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Abstract
As the scale and complexity of networks grow rapidly, management, maintenance, and optimization of them are becoming

increasingly challenging tasks for network administrators. Software-Defined Networking (SDN) was introduced to facil-

itate these tasks as it offers logically centralized control, a global view of the network, and software-based traffic analysis,

thus, it is widely adopted of SDN to manage large-scale networks. On the other hand, SDN is not immune to cyber attacks.

In fact, its centralized architecture makes it more vulnerable to certain types of attacks, such as denial of service. Various

attack mitigation strategies are proposed to strengthen the security of SDNs including statistical, threshold-based, and

Machine Learning (ML) methods. Among them, Deep Learning (DL)-based models attained the best results as they were

able to extract the complex relationship between input parameters and output that could not be achieved with other

solutions. Hence, this paper presents a comprehensive survey of the literature on the utilization of different DL algorithms

for the security of SDN. We first explain the types of attacks that SDNs are exposed to, then present papers that applied DL

to detect and/or mitigate these attacks. We further discuss the public datasets used to train DL models and evaluate their

advantages and disadvantages. Finally, we share insights into future research directions to improve the efficiency of DL

methods for SDN security.
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1 Introduction

Software Defined Networking (SDN) has been introduced

to allow forwarding decisions to be made by a central

controller, which can calculate optimal routes based on

global network view and unique application demands [1].

Unlike traditional routing solutions that are rigid and

mostly application oblivious, SDN offers an agile network

management approach, which led to its wide adoption. For

example, Google uses SDN to manage its wide-area net-

work traffic [2]. On the other hand, SDN introduced a

plethora of architectural vulnerabilities that pose significant

risks to the safety of networks [3-10].

Researchers proposed many heuristics and statistical

methods to overcome the SDN’s security issues, but

Machine Learning (ML) models are found to be much

more effective as they can extract the complex relationship

between input and output that cannot be easily realized

with other approaches [1, 11-15]. In particular, a subfield of

ML, Deep Learning, offers a significant advantage over

statistical models and traditional ML methods when deal-

ing with large-scale datasets. Thus, DL has been applied to

many fields such as image processing [16, 17], biomedical

imaging [18-21], automated inspection of civil infrastruc-

ture [22-26], and robotics [27-31] to solve complex prob-

lems. Researchers, therefore, proposed DL-based methods

to detect and/or mitigate security issues in SDN-based

networks.

Although there exist several surveys papers on the

application of ML-based techniques for SDN security [32-

41], they are either outdated (published several years ago

thus they do not reflect the current status) or limited in

scope (i.e., focus on one particular component of SDN or

one type of attack). As a result, there is a need to provide

an up-to-date, systematic, and comprehensive review of

research on the application of DL for SDN security.

Figure 1 highlights the main areas along with some of

the sub-topics that are discussed in this study. We first
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provide a brief overview of SDN and DL. Next, we high-

light the security weaknesses of the different parts of the

SDN architecture and review DL-based methods proposed

to address these weaknesses. Then, we analyze perfor-

mance metrics used to evaluate the effectiveness of DL

methods and we provide a comprehensive overview of

different publicly-available datasets used by researchers to

train DL models and discuss their benefits and limitations.

Finally, we present future opportunities and research

directions that can be to facilitate the use of DL for SDN

security issues.

The remainder of this survey paper is organized as fol-

lows: Section II reviews the main focus and limitations of

some existing surveys. Section III presents the background

for SDN and DL. Section IV discusses security vulnera-

bilities for different SDN components and existing chal-

lenges and associated opportunities in the use of DL-based

methods for SDN security. Section IV highlights three

major aspects of DL-based methods and SDN, namely

public datasets for enhancing SDN security, performance

evaluation metrics used in studies, and classification of

different security applications for SDN as discussed in the

literature. Section VI discusses the remaining challenges

that the SDNs face despite and. Section VII summarizes the

paper and highlights some future directions for researchers.

Most of previous survey studies on SDN focused on

routing solutions [33, 42]), architectural deployment sce-

narios (e.g., distributed SDN [43] and Hybrid SDN

[41, 44, 45]), control plane implementations [40], and

application areas (e.g., SDN-VANETs [46], SDN for IoT

[47, 48], SDN for data centers [49], edge-based SDN

[50])). Although there are many survey papers published in

the area of SDN security, many of them (e.g. [51-58]))

were published more than 5 years ago, thus they do not

necessarily reflect the current state of the research any-

more. Papers that are published within the last 5 years are

listed in Table 1 with their publication date, focus area,

main topics, as well as their limitation compared to this

work. Specifically, they either focus on one aspect of SDN

security or do not cover ML/DL solutions with sufficient

details. For example, [39, 59] focuses on DDoS attacks and

relevant mitigation strategies, [38] concentrates on infor-

mation security, and [60, 61] discuss Intrusion Detection

Systems (IDS) and [62] discusses Attack Detection systems

(ADS). In contrast, this survey provides an extensive

evaluation of a broad range of security issues in all layers

of SDN architecture. We also cover a wide range of

security applications. On the other hand, although [34-37]

cover SDN security in a broad scope, they do not suffi-

ciently highlight ML/DL-based solutions. For example,

[34] covers attacks in different SDN layers but mentions

only five ML-based solutions. Similarly, [35] details

security frameworks implemented for different layers of

SDN architecture but presents only four ML/DL-based

solutions out of many available, which indicates that ML/

DL is not the primary focus. [37] focuses on security

vulnerabilities in SDN architecture and covers only five

ML/DL approaches. Although [32, 63] cover ML/DL

methods SDN, security is not the only focus of these work

(i.e., they cover a wide range of topics including traffic

classification, routing optimization, quality of service pre-

diction, and resource management), thus they fall short to

provide a sufficient examination of previous work in SDN

security. Consequently, this is the first study that provides a

comprehensive overview of ML/DL solutions in the focus

area of SDN security. The abbreviations used in this paper

are listed in Table 2.

2 Background

This section provides a brief background on Deep Learning

(DL) and Software Defined Networking (SDN) to explain

key concepts that are referred to in the following sections.

2.1 Deep learning (DL)

A Neural Network (NN) comprises several connected

processing units or nodes that operate parallel to update

link weights using nonlinear computations to minimize

error [65]. These nodes use activation functions to perform

nonlinear analyses. The most basic NN (aka shallow NN)

consists of three layers the input layer, hidden layer, and

output layer. Deep neural networks (aka Deep Learning) is

a term used for NNs with more than three layers, with

several hidden layers and neurons needed to process high-

dimensional data and learn increasingly complex models.

In Deep Learning (DL), neurons train a feature represen-

tation based on the previous layer’s output. Thus, they

perform better than traditional ML methods when handling

large-scale high-dimensional datasets [65, 66]. However,

DL methods require greater computational power like

Fig. 1 Visual outline of the different topics that will be covered in this

review in relation to the three main research areas, namely SDNs,

network security, and Deep Learning
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multiple GPUs, to train DL models in a reasonable time.

The advancements of DL model development are the

increased availability of GPUs, which allows for signifi-

cantly faster computation and layers that can be trained

Table 1 Different review-based studies and their contribution to the research areas intersecting between SDNs, SDN Security and ML/DL for

SDN Security

Study Year Main focus Major topics covered Limitation

[41] 2018 Hybrid SDN (1) Overview of hybrid SDN frameworks and controllers (1) SDN Scope narrow to

Networks (HSDN) (2) HSDN testing, verification and traffic management HSDNs

(3) HSDN security and future directions (2) Minor emphasison Security

[64] 2019 Security threats and (1) SDN architecture overview (1) SDN scope limited to

mitigation for SDN (2) Security attacks and protection for SDN controllers Controllers

Controllers (3) Open research issues, challenges and direction (2) ML/DL discussion limited

[32] 2019 ML for SDNs (1) Background on SDN and ML (1) Focus on all ML techniques

(2) ML for SDN, challenges and future direction (2) Minor emphasis on security

[63] 2019 ML for SDNs (1) ML for SDNs (1) Focus on all ML techniques

(2) SDN applications with ML and future directions (2) Minor emphasis on security

[40] 2019 Route optimization (1) SDN overview (1) Security emphasis missing

using ML (2) ML for route optimization and future directions (2) ML Scope too narrow

[60] 2019 SDN intrusion (1) SDN overview (1) Limited Scope (IDS only)

Detection systems (2) SDN-based IDS (2) Limited Discussion

(IDS) (3) Research challenges of ML techniques

[61] 2021 SDN intrusion (1) SDN overview

Detection systems (2) SDN-based IDS (1) Limited Scope (IDS only)

(IDS) (3) ML DL techniques for IDS

[42] 2019 (1) Potential of SDN/NFV (1) ML discussion limited to

SDN/NFV (2) Algorithmic challenges of SDN/NFV Network Optimization

(3) ML for improved optimization of SDN/NFV (2) SDN Security missing

[44] 2019 Optimization of (1) Rationale for HSDNs (1) Scope limited to HSDNs

Hybrid SDNs (2) Control and data plane deployment solutions (2) Security discussion missing

(HSDNs) (3) HSDN deployment, optimization and use cases

[59] 2019 DDoS attacks in (1) Background on SDN, cloud computing and DDoS (1) Security Scope limited to

Cloud-based SDN (2) DDoS attacks in CSDN DDoS attacks

(CSDN) (3) Experimental setup for CSDN and open problems (2) Scope limited to CSDNs

[47] 2020 SDN/NFV for IoT (1) NFV overview (1) SDN Scope narrow to IoT

security (2) SDN and NFV for IoT and future direction

[62] 2021 Anomaly detection (1) SDN Overview and security challenges (1) Security Scope limited to

Systems (ADS) (2) ADS Taxonomy, challenges and future directions ADS

[39] 2020 Flow-based DDoS (1) DDoS attack classification (1) Security Scope narrow

Attacks in SDN (2) DDoS attack detection & mitigation to DDoS attacks

(3) Challenges and future direction

[45] 2021 Hybrid SDN (1) HSDN security and privacy (1) Scope limited to HSDN

(HSDN) (2) HSDN network management & deployment tools

(3) HSDN open research challenges & areas (2) Security discussion limited

[33] 2021 SDN control plane (1) Background on SDN CPs (1) Scope limited to SDN

(CP) (2) Centralized and decentralized CPs CP and SDN Controllers

(3) Controller, CP challenges and future directions

[35] 2021 SDN security (1) SDN security background (1) ML/DL discussion limited

Issues and (2) Security in SDN architecture

Solutions (3) Discussion, open challenges and future research
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independently. Thus, a large model with million parame-

ters can be optimized in small, manageable chunks,

requiring significantly fewer resources [67]. DL is shown

to perform significantly well in a wide range of security

applications, especially when dealing with complex prob-

lems in high-dimensional data [67, 68]. In the broader

perspective, DL-based methods can be classified into three

as supervised, unsupervised, and hybrid methods as shown

in Fig. 2.

