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Abstract—The large number of antennas in massive MIMO
systems allows the base station to communicate with multiple
users at the same time and frequency resource with multi-
user beamforming. However, highly correlated user channels
could drastically impede the spectral efficiency that multi-user
beamforming can achieve. As such, it is critical for the base
station to schedule a suitable group of users in each time and
frequency resource block to achieve maximum spectral efficiency
while adhering to fairness constraints among the users. In this
paper, we consider the resource scheduling problem for massive
MIMO systems with its optimal solution known to be NP-hard.
Inspired by recent achievements in deep reinforcement learning
(DRL) to solve problems with large action sets, we propose
SMART, a dynamic scheduler for massive MIMO based on
the state-of-the-art Soft Actor-Critic (SAC) DRL model and the
K-Nearest Neighbors (KNN) algorithm. Through comprehensive
simulations using realistic massive MIMO channel models as well
as real-world datasets from channel measurement experiments,
we demonstrate the effectiveness of our proposed model in vari-
ous channel conditions. Our results show that our proposed model
performs very close to the optimal proportionally fair (Opt-PF)
scheduler in terms of spectral efficiency and fairness with more
than one order of magnitude lower computational complexity in
medium network sizes where Opt-PF is computationally feasible.
Our results also show the feasibility and high performance of our
proposed scheduler in networks with a large number of users and
resource blocks.

Index Terms—Massive MIMO, Resource Scheduling, Deep
Reinforcement Learning.

I. INTRODUCTION

ASSIVE multiple-input multiple-output (MIMO) is one

of the key technologies poised to radically improve the
spectral efficiency of the current 5G networks and beyond.
Through the use of tens or hundreds of antennas at the base
station, it can perform multi-user beamforming to serve tens of
users in the same time-frequency resource block (RB). How-
ever, scheduling which users to serve simultaneously in each
RB plays an important role in achieving the large throughput
gains promised by the massive MIMO technology. Beam-
forming performance can be significantly degraded if there
is a substantial correlation in the wireless channels among
the scheduled users, as this correlation makes it challenging
to effectively focus signal energy when transmitting toward
scheduled users. Similarly, separating the signals received
from multiple users becomes challenging when their channels
are correlated. In networks with high user mobility, the chan-
nels of individual users and their correlations with other users
within each RB are rapidly fluctuating. This dynamic nature of

channel characteristics substantially increases the challenges
associated with achieving optimal resource scheduling for
massive MIMO networks. Specifically, fair scheduling of radio
resources while maximizing spectral efficiency is essential in
real deployments. The formulation of the optimal Proportion-
ally Fair (Opt-PF) scheduling problem typically results in an
integer linear optimization (ILP) problem with an NP-hard
solution [1]. The large complexity associated with solving
an ILP, when the number of users and resource blocks is
large, prohibits designing optimal yet computationally feasible
schedulers that can work in the time-stringent 5G and beyond
standards. There is a large body of work [2]-[5] that design
heuristics or approximation algorithms with low complexity
to optimize the spectral efficiency of the networks. However,
they either do not evaluate fairness at all or demonstrate poor
fairness. This is due to the fact that designing low-complexity
approximation algorithms for multi-objective combinatorial
optimization problems is typically hard [6].

In the field of artificial intelligence and machine learning,
Markov Decision Processes (MDPs) [7] have emerged as
a powerful mathematical framework for modeling decision-
making problems under uncertainty. MDPs represent sequen-
tial decision processes as a set of states, actions, and transition
probabilities, where the goal is to find an optimal policy
that maximizes a predefined objective function, such as ex-
pected cumulative rewards. However, solving MDPs can be
computationally demanding, especially for complex problems
with large state and action spaces. To address this challenge,
Deep Reinforcement Learning (DRL) [8] has gained signifi-
cant attention in recent years. DRL combines reinforcement
learning algorithms with deep neural networks to approximate
value functions or policies, enabling the handling of high-
dimensional state spaces. By leveraging the representation
power of deep neural networks, DRL algorithms have achieved
remarkable successes in solving continuous and discrete action
space problems in various domains, including robotics [9],
game playing [10], and energy management [11]. Notably,
DRL has also been applied to solve complex combinatorial
optimization tasks. For instance, [12] has adopted DRL to
solve the traveling salesman problem, a classic combinatorial
optimization problem. Similarly, [13] solves the covering
salesman problem through a DRL model. This motivates
the need to explore DRL as a potential tool to solve the
optimal proportionally fair resource scheduling for massive
MIMO networks. Instead of using an explicit mathematical
model, decision optimization in a wireless resource scheduler

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited at

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3313988

can be represented as a Markov Decision Process (MDP)
whose observations and actions are guided by a well-defined
reward function. A DRL agent can then approach an opti-
mum MDP solution by learning from its interactions with
the wireless environment. The choice of the DRL model to
solve the resource scheduling problem is crucial in achieving
high performance and scalability in terms of the number
of users in real-world massive MIMO networks. In the re-
cent years, many DRL models for decision making in dis-
crete action space that fit the resource scheduling problem
have been proposed. Deep Q-Network (DQN) [10], Double
DQN [14], Advantage Actor-Critic (A2C), Asynchronous Ad-
vantage Actor-Critic (A3C) [15], Actor-Critic with Experi-
ence Replay (ACER) [16], and Proximal Policy Optimization
(PPO) [17] are a few examples. However, all these models
are shown to struggle with large discrete action spaces that
are typically present in combinatorial optimization problems,
a phenomenon known as action dimensional disaster [18].
Another class of DRL models that deal with continuous action
spaces has been used and adapted for discrete action spaces
in various domains. For instance, Deep Deterministic Policy
Gradient (DDPG) [19] is a popular continuous-based DRL
model used to solve a variety of decision problems with large
discrete action spaces [20], including resource scheduling in
massive MIMO [21], [22]. However, DDPG is known to be
very sensitive to hyper-parameter tuning in actual training,
especially in high-dimensional and complicated tasks [23].

In this paper, we present a novel DRL framework for the
resource scheduling problem in massive MIMO networks. The
novelty of our framework is three-fold:

First, we propose a DRL-based scheduler design named
SMART, based on the recently proposed soft actor-critic
(SAC) model [24]. The SAC model has superior sample effi-
ciency by incorporating an entropy term in its value function
and automatic tuning of hyper-parameters. Therefore, it can
converge to the optimal solution in large multi-dimensional
action spaces much faster than the existing models such as
DDPG. Given that SAC is by design used for continuous
space problems, we propose to combine SAC with K-Nearest
Neighbors (KNN) algorithm to generate discrete outputs cor-
responding to user scheduling decisions in massive MIMO
networks. To achieve the scalability required for real-world
massive MIMO networks with a large number of users, we
propose a novel dimension division strategy that maps the
discrete action set for scheduling to multiple dimensions.

Second, we significantly reduce the state space and, thus,
the complexity of the proposed SMART model for massive
MIMO by using user grouping labels as the model states
instead of the raw channel state information (CSI) matrix. The
user grouping labels indicate which users have less correlated
channel vectors, hence, are more suitable to be scheduled at the
same time. This reduces the computational complexity of the
model in both training and inference by 2x without sacrificing
spectral efficiency or fairness.

Third, we demonstrate the scalability of SMART to a
large number of resource blocks consistent with 5G systems.
We demonstrate that our scheduler framework can operate
independently on different resource blocks and, at the same
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time, achieve close to optimal performance.

