is the decision accuracy loss. The reason is

that, as the size of the discrete action set increases, the corre-

sponding distance between discrete actions in the continuous

domain will become extremely small. The precision of each

discrete action when mapped from a continuous action space

in the range [−1, 1] is equal to (1− (−1))/2L, where 2L is the

total number of discrete actions. When this precision is smaller

than the network output precision, it will lead to decision

accuracy loss. This precision loss prohibits scaling up the size

of the discrete action set. In order to improve the scalability

of our model to much larger action sets, i.e. larger number

of users, we propose a novel strategy that we call dimension

division, where we break up the action space into multiple

dimensions. As discussed in §III-A, high-dimensional tasks

are generally challenging to deal with in DRL models. But

here, we particularly rely on the strength of the SAC model in

handling multiple dimensions. The difference in our approach

is that we use this strength in a multi-dimensional discrete

action space. With D dimensions, we can reduce the number

of actions in each dimension from 2L to (2L)1/D actions. As

such, mapping precision is also changed from (1−(−1))/2L to

(1−(−1))/(2L)1/D in each dimension. Based on this strategy,

the continuous-action DRL model will generate proto actions

in D dimensions. We apply the approximate KNN to each

proto action to generate the K nearest discrete actions in each

dimension. Finally, the critic network will pick the discrete

action with the maximum Q value to form the final action (i.e.

an integer number between 1 and 2L). This final discrete action

is then mapped to a specific user combination from all possible

combinations of L users to be scheduled. Fig. 3 illustrates

the proposed workflow. In general, to scale up the number of

supported users, it is important to strike a balance between the

number of dimensions and the size of each dimension. In §IV,

we demonstrate that the SMART scheduler is able to perform

well with a number of users as high as L = 128 whereas

DDPG is unable to converge in that scenario.

E. User Grouping

Previous works on DRL-based massive MIMO schedul-

ing [18], [21] use the full channel matrix as the input to their

DRL model. The size of the channel matrix is 2×M×L. The

factor of 2 denotes the real and imaginary components of the

channel estimate since neural networks are usually designed

and trained for real values. As the size of the system (M,L)
increases and correspondingly the input size of the DRL model

grows, the model convergence becomes more difficult. In order

to scale up the model to support large network sizes, the input

size must be reduced. To reduce the input size, we adopt the

user grouping labels calculated from the inter-user channel

correlation matrix to guide the DRL model.

The inter-user channel correlation matrix measures the cor-

relation between each pair of users in the network. Specifically,

it is calculated as

ci,j =

∣

∣

∣

∣

〈

hi

∥hi∥2
,

hj

∥hj∥2

〉
∣

∣

∣

∣

=

∣

∣hi
H
hj

∣

∣

∥hi∥2 ∥hj∥2
(12)
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JFI

User Set 1

Wireless
Channels

User Set 2
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𝛾total 1
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(a) SMART-MA

Fairness Update
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SMART RB BJFI B

Fairness Update
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Fairness Update
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SMART RB 1 User Set 1
JFI 1
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Wireless Channels

Wireless Channels
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User Set B
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𝛾total B

(b) SMART-SA

Fig. 4: Fully independent SMART (a), and multi-agent

SMART frameworks (b) for scheduling users across RBs.

in Fig. 4b. In the SMART-SA, an independent SMART DRL

model is implemented for each RB. Each RB possesses its own

distinct state space (not depicted in the diagram) and generates

a scheduled user set specific to that RB. Based on the user

scheduling decision made by the model, selected users are

allocated resources within the wireless environment, and the

instantaneous spectral efficiency γtotal of each scheduled user

can be determined. Sequentially, the accumulated amount of

transmitted data and JFI are updated in the respective fairness

update block.

In §IV, we demonstrate the effectiveness of SMART-SA for

a large number of RBs in getting close-to-optimal results.

IV. PERFORMANCE EVALUATION

In this section, we perform a comprehensive evaluation of

our proposed scheduler design. We compare SMART with

multiple different schedulers with respect to their achieved

normalized spectral efficiency and JFI in various channel

conditions. We also provide a comparison of the computational

complexity of our DRL-based scheduler with other methods

and discuss the feasibility of our scheduler in real-time 5G

settings.

A. Experimental Setup

We perform our evaluations in both simulated channels

as well as real-world channels measured with a massive

MIMO hardware platform. For simulated wireless channels,

we use the Quasi Deterministic Radio Channel Generator

(QuaDRiGa) [47] software. Specifically, we generate the 3D

Urban Micro (UMi) Line Of Sight (LOS) channel model.