2.1.1 Supervised (discriminative) deep learning

This category of DL models is trained using labeled data-

sets. Supervised architectures mainly include Multi-Layer

Perceptron (MLP), Convolutional Neural Networks (CNN),

and Recurrent Neural Networks (RNN) along with their

variants [67].

• Multi-layer perceptron (MLP) MLP is a feed-forward

artificial neural network model consisting of a fully

connected input layer that receives the input data to be

processed, an output layer that performs prediction and

classification about the input, and one or more hidden

layers in between these two layers for doing computa-

tional functions. The neurons in the MLP are trained

with the backpropagation learning algorithm. Several

activation functions are used to determine the output of

an MLP network. Its multiple layers and non-linear

activation distinguish MLP from a linear perceptron and

offers to solve problems that are not linearly separable

[67].

• Convolutional neural network (CNN) CNN consists of

two parts feature extraction and classification. Feature

extraction consists of convolution and pooling layers.

The convolution layer takes an input and performs a

series of convolution operations on that whereas the

pooling layer reduces the number of parameters by

downsampling along the spatial dimensionality of the

input [69]. It also deals with the problem of over-fitting,

which may occur in typical neural networks [67]. The

classification layer is a fully connected layer that uses

the features that were taken from a convolutional layer

in the previous steps to calculate the score for each

class. The architecture of CNN is depicted in Fig. 3.

• Recurrent Neural Network (RNN) RNN is a dynamic

feed-forward neural network distinguished by its ability

to learn sequential data over timesteps as shown in

Fig. 4. In conventional feed-forward neural networks,

the output of each unit depends on the current input

with no direct dependency between the current input

and the previous output of the same unit. However,

some applications rely on sequential data, such as

speech recognition and time-series data in which

consecutive samples are correlated [67]. Long Short-

Term Memory (LSTM) and A Gated Recurrent Unit

(GRU) are popular variants of RNN. LSTM contains a

memory cell to remember previous data and three gates

(namely input, output, and forget) to manage the flow of

information in and out of the cell. This variant solves

the issue of the vanishing and exploding gradients that

could happen due to multiplexing many tiny or large

derivatives [70, 71]. GRU is another variant of RNN.

For avoiding vanishing or exploding gradients, LSTM

has a higher memory requirement given multiple

memory cells in their architecture. Similar to LSTM,

GRU uses gating methods to control and manage

information flow between cells in the neural network,

without having separate memory cells [72]. GRU

structure is similar to LSTM without an output gate

and because of this structure, it can capture dependen-

cies from extensive data sequences adaptively without

losing information from earlier portions of the sequence

[67].

Table 2 The list of abbreviations used in this paper

Abbreviation Definition

SDN Software-defined network

NFV Network function virtualization

DDoS Distributed denial of service

IDS Intrusion detection system

ADS Attack detection system

ML Machine learning

DL Deep learning

NN Neural network

DNN Deep neural network

CNN Convolutional neural network

RNN Recurrent neural network

MLP Multi-layer perceptron

GRU Gated recurrent unit

GAN Generative adversarial network

AE Auto-encoder

SAE Stacked auto-encoder

DAE Deep auto-encoder

CAE Contractive auto-encoder

VAE Variational auto-encoder

SOM Self-organizing map

RBM Restricted Boltzmann machine

DBN Deep belief network

DTL Deep transfer learning

DRL Deep reinforcement learning

KNN K-nearest neighbor

SVM Support vector machine

NB Naive bayes
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2.1.2 Unsupervised (generative) deep learning

This category of DL discovers hidden patterns or data

groupings in unlabeled datasets without the need for

manual data labeling [67]. Commonly used DNN tech-

niques for unsupervised learning are as follows:

• Generative adversarial network (GAN) It learns regu-

larities or patterns in input data so that the model can

generate samples similar to the ones in the original

dataset. Although GAN is mainly designed for unsu-

pervised learning problems, it is shown to perform well

for some semi-supervised and reinforcement learning

tasks. Figure 5 illustrates a typical GAN architecture.

• Auto-Encoder (AE) Auto-Encoder creates noise-free

data representation by reducing the dimensionality of

input data as shown in Fig. 6. The encoder reduces the

dimension of the data and the decoder increases it back

to its original size. There are several hidden layers

between the encoder and decoder to learn the relation-

ship between input and output using a backpropagation

algorithm.

• Self-organizing map (som) SOM is another unsuper-

vised learning technique with a feedforward structure

that is used to make a low-dimensional representation

of a dataset while preserving the topological structure

Fig. 2 Basic taxonomy of Deep Learning (DL) methods provided in [67], which classify DL methods into Supervised, Unsupervised and Hybrid

methods and their sub-categories

Fig. 3 Architecture of convolutional neural network

Fig. 4 Representation of recurrent neural networks

Fig. 5 Architecture of Generative Adversarial Networks (GAN)
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of the data. The SOM has the input and output layers,

without any hidden layers. Each neuron is simultane-

ously given a weight value based on the input space and

the weight value is passed to the output without using

any activation function in neurons [73].

2.1.3 Hybrid deep learning

Hybrid deep neural networks combine multiple supervised

or unsupervised deep neural networks. There are three

categories based on the integration of different unsuper-

vised or supervised models as follows:

• An integration of different unsupervised or supervised

models to extract more meaningful and robust features

such as CNN with LSTM and AE with GAN.

• An integration of an unsupervised model with a

supervised model such as DBN?MLP, GAN with

CNN, and AE with CNN.

• An integration of an unsupervised or supervised to a

non-deep learning classifier such as AE with Supper

Vector Machine (SVM) and CNN with SVM.

2.1.3.1 Deep transfer learning (DTL) DTL (illustrated in

Fig. 7) aims to eliminate the need for training data and test

data to be independent and identically distributed. As a

result, there is no need to train the model from scratch in

the target domain, which can significantly minimize the

need for training data and training time in the target

domain. Since DL models typically require significant

computational resources, DTL can tackle this issue by

obviating the need for training a new model for every

task/domain [74]. Yet, it may not be applicable to all

domains and may need human expertise and manual fea-

ture extraction/transformation to perform well.

2.1.3.2 Deep reinforcement learning (DRL) In Reinforce-

ment Learning (RL), an agent chooses actions using a

policy that performs them. These actions result in positive

or negative outcomes through which the agent learns

optimal actions [75]. When RL uses Deep Neural Network

to estimate the policy it is called Deep Reinforcement

Learning. Figure 8 shows the conceptual architecture of

DRL.

2.2 Software defined networking (SDN)

SDN adopts centralized network management and routing

approach to facilitate network management and optimize

routing decisions. SDN architecture is composed of three

layers (i) application layer, (ii) control layer and (iii) data

layer as illustrated in Fig. 9. The data plane (also known as

Fig. 6 The architecture of Auto Encoder (AE)

Fig. 7 The demonstration of Transfer Learning (TL)

Fig. 8 A representation of Deep Reinforcement Learning (DRL)
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the infrastructure plane) is the is comprised of hardware or

software-based forwarding devices which can forward,

drop, and modify packets depending on policies defined by

the control plane. The control plane manages the data

plane’s processing and forwarding functionalities (i.e.,

southbound communication), thus it can be considered the

‘‘brain’’ of the SDN architecture. It can accept requests

from applications (i.e., northbound communication) and

defines forwarding rules to meet the requirements of the

requests. It can also gather performance statistics from data

layer devices to monitor network traffic. The application

layer is composed of applications that can communicate to

the control layer to specify networking demands of appli-

cations such as bandwidth and delay, such that the control

layer configures the data layer in a way that application

requirements can be met.

3 SDN security analysis: architectural
vulnerabilities and attack types

This section will attempt to create a foundation based on

earlier studies and cover aspects not discussed in earlier

review-based studies. Specifically, the use of DL methods

for SDN security is a relatively recent topic, thus we will

focus on presenting attack scenarios as well as proposed

DL-based methods to identify and/or overcome these

attacks.

Figure 10 outlines some of the major attacks that

threaten the different parts of SDN architecture. While

previous survey studies analyzed some of these attacks

[32, 34, 35, 38, 53], they typically do not cover all layers of

SDN. For example, [53] presented a broader perspective on

SDN security without detailing architectural breakdown.