We evaluate the effectiveness of SMART in various channel
conditions in both simulated as well as real-world channel
traces through a comparison of its performance with state-of-
the-art scheduling algorithms, including heuristic-based and
DRL-based models. We comprehensively demonstrate the ef-
fectiveness of our proposed method in achieving near-optimal
spectral efficiency while simultaneously maintaining superior
inter-user fairness very close to the Opt-PF scheduler. We
experimentally analyze the computational complexity of our
method and demonstrate its efficiency. We also provide guide-
lines on how our proposed system can be deployed on real-
world 5G and beyond systems while achieving the latency
required for the 5G new radio (NR) standard.

II. SYSTEM MODEL AND EXISTING WORK
A. System Model

We consider a single-cell network with a massive MIMO
base station (BS) with M antennas serving L single-antenna
users in its cell. The base station uses orthogonal frequency di-
vision multiplexing (OFDM) and performs MU-MIMO trans-
mission and reception to N < L users such that N < M. We
consider time-division duplex (TDD) operation, where all L
users periodically send orthogonal pilot sequences to the BS
for channel estimation. We assume that the scheduler possesses
full knowledge of the channel condition of all users associated
with the BS and the channel for each user does not change
during a transmission time interval (TTI). Subsequently, the
BS selects a set of NV users for data transmission and reception
through beamforming based on their estimated channel and
assigns their modulation schemes, and communicates that
information through the control channel. Using their assigned
modulation scheme, the selected users will transmit their
symbols at the same RB in the uplink and receive them
simultaneously in the downlink. A simplified system model is
depicted in Fig. 1. For the uplink, we consider the following
signal model

y = Hu + n, (1)

where y is the M x 1 received signal vector at the BS, H is
the M x N channel matrix, and u is the N x 1 transmitted
symbols vector by the users. Additionally, n is M x 1 receiver
complex noise vector with a circular Gaussian distribution,
n ~ CN(0,02I) where o2 is the noise variance and I is the
identity matrix. Note that, the value of N can vary in each
TTI depending on the current channel condition and it can be
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bounded by a maximum value Ny,,x. We assume the BS uses
zero forcing (ZF) for beamforming. The BS calculates the ZF
beamformer using the estimated channel H as

w=HE). )

The BS then performs receive beamforming on the received
signal to estimate the transmit symbol vector X as

u=Wiy. (3)

For simplicity, we only consider the uplink, but the above
model is extendable to the downlink as well. The above signal
model is for a single subcarrier in an OFDM system, but the
same model applies to all subcarriers.

An RB is the smallest scheduling granularity in SGNR,
which contains resources in the time and frequency domain.
One RB in 5G is made up of 12 consecutive subcarriers in the
frequency domain [25]. In the time domain, the composition
of RBs in 5G is more flexible and can vary between one
OFDM symbol and the entire slot (1 ms in numerology 0). The
quality of the wireless channel changes dramatically over time,
across users, and among different frequency bands. It is shown
in [26] that wireless channel capacity might fluctuate by up to
9 times in 20 MHz LTE bandwidth with over 100 RBs. This
effect is more pronounced in 5G since it typically has a wider
bandwidth (i.e. 40 MHz to 400 MHz). Consequently, user
selection decisions will vary across RBs due to the frequency
selectivity of the channel. Thus, it is essential to take into
account resource scheduling for every RB individually. In our
design, we first focus on resource scheduler design on a single
RB and then extend to many RBs to show the adaptability of
our proposed scheduler to 5G massive MIMO networks.

Optimal Schedulers: In the literature, multiple schedulers
are defined as optimal. The rate-optimal scheduler, known as
emphOptimal Maximum Rate (Opt-MR), finds the resource
scheduling solution in each TTI that maximizes the sum rate

B L
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where xib represents the binary selection of user [ at TTI ¢
and RB b and 77, is the instantaneous rate achieved by user
[ at TTI ¢t and RB b. We calculate the instantaneous rate as
iy = logg(l—&—SINRib), where SINRfvb is the received signal
to interference-plus-noise ratio from each beamformed user [
at TTI ¢ and RB b. We consider B as the maximum number
of RBs being used in the system.

Simply maximizing the sum rate ignores the notion of
fairness where, depending on the channel conditions, some
users may never get selected. Therefore, a commonly used
scheduler, known as Optimal Proportionally Fair (Opt-PF)

scheduler, finds the resource scheduling solution that maxi-
mizes the following objective [27], [28]
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where wf’b denotes the weighted rate, which we calculate as
the ratio of instantaneous rate 7}, to received rate p}, until
TTI ¢ on all RBs. Normalizing the instantaneous rate with
the total received rate guarantees that all users have a fair
chance of getting selected by the scheduler even when they
are experiencing a poor channel.

Both optimization problems in (4) and (5) are NP-hard since
they can be reformulated as an Integer Linear Programming
(ILP) problem [29]. Specifically, we can reformat (5) when
B =1 as the following ILP problem,

argmax wl x (7)

X

s.t. JL,LX < NiazdL
x € {0,1}*F

where w is a vector of all users instantaneous rates, X is user
binary selection vector. Also J,1, and J1, are square matrix
and vector of all ones with size L, respectively.

Solving (7) by exhaustively searching through the combi-
nations of vector x has the complexity of O(2%). Solving
(4) and (5) through an exhaustive search, when B RBs are
considered, the complexity will increase to O(2-F). However,
there are approximate algorithms for the Opt-PF problem with
polynomial complexity, such as the one proposed in [28]. We
discuss and evaluate an approximate algorithm in §IV along
with other benchmarks.

B. Existing Work and Motivation

Recent work on resource scheduling in massive MIMO
and MU-MIMO can be classified into two general categories:
heuristics schedulers, and Al-based schedulers. In this section,
we provide an overview of some of the most relevant works
in each category.

Heuristics Scheduler Designs: Many existing MU-MIMO
scheduling works provide heuristics-based approximations to
the Opt-PF scheduler [5], [30], [31]. While they try to strike
a balance between complexity and performance, often their
complexity does not scale to large networks or they signifi-
cantly underperform the optimal scheduling policies.

The scheduler proposed in [31] implements a multi-phase
optimization to solve Eq. (§) in MU-MIMO settings. It narrows
down the exhaustive search needed for the Opt-PF solution
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using some relaxations of the optimization problem. For e.g.,
it decouples the user selection in different RBs. Moreover,
in each RB, it reduces the number of choices based on the
channel quality of each user before deciding the user selec-
tion action based on the correlation of the remaining users.
Through these sub-optimal relaxations, their method can be
parallelized and efficiently implemented on a powerful GPU,
and hence can meet the stringent 5G-NR latency constraints
(i.e., nearly 1ms). Despite the low-latency implementation,,
this scheduler only scales to M = 12 and N = 4, and as a
result, it has limited scalability to massive MIMO. In [5], two
heuristics-based user scheduling algorithms are proposed and
evaluated on channel datasets collected from a dense indoor
massive MIMO network with stationary users. However, the
algorithms sacrifice fairness in favor of spectral efficiency.
They are also not evaluated under mobility scenarios. The
work in [32] proposed a scheduler for massive MIMO that
schedules users with low correlation channels in the same time
slot. It first partitions users into groups through a user grouping
algorithm. The scheduler then goes through all groups and
schedules all users in each group with a rate-fair method. As
we discuss later in the paper, this scheduling algorithm fails
to work well in fast-varying channel environments when inter-
user channel correlations are continuously changing and it is
unable to fairly allocate users across channel coherence blocks.

Al-based Scheduler Designs: Due to the huge complexity
of the optimization-based methods, several recent works [18],
[21], [22], [33]-[36] have proposed DRL models for MIMO
scheduling. A Q-learning-based DRL resource scheduling is
proposed in [34]. It models the user scheduling problem as a
Markov Decision Process (MDP) that outperforms the round-
robin scheduler in terms of sum rate. However, the discrete
DRL models are known to have difficulty in converging in
large action sets [37]. The convergence issue is also true
for more advanced discrete DRL models, such as DQN and
Double DQN. As such, discrete DRL models have limited
scalability to a large number of users for multi-user scheduling
in massive MIMO networks. We will also demonstrate these
limitations in §IV.