We consider two channel scenarios: static and mobile. For

static channels, we consider two different modes: 1) four

user clusters, and 2) random user placement. In the mobile

scenario, the base station is positioned at the center of a

circular area with a radius of 300 meters. Users within this

circle move in various directions at different speeds, with an

average speed of 2.8 m/s. The initial positions of the users are

TABLE I: Simulation and Training Parameters

Parameter Value

Channel Model 3GPP 3D UMi LOS
System Bandwidth 20 MHz

System Carrier Frequency 3.6 GHz
TTI Duration 1 ms
Modulation 16QAM
Cell Radius 300 m
UE Speed 0 & 2.8 m/s

Number of BS Antennas 16 & 64
Number of UEs 16 & 64

Batch Size 256
Actor Learning Rate 5e-4
Critic Learning Rate 5e-4
Alpha Learning Rate 3e-4

Automatic Entropy Tuning True
Optimizer Adam
Episodes 800

Iterations In Episode 400
Correlation Threshold cth in Algorithm 1 0.5

β in Eq. (11) 0.5

randomly assigned, and they will bounce back into the area

upon reaching the boundary. We describe the experimental

setup for the real-world measured channels in §IV-C4. We

implement the system model in §II-A using Python. In terms

of modulation scheme, we adopt 16-QAM in our wireless

channel simulator and use Error Vector Magnitude (EVM)

of the received constellation to derive SNR as demonstrated

in [48].

We run our experiments on an NVIDIA DGX A100

server [49]. Both actor and critic networks implement neural

nets with two hidden fully connected layers and ReLU activa-

tion functions. We use the Adam optimizer [50] to train our

DRL model in PyTorch [51]. The most relevant parameters

used in our simulations are shown in Table I.

B. Benchmarks

In order to do a thorough comparison, we implement

various scheduler models as benchmarks including classical

and heuristics-based schedulers, discrete-control-based DRL

schedulers, continuous-control-based DRL schedulers, and

attention-mechanism-based RL schedulers.

Classical Scheduler: We consider Opt-PF, Opt-MR, an

approximate PF (Approx-PF) and a heuristics-based algorithm

as classical schedulers. Algorithms of Opt-PF and Opt-MR are

introduced in §II-A. Given the exceedingly high computational

complexity involved in employing optimal schedulers for

large-scale networks, we devise a variation of an approximate

Proportional Fairness (Approx-PF) scheduler in [28] that offers

reduced complexity from Opt-PF presented in §II-A. The

algorithmic details of this particular implementation can be

found in Algorithm 2. In this approach, we first calculate a

weighted-rate matrix similar to Opt-PF in (5) and then select

Nmax users with the highest weighted rates. Consequently,

the computational complexity is reduced significantly from

O(2L) to O(2Nmax ). However, this is still too complex in

large-scale networks and thus needs to be simplified further.

Unlike the approximate scheduler described in [28], we do not

consider the individual data load of each user in our work.

Instead, we implement the user grouping in Algorithm 1 in
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Algorithm 2 Approximate Proportional Fairness (Approx-

PF) Algorithm

Input: Resource block set B, Channel matrix of resource

block b at TTI t: Ht,b and user set L
Output: Scheduled user set on resource block b: Ub

1: Calculate weighted rate wt
l,b for all L users on resource

block b at TTI t using (5)

2: Sort and select N users with the highest weighted rate

on resource block b to construct a subset of user Nb

3: Do user grouping in user subset Nb as Algorithm 1

4: Find the user group Ub with the most users as the

scheduled user set on resource block b at TTI t
5: return Ub

this user subset and select the group with the most users.

User grouping strategy helps Approx-PF to avoid scheduling

highly inter-correlated users, thereby improving overall system

performance and releasing the heavy complexity to O(N2).

As for the heuristics-based benchmark, we use the algorithm

in [32]. This algorithm groups users based on their channel

correlation and allocates power to the users in the selected

group. It then proposes to schedule the groups in a round-robin

fashion. We implement a variation of the scheduler proposed

in [32]. We assume perfect power control in our model to

enable fair comparison with the modified algorithm. We refer

to this benchmark algorithm as RR-UG. As we demonstrate

later, this algorithm, while effective in static user scenarios,

becomes ineffective in highly mobile channel scenarios where

channel correlations are continuously changing. We expect

a similar behavior by other heuristic methods that rely on

channel correlation-based user grouping.