[35] used the STRIDE (Stride, Tampering, Repudiation,

Information Conflict of interest, Denial of Service,

Elevation of Privilege) framework to evaluate the different

security issues and proposed solutions in the existing lit-

erature. This framework makes it challenging to identify

which part of SDN architecture is most vulnerable to which

types of attacks. Furthermore, the individual metrics within

STRIDE are not defined or discussed fully to understand

their relationship to security issues and particular attack

types. [34, 37, 38] provided a layer-wise assessment of

attack vulnerabilities and types as well as related studies.

Similarly, this study will attempt to pair each SDN archi-

tectural component with associated attack types (e.g., DoS,

DDoS, spoofing, and packet injection) and proposed solu-

tions for each attack type to provide a holistic overview of

the security vulnerabilities in each component of SDN.

Please note that we focus on attack types that researchers

applied DL to address them. Hence, not all attack types are

presented in the following sections.

3.1 Vulnerability analysis for control plane

This section will focus on highlighting some of the sig-

nificant security issues that threaten the safety of infor-

mation and data within the control plane. Table 3 lists the

vulnerabilities, proposed solutions as well as their merits.

3.1.1 Denial of service (DoS/DDoS) attacks

DoS/DDoS attacks intend to overwhelm network resources

by generating a large volume of illegitimate requests

thereby preventing network service delivery to legitimate

users. In the control plane context, the purpose of DoS/

DDoS attacks is to prevent the control plane function

properly by overwhelming it with fake requests. By doing

so, legitimate requests from application or data layers are

either delayed or completely dropped due to a lack of

resources. A considerable amount of effort has been put by

researchers to develop effective DoS/DDoS detection and

mitigation solutions [5, 6, 8, 9, 92-95]. Likewise, most of

the studies in DL for SDN security area are primarily

focused on DoS/DDoS detection and mitigation. In this

context, the purpose of a DDoS attack is very similar to a

DoS attack. Only the nature and intensity of the attack

differ from a DDoS attack.

Wang et al. discussed the development of SGuard, a

lightweight and efficient security mechanism, against DoS

attacks [3]. SGuard has two main components as access

control and classification components. The access control

component checks authorization information for packet

source tracing to perform gate-keeping by dropping pack-

ets from spoofed sources. The classification component

uses Self-Organizing Map-based ANN to separate normal

and malicious traffic flows. Future studies should attempt

to reduce system training time and practical assessment of

Fig. 9 Basic three-tiered model of Software Defined Networks

(SDN). The tiers are called application layer, control layer, and data

(infrastructure) layer [43]
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SGuard on complex, functional network topologies. Jia et.

al. combine LSTM with SVM to process time-series flow

characteristics for DDoS attack detection in a Space-based

network with SDN [77]. SVM is used to solve the mis-

classification problem caused by the sensitivity of the

LSTM model during the network startup phase. The pro-

posed solution is shown to reduce the attack detection time

as well as the system overhead.

Alanazi et al. proposes a DL-based ensemble solution

for DDoS attack detection by adopting three ensemble

techniques and different DL architectures such as CNN,

LSTM, and GRU. Experiments are conducted using flow-

based dataset CIC-IDS2017. The results showed high

attack detection accuracy (99:77%) using a small number

of flow-based features [78].

Performance and Features (P and F) is a lightweight,

real-time framework to detect and mitigate Low-rate DoS

(LDoS) attacks [7]. It uses Gradient Boosting Decision

Tree-based ML method to analyze the performance of

normal traffic under attack state and then to detect the

presence of LDoS attacks. Moreover, P and F can also

locate attack sources and victims according to flow features

(F) of LDoS attacks based on time-frequency analysis. Shin

et al. proposed AVANT-GUARD to reduce southbound

(between the controller and network devices) communi-

cation requirement in OpenFlow protocol, thereby mini-

mizing DoS attack surface [4]. Results reveal the

effectiveness of AVANT-GUARD against TCP SYN

flooding and network scanning attacks. However, it is

unable to protect other parts of SDN against DoS attacks. A

probabilistic model for proxying and blocklisting network

traffic is used in LineSwitch, a method to prevent DoS

attacks from affecting the control plane and preserving

network functionality [7]. Results from experiments under

different traffic and attack scenarios reveal the considerable

promise of LineSwitch in comparison with AVANT-

GUARD. However, there are some practical issues with

LineSwitch activation, such as jitter, which can cause

problems in the delivery of high-speed services (such as

Voice-over-IP (VoIP)).

Yuhua et al. proposed an unsupervised learning-based

method using K-means?? and Fast K-Nearest Neighbors

(K-FKNN) for DDoS detection using NSL-KDD dataset

[96]. In another study, a Gated-Recurrent Unit (GRU)

based Deep Learning (GRU-DL) model is combined with

fuzzy logic to detect and mitigate a variety of DDoS

attacks by exploiting commonly used applications and

services (e.g., MSSQL, NetBios, SSDP, and UDP). This

system was tested by a real-world dataset and an emulated

traffic and the results were compared with DNN, CNN, and

LSTM methods and show GRU has similar results to CNN

and LSTM but better than DNN [80]. A back-propagation

neural network-based deep reinforcement learning DDoS

mitigation strategy was developed in [76], which leveraged

multiple controllers and two modules (namely anomaly

detection and dynamic defense). The anomaly detection

Fig. 10 Some of the major security vulnerabilities in Software Defined Networks
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module focuses on switches in the data plane for traffic

flow classification. The controller dynamic defense module

mitigates DDoS attacks by remapping the controller and

sending the access control message to switches. Another

study used sFlow and adaptive polling sampling with Snort

IDS to identify the network traffic, and then classify the

traffic using Stacked AutoEncoder (SAE) as benign and

malicious traffic in IoT networks [81]. In the data plane,

sFlow and adaptive polling-based sampling are leveraged

to capture network statistics. In the control plane, Snort

IDS with Stacked Auto-Encoders (SAE) Deep Learning

model is used to detect DDoS attacks. The proposed

solution attains 95% true positive and 4% false positive

rates, but incurs has high computational overhead.

Hu et al. proposed Deep One-Class Intrusion Detection

System for DoS detection in industrial SDNs using an

LSTM autoencoder. The authors first collected network

flow features into vector sequences and inputted them into

an encoder for the encoding process. The encoding result is

sent to a decoder, and a scorer, respectively. The decoder

outputs the reconstructed feature vector sequence. The

scorer calculates and returns a novelty score for encoding

which is compared to a predefined detection threshold to

detect the presence of abnormal traffic. This system is

Table 3 Security vulnerabilities and proposed solutions for SDN control plane

Attack type Attack objective Proposed solution Advantage DL/ML method

DoS/DDoS Exhaust resources Safeguard scheme [76] Uses multiple controllers Back propagation neural network

SNB-SDN [77] Reducing attack detection time Long short term memory

Using small number of Long short term memory

Ensemble DL [78] flow-based features Convolutional neural network

Gated recurrent unit

Deep CNN-Ensemble

[79]

Efficient/Scalable framework Convolutional neural network

GRU-DL [80] Mitigates multiple DDoS attacks Gated recurrent unit

sF-APS-DL [81] Effective performance Stacked autoencoder

LSTM-CSSD [82] High performance framework Long short term memory

Limiting access to Enhanced performance using Long short term

network services DO-IDS [12] unbalanced datasets and optimized Memory-based autoencode

one-class detection algorithm

GRU-DL [80] Mitigates multiple DDoS attacks Gated recurrent unit

RNN-LSTM [83] Good trade-off betweenprecision and

recall metrics

Long short term memory

CIDS [84] Detect abnormal network behaviors at

entire VANET

Generative adversarial network

LEDEM [85] Prevent saturation issues Extreme learning machine

Rl-shield [86] Mitigate attack by persistent re-routing Deep reinforcement learning

CyberPulse [87] Classify malicious flows with high

accuracy

Multi-layer perceptron

CNN ensemble

Framework [79]

Scalability and Cost-effectiveness Convolutional neural network

DLSDN [88] High accuracy using various DL

methods

Stacked auto-encoder multi-layer

perceptron

SD-IIoT [89] Generating real-like network traffic Deep reinforcement learning

Topology

Poisoning

Limiting network

visibility

MLLG [90] Prevent Link Fabrication Multi-layer perceptron

DRL-ATS [91] Effective recovery mechanism Deep reinforcement learning

Packet

Injection

Network service

disruption

SD-IIoT [89] Generating real-like network traffic Deep reinforcement learning

SNB-SDN space-based network based software-defined network, CNN-EF CNN-ensemble framework, GRU-DL gated recurrent unit deep

learning, sf-aps-dl sFlow and adaptive polling sampling for deep learning, LSTM-CSSD long short-term memory-based collaborative source-side

DDoS, DO-IDS deep learning-based one-class intrusion detection scheme, CIDS collaborative intrusion detection system, LEDEM learning-

driven detection mitigation, DLSDN deep learning for SDN, MLLG machine learning-based link guard, DRL-ATS deep reinforcement learning-

based attack tolerance scheme
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evaluated using two public datasets, KDD99 (data with 14

attack types) and NSL-KDD (data with 16 attack types).

The results of this system show high detection speed and

enhanced accuracy [12]. A recent study developed an early

warning system for intrusion detection in SDN using the

Deep CNN network that detects DDoS attacks. Using 11

features from the dataset InSDN, the proposed method was

able to provide an accuracy of 100% [13]. A comparison of

different ML and DL frameworks was presented for

intrusion detection systems in SDNs. The LSTM-FUZZY

system presented in this work has three distinct phases:

characterization, anomaly detection, and mitigation. Out of

the different ML and DL systems, the LSTM-based net-

work was able to provide the highest performance (accu-

racy greater than 98.0%) on two different flow datasets

(e.g., CICDoS 2017 and CICDDoS 2019) [97]. For SDN-

IoT applications, a novel Deep Learning-based three-tier

intrusion detection and mitigation system was developed in

another research. The proposed approach was evaluated

based on different network simulation scenarios, which

provided detection accuracy results of 97.7% [98].