The work in [21] proposes a DDPG-based user scheduler
for massive MIMO networks. Its model outputs a probability
distribution over all selectable users and chooses the most
promising UE combinations at each TTI. However, it includes
a raw channel matrix in state space and the number of
elements in action space equals the number of UEs. Large
state and action spaces hinder its scalability. This algorithm
is extended in [22] for both user scheduling and transmit
precoding based on DDPG. It considers multiple antennas
and antenna correlation on the UE side as well. However,
their proposed scheduler has limited scalability and does not
consider the evaluation of user fairness. We implement a
DDPG-based scheduler as one of our benchmarks and discuss
its performance with respect to our proposed scheduler.

A pointer network is investigated in [18] as the actor
in an actor-critic framework to convert the combinatorial
problem in multi-user scheduling into a sequential selection
problem. However, sequential scheduling has slow inference,
which makes it undesirable for latency-sensitive 5G networks.

Additionally, applying the model to large networks results in
a complicated network structure and a long model update time
due to the use of a raw channel matrix as the input. This is
exacerbated further by complex-valued channels, which need
to be separated into real and imaginary parts before being fed
to the model. We implement a pointer network-based DRL
scheduler as a benchmark and discuss these limitations in more
detail in §IV.

Our Proposed Method: We propose SMART, a massive
MIMO user scheduler based on the recently proposed soft
actor-critic (SAC) DRL model [23], [24] and the KNN
algorithm [38]. SAC has gained attraction in several real-
time control problems such as robotic locomotion [39]. SAC
was originally designed to handle continuous action spaces.
However, the user scheduling is a discrete decision problem
where an appropriate set of users must be selected at each
TTI. The work in [40] provides a modification of SAC for
discrete action spaces, but we find that their modification is
still not suitable for large discrete action sets as it has serious
convergence issues in large-scale networks. Inspired by the
approach in [20], we use the KNN [38] to discretize SAC
to adapt it to discrete action spaces. The basic idea is to
use a continuous-based algorithm to generate an initial or
“proto” continuous action first. Then, the K nearest discrete
actions are found by using the KNN algorithm. Among the K
nearest discrete actions, the one with the maximum Q value
is selected. We further propose a novel dimension division
strategy that helps to scale up the size of the combinatorial
action set (i.e., number of users in the network) and enhance
model convergence capability. Using this approach, we enable
our model to dynamically select the users to maximize system
spectral efficiency and inter-user fairness. More details are
illustrated in §III-C. In contrast to prior work, our proposed
scheduler is more scalable and performs very close to the Opt-
PF solution.

III. SMART: A SCALABLE SAC-KNN-BASED MASSIVE
MIMO SCHEDULER

In this section, we first provide a brief introduction to
SAC. Subsequently, we describe the design of our proposed
scheduler based on the SAC DRL framework. We discuss how
we discretize the output of the SAC framework by applying the
KNN algorithm and propose a dimension division strategy to
scale up the supported size of the action set. We also propose
to reduce the complexity of the framework by using the user
grouping instead of the raw channel matrix as the input to
the framework. Additionally, we discuss how we scale up the
model to support as many RBs as needed for realistic 5G
networks.

A. A Primer on SAC

SAC is an off-policy Deep Reinforcement Learning (DRL)
model that employs a stochastic policy, in contrast to the
deterministic policy used in Deep Deterministic Policy Gra-
dient (DDPG). Instead of selecting the optimal action, a
stochastic policy outputs probabilities for all possible actions.
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The optimal policy in SAC, defined in (8), aims to maximize
both the cumulative reward R and the policy entropy H.

Tt = aurgrrlﬁJo(]El(é,,ﬁ,at)pr ZR(Sh ar) + aH (m(-[st))
t

®)
where the policy entropy H is defined as

H(m([s¢)) = = > Plag|sy) x log(P(as]sy))  (9)

By maximizing policy entropy, SAC encourages the model
to extensively explore the action space, facilitating the dis-
covery of global optima and enhancing sample efficiency.
Moreover, SAC samples transition from replay memory to
learn from past experience, similar to other off-policy algo-
rithms like DQN [10] and Double DQN [14]. In contrast to
on-policy models such as PPO [17] and A3C [15], which
update their policies based on experiences generated by the
current policy, SAC has the ability to learn from a broader
spectrum of experiences. This characteristic enhances sample
efficiency and aids in facilitating convergence, especially in
high-dimensional action spaces as demonstrated in [24].

In general, SAC has the following two major benefits:

1) Strong exploration capability. SAC does not discard any
action, even if it is not the best one. If multiple promising
actions are found, the stochastic policy will choose them
with equal probability. This feature helps SAC explore more
and not easily get trapped in local optima. In contrast, the
deterministic policy-based algorithms, such as DDPG [41],
save the action with the highest value resulting in fewer
exploration opportunities.

2) High robustness. Most applications of RL require the
agent to perform well in the presence of disturbances in the
environment. Because of the adopted stochastic and entropy
maximizing algorithm, SAC explores as many potential actions
as possible and, hence, it is able to deal with complicated and
dynamic environments (e.g., mobility scenarios in wireless
communication), including scenarios it has never encoun-
tered [42].

Fig. 2 shows the block diagram of the SAC framework.
Similar to any actor-critic architecture in DRL, the actor
in SAC generates a policy from which an action is drawn
based on the current state. The role of the critic is to assess
the actor’s policy and guide the actor toward the optimal
path through feedback. Unlike other actor-critic models, SAC
adjusts the ) function by a temperature coefficient (« in (8)),
which represents the weight of entropy. Furthermore, in [23],
the authors improve SAC with automatic entropy coefficient
adjustment. This method significantly reduces the burden of
manually adjusting hyper-parameters in training and stabilizes
its convergence. In contrast, hyper-parameter tuning and un-
stable environments are still big challenges for the majority of
state-of-the-art DRL models such as DDPG [43]. Another ad-
vantage of SAC is its robustness in handling multi-dimensional
tasks. High-dimensional tasks are generally challenging to
deal with for DRL model due to a phenomenon known as
the curse of dimensionality [44]. However, due to the high
sample efficiency boosted by entropy maximization, SAC
has demonstrated to perform very well in high-dimensional
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Fig. 2: Soft Actor-Critic Framework.

tasks with up to 21 action dimensions [24]. Specifically, SAC
is demonstrated to work well in the design of autonomous
robots where the actions of multiple parts of the robot must
be decided simultaneously. As we discuss later, we use this
feature of SAC as our advantage to deal with large discrete
action sets in massive MIMO user scheduling.

B. SMART Scheduler Core Design

In this section, we adapt the discretized SAC algorithm [23]
to formulate and build a Markov Decision Process (MDP)
model to solve the user scheduling problem in massive MIMO
networks.

State space. We define the state space of user [ at TTI
tas st = [y}, flgl] € S := [, F,G], where 4/ indicates
maximum achievable spectral efficiency of user [ at TTI ¢, f}
indicates the total amount of transmitted data by user [ up
until TTI ¢, and gi is the user group label of user [ at TTI
t. The value of ﬂ/ﬁ can be calculated as the spectral efficiency
of user [ in SU-MIMO, where only user [ is scheduled at
TTI ¢. The users with the same user grouping label g! have
low channel correlation so they are preferred to be scheduled
together. We will introduce more details on the user grouping
strategy in §III-E.