Discrete-control-based DRL Scheduler: There are several

DRL models for discrete action spaces in the literature. We

select DQN [10] and Double DQN [14] with Prioritized

Experience Replay Buffer (PERB) [52] as two representative

discrete-control-based DRL algorithms. The study in [16]

shows a comparison of these two model with other discrete

DRL models such as ACER and A3C and shows the superior

performance and convergence of our selected benchmarks.

We implement both discrete-control-based DRL models as

benchmarks and refer to them as PRTY-DQN and PRTY-

DDQN. To balance exploration and exploitation, we adopt the

epsilon-greedy algorithm in both models. For fair comparison

against other benchmarks, we tune the hyper-parameters so

as to achieve the best possible performance [16], [17], [24].

Because of the simple neural network structure of PRTY-DQN

and PRTY-DDQN, we adopt grid search to comprehensively

identify the optimal hyper-parameters. For PRTY-DQN, we

implement 2-hidden-layer neural networks with 32 neurons in

each layer. We use the same settings in the main network and

the target network of PRTY-DDQN. For both models, we set

the same state space, action space, and reward function as our

proposed scheduler.

Continuous-control-based DRL Scheduler: Similar to

SAC, DDPG is also a continuous-control-based DRL model

that has been used to solve optimization problems with large

action sets, e.g., on massive MIMO user scheduling [20], [21].

To compare SAC with a DDPG-based scheduler, we replace

the SAC module in our design with DDPG and use it as

our benchmark. For fairness of comparison, this benchmark

adopts the same dimension division strategy as our design to

generate multi-dimensional scheduling actions, particularly in

evaluating 64×64 network size. Furthermore, we use the same

state space and reward function as well as the epsilon-greedy

algorithm for this benchmark algorithm as in our proposed

scheduler.

Attention-mechanism-based RL Schedulers: We imple-

ment a pointer-network-based scheduler (PN) as proposed

in [18] in an actor-critic architecture. The PN is used as the

actor network, which consists of a long short-term memory

(LSTM)-based encoder and decoder. The critic network is a

multi-layer perceptron (MLP) and is trained using stochastic

gradient descent. A limitation of this model is that the number

of scheduled users needs to be fixed. Thus, in our evaluation of

the PN scheduler, we set the number of scheduler users N to

be so that M/N ≈ 4.5 which is shown to be the near-optimal

number for the ZF beamformer [53].

Our Proposed Scheduler: We implement two variants

for our scheduler: 1) a variant with raw channel matrix as

input that we call SMART-Vanilla, and 2) a variant with user

grouping labels as input (as described in §III-E) that we simply

call SMART.

In our evaluations, the Opt-PF scheduler serves as the

optimal benchmark for fairness while the Opt-MR scheduler is

optimal for spectral efficiency. For thoroughness, we first rule

out the discrete DRL-based scheduler, i.e. DQN and Double

DQN, due to their inability to scale to large network sizes.

Second, we compare the remaining benchmarks in a medium

16 × 16 network size and in different channel conditions.

This allows comparison of the AI-based benchmarks with

Opt-PF and Opt-MR schedulers when they are still in a

computationally feasible range. Lastly, we increase the size

of the network to 64 × 64, which we consider a real-world

network size. In this network size, both Opt-PF and Opt-MR

schedulers become computationally infeasible and thus, we

only compare our proposed schedulers with PN, DDPG, and

RR-UG.

C. Results

1) Model Training and Convergence

We trained the SMART model, in a 64× 64 network size,

for 800 epochs with 400 iterations in each epoch. To ensure

model convergence and learning performance, we divide 8
dimensions in action space and 256 actions in the action set

of each dimension, as discussed in III-C. The training takes

about five hundred epochs which is when the DRL model

converges. During the training process, we employ the epsilon-

greedy algorithm to effectively manage the trade-off between

exploration and exploitation. This is achieved by selecting

random actions or utilizing learned actions that yield the

highest reward. The value of epsilon denotes the probability

of selecting random actions for exploration purposes. Initially,

we set epsilon to 1, and gradually decrease it to zero over a

span of five hundred epochs.
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TABLE II: Spectral Efficiency and JFI comparison of SMART and RR-UG with multiple RBs in simulation discussed in §IV-C3

and with real-world data discussed in §IV-C4

Performance Metrics
Simulation with B = 100 Real-world Data with B = 52

Random Placement Mobility Scenario LoS Slow-speed LoS High-speed NLoS Slow-speed

SMART-SA RR-UG SMART-SA RR-UG SMART-SA RR-UG SMART-SA RR-UG SMART-SA RR-UG

Normalized System Spectral Efficiency 0.500 0.254 0.400 0.063 0.713 0.662 0.670 0.584 0.488 0.481