In another study, LSTM and CNN models are used for

DDoS (TCP, UDP, and ICMP flooding) detection and

mitigation that can be launched against SDN controllers.

The training dataset comprising normal and malicious

(DDoS) traffic is collected using Mininet. The performance

of the deep learning models is compared against classical

machine learning models (KNN, NB, and SVM) to show

that the LSTM model produced higher performance than

ML methods [83]. For distributed SDN-based VANETs, a

GAN (Generative Adversarial Networks)-based solution

for DDoS detection has been developed in [84]. It enables

multiple SDN controllers to collectively train a global IDS

for the entire network without directly exchanging sub-

network flows. A semi-supervised Deep Extreme Learning

Machine (SDELM) was developed in [85] for DDoS

detection and mitigation for SDN-managed IoT networks.

The performance of the proposed method is compared

against other learning-based methods (e.g., AdaBoost,

SVM, Deep Belief Network, Naive Bayes) to demonstrate

its superior performance.

Rezapour et al. proposed a novel Deep Reinforcement

Learning-based approach, RL-Shield, for Link Flooding

Attack (LFA) detection and mitigation [86]. Using differ-

ent attack strategies (e.g., persistent attack, strategic attack,

and collusion attack) on four separate real network

topologies (e.g., ARPANet, NSFNet, Evolink, and GTS-

CS), authors demonstrated that RL-Shield outperforms

other routing-based approaches such as GKLD [99].

CyberPulse is a DL-based method for flooding attack

mitigation on SDN control channel [87]. A comprehensive

review has been conducted to assess the performance of

deep learning classification, and a side-by-side comparison

has been made against other solutions to show that

CyberPulse can classify malicious flows with high accu-

racy and mitigate them effectively.

Ahuja et al. applied DL models to detect DDOS attacks

such as TCP-SYN, UDP flooding, and ICMP flooding

attacks. Authors generated a custom dataset to train the

models [100]. The results show 99:75% accuracy by

applying a Stacked Auto-Encoder Multi-layer Perceptron

(SAE-MLP) that is comprised of several autoencoders tied

together where the output of one autoencoder is fed to the

input of another, and a SoftMax classifier also is used for

feature extraction [88]. Wang et al. proposed a deep rein-

forcement learning (DRL)-based attack tolerance

scheme to let regular traffic bypass forwarding nodes and

controllers in software-defined IIoT (Industrial Internet of

Things) that have been targeted by DDoS attacks (e.g.,

packet flooding, packet injection, link fabrication, etc.).

The proposed approach uses a generative adversarial net-

work (GAN) to flexibly generate real-like network traffic

for more sufficient and effective experimental verification

of the attack tolerance scheme. Experimental results show

that the proposed scheme can significantly improve the

successful arrival rate of IIoT traffic and achieve near-op-

timal results [89].

3.1.2 Topology poisoning attacks

In this attack type, the attacker hijacks the control plane

resources and prevents the controller from accurately

assessing the network topology. Due to the lack of effective

authentication mechanisms in the SDN control plane, the

legitimacy of topology information, including switches,

hosts, and internal links cannot be verified reliably [44].

Furthermore, the existing mechanisms are simple and

predictable thus attackers can easily hack the system and

gain unauthorized access. In order to provide reliable

protection from these attacks, a number of studies have

proposed reliable and robust security mechanisms. An

attacker can forge link layer discovery protocol (LLDP)

packets to create a fake link (link fabricating attack) [89]. If

the controller updates the network topology according to

forged LLDP packets, it will have a false network view and

make wrong decisions based on it. Jiadai et al. introduced a

deep reinforcement learning (DRL)-based attack tolerance

scheme to separate actual traffic from attack traffic such as

link fabrication that targets forwarding nodes and con-

trollers in software-defined IIoT (Industrial Internet of

Things) networks. TopoGuard [101] avoids poisoning

attacks by assigning a special attribute to active ports of all

switches, which enables the controller to identify the origin

of the traffic. It uses an encryption-based authentication

mechanism to avoid spoofing attacks. One of the limita-

tions of TopoGuard is that it is unable to protect against
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relay-type link fabrication attacks. Consequently, Topo-

Guard? was developed after two major vulnerabilities of

TopoGuard against new topology attacks were discovered,

namely port amnesia and port probing [102]. TopoGuard?

checks for suspicious port reset events and tracks the

latency of inter-switch links to detect link fabrication

attacks using topology packets leveraging out-of-band

channels.

In another study, the Link Latency Attack (LLA) is

introduced in which an adversary can add a fake link into

the network and corrupt the controller’s network topology

view [90]. This attack can compromise the end hosts

without the need to attack the SDN-enabled switches. The

authors developed an ML-based Link Guard (MLLG)

framework to defend against LLAs. Results show an

accuracy of 98:22% in detecting the attack. MLLG out-

performed TopoGuard? by 16% in accuracy. A Deep

Reinforcement Learning-based Attack Tolerance

Scheme (DRL-ATS) for SDN-based Internet-of-Vehicles

(IoVs) has been discussed in [91]. The scheme can tolerate

topology poisoning attacks by adaptively adjusting the

service deployment in the SDN-enabled vehicular edge

network.

3.1.3 Packet injection attacks

This is a relatively recent vulnerability for SDN thus

received little attention in the literature. Yet, it can have a

severe impact on different parts of SDN architecture by

injecting manipulated packets into SDN. It can lead to

service disruption in the control plane along with an

increase in resource consumption in the data plane [103].

Wang et al. uses the SDN controller’s improper exception

handling to disconnect the control channel. Specifically, it

tampers the packet-in message’s length field and sends it to

the controller. The authors propose a DRL-based attack

tolerance scheme to distinguish real traffic from fake ones

[89].

3.2 Vulnerability analysis of data plane

Most common data plane attack types include DoS/DDoS,

unauthorized access, side-channel attacks, fraudulent rule

insertion, flow-rule flooding, and ARP poisoning

[34, 37, 38]. In this study, we present Denial-of-Service

(DoS/DDoS), and side-channel attacks based on the

availability of DL-based methods.

3.2.1 Denial of service (DoS/DDoS) attacks

In DoS/DDoS attacks, the attacker generates traffic flow

that overwhelms the links between switches in the data

plane and creates a bottleneck to prevent network service

delivery to legitimate users and their generated traffic. It is

for this reason, DoS/DDoS attacks affect multiple parts of

SDN architecture and cause considerable damage in terms

of service delivery. Table 4 highlights different DL-based

solutions that target data plane attacks.

According to [112], DoS attacks targeting SDN data

planes can be classified into two groups, M-DoS and

S-DoS. Multiple flow entries (M-DoS)-based attacks intend

to exhaust the Ternary Content-Addressable Memory

(TCAM) resource of the switch. Single entry (S-DoS)

attacks, on the other hand, target a link between the net-

work device and the SDN controller. In this respect, the

authors proposed a Back-Propagation Multi-feature-based

Neural Network (BP-MFDD). Results reveal that BP-

MFDD is able to effectively detect both types of attacks.

However, the computational time of the proposed mecha-

nism increases with an increase in flow rate, which is one

limitation that future work can attempt to rectify.

Razib et al. developed a DNN-LSTM-based method for

intrusion detection system in SD-IoT networks [105].

Three different DNN-LSTM variations (namely Cu-

DNNLSTM, Cu-DNNGRU, and Cu-BLSTM) are imple-

mented and validated using CICIDS 2018 dataset. Their

performance is also compared to state-of-the-art solutions

that utilize GRU-LSTM, GRU-RNN, and Generalized

Suffix Tree models. However, the authors fail to provide an

attack-level performance evaluation for this system. A

Double Deep Q-Network-based intrusion response algo-

rithm developed in [104] to provide rapid response against

TCP SYN Flooding and Link Layer Flooding attacks. The

performance of the proposed method for detecting the

attacks is evaluated using metrics such as the ratio of

malicious packets dropped and the number of flow rules.

Ali et al. analyzed current strategies for malicious traffic

identification and listed the shortcomings of the classical

machine learning method. The authors showed that DNN

attains higher accuracy. The presented models were eval-

uated using KDD-CUP99 and NSL-KDD datasets and

obtained 99:6% accuracy on attack detection [113].

Thu et al. proposed Deep Deterministic Policy Gradient

(DDPG)-based Deep Reinforcement Learning approach for

DDoS detection and mitigation system in Software-defined

satellite networks (SDSNs) [106]. The proposed model is

composed of an actor-network and a critic network. The

actor-network adjusts policy parameters, and the critic

network evaluates the policy function of the actor-network

using a time-difference error. The performance of the

proposed DDoS mitigation system is compared against

different types of DL models such as LSTM, Densely

Connected Network, and Gated Recurrent Unit in terms of

power consumption for normal, abnormal, and total traffic.

A semi-supervised Deep Extreme Learning Machine

(SDELM) was developed in [85] for DDoS detection and
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mitigation for IoT using SDN-Cloud architecture. The

performance of the proposed method was compared against

other ML/DL methods (e.g., AdaBoost, SVM, Deep Belief

Network, Naive Bayes) to demonstrate superior

performance.