Action space. The action space set A consists of discrete
values, encoding the user-selection decision. We denote the
action at time ¢ as a; € A. Due to its combinatorial nature,
the action set grows exponentially with the number of users
in the system. For instance, with a total of L users available,
any number of users between 1 and N,,,, can be scheduled
at each TTI ¢, and thus the total number of possible selections
: Nimaz (L
is >0 (z)

Reward. Our ultimate objective for resource scheduling is
to maximize both the system’s spectral efficiency and fairness
among users. By system spectral efficiency, we refer to the
sum rate achieved by all users scheduled together at TTI ¢.
We use a normalized version of this quantity expressed by
~tetal The normalization factor is calculated as follows. We
measure the achievable rates for each user in the system if
that user were scheduled individually (SU-MIMO). We then
use the sum of the NV largest rates out of the total L users as
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the normalization factor. This will guarantee a value in [0, 1]
which then can be used in the reward function. To quantify
fairness, we use Jain’s fairness index (JFI) [45], which can be
expressed at each TTI ¢ as

(10)

As such, we include the normalized spectral efficiency and
the JFI in the reward function of the MDP model. The reward
R; achieved at TTI ¢ can be then formulated as

Ry = py' + (1= B)JFL. (11)

In (11), 8 determines the relative importance of each item
in the reward function based on the preference of the system
operator. Note that, both items are the range [0, 1] so that we
can effectively adjust their weights in the reward function with

parameter 3.

C. Discrete Action SAC Design

Originally, SAC is a continuous action space model and
thus, it cannot be directly applied to the massive MIMO user
scheduling problem. There are existing discrete action space
models, such as DQN [10] and Double DQN [14], that could
potentially be used to solve the problem. But as we will show
in §1V, none of these methods can handle the large action set in
massive MIMO user scheduling. Note that, the discrete action
space set in multi-user scheduling in massive MIMO increases
exponentially as the number of users grows. For example, with
M = 64 BS antennas and L = 64 single-antenna users, or
simply a 64 x 64 network size, and Ny,,x = 16 in each TTI,
the action set size has up to 3, (%) ~ 7 x 10! actions.

Several recent works have attempted to solve the large
discrete action space problem by discretizing the continuous-
control-based DRL model. In this direction, [20] combines
DDPG with KNN to solve problems with large discrete action
sets (e.g., recommender systems and language models). More
precisely, a KNN approximation [38] is used because of its
agile search in logarithmic time. Its fundamental idea is to
first generate a so-called proto continuous action (i.e. a real
number in [—1,1]) from the continuous action space DRL
model. Then, KNN is used to calculate the {2-norm between
the proto action with actions in the discrete space represented
by integer numbers corresponding to different actions, sort
them in ascending order, and pick the first K ones. Here, K
is a system hyper-parameter. Finally, after comparing the Q
values of these K discrete actions in the critic network, the
one with the highest Q value is chosen as the final action.
Similarly, we propose to augment the SAC model with a
KNN approximation model that can map the continuous action
space to a discrete one. However, the model in [20] is shown
to be effective for tasks with up to one million actions, far
below the number of scheduling actions encountered in a large
massive MIMO network. Next, we propose an idea to scale
the feasibility of the model to much larger action sets.

D. Dimension Division

One major drawback of mapping continuous actions to
discrete actions is the decision accuracy loss. The reason is
that, as the size of the discrete action set increases, the corre-
sponding distance between discrete actions in the continuous
domain will become extremely small. The precision of each
discrete action when mapped from a continuous action space
in the range [—1, 1] is equal to (1 — (—1))/2%, where 2% is the
total number of discrete actions. When this precision is smaller
than the network output precision, it will lead to decision
accuracy loss. This precision loss prohibits scaling up the size
of the discrete action set. In order to improve the scalability
of our model to much larger action sets, i.e. larger number
of users, we propose a novel strategy that we call dimension
division, where we break up the action space into multiple
dimensions. As discussed in §III-A, high-dimensional tasks
are generally challenging to deal with in DRL models. But
here, we particularly rely on the strength of the SAC model in
handling multiple dimensions. The difference in our approach
is that we use this strength in a multi-dimensional discrete
action space. With D dimensions, we can reduce the number
of actions in each dimension from 2% to (2L)'/P actions. As
such, mapping precision is also changed from (1—(—1))/2% to
(1—(=1))/(2%)*/P in each dimension. Based on this strategy,
the continuous-action DRL model will generate proto actions
in D dimensions. We apply the approximate KNN to each
proto action to generate the K nearest discrete actions in each
dimension. Finally, the critic network will pick the discrete
action with the maximum Q value to form the final action (i.e.
an integer number between 1 and 2%). This final discrete action
is then mapped to a specific user combination from all possible
combinations of L users to be scheduled. Fig. 3 illustrates
the proposed workflow. In general, to scale up the number of
supported users, it is important to strike a balance between the
number of dimensions and the size of each dimension. In §IV,
we demonstrate that the SMART scheduler is able to perform
well with a number of users as high as L = 128 whereas
DDPG is unable to converge in that scenario.

E. User Grouping

Previous works on DRL-based massive MIMO schedul-
ing [18], [21] use the full channel matrix as the input to their
DRL model. The size of the channel matrix is 2 X M x L. The
factor of 2 denotes the real and imaginary components of the
channel estimate since neural networks are usually designed
and trained for real values. As the size of the system (M, L)
increases and correspondingly the input size of the DRL model
grows, the model convergence becomes more difficult. In order
to scale up the model to support large network sizes, the input
size must be reduced. To reduce the input size, we adopt the
user grouping labels calculated from the inter-user channel
correlation matrix to guide the DRL model.

The inter-user channel correlation matrix measures the cor-
relation between each pair of users in the network. Specifically,
it is calculated as

c-4:‘< h; h; >‘: ’hith|
" [hll, " 1yl (i[5 [yl

(12)
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where h; and h; are channel vectors of user i and user j in
channel matrix H and ¢; ; is their channel correlation.

To reduce the complexity of the channel matrix, we adapt
a similar user grouping method with [32], as shown in Algo-
rithm 1. The algorithm uses the inter-user channel correlation
matrix calculated through equation (12) to partition users
with low correlation into separate sets, where the partitioning
threshold is ¢;;. During grouping, users in the same group (less
correlated users) are assigned the same label. As discussed
in §III-B, we only then need to assign a user group label to
each user in the state space instead of its complete channel
vector. With user grouping labels as input of the DRL model,
the state space size will be significantly reduced. As an
example, in a 64 x 64 network size, at each TTI, the state
of each user includes three variables: maximum achievable
spectral efficiency, the total amount of transmitted data by the
user, and user group label. Thus, the total state space size is
192. However, without user grouping, the real and imaginary
parts of the raw channel matrix must be fed to the DRL model
separately, which leads to a state space size of 8320. Such
large-scale inputs will lead to complicated neural network
structure, high computation complexity in model updating, and
excessive running time (cf. §IV-C).