JFI 0.977 0.940 0.950 0.696 0.996 0.952 0.995 0.951 0.986 0.980

1

2

3

4
5 6

7

BS Location Fixed Clients Mobile Clients

Fig. 10: Topology of the real-world indoor experiment.

and real network size experiments. By running Algorithm 1

on the datasets, we observe just one or two user groups in

most TTIs. Thus, RR-UG schedules all seven clients in one or

sometimes two TTIs. Therefore, RR-UG is rather competitive

as SMART-SA here. For the purpose of showing the generality

of our model, we use the model trained on the LoS slow-

speed dataset and test it in the LoS high-speed mobility. The

results in Table II demonstrate the adaptability of SMART-

SA to different mobility scenarios. Compared with the slow-

speed mobility scenario, it is obvious that the performance

gap between SMART and RR-UG in the high-speed scenario

is larger. This is because a high speed makes channel condition

and inter-user channel correlation vary more quickly than

the slow speed. Faster varying inter-user channel correlation

results in quicker variations of user grouping, which makes

it challenging for RR-UG to adapt fast enough. However,

SMART is capable of dealing with this rapid change. For

comprehensiveness, we also test the trained model on NLoS

slow-speed topology. The results in Table II show SMART-

SA’s superiority over RR-UG and its generality in real-world

data, albeit not as good as it is in LoS high-speed.

5) Computational Complexity

We measure average wall-clock time per TTI for all the

schedulers discussed in §IV-C2. For comparison fairness, we

run all implementations on a single CPU core on the NVIDIA

DGX server. The runtime values are listed in Table III for

three network sizes considered in §IV-C2. The results show

the runtimes of the schedulers are widely different and they

also vary with the network size. For Opt-MR and Opt-PF,

the runtime increases exponentially with the network size and

thus is not listed for network sizes beyond 16 × 16. Even

though Approx-PF is feasible in real-world size networks

with much less complexity than Opt-PF, it still takes about

20× times longer than SMART to execute. Regarding other

schedulers, the runtime seems to increase linearly. Both DDPG

and SMART-Vanilla show similar results. Comparing SMART

and SMART-Vanilla results show that using user grouping

labels instead of the raw channel matrix reduces the runtime

of the model up to 50%. Tuning hyper-parameters to achieve

the best performance for both SMART and SMART-Vanilla,

SMART has 3 fewer hidden layers and half the number of

neurons in each layer to remain on par with the performance

of SMART-Vanilla. However, user grouping requires only an

additional 3.5 ms in 64×64 network size, a negligible portion

of the total runtime. The runtime for PN is about 1.6x and

4x running time of SMART-vanilla in 16 × 16 and 64 × 64,

respectively. This is due to the fact that pointer networks are

auto-regressive and make decisions sequentially and thus have

slow inference. RR-UG shows the smallest runtime among all,

but it is not as spectrally efficient as SMART, especially in

mobility scenarios.

TABLE III: Wall-clock time in seconds per TTI

System Configuration
Scheduler

Opt-MR Opt-PF Approx-PF RR-UG DDPG PN SMART-Vanilla SMART

16× 16 0.15 0.21 - 0.0013 0.034 0.059 0.036 0.024

64× 64 - - 0.604 0.0043 0.058 0.235 0.057 0.030

128× 128 - - - - - - - 0.071

D. Discussion and Future Work

The results presented earlier offer good insights into the

performance and computational complexity of the proposed

SMART scheduler with respect to the existing methods.

However, an important question is whether SMART can be

deployed to operate in time-stringent 5G-NR systems. For

a realistic network size, Table III shows SMART takes as

much as 30 ms to run an iteration, 30× longer than one TTI

in the least time-stringent mode of 5G-NR [31]. This may

seem problematic for the adoption of SMART. To investigate

this, we run an experiment in a mobility scenario. We first

train SMART offline as before and test the trained model on

the testing dataset without online updates to the model. We

compare the spectral efficiency results for the offline trained

model with the previously presented results that include the

online updates. The results are shown in Fig. 11. We observe

that, even when we use the offline trained model with no

online updates, the performance is remarkably close to when
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