A hybrid Deep Learning framework with Restricted

Boltzmann Machines (RBM) and SVM was utilized for

anomaly detection in multimedia applications in SDNs

[108]. The proposed system was evaluated on different

datasets (e.g., KDD99 and custom dataset) and it is shown

to attain a detection accuracy rate of 99:0% for KDD99. It

also obtained more than 90% accuracy for the custom-

generated dataset in detecting stealthy DDoS and volu-

metric DDoS attacks. ElSayed et al. proposed an LSTM-

Autoencoder-based model for DDoS attack detection and

mitigation. This paper uses two popular feature selection

methods as Information Gain (IG) and Random Forest (RF)

to find the most relevant features for each dataset (InSDN,

CICIDS2017 and CICIDS2018). The comparison against

other ML/DL models (e.g., SVM, Naive Bayes, Decision

Trees, Random Forest, Logistic Regression, and DDoSNet

[114]) showed the proposed approach provides a high

attack detection rate, more efficient training time, and

lower overhead on network performance [115]. Scaranti

et al. developed anomaly detection models using Using

Artificial Immune System (AIS) and Fuzzy Logic models

[116]. The proposed solution is tested with experimental

and open-source datasets (i.e., CiCDDoS2019) and com-

pared against state-of-the-art solutions. The results indicate

that AIS was able to surpass other ML-based techniques

(e.g., Naive Bayes, Random Forest, K-NN, and Local

Outlier Factor) for most of the evaluation metrics. Another

study compared the performance of ANN with various

classic ML algorithms (e.g., Logistic Regression, Support

Vector Classifier, KNN, Random Forest, Ensemble Clas-

sifier, and Support Vector Classifier with Random Forest)

for DDoS detection. Results show that the hybrid model of

the Support Vector classifier with Random Forest has the

highest accuracy [117]. Tang et al. introduced a Gated

Recurrent Unit (GRU)-based approach for DDoS attack

detection in SDNs [11]. The proposed model achieved

higher accuracy compared to other ML-based approaches

(e.g., Naive Bayes, SVM, and DNN) using six features

from the NSL-KDD dataset. Another study [110] built an

efficient defense mechanism using three different DL

algorithms against DDoS attacks in SDNs. The proposed

models are evaluated on the ISCX dataset and they were

found to attain 98% accuracy. Novaes et al. used Genera-

tive Adversarial Network (GAN) framework to alleviate

the impact of DDoS attacks in SDNs. The authors com-

pared the obtained results from the GAN framework with

different DL algorithms (e.g., LSTM, CNN, MLP) to

Table 4 Security vulnerabilities and proposed solutions for SDN data plane

Attack

type

Attack objective Proposed solutions Advantage DL method

Deepair [104] Superior compared to the Q-learning based

approach

Deep reinforcement learning

DNNLSTM [105] Efficient threat detection, high accuracy and low

resource consumption

Deep neural network and long short

term memory

SDSN [106] Reduce energy consumption Deep reinforcement learning

DNN-IDS [107] High efficiency Deep neural network

LEDEM [85] Successful working in a real hardware network Deep belief network

DoS/

DDoS

Network service

disruption

Hybrid framework

[108]

High bandwidth and low latency Restricted Boltzmann machine

LSTM-Autoencoder-

based [109]

High performance of controller Long short term memory

Convolutional Neural Networks

DDoS defender [110] Easy real-time update of detection Long short term memory and

recurrent neural networks

DCNN [79] Minimal computational complexity Convolutional neural networks

Distributed SDIN

[50]

Distributed control plane Deep reinforcement learning

LSTM-FUZZ [97] Automatic execution of activities Long short term memory

DeepGuard [1] Enhanced traffic flow monitoring capability Deep reinforcement learning

IDPS [111] High performance of controller Recurrent neural networks

DLSDN [88] High accuracy using various DL methods Multi-layer perceptron
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highlight superior performance using the public dataset

such as CiC-DDoS2019) [118].

To classify DDoS attacks based on IP flow traffic, [79]

utilized an ensemble Deep CNN framework. The perfor-

mance of the proposed network was compared against

other state-of-the-art solutions using the CICIDS2017

dataset. In various performance metrics, the proposed

solution was able to obtain 99:4% detection accuracy. For

industrial SDNs, an attack mitigation scheme using Deep

Reinforcement Learning and distributed control plane has

been proposed in [50]. The performance of the proposed

system is tested against different types of attacks (e.g.,

topology forgery and packet in flooding attacks scenarios)

and performance metrics (e.g., detection time). The pro-

posed system can isolate the attack source by adaptively

adjusting the switch takeover and can achieve near-optimal

performance. The use of a hybrid deep learning framework

was discussed in another study [97]. The framework

combined LSTM memory cells and Fuzzy Logic networks

to prevent different types of attacks including DDoS and

port scan attacks. The framework was able to provide a

high level of performance (Recall = 93:13% for one of the

attack scenarios) on CICDDoS 2019 dataset. A Double

P-value of Transductive Confidence Machines for the

K-Nearest Neighbors algorithm (DPTCM-KNN) was pro-

posed for detecting anomalous flows in SDNs [119].

Although the attack-level analysis is missing, the system-

level analysis and comparison with other methods (e.g.,

TCM-KNN, KNN-ACO, and ABT-SVM) using different

metrics (e.g., accuracy, FPR, TPR) returned promising

results.

A Sampled Density Peak-based Clustering algorithm is

leveraged to develop Anomaly Detection System (ADS) in

[120]. The performance of the proposed system is com-

pared to other clustering-based approaches (e.g., DBScan,

Birch, K-means, MeanShift) to reveal higher detection

accuracy. FADE [121] is an ADS that analyzes the network

topology and flow rules and computes a minimal set of

flows that covers all forwarding rules. It then calculates an

optimal number of monitoring positions on its path and

installs dedicated rules for flow statistics collection. FADE

also manages the expiration of existing rules and the

installation of updated rules to ensure the accuracy of

collected statistics. The authors also proposed a scalable

version of FADE, called iFADE, that can reduce the

number of rules by 40% when compared to FADE. FADE

and iFADE are lightweight ADS models, as they reduce the

overhead of control messages by about 50%–90% com-

pared to state-of-the-art solutions such as SPHINX [122]).

Another study utilized a Deep Reinforcement Learning-

based system (DEEPGUARD with Double Deep Q-Net-

work (DDQN)) for anomaly detection and effective traffic

flow management in SDNs. The learned optimal traffic

flow matching control policy allows the extraction of

useful traffic information that improves anomaly detection

[1]. Shafi et al. developed an ADS for Fog-Assisted DDoS

section framework for IoT networks, E3ML, using

Recursive Neural Networks (RNN), Multi-Layer Percep-

tron (MLP), and Alternate Decision Trees (ADT) to detect

DoS attacks [111]. The models are tested using UNSW-

NB15 dataset and the results show that ADT model yields

the best performance (near 100% precision and recall)

when the attack detection interval is set to 60 seconds or

more. On the other hand, the proposed hybrid model,

E3ML, attains better results at shorter detection intervals

and comparable results when using higher detection

intervals.

Musumeci et al. investigates how data plane pro-

grammability, enabled by P4 language, can be used to

detect DDoS attacks directly on network switches with the

need to involve SDN controllers. It investigates the

potential of using ML models to perform automated DDoS

detection such as SYN flooding attack detection. The

results show that all ML algorithms achieved more than

98% in accuracy, precision, recall, and F1-scores. Classi-

fication time remained in the order of a few hundred

microseconds, indicating a significant reduction in detec-

tion latency when models are evaluated in the data plane

[123]. pHeavy is another ML-based method for P4-enabled

devices to detect elephant flows which can be used for DoS

attack prediction in the data plane [124]. Thus, the results

show that pHeavy can predict heavy flows accurately.

Euclid is also a p4-based method that utilizes information-

theoretic and statistical analysis for DDoS attack detection

and packet classification [125]. This paper uses the CAIDA

[126, 127] dataset to evaluate the proposed mechanisms

and the results show that Euclid can detect attacks with

high accuracy (98:2%) and low delay (around 250 ms).

3.2.2 Side-channel attacks

In side-channel attacks, attackers use various methods

(analyze the time gap or the flow configuration delay in the

flow tables) to access confidential information such as

network configuration [38]. Previous research analyzed the

intricacies of the attacks and the level and extent to which

these attack types can cause SDN security vulnerabilities.

For example, different fingerprinting-based techniques

have been developed to explore and exploit the different

weaknesses such as the time gap in flow table update

messages. In this respect, a time-based fingerprinting

method was developed in [128]. Cui et al. used dispersion

in packet pairs sent between controllers to switches to

deduce flow rules, network configuration, and controller

type [129-131].
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Interestingly, most studies on data plane side-channel

attacks are focused on finding new attack surfaces in the

existing SDN implementations. FlowKeeper is one of the

very few studies that attempt to robustify the SDN data

plane to mitigate attacks including side-channel attacks

[132]. It introduces a dynamic delay adjustment method for

communication between switches and a controller to pre-

vent side-channel attacks without hampering the perfor-

mance of benign traffic considerably. Another research

proposed an integrated SDN-IoT architecture that can

detect side channel attacks in IoT networks [133]. In this

architecture, a Fuzzy Neural Network (FNN) based attack

detection system is developed using NSL-KDD datasets.

The proposed model uses the value of signal noise ratio and

sudden lack of memory as features to detect the attacks.

The confusion matrix analysis reveals that the proposed

FNN-based attack detection system can detect the attacks

with an accuracy of 83%.