Algorithm 1 User Grouping Algorithm

Input: Channel matrix at TTI ¢: H;, user set £ and channel

correlation threshold: ¢y,

Output: User group set G

1: Calculate channel correlations of all UE pairs ¢; ;, Vi, j €

L using Eq (12)

Initialize G = ()

Let L= L

while £¢ # 0 do

Random pick UE 7 € £¢ and add to the empty user
group G;

6:  Iteratively search in L€ to find all UEs whose channel
correlations with all existing UEs in GG; are smaller
than ¢;, and add them to G;

User group G = G U {G;}
. Update £ = L\ G;
9: end while
0: return User group set G

—_

F. Scheduling Across RBs

As mentioned in §II-A, user channel quality varies sig-
nificantly across RBs. Consequently, the channel correlation
among users varies across the RBs as well. This leads to
different optimal scheduling solutions for each RB. However,
the scheduling decision on each RB will affect the decision
on other RBs, particularly as it relates to rate fairness. Since
the goal is to maximize both system spectral efficiency and
fairness for the whole system, as expressed in equations (4)
and (5), the optimal scheduling on all RBs needs to be
jointly considered. One way to model this problem is to
have independent SMART frameworks, as described in §III-B-
§$III-E, to make decisions on each RB, with the additional
modification that each framework uses the decision from other
frameworks running on other RBs to calculate the new fairness
in its state space and the new reward, akin to the formulation
of weighted rates in Eq. (5). A block diagram of such a
model is depicted in Fig. 4a. This model can be regarded
as a cooperative multi-agent DRL framework where each
SMART framework responsible for a different RB acts as
a separate agent that shares its decisions with other agents.
We refer to this overall model as SMART-MA. In SMART-
MA, agents of RBs are jointly optimized. The instantaneous
spectral efficiency of each user is aggregated from all RBs
and JFI is updated based on a global user scheduling decision
rather than an individual RB’s decision. Consequently, the
SMART agents of all RBs share the same reward function and
engage in cooperative learning. However, multi-agent DRL
models are known to be difficult to converge, especially as
the number of agents scales up [46]. We demonstrate this by
employing a multi-agent model in §IV. For fading channel
models, the inter-user channel correlation across RBs will be
largely random, and when dealing with a large number of RBs,
it is expected that the fairness across RBs will be smoothed
out. With this assumption, and given the limitation of the
multi-agent model, we propose to use a fully independent
model for each RB referred to as SMART-SA and depicted
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Fig. 4: Fully independent SMART (a), and multi-agent
SMART frameworks (b) for scheduling users across RBs.

in Fig. 4b. In the SMART-SA, an independent SMART DRL
model is implemented for each RB. Each RB possesses its own
distinct state space (not depicted in the diagram) and generates
a scheduled user set specific to that RB. Based on the user
scheduling decision made by the model, selected users are
allocated resources within the wireless environment, and the
instantaneous spectral efficiency 7*°/*! of each scheduled user
can be determined. Sequentially, the accumulated amount of
transmitted data and JFI are updated in the respective fairness
update block.

In §IV, we demonstrate the effectiveness of SMART-SA for
a large number of RBs in getting close-to-optimal results.

IV. PERFORMANCE EVALUATION

In this section, we perform a comprehensive evaluation of
our proposed scheduler design. We compare SMART with
multiple different schedulers with respect to their achieved
normalized spectral efficiency and JFI in various channel
conditions. We also provide a comparison of the computational
complexity of our DRL-based scheduler with other methods
and discuss the feasibility of our scheduler in real-time 5G
settings.

A. Experimental Setup

We perform our evaluations in both simulated channels
as well as real-world channels measured with a massive
MIMO hardware platform. For simulated wireless channels,
we use the Quasi Deterministic Radio Channel Generator
(QuaDRiGa) [47] software. Specifically, we generate the 3D
Urban Micro (UMi) Line Of Sight (LOS) channel model.
We consider two channel scenarios: static and mobile. For
static channels, we consider two different modes: 1) four
user clusters, and 2) random user placement. In the mobile
scenario, the base station is positioned at the center of a
circular area with a radius of 300 meters. Users within this
circle move in various directions at different speeds, with an
average speed of 2.8 m/s. The initial positions of the users are

TABLE I: Simulation and Training Parameters

Parameter Value
Channel Model 3GPP_3D_UMi_LOS
System Bandwidth 20 MHz
System Carrier Frequency 3.6 GHz
TTI Duration 1 ms
Modulation 16QAM
Cell Radius 300 m
UE Speed 0 & 2.8 m/s
Number of BS Antennas 16 & 64
Number of UEs 16 & 64
Batch Size 256
Actor Learning Rate Se-4
Critic Learning Rate Se-4
Alpha Learning Rate 3e-4
Automatic Entropy Tuning True
Optimizer Adam
Episodes 800
Iterations In Episode 400
Correlation Threshold c¢;;, in Algorithm 1 0.5
£ in Eq. (11) 0.5

randomly assigned, and they will bounce back into the area
upon reaching the boundary. We describe the experimental
setup for the real-world measured channels in §IV-C4. We
implement the system model in §1I-A using Python. In terms
of modulation scheme, we adopt 16-QAM in our wireless
channel simulator and use Error Vector Magnitude (EVM)
of the received constellation to derive SNR as demonstrated
in [48].

We run our experiments on an NVIDIA DGX A100
server [49]. Both actor and critic networks implement neural
nets with two hidden fully connected layers and ReL.U activa-
tion functions. We use the Adam optimizer [50] to train our
DRL model in PyTorch [51]. The most relevant parameters
used in our simulations are shown in Table I.

B. Benchmarks

In order to do a thorough comparison, we implement
various scheduler models as benchmarks including classical
and heuristics-based schedulers, discrete-control-based DRL
schedulers, continuous-control-based DRL schedulers, and
attention-mechanism-based RL schedulers.

Classical Scheduler: We consider Opt-PF, Opt-MR, an
approximate PF (Approx-PF) and a heuristics-based algorithm
as classical schedulers. Algorithms of Opt-PF and Opt-MR are
introduced in §1I-A. Given the exceedingly high computational
complexity involved in employing optimal schedulers for
large-scale networks, we devise a variation of an approximate
Proportional Fairness (Approx-PF) scheduler in [28] that offers
reduced complexity from Opt-PF presented in §II-A. The
algorithmic details of this particular implementation can be
found in Algorithm 2. In this approach, we first calculate a
weighted-rate matrix similar to Opt-PF in (5) and then select
Ninao users with the highest weighted rates. Consequently,
the computational complexity is reduced significantly from
0O@2F) to O@2Nmaz). However, this is still too complex in
large-scale networks and thus needs to be simplified further.
Unlike the approximate scheduler described in [28], we do not
consider the individual data load of each user in our work.
Instead, we implement the user grouping in Algorithm 1 in
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Algorithm 2 Approximate Proportional Fairness (Approx-
PF) Algorithm

Input: Resource block set B, Channel matrix of resource
block b at TTI ¢: Hyp and user set £
QOutput: Scheduled user set on resource block b: U,
1: Calculate weighted rate wj, for all L users on resource
block b at TTI ¢ using (5)
2: Sort and select N users with the highest weighted rate
on resource block b to construct a subset of user N
3. Do user grouping in user subset A} as Algorithm 1
4: Find the user group U, with the most users as the
scheduled user set on resource block b at TTI ¢
5: return U,

this user subset and select the group with the most users.
User grouping strategy helps Approx-PF to avoid scheduling
highly inter-correlated users, thereby improving overall system
performance and releasing the heavy complexity to O(N?).

As for the heuristics-based benchmark, we use the algorithm
in [32]. This algorithm groups users based on their channel
correlation and allocates power to the users in the selected
group. It then proposes to schedule the groups in a round-robin
fashion. We implement a variation of the scheduler proposed
in [32]. We assume perfect power control in our model to
enable fair comparison with the modified algorithm. We refer
to this benchmark algorithm as RR-UG. As we demonstrate
later, this algorithm, while effective in static user scenarios,
becomes ineffective in highly mobile channel scenarios where
channel correlations are continuously changing. We expect
a similar behavior by other heuristic methods that rely on
channel correlation-based user grouping.

