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Abstract

As the scale and complexity of networks grow rapidly, management, maintenance, and optimization of them are becoming
increasingly challenging tasks for network administrators. Software-Defined Networking (SDN) was introduced to facil-
itate these tasks as it offers logically centralized control, a global view of the network, and software-based traffic analysis,
thus, it is widely adopted of SDN to manage large-scale networks. On the other hand, SDN is not immune to cyber attacks.
In fact, its centralized architecture makes it more vulnerable to certain types of attacks, such as denial of service. Various
attack mitigation strategies are proposed to strengthen the security of SDNs including statistical, threshold-based, and
Machine Learning (ML) methods. Among them, Deep Learning (DL)-based models attained the best results as they were
able to extract the complex relationship between input parameters and output that could not be achieved with other
solutions. Hence, this paper presents a comprehensive survey of the literature on the utilization of different DL algorithms
for the security of SDN. We first explain the types of attacks that SDNs are exposed to, then present papers that applied DL
to detect and/or mitigate these attacks. We further discuss the public datasets used to train DL models and evaluate their
advantages and disadvantages. Finally, we share insights into future research directions to improve the efficiency of DL

methods for SDN security.

Keywords Software-defined networks - Network security - SDN security - Deep learning

1 Introduction

Software Defined Networking (SDN) has been introduced
to allow forwarding decisions to be made by a central
controller, which can calculate optimal routes based on
global network view and unique application demands [1].
Unlike traditional routing solutions that are rigid and
mostly application oblivious, SDN offers an agile network
management approach, which led to its wide adoption. For
example, Google uses SDN to manage its wide-area net-
work traffic [2]. On the other hand, SDN introduced a
plethora of architectural vulnerabilities that pose significant
risks to the safety of networks [3-10].

Researchers proposed many heuristics and statistical
methods to overcome the SDN’s security issues, but
Machine Learning (ML) models are found to be much
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more effective as they can extract the complex relationship
between input and output that cannot be easily realized
with other approaches [1, 11-15]. In particular, a subfield of
ML, Deep Learning, offers a significant advantage over
statistical models and traditional ML methods when deal-
ing with large-scale datasets. Thus, DL has been applied to
many fields such as image processing [16, 17], biomedical
imaging [18-21], automated inspection of civil infrastruc-
ture [22-26], and robotics [27-31] to solve complex prob-
lems. Researchers, therefore, proposed DL-based methods
to detect and/or mitigate security issues in SDN-based
networks.

Although there exist several surveys papers on the
application of ML-based techniques for SDN security [32-
41], they are either outdated (published several years ago
thus they do not reflect the current status) or limited in
scope (i.e., focus on one particular component of SDN or
one type of attack). As a result, there is a need to provide
an up-to-date, systematic, and comprehensive review of
research on the application of DL for SDN security.

Figure 1 highlights the main areas along with some of
the sub-topics that are discussed in this study. We first
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Fig. 1 Visual outline of the different topics that will be covered in this
review in relation to the three main research areas, namely SDNs,
network security, and Deep Learning

provide a brief overview of SDN and DL. Next, we high-
light the security weaknesses of the different parts of the
SDN architecture and review DL-based methods proposed
to address these weaknesses. Then, we analyze perfor-
mance metrics used to evaluate the effectiveness of DL
methods and we provide a comprehensive overview of
different publicly-available datasets used by researchers to
train DL models and discuss their benefits and limitations.
Finally, we present future opportunities and research
directions that can be to facilitate the use of DL for SDN
security issues.

The remainder of this survey paper is organized as fol-
lows: Section II reviews the main focus and limitations of
some existing surveys. Section III presents the background
for SDN and DL. Section IV discusses security vulnera-
bilities for different SDN components and existing chal-
lenges and associated opportunities in the use of DL-based
methods for SDN security. Section IV highlights three
major aspects of DL-based methods and SDN, namely
public datasets for enhancing SDN security, performance
evaluation metrics used in studies, and classification of
different security applications for SDN as discussed in the
literature. Section VI discusses the remaining challenges
that the SDNs face despite and. Section VII summarizes the
paper and highlights some future directions for researchers.

Most of previous survey studies on SDN focused on
routing solutions [33, 42]), architectural deployment sce-
narios (e.g., distributed SDN [43] and Hybrid SDN
[41, 44, 45]), control plane implementations [40], and
application areas (e.g., SDN-VANETSs [46], SDN for IoT
[47, 48], SDN for data centers [49], edge-based SDN
[50])). Although there are many survey papers published in
the area of SDN security, many of them (e.g. [51-58]))
were published more than 5 years ago, thus they do not
necessarily reflect the current state of the research any-
more. Papers that are published within the last 5 years are
listed in Table 1 with their publication date, focus area,
main topics, as well as their limitation compared to this
work. Specifically, they either focus on one aspect of SDN
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security or do not cover ML/DL solutions with sufficient
details. For example, [39, 59] focuses on DDoS attacks and
relevant mitigation strategies, [38] concentrates on infor-
mation security, and [60, 61] discuss Intrusion Detection
Systems (IDS) and [62] discusses Attack Detection systems
(ADS). In contrast, this survey provides an extensive
evaluation of a broad range of security issues in all layers
of SDN architecture. We also cover a wide range of
security applications. On the other hand, although [34-37]
cover SDN security in a broad scope, they do not suffi-
ciently highlight ML/DL-based solutions. For example,
[34] covers attacks in different SDN layers but mentions
only five ML-based solutions. Similarly, [35] details
security frameworks implemented for different layers of
SDN architecture but presents only four ML/DL-based
solutions out of many available, which indicates that ML/
DL is not the primary focus. [37] focuses on security
vulnerabilities in SDN architecture and covers only five
ML/DL approaches. Although [32, 63] cover ML/DL
methods SDN, security is not the only focus of these work
(i.e., they cover a wide range of topics including traffic
classification, routing optimization, quality of service pre-
diction, and resource management), thus they fall short to
provide a sufficient examination of previous work in SDN
security. Consequently, this is the first study that provides a
comprehensive overview of ML/DL solutions in the focus
area of SDN security. The abbreviations used in this paper
are listed in Table 2.

2 Background

This section provides a brief background on Deep Learning
(DL) and Software Defined Networking (SDN) to explain
key concepts that are referred to in the following sections.

2.1 Deep learning (DL)

A Neural Network (NN) comprises several connected
processing units or nodes that operate parallel to update
link weights using nonlinear computations to minimize