3.3 Vulnerability analysis of application plane

Application plane is susceptible to different attacks

including service neutralization, application termination,

and communication disruption [34]. Singh et al. mentioned

fraudulent rule manipulation, network service adversary,

and unauthorized access into the list [38]. Rahouti et al.

added malicious application-based attacks and authoriza-

tion-related attacks to the list of vulnerabilities [37]. Hence,

it can be said that control and data plane security vulner-

abilities and proposed solutions have been given consid-

erable attention in the literature. In comparison, application

layer and communication interface have not been studied

sufficiently. This is mainly because SDN controllers

(control plane) and switches (data plane) are considered

more critical components that regulate and manage flows.

Consequently, Table 5 merges the vulnerabilities for

application plane and communication interfaces.

Application layer flooding attacks targeting higher lay-

ers of the protocol stack such as DNS, NTP, SNMP, and

HTTP are widespread. VARMAN (adVanced multi-plAne

secuRity fraMework for softwAre defined Networks) is an

Intrusion detection system that used Poisson distribution

for the traffic generator and replayed the collected traffic

trace files using the fprobe tool to target HTTP services.

The proposed ML workflow for attack detection and mit-

igation in the SDN controller consists of two main types of

traffic flow classifiers, namely Non-Symmetric, Stacked,

Deep Autoencoder Learning, and Random Forest Classi-

fier. VARMAN detects the application layer attack traffic

patterns by matching the request/response packets and

identifying malicious behavior in the protocol semantics

[134].

Griffin is an unsupervised learning-based (Deep

Autoencoders) IDS for the detection of known and zero-

day intrusion attacks in real time [14]. Griffin employs

feature extraction, cluster analysis for dimensionality

reduction, and an ensemble autoencoder to further extract

features with low complexity and high precision before

training a model. The authors state that the application

plane of SDN is vulnerable to reconnaissance attacks in

which malware finds devices that use the default username

and password combinations. Griffin has been evaluated

with the open datasets (e.g., Mirai, Active Wiretap) to

demonstrate its detection effectiveness. The results show

that Griffin’s complexity is about 40% lower, and its

accuracy is up to 19% higher than existing NIDSs (e.g.,

flow-level clustering, SVM, Random Forest, Suricata).

INDAGO [136] is a proactive mechanism that statistically

analyzes the application behavior using an unsupervised

learning-based K-means clustering algorithm and auto-

matically detects malicious activities in applications. They

implement Security Sensitive Behavior Graph (SSBG)

used for extracting the control plane semantic features and

behavior profiling [136]. However, one of the limitations of

INDAGO [136] is that it does not provide real-time mali-

cious application detection.

Table 5 Security vulnerabilities and proposed solutions for application plane and communication interface in SDN architecture

Attack type Attack objective Proposed solutions Advantage DL method

Application plane

Flooding attack Higher layers of protocol stack VARMAN [134] Real-time detection Deep Autoencoder Learning

Reconnaissance Unauthorized Griffin [14] Real-time and high accuracy Deep Autoencoder Learning

Attack Access

Communication interfaces

MiTM Data sniffing Griffin [14] Real-time and high accuracy Deep autoencoder Learning

CNN-LSTM [135] High detection speed CNN and LSTM
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3.4 Vulnerability analysis of communication
interfaces

Some of the attack types discussed by [38] for the different

communication interfaces include man-in-the-middle,

sniffing, resource saturation, and service chain jamming.

Some of the cross-layer attacks mentioned in [37] include

cross-path attacks, teleportation attacks, rootkit attacks, and

controller placement-related attacks. Cross-path attack is

another type of attack that the communication interfaces

are vulnerable to. In a cross-path attack, the attacker’s

objective is to disrupt the communication between data

plane devices and controller [137]. The attacker can

achieve this goal by launching a saturation attack that sends

a vast number of spoofed packets to reduce the possibility

of matching any of the existing flow entries on the targeted

switch [138]. Such a data-to-control plane flooding attack

may exhaust the controller’s computation resources

thereby disrupting the effective operation of OpenFlow

switches [138]. To tackle this problem, authors in [138]

investigate the impact of measurement time-window on

attack detection performance for SVM, Naive Bayes (NB),

and K-NN classifiers. The NB model obtained the highest

performance with 85% precision, 96%, 91% F-1 scores

using one minute as an attack detection time window.

Man-in-the-Middle (MiTM) attacks can threaten one or

more of the communication channels and interfaces

between the different layers of the SDN architecture. In

MiTM, an intruder injects a host between source and des-

tination communication to sniff the data during commu-

nication [38]. Griffin [14], a Network Intrusion Detection

System, uses an ensemble of autoencoders to detect both

known and zero-day intrusion attacks in real-time with

high accuracy. Specifically, Griffin uses an efficient feature

extraction framework to capture the sequential features of

the traffic packets. It shows higher accuracy in detecting

MiTM attacks compared to Support Vector Machines and

Random Forest models.

Ahuja et al. developed ML models to detect ARP Poi-

soning and ARP Flooding attacks [135]. The CNN-LSTM

model outperformed the other machine and deep learning

algorithms tested including LR, NB, SVC, DT, RF, EC,

ANN, CNN, LSTM, and CNN-LSTM, with an accuracy

score of 99:73% and a false positive rate of 0:017%.

Another research proposed to detect side channel, man-in-

the-middle, malicious code, and DDoS attacks using Fuzzy

Neural Network (FNN) [133]. The FNN is trained and

tested using NSL-KDD datasets. SSH alarms for redirect-

ing SSH/HTTPS sessions, security certificate error mes-

sages, and phishing emails are being used to detect MiTM

attacks. The confusion matrix analysis reveals that the

proposed FNN-based attack detection system can detect the

attacks with an accuracy of 83%.

4 Training datasets and performance
evaluation metrics

In this section, three main aspects at the intersection of

Deep Learning and SDN will be highlighted in three sep-

arate sub-sections. Due to the importance of data quality

and quantity for training and validation of DL methods, we

start with the review of some of the existing publicly-

available datasets to revisit the claims that data limitation is

a major challenge in the adoption of DL methods for SDN

security [32]. In the second subsection, we outline the

performance evaluation metrics developed to examine the

performance of various security enhancement models. In

the third subsection, we discuss the types of DL-based

SDN security applications and provide a taxonomy based

on the scope of the work.

Another interesting insight from examining the perfor-

mance metrics outlined in different studies is that they do

not provide an attack-by-attack performance, rather they

provide an overview of the overall performance of the

proposed systems. However, providing performance in this

manner would allow the authors as well as other

researchers to have a better appreciation of the strengths as

well as weaknesses, and deficiencies of the different SDN

security systems against different attack types. Similarly,

most of the studies in this field do not provide a link

between earlier studies and their study when providing

relevant metrics to gauge the performance of their SDN

security systems. This disconnect and lack of validation

with respect to utilizing different statistical measures make

it difficult to provide a reliable cross-examination between

different studies outlining different SDN security systems.

This apparent disconnect can be reduced by clearly high-

lighting which measures they are using (this part is present)

and providing an effective rationale regarding why they are

using those specific measures by mentioning relevant and

credible studies that have suggested the usage of those

metrics (this part is currently lacking).

4.1 Dataset for deep learning-based SDN
security methods

For any learning-based method, the quality and quantity of

data is the key to developing a successful solution. This is

even more critical for DL-based methods as they, by

design, require a considerable amount of data to ensure that

the developed model is accurate and performs well with

new data. Yet, earlier SDN security studies did not inves-

tigate this aspect in sufficient detail. Thus this study
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provides the first in-depth analysis of the dataset used in

SDN security papers. Table 6 lists the major datasets used

for SDN security. Luckily, many of the public datasets

[139-145] contain more than a million entries, which is a

promising sign, especially for DL models that are highly

dependent on quality and quantity of data. Feature set size

for each dataset ranges between 14 and 83. It is important

to note that feature set size is not necessarily an indicator of

performance since most studies apply feature extraction to

remove redundant or irrelevant attributes before training

DL models. Moreover, some of the datasets provide

metadata [141-147] along with raw data, while others

[139, 140, 148] do not provide such accompanying

information.

Existing dataset are either generated using real-world

networks [141-148] or simulations [139, 140, 149]. While

the dataset captured from real-world networks offer more

realistic results, they typically suffer from class imbalance

as many types of attacks are either detected rarely or not

detected at all. On the other hand, synthetic datasets cap-

tured in simulated networks can be misleading due to

failure to reflect real network behavior in terms of scale,

topology, and traffic characteristics. Moreover, it is nearly

impossible to assess the reliability and credibility of the

generated data.

Another issue with the most available dataset is that they

are collected from small, non-SDN networks; thus, trained

models may not work well in large-scale production SDN

networks due to differences in traffic scale and behavior.

InSDN [149] is the only dataset that was generated in a

simulated SDN network, but it also has similar issues due

to being generated in a simulated environment using syn-

thetic traffic. Consequently, in the absence of an open-

source dataset generated from actual, physical SDNs, it is

nearly impossible to establish a benchmark to test the

feasibility of proposed mechanisms for real-world

networks.

4.2 Performance evaluation metrics for SDN
security methods

An essential aspect of evaluating a solution is presenting

evaluation results using well-known performance metrics.