Discrete-control-based DRL Scheduler: There are several
DRL models for discrete action spaces in the literature. We
select DQN [10] and Double DQN [14] with Prioritized
Experience Replay Buffer (PERB) [52] as two representative
discrete-control-based DRL algorithms. The study in [16]
shows a comparison of these two model with other discrete
DRL models such as ACER and A3C and shows the superior
performance and convergence of our selected benchmarks.
We implement both discrete-control-based DRL models as
benchmarks and refer to them as PRTY-DQN and PRTY-
DDQN. To balance exploration and exploitation, we adopt the
epsilon-greedy algorithm in both models. For fair comparison
against other benchmarks, we tune the hyper-parameters so
as to achieve the best possible performance [16], [17], [24].
Because of the simple neural network structure of PRTY-DQN
and PRTY-DDQN, we adopt grid search to comprehensively
identify the optimal hyper-parameters. For PRTY-DQN, we
implement 2-hidden-layer neural networks with 32 neurons in
each layer. We use the same settings in the main network and
the target network of PRTY-DDQN. For both models, we set
the same state space, action space, and reward function as our
proposed scheduler.

Continuous-control-based DRL Scheduler: Similar to
SAC, DDPG is also a continuous-control-based DRL model
that has been used to solve optimization problems with large

action sets, e.g., on massive MIMO user scheduling [20], [21].
To compare SAC with a DDPG-based scheduler, we replace
the SAC module in our design with DDPG and use it as
our benchmark. For fairness of comparison, this benchmark
adopts the same dimension division strategy as our design to
generate multi-dimensional scheduling actions, particularly in
evaluating 64 x 64 network size. Furthermore, we use the same
state space and reward function as well as the epsilon-greedy
algorithm for this benchmark algorithm as in our proposed
scheduler.

Attention-mechanism-based RL Schedulers: We imple-
ment a pointer-network-based scheduler (PN) as proposed
in [18] in an actor-critic architecture. The PN is used as the
actor network, which consists of a long short-term memory
(LSTM)-based encoder and decoder. The critic network is a
multi-layer perceptron (MLP) and is trained using stochastic
gradient descent. A limitation of this model is that the number
of scheduled users needs to be fixed. Thus, in our evaluation of
the PN scheduler, we set the number of scheduler users N to
be so that M /N = 4.5 which is shown to be the near-optimal
number for the ZF beamformer [53].

Our Proposed Scheduler: We implement two variants
for our scheduler: 1) a variant with raw channel matrix as
input that we call SMART-Vanilla, and 2) a variant with user
grouping labels as input (as described in §III-E) that we simply
call SMART.

In our evaluations, the Opt-PF scheduler serves as the
optimal benchmark for fairness while the Opt-MR scheduler is
optimal for spectral efficiency. For thoroughness, we first rule
out the discrete DRL-based scheduler, i.e. DQN and Double
DQN, due to their inability to scale to large network sizes.
Second, we compare the remaining benchmarks in a medium
16 x 16 network size and in different channel conditions.
This allows comparison of the Al-based benchmarks with
Opt-PF and Opt-MR schedulers when they are still in a
computationally feasible range. Lastly, we increase the size
of the network to 64 x 64, which we consider a real-world
network size. In this network size, both Opt-PF and Opt-MR
schedulers become computationally infeasible and thus, we
only compare our proposed schedulers with PN, DDPG, and
RR-UG.

C. Results

1) Model Training and Convergence

We trained the SMART model, in a 64 x 64 network size,
for 800 epochs with 400 iterations in each epoch. To ensure
model convergence and learning performance, we divide 8
dimensions in action space and 256 actions in the action set
of each dimension, as discussed in III-C. The training takes
about five hundred epochs which is when the DRL model
converges. During the training process, we employ the epsilon-
greedy algorithm to effectively manage the trade-off between
exploration and exploitation. This is achieved by selecting
random actions or utilizing learned actions that yield the
highest reward. The value of epsilon denotes the probability
of selecting random actions for exploration purposes. Initially,
we set epsilon to 1, and gradually decrease it to zero over a
span of five hundred epochs.
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We also trained SMART for a 128 x 128 network. To deal
with this extremely large action set, we break it down into 16
dimensions with 256 actions in each dimension for sufficient
decision accuracy. With these parameters, we find that our
DRL model can still converge. Conversely, all other RL-based
benchmarks, except PN, fail to converge in this scenario.
However, as we show later, the training and inference time
for PN is significantly larger and its performance in terms of
fairness is inferior to our scheduler. It is important to highlight
that SMART-Vanilla cannot converge in networks of this size
either due to the excessive state space. This observation further
emphasizes the motivation behind incorporating user grouping
in SMART.

Convergence of PRTY-DQN and PRTY-DDQN: Discrete-
based DRL is intuitively a suitable choice to deal with dis-
crete combinatorial optimization problems, such as resource
scheduling, by modeling them as MDPs. However, in problems
with large action sets, the discrete-based DRL model is shown
unable to converge during the training process [18], [54], an
effect known as the action dimension disaster [18]. We also
demonstrate this effect by training PRTY-DQN and PRTY-
DDQN on multiple network sizes. Our experiments show that
the largest network size that these models could converge is
4 x 4, and Npax = 2. In this configuration, the size of the
action set is 10.

2) Performance Comparison in Various Network Sizes

In the testing phase, we run our simulation environment for
additional 400 TTTIs in the same cell and use the trained model
to schedule users while recording the spectral efficiency and
the JFI values across TTIs. For a fair comparison, we use the
exact same channels generated as input to all benchmarks. It
is important to note that partial or outdated channel informa-
tion could impair the performance of the resource scheduler,
particularly in scenarios involving high-speed mobility. This
impacts any system that relies on the channel information
for scheduling decisions and thus is beyond the scope of our
work. Nevertheless, in this case, complementary methods that
perform channel prediction based on the partial or outdated
channel information such as the ones proposed in [55]—[57]
can be used to enhance the performance of the scheduler.
In the following, we provide evaluation results of various
benchmarks in multiple network sizes. In each network size,
we plot the average spectral efficiency and JFI over all TTIs.
We also display error bars in each plot indicating the minimum
and maximum values of results across TTIs.

Small network size: We consider the 4 x 4 network config-
uration in a mobile scenario, to compare the performance of
PRTY-DQN and PRTY-DDQN with our proposed scheduler.

Fig. 5 shows that PRTY-DDQN outperforms PRTY-DQN
and SMART-Vanilla on both spectral efficiency and JFI. This
is due to decision accuracy loss imposed by mapping the
SAC output from continuous space to discrete space in our
scheduler, as discussed in §III-C. However, the limitation
on the scalability of PRTY-DDQN makes it impractical to
use in real-world network sizes. mportantly, we observe that
the performance of SMART is almost the same as SMART-
Vanilla. This is an important finding since it shows using
user grouping labels as input to our model instead of the raw
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Fig. 5: Spectral Efficiency and JFI comparison of SMART
with DQN and Double DQN in user mobility scenario and
4 x 4 network size.

channel matrix as in SMART-Vanilla simplifies neural network
structure while not impairing model performance.

Medium network size: For thorough comparison of all
the other benchmarks, we consider the case for medium
16 x 16 network size, and Ny,ax = 4. We only compare the
benchmarks with SMART-Vanilla for a fair comparison with
other Al-based schedulers which use the raw channel matrix
as input. To be able to reason about the performance of each
scheduler, we start with a toy network scenario where the users
are static and placed in four clusters (4-cluster). The users in
each cluster share the same scatters and experience similar
small-scale fading, and thus their channel vectors are highly
correlated. Fig. 6 shows the spectral efficiency and JFI results
in the four-cluster channel mode. It is evident from Fig. 6a
that SMART-Vanilla performs very close to Opt-PF scheduler,
which shows SMART-Vanilla is able to converge to the Opt-PF
solution almost perfectly. In terms of JFI, Fig. 6b shows that
SMART-Vanilla closely follows the Opt-PF scheduler as well.
Both schedulers underperform the Opt-MR scheduler in terms
of spectral efficiency, but the Opt-MR scheduler is not doing
well with respect to JFI as expected, since it is only optimizing
the spectral efficiency. Interestingly, Fig. 6a also shows the
DDPG-based scheduler significantly under-perform SMART-
Vanilla. That shows DDPG fails to explore widely enough
because of its sample inefficiency and therefore gets stuck
in a local optimal. Lastly, we observe that RR-UG achieves
a good spectral efficiency and is almost close to SMART-
Vanilla. This is expected as the user grouping algorithm groups
the users into exactly four groups based on four clusters. Since
the users do not move, RR-UG will continue to serve each
group at a time. The results also show that SMART-Vanilla
can learn the inter-user correlation well, despite using the raw
channel matrix from each user. PN is able to achieve near-
optimal spectral efficiency but undesirable JFI. The reason is
that PN can not deal with varying state representations of
the input [58]. Specifically, sequentially selecting the users
will affect the fairness in the state space of the MDP model.
Therefore, PN fails to optimize the JFI, while still performing
well in terms of achieved spectral efficiency.

Figs. 7a and 7c show the normalized spectral efficiency
for random placement of static users in the cell and mobile
users moving in random directions within the cell, respec-
tively. In both scenarios, we observe that SMART-Vanilla
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still performs very closely to the Opt-PF scheduler, while the
DDPG scheduler significantly underperforms SMART-Vanilla.
The PN performance also slightly drops compared to the 4-
cluster scenario. This can be attributed to the limitation of this
scheduler with respect to its predefined number of selected
users. Note that in the 4-cluster scenario, the predefined
number of scheduled users for PN is exactly the same as the
number of users in each user group where users have very
low correlation. However, in the random placement scenario,
this condition does not necessarily hold and the number of
scheduled users by PN could be smaller or larger than the
optimal set of users. The PN performance gets worse in the
mobility scenario since user grouping is changing over time.
For instance, PN could select user sets with high correlation
in most cases.

RR-UG achieves a relatively good performance in random
placement topology, but it does not achieve the same level of
performance as in the 4-cluster channel mode. The reason is
that in the setups with random user locations, the user groups
could include a larger number of users than Ny,x = 4, and
thus the groups have to be broken into smaller subgroups to
be scheduled sequentially. This impairs the performance of
RR-UG. In the mobility scenario, the performance of RR-UG
drops even more. This is due to the variations in channels
and user groupings caused by mobility in each TTI. It shows
that while RR-UG might be a favorable scheduler in static
scenarios (due to its lower computational complexity as we
show later), in the mobility scenarios, it does not perform
that well. In Figs. 7b and 7d, we see SMART-Vanilla and
DDPG achieve high fairness values. A good fairness result for
DDPG is expected as fairness is accounted for in the reward
function. Opt-MR and RR-UG do not achieve high fairness
in both scenarios. For RR-UG, the fairness drops since the
user groupings change continuously, and thus the rate fairness
cannot be met efficiently despite the time fairness due to
the Round-Robin scheduling of groups. It is evident that PN
performs very poorly with respect to JFI, as discussed earlier.

Real-world network size: We consider a more realistic
network size with a 64-antenna massive MIMO base station'
at the center of the cell. We also consider L = 64 connected

'Most commercial deployments of massive MIMO include 64-antenna base
stations
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users which is also a realistic number in small cells [5].
In this case, we assume Np.x = 64 which means the
scheduler can choose to beamform to up to all 64 users in one
TTIL In this network size, the complexity of calculating the
results for Opt-MR and Opt-PF is too high.Thus, we include
Approx-PF as a benchmark instead of Opt-PF along with the
results for SMART-Vanilla, SMART, PN, DDPG, RR-UG. As
shown in Figs. 8a and 8c, SMART-Vanilla outperforms PN,
DDPG, RR-UG, and Approx-PF. By foregoing the exhaustive
search, Approx-PF aims to reduce computational complexity.
However, we can see that its performance falls short compared
to SMART. Similar to our earlier results for medium network
size, the performance of RR-UG is close to SMART-Vanilla
in static random user placement but drops significantly in
the mobility scenario. To enable DDPG to converge in this
scenario, we applied the dimension division presented in III-C
to its implementation. However, DDPG is unable to perform
well in multi-dimensional action sets as discussed earlier. This
explains the observation that DDPG does not perform well in
terms of spectral efficiency. As we observed in the small and
medium networks, the performance of SMART is compara-
ble to that of SMART-Vanilla in both channel scenarios. It
demonstrates the effectiveness of using user grouping labels
in the state space of SMART.

All schedulers, except PN, achieve high fairness in the static
random user placement scenario. In the mobility scenario, the
fairness for RR-UG also drops significantly due to varying
user groupings across TTIs. Here, PN has the worst JFI for
the same reason as we mentioned for the medium network
size.
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Fig. 8: Spectral efficiency and JFI comparison of SMART
and existing methods in 64 x 64 network size in random user
topology (a) and (b), and user mobility scenario (c) and (d).

3) Multi-RB Scheduling Performance

Here, we consider the multi-RB scenario and evaluate the
performance of our model presented in III-F. As discussed, the
multi-agent DRL models are generally difficult to converge.
In fact, our SMART-MA model only converged with 2 RBs
(B =2)when M =8, L =8, and Ny,.x = 4. Thus, we use
this configuration to demonstrate the efficacy of SMART-SA,
with respect to SMART-MA. Computational complexities of
Opt-PF and Opt-MR were also acceptable in this configuration
as presented in §II-A, and thus, we include them in the evalua-
tion along with RR-UG. Since we showed the underwhelming
performance of DDPG and PN in the single-RB case, we
exclude them from this evaluation. Fig. 9 shows the experiment
results for B = 2. It is evident that SMART-SA outperforms
SMART-MA on spectral efficiency but has a slightly lower
JFI. The reason is that SMART-SA tries to maximize spectral
efficiency on each RB and sacrifices fairness as opposed to
SMART-MA which balances the two metrics across RBs.
SMART-SA performs much better in terms of both JFI and
spectral efficiency compared to RR-UG. For B > 2, SMART-
MA, Opt-PF, and Opt-MR become infeasible. However, to
demonstrate the performance of SMART-SA, we evaluate it
for B = 100 with a 64 x 64 network size and compare it with
RR-UG. The evaluation results are shown in the simulation
column of Table II. For the results, it is evident that a large
number of RBs will not degrade JFI in SMART-SA while still
maintaining desirable spectral efficiency. It also reaffirms our
previous finding on the low performance of RR-UG in the
mobility scenario.

4) Real-World Data Evaluation

To evaluate our proposed scheduler in real-world environ-
ments, we conducted a massive MIMO channel measurement
experiment in an indoor setting on the Rice University campus.
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Fig. 9: Spectral Efficiency and JFI comparison of SMART and
existing methods in 8 x 8 network size and Ny, ,x = 4 with 2
Resource Blocks in static random user topology (a) and (b),
and user mobility scenario (c) and (d).

We used a 64-antenna RENEW [59] software-defined massive
MIMO base station and seven software-defined clients in a
large open area inside a building hall. We fixed six of the
clients in a circle, 15m away from the base station. The
seventh node was placed on a robot where we moved the
robot across the hall starting from the location of the first
client to the last. A drawing of the BS and client placements
are shown in Fig. 10. We moved the robot along the path
with different speeds, i.e. with 0.5m/s, lm/s, and 2m/s. The
mobile node’s antenna was facing the base station in all the
experiments (LoS channel). We repeated the experiments to
measure both LoS and NLoS channels for the fixed clients.
In each measurement, we transmitted time-orthogonal uplink
pilots from all clients to the BS. The uplink pilots were based
on the 802.11 LTS OFDM signal, which contains 52 non-
zero subcarriers. We consider each subcarrier as an RB in our
evaluation, i.e. B = 52. Based on the collected real-world
dataset, we train and evaluate the performance of SMART in
the 64 x 7 MIMO configuration with 52 RBs in a slow-speed
mobility scenario.