Hence, this section presents commonly used performance

metrics in existing studies. Table 7 presents performance

metrics used in previous SDN security papers. True

Table 6 Open-source datasets used to train and evaluate Deep Learning models

Study Dataset

name

Year Attack

classes

Attack types Sample

size

Features Limitations

[139] KDD99 1998 22 train/

15 test

DoS, Probe, R2L, U2R 5.0 M 41 Data duplication very high

[140] Kyoto 2006 N/A N/A 93 M

sessions

24 Imbalanced class distribution, attack

types not known, synthetic dataset

[148] NSL-

KDD

2009 N/A DoS, Probe, R2L, U2R 150,000 41 Synthetic dataset

[141] ISCX-

2012

2012 4 train/

test

HTTP DDoS, SSH-BF, Infiltration 2.0M

packets

N/A Only contains HTTP traffic, limited

features for ML/DL training

[142] UNSW-

NB15

2015 9 train/

test

DoS, Fuzzer, Backdoor, Shellcode,

Worm

2.54 M 49 Imbalanced train/test distribution

[143] AWID 2016 3

test/train

Flooding, Injection,Impersonation 2.4M 58 Highly unbalanced dataset

[144] CICIDS-

2017

2017 14

test/train

DoS, DDoS, Botnet, CSS, Portscan,

SSH-HB, Infiltration, SQL-I

2.83M 83 Redundant records, missing class

labels

[146] CIDDS-

001

2017 4 train/

test

Portscan, Pingscan,DoS, BF 325,865 14 Imbalanced dataset

[145] CSE-CIC-

IDS-

2018

2018 7

test/train

Botnet, Slowloris, DoS, DDoS, CSS,

SSH-BF, SSH-HB, Portscan, SQL-I

16.2M

instances

83 Synthetic dataset, high class

imbalance

[147] CiC-

DDoS

2019

2019 12 train/6

test

DDoS 674,463 87 Slightly Unbalanced dataset

[149] InSDN 2020 7 train/

test

Botnet, DoS, DDoS, Web attacks,

Password, BF, Probe, Exploitation

343,939

instances

83 High class imbalance, synthetic

dataset

CSS cross-site scripting, BF brute force, SQL-I sequential query language injection, HB heartbleed, AWID aegean wi-fi intrusion dataset, CIDDS
coburg network intrusion detection dataset
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Positive (TP) signifies how many positive class samples a

model predicted correctly. True Negative (TN) refers to

how many negative class samples a model predicted cor-

rectly. False Positive (FP) and False Negative (FN), on the

other hand, indicates incorrect positive or negative pre-

dictions by a model, respectively. Accuracy is the simplest

metric to implement and is defined as the number of correct

predictions made as a ratio of all predictions made. It

works well only if there are an equal number of samples

belonging to each class and can be calculated with the help

of the following formula:

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð1Þ

Precision explains the percentage of correctly identified

positive samples to the total number of positive predictions.

It is calculated as follows:

Table 7 Performance metrics

used in different studies covered

in this review-based study in

relation to ML/DL-based

studies

DL and ML metrics

Study Year Accuracy Precision Recall F-score DR TNR TPR FPR FNR

[115] 2022 X X X X

[150] 2021 X X X X

[151] 2021 X X X X X

[121] 2021 X X X

[111] 2018 X X X X X X X X

[97] 2020 X X X X X X

[120] 2017 X

[152] 2018

[79] 2020 X X X X X X

[153] 2017 X X X

[6] 2020 X X X

[82] 2022 X X X

[7] 2022 X X X

[116] 2020 X X X X X X

[154] 2020 X X X X

[86] 2022 X X

[155] 2018 X X

[92] 2017 X X

[119] 2018 X X X

[156] 2021 X

[157] 2019 X X X X X

[95] 2021 X X X X X

[158] 2022 X

[84] 2021 X X X X

[13] 2020 X X X X

[105] 2022 X X X X X X X X

[14] 2018 X

[98] 2020 X X X

[159] 2022 X X X X

[15] 2022 X X X X X X X X

[160] 2020 X X X

[89] 2022

[161] 2021 X X X X

[162] 2018 X X X X X X X X

[134] 2019 X X X X X X X X

FPR false positive rate, TPR true positive rate, DR detection rate, TNR true negative rate, FNR false

negative rate
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Precision ¼ TP

TPþ FP
ð2Þ

Recall, on the other hand, refers to the ratio of correctly

predicted samples to all positive samples in the dataset.

Recall ¼ TP

TPþ FN
ð3Þ

Finally, F-Score is the harmonic mean of precision and

recall values and shows how precise and robust a model is.

F � Score ¼ 2 � Recall � Precision
Recallþ Precision

ð4Þ

Accuracy, precision, recall, and F-score value are all rel-

evant and important metrics when evaluating the perfor-

mance of ML models. Yet, many papers do not report these

metrics as shown in Fig. 11. For example, only 30–40% of

all studies did not include precision, recall, or F-Score

metrics. Although some studies presented a different set of

evaluation metrics, this indicates that the majority of

studies fail to provide a sufficient level of performance

analysis.

Besides typical machine learning evaluation metrics,

researchers also used some other metrics to evaluate DL

models including Round Trip Time, CPU utilization,

memory utilization, request per second, number of

accommodated flows, and response time [6, 163]. In [155]

authors presented CPU Utilization time, HTTP response

time, rate of infected packets, and the average number of

installed entries. Moreover, Vishwakarma et al. used

computational cost, storage cost, communication cost,

consensus delay, and energy consumption when perform-

ing the theoretical analysis of a proposed framework [164].

[120] presented Adjusted Mutual Information, Adjusted

RAND, Completeness, Homogeneity, and Mutual Infor-

mation when comparing different clustering-based unsu-

pervised learning methods for attack detection.

5 Issues, challenges and opportunities
for the future

In this section, we list the limitations and challenges that

SDNs face despite the advancements in the protocol and

application areas (e.g., centralized/decentralized con-

trollers, controller types, hybrid SDNs, stateful/stateless

data planes, etc.). Some of the open challenges and issues

have been discussed in prior survey [29, 32, 34, 37, 53],

thus, the purpose is not to repeat existing information but to

provide updated, contextually relevant, and cohesive

information in light of the literature findings in recent

years. Wherever applicable, we will also provide potential

research directions to inspire future work.

One of the major issues that affect the overall perfor-

mance of DL models is the need for large-scale, high-

quality datasets [1, 33, 165]. Section 4 discussed that while

some researchers generate custom datasets in simulated

environments, it raises concerns about the quality of the

data as the characteristics of reproduced anomalies may not

be similar to the ones observed in production systems.

Moreover, the scale and structure of network topology may

not be able to represent the complexity of real-world net-

works. While there are few open source datasets, more

labeled datasets from production systems are necessary to

develop robust DL solutions and evaluate the performance

of existing DL solutions in a wide range of network con-

figurations and attack scenarios.

Another challenge in the adoption of DL methods is the

computational needs of the training phase as DL is noto-

rious for its long and resource-intensive training times.

While the cost of one time training may not be significant,

especially when using high-performance clusters, it

becomes prohibitively expensive as the complexity of

models as well as training frequency increases. Researchers

proposed online training to initiate a model with a rela-

tively small dataset and update it with new data as it

becomes available to avoid the cost of retraining from

scratch every time models need to be updated [166].

Moreover, deep transfer learning can also be used to mit-

igate the need for complete model training for each net-

work [167-169]. Once challenges to adopting DL solutions

are handled, they can be widely adopted for more attack

types. Section 3 showed that there is a wide gap between

the existing vulnerabilities and the utilization of DL-based

approaches for developing mitigation mechanisms. Except

for DDoS attacks, most other attack types have not

received any attention from researchers for the

Fig. 11 The statistical evaluation of the different performance metrics

used in the literature. Each metric is measured in terms of the

percentage of the overall literature presented in evaluations. For

example, accuracy is presented in 90% of the papers we presented in

this review. DR stands for detection rate
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development of DL-based mitigation mechanisms. Hence,

the application of DL for other types of attacks in any level

of SDN architecture is worth investigating to take advan-

tage of it or at least evaluate its performance.

Finally, Virtualized Network Functions (VNFs) and

associated network services offer many possibilities for

enhancing security in SDN environments [34]. Using VNFs

can reduce the need for middle-box-based security

approaches for SDNs, as VNFs can be directly imple-

mented at the different layers to protect against various

security vulnerabilities. Although SDN and NFV evolve as

essential technologies for developing next-generation

telecommunications, the sufficient effort has not been put

towards the development of standard binding interfaces

between SDN and NFV paradigms [34]. One of the

potential solutions for enhancing the optimization of SDN

resource utilization and management is also through the

synergy between NFV and SDN [32]. Existing ML-based

methods have been leveraged to improve network opti-

mization and service utilization costs (e.g., Reinforcement

Learning, Markov Decision Processes, and Bayesian

learning) [32, 170]. Therefore, there is considerable

potential regarding utilizing NFV in conjunction with DL

methods to enhance the security of SDNs in particular and

provide other benefits (e.g., network optimization, service

delivery costs, optimal resource utilization) in the future.
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González, J.: Towards sflow and adaptive polling sampling for

deep learning based ddos detection in sdn. Futur. Gener. Com-

put. Syst. 111, 763–779 (2020)

82. Yeom, S., Choi, C., Kim, K.: Lstm-based collaborative source-

side ddos attack detection. IEEE Access 7, 44–046 (2022)

83. Gadze, J.D., Bamfo-Asante, A.A., Agyemang, J.O., Nunoo-

Mensah, H., Opare, K.A.-B.: An investigation into the applica-

tion of deep learning in the detection and mitigation of ddos

attack on sdn controllers. Technologies 14, 25 (2021)

84. Shu, J., Zhou, L., Zhang, W., Du, X., Guizani, M.: Collaborative

intrusion detection for vanets: a deep learning-based distributed

sdn approach. IEEE Trans. Intell. Transport. Syst. 22,
4519–4523 (2021)

85. Ravi, N., Shalinie, S.M.: Learning-driven detection and miti-

gation of ddos attack in iot via sdn-cloud architecture. IEEE Int.