Using these datasets, we evaluate the performance of
SMART. Due to convergence issues and excessive compu-
tational complexity of other schedulers for B > 2 as dis-
cussed in §II-A, we are only comparing SMART-SA with
RR-UG. The results, listed in Table II, show that RR-UG
underperforms SMART-SA in both spectral efficiency and
JFI. More importantly, SMART-SA is capable of achieving
near-optimal (i.e. about 0.996) JFI, which demonstrates the
effectiveness of SMART-SA when applied to multiple RBs.
However, we can anticipate that RR-UG performance will
get worse as the number of mobile users increases, which
is consistent with the results of mobility scenarios in medium
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TABLE II: Spectral Efficiency and JFI comparison of SMART and RR-UG with multiple RBs in simulation discussed in §IV-C3

and with real-world data discussed in §IV-C4

I Simulation with B = 100

I Real-world Data with B = 52

Performance Metrics
|| Random Placement |

Mobility Scenario ||

LoS Slow-speed | LoS High-speed |  NLoS Slow-speed

|| SMART-SA RR-UG | SMART-SA RR-UG || SMART-SA RR-UG | SMART-SA RR-UG | SMART-SA RR-UG
Normalized System Spectral Efficiency || 0.500 0254 | 0400 0063 || 0713 0662 | 0670 0584 | 0488 0.481
JFI I 0977 0940 | 0950 0696 || 0996 0952 | 0995 0951 | 0986 0.980

| 128t 712st
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Fig. 10: Topology of the real-world indoor experiment.

and real network size experiments. By running Algorithm 1
on the datasets, we observe just one or two user groups in
most TTIs. Thus, RR-UG schedules all seven clients in one or
sometimes two TTIs. Therefore, RR-UG is rather competitive
as SMART-SA here. For the purpose of showing the generality
of our model, we use the model trained on the LoS slow-
speed dataset and test it in the LoS high-speed mobility. The
results in Table II demonstrate the adaptability of SMART-
SA to different mobility scenarios. Compared with the slow-
speed mobility scenario, it is obvious that the performance
gap between SMART and RR-UG in the high-speed scenario
is larger. This is because a high speed makes channel condition
and inter-user channel correlation vary more quickly than
the slow speed. Faster varying inter-user channel correlation
results in quicker variations of user grouping, which makes
it challenging for RR-UG to adapt fast enough. However,
SMART is capable of dealing with this rapid change. For
comprehensiveness, we also test the trained model on NLoS
slow-speed topology. The results in Table II show SMART-
SA’s superiority over RR-UG and its generality in real-world
data, albeit not as good as it is in LoS high-speed.

5) Computational Complexity

We measure average wall-clock time per TTI for all the
schedulers discussed in §IV-C2. For comparison fairness, we
run all implementations on a single CPU core on the NVIDIA
DGX server. The runtime values are listed in Table III for
three network sizes considered in §IV-C2. The results show
the runtimes of the schedulers are widely different and they

also vary with the network size. For Opt-MR and Opt-PF,
the runtime increases exponentially with the network size and
thus is not listed for network sizes beyond 16 x 16. Even
though Approx-PF is feasible in real-world size networks
with much less complexity than Opt-PF, it still takes about
20x times longer than SMART to execute. Regarding other
schedulers, the runtime seems to increase linearly. Both DDPG
and SMART-Vanilla show similar results. Comparing SMART
and SMART-Vanilla results show that using user grouping
labels instead of the raw channel matrix reduces the runtime
of the model up to 50%. Tuning hyper-parameters to achieve
the best performance for both SMART and SMART-Vanilla,
SMART has 3 fewer hidden layers and half the number of
neurons in each layer to remain on par with the performance
of SMART-Vanilla. However, user grouping requires only an
additional 3.5 ms in 64 x 64 network size, a negligible portion
of the total runtime. The runtime for PN is about 1.6x and
4x running time of SMART-vanilla in 16 x 16 and 64 x 64,
respectively. This is due to the fact that pointer networks are
auto-regressive and make decisions sequentially and thus have
slow inference. RR-UG shows the smallest runtime among all,
but it is not as spectrally efficient as SMART, especially in
mobility scenarios.

TABLE III: Wall-clock time in seconds per TTI

I Scheduler

|| Opt-MR  Opt-PF  Approx-PF  RR-UG DDPG PN
16 x 16 || 015 021
64 x 64 - - 0.604 00043 0058 0235 0.057 0.030

128 x 128 - - - - - - - 0.071

System C

SMART-Vanilla SMART

0.0013 0.034 0.059 0.036 0.024

D. Discussion and Future Work

The results presented earlier offer good insights into the
performance and computational complexity of the proposed
SMART scheduler with respect to the existing methods.
However, an important question is whether SMART can be
deployed to operate in time-stringent SG-NR systems. For
a realistic network size, Table III shows SMART takes as
much as 30 ms to run an iteration, 30x longer than one TTI
in the least time-stringent mode of 5G-NR [31]. This may
seem problematic for the adoption of SMART. To investigate
this, we run an experiment in a mobility scenario. We first
train SMART offline as before and test the trained model on
the testing dataset without online updates to the model. We
compare the spectral efficiency results for the offline trained
model with the previously presented results that include the
online updates. The results are shown in Fig. 11. We observe
that, even when we use the offline trained model with no
online updates, the performance is remarkably close to when
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Fig. 11: Evaluation of SMART with and without a model
((online vs. offline) update in user mobility scenario and 64 x
64 network size.

the model is continuously updated. The performance can get
even closer when we do updates every few tens of TTIs. This
finding means that we can only look into the inference time
of the model as the scheduling decision time. For 16 x 16
and 64 x 64 network sizes, the inference times for SMART
are 5.4 and 8.7 ms. Running the model on a single GPU core
on the NVIDIA DGX A100 server reduces the inference time
values to 1.2 and 1.6 ms, respectively. The inference runtime
values can be further reduced to sub-millisecond levels, as
required in 5G-NR, by a more efficient implementation such
as with CUDA [60] framework and parallelizing the DRL
model on several GPU cores. More importantly, the reassuring
performance of SMART-SA, demonstrated in §IV-C3, shows
that we can get similar runtime values for 100s of RBs, as its
architecture allows us to fully parallelize it on different GPU
cores.

Lastly, we have only considered saturated traffic for each
user. A more generic design should consider the incoming traf-
fic model as well as the quality of service (QoS) requirements,
e.g. data rate and latency, for each user. Formulation of the
scheduling problem and formally solving it using optimization
techniques or heuristics-based approximation is a difficult task.
We believe Al-based methods such as the one proposed in this
paper provide a more promising avenue for solving the generic
case if enough training data exists. We leave the design of a
more comprehensive scheduler that considers parameters in
the higher layers of the network such as traffic models and
QoS constraints as future work.

V. CONCLUSION

In this paper, we presented SMART, a resource scheduler
for massive MIMO networks based on the soft actor-critic
DRL model. We demonstrated the effectiveness of our sched-
uler in achieving both spectral efficiency as well as fairness
very close to the optimal proportionally fair scheduler. We also
showed that our model outperforms state-of-the-art massive
MIMO schedulers in all scenarios, and particularly in mobility
scenarios. We removed the need for raw channel matrices
in training our DRL model by utilizing a user grouping
algorithm based on the inter-user correlation matrix and, thus,
we significantly reduced the complexity of our model. We also
provided guidelines as to how our scheduling model can be
deployed in time-stringent SG-NR systems.
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