Things J. 7, 3559–3571 (2020)

86. Rezapour, A., Tzeng, W.-G.: Rl-shield: mitigating target link-

flooding attacks using sdn and deep reinforcement learning

routing algorithm. IEEE Trans. Depend. Secure Comput. 19,
1–17 (2022)

87. ur Rasool, R., Ashraf, U., Ahmed, K., Wang, H., Rafique, W.,

Anwar, Z.: Cyberpulse: a machine learning based link flooding

attack mitigation system for software defined networks. IEEE

Access 34, 885–900 (2019)

88. Ahuja, N., Singal, G., Mukhopadhyay, D.: Dlsdn: Deep learning

for ddos attack detection in software defined networking. 11th

International Conference on Cloud Computing, Data Science &

Engineering (Confluence), (2021)

89. Wang, J., Liu, J.: Deep learning for securing software-defined

industrial internet of things: attacks and countermeasures. IEEE

Int. Things J. 9, 1–11 (2022)

90. Soltani, S., Shojafar, M., Mostafaeit, H., Pooranian, Z., Tafa-

zolli, R.: Link latency attack in software-defined networks. 17th

International Conference on Network and Service Management

(CNSM), (2021)

91. Wang, J., Tan, Y., Liu, J., Zhang, Y.: Topology poisoning attack

in sdn-enabled vehicular edge network. IEEE Int. Things J.

7(10), 9563–9575 (2020)

92. Mohammadi, R., Javidan, R., Conti, M.: Slicots: an sdn-based

lightweight countermeasure for tcp syn flooding attacks. IEEE

Trans. Net. Service Manag. 14, 487–498 (2017)

93. Chen, M.-H., Ciou, J.-Y., Chung, I.-H., Chou, C.-F.: Flexpro-

tect: a sdn-based ddos attack protection architecture for multi-

tenant data centers.In: Proceedings of International Conference

on High Performance Computing Asia-Pacific Region., pp. 1-6,

(2018)

94. Boite, J., Nardin, P.-A., Rebecchi, F., Bouet, M., Conan, V.:

Statesec: stateful monitoring for ddos protection in software

defined networks. Paper presented at: 2017 IEEE Conference on

Network Softwarization (NetSoft), vol. Bologna, Italy, pp. 1-6,

(2017)

Cluster Computing (2023) 26:3089–3112 3109

123

http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1801.01078


95. Varghese, J.E., Muniyal, B.: An efficient ids framework for ddos

attacks in sdn environment. IEEE Access 69, 680–700 (2021)

96. Xu, Y., Sun, H., aand Shijin Sun, F. X.: Efficient ddos detection

based on k-fknn in software defined networks. IEEE Access 7,
160–547 (2019)

97. Novaes, M.P., Carvalho, L.F., Lloret, J., Proença, M.L.: Long

short-term memory and fuzzy logic for anomaly detection and

mitigation in software-defined network environment. IEEE

Access 8, 83–765 (2020)

98. Hussain, J., Hnamte, V.: Novel three-tier intrusion detection and

prevention system in software defined network. IEEE Access

109, 662–677 (2020)

99. Gkounis, D., Kotronis, V., Liaskos, C., Dimitropoulos, X.: On

the interplay of link-flooding attacks and traffic engineering.

SIGCOMM Comput. Commun. Rev. 46(2), 5–11 (2016)

100. Ahuja, N., Singal, G., Mukhopadhyay, D.: Ddos attack sdn

dataset,’’ https://data.mendeley.com/datasets/jxpfjc64kr/1, 2020

101. Xiang, S., Zhu, H., Xiao, L., Xie, W.: Modeling and verifying

topoguard in openflow-based software defined networks. In:

Proceedings of 2018 International Symposium on Theoretical

Aspects of Software Engineering (TASE). pp. 84-91, (2018)

102. Skowyra, R., Xu, L., Gu, G., Dedhia, V., Hobson, T., Okhravi,

H., Landry, J.: 2018 Effective topology tampering attacks and

defenses in software-defined networks. In: Proceeding of 2018

48th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks, pp. 374-386,

103. Deng, S., Gao, X., Lu, Z., Gao, X.: Packet injection attack and

its defense in software-defined networks. IEEE Trans. Inf.

Forensics Secur. 13(3), 695–705 (2018)

104. Phan, T.V., Bauschert, T.: Deepair: deep reinforcement learning

for intrusion response in software-defined networks. IEEE

Trans. Net. Service Manag. 19, 1–12 (2022)

105. Razib, M.A., Javeed, D., Khan, M.T., Alkanhel, R., Muthanna,

M.S.A.: Cyber threats detection in smart environments using

sdn-enabled dnn-lstm hybrid framework. IEEE Access 10, 1–12
(2022)

106. Tu, Z., Zhou, H., Li, K., Li, M., Tian, A.: An energy-efficient

topology design and ddos attacks mitigation for green software-

defined satellite network. IEEE Access 211, 434–451 (2020)

107. Javeed, D., Gao, T., Khan, M.T., Ahmad, I.: A hybrid deep

learning-driven sdn enabled mechanism for secure communi-

cation in internet of things (iot). Sensors 21(14), 48–84 (2021)

108. Garg, S., Kaur, K., Kumar, N., Rodrigues, J.J.: Hybrid deep-

learning-based anomaly detection scheme for suspicious flow

detection in sdn: a social multimedia perspective. IEEE Trans.

Multimedia 21(3), 566–578 (2019)

109. Hu, D., Hong, P., Chen, Y.: 2017 Fadm: Ddos flooding attack

detection and mitigation system in software-defined networking.

GLOBECOM 2017-2017 IEEE Global Communications Con-

ference. IEEE, pp. 1-7, (2017)

110. Li, C., Wu, Y., Yuan, X., Sun, Z., Wang, W., Li, X., Gong, L.:

Detection and defense of ddos attack-based on deep learning in

openflow-based sdn. Int. J. Commun. Syst. 31(5), 1–20 (2018)

111. Shafi, Q., Basit, A., Qaisar, S., Koay, A., Welch, I.: Fog-assisted

sdn controlled framework for enduring anomaly detection in an

iot network. IEEE Access 73, 713–724 (2018)

112. Yue, M., Wang, H., Liu, L., Wu, Z.: Detecting dos attacks based

on multi-features in sdn. IEEE Access 8, 104–688 (2020)

113. Ali, A., Yousaf, M. M.: Deep learning based intrusion detection

system : software defined network. Asian Conference on Inno-

vation in Technology (ASIANCON), (2021)

114. Elsayed, M.S., Le-Khac, N.-A., Dev, S., Jurcut, A.D., Ddosnet:

A deep-learning model for detecting network attacks, in,: IEEE

21st International Symposium on A World of Wireless, Mobile

and Multimedia Networks‘‘(WoWMoM). IEEE 2020, 391-396
(2020)

115. ElSayed, M.S., Le-Khac, N.-A., Azer, M.A., Jurcut, A.D.: A

flow based anomaly detection approach with feature selection

method against ddos attacks in sdns. IEEE Trans. Cognitive

Commun. 8, 1–20 (2022)

116. Scaranti, G.F., Carvalho, L.F., Proenca, M.L.: Artificial immune

systems and fuzzy logic to detect flooding attacks in software-

defined networks. IEEE Access 100, 172–185 (2020)

117. Ahuja, N., Singal, G., Mukhopadhyay, D., Kumar, N.: Auto-

mated ddos attack detection in software defined networking.

J. Netw. Comput. Appl. 187, 1–20 (2021)

118. Novaes, M.P., Carvalho, L.F., Lloret, J., Jr., M. L. P.: Adver-

sarial deep learning approach detection and defense against ddos

attacks in sdn environments. Fut. Gene. Comput. Syst. 125, 1–20
(2021)

119. Peng, H., Sun, Z., Zhao, X., Tan, S., Sun, Z.: A detection

method for anomaly flow in software defined network. IEEE

Access 27, 809–818 (2018)

120. He, D., Chan, S., Ni, X., Guizani, M.: Software-defined-net-

working-enabled traffic anomaly detection and mitigation. IEEE

Int. Things J. 4, 1890–1899 (2017)

121. Li, Q., Liu, Y., Liu, Z., Pang, C.: Efficient forwarding anomaly

detection in software-defined networks. IEEE Transacctions on

Parallel and Distributed Systems. 32, 2676–1697 (2021)

122. Dhawan, M., Poddar, R., Mahajan, K., Mann, V.: Sphinx:

detecting security attacks in software-defined networks. Ndss

15, 8–11 (2015)

123. Musumeci, F., Fidanci, A.C., Paolucci, F., Cugini, F., Tornatore,

M.: Machine-learning-enabled ddos attacks detection in p4 pro-

grammable networks. J. Net. Syst.Manag. vol. 30(21), 1–27 (2022)
124. Zhang, X., Cui, L., Tso, F.P., Jia, W.: pheavy: predicting heavy

flows in the programmable data plane. IEEE Trans. Netw. Serv.

Manage. 18(4), 4353–4365 (2021)

125. da Silveira Ilha, A., Cardoso Lapolli, Â., Marques, J.A., Gas-

pary, L.P.: Euclid: a fully in-network, p4-based approach for

real-time ddos attack detection and mitigation. IEEE Trans. Net.

Serv. Manag. 18(3), 3121–3140 (2021)

126. The caida ucsd anonymized internet traces 2016. [Online].

Available: https://www.caida.org/data/passive/passive_2016_

dataset.xml

127. The caida ucsd ddos attack 2007 dataset. [Online]. Available:

ttp://www.caida.org/data/passive/ddos-20070804_dataset.xml

128. Shin, S., Gu, G.: Attacking software-defined networks: A first

feasibility study. In: Proc. Second ACM SIGCOMM Work. Hot

Top. Softw. Defin. Netw., pp. 165-166, (2013)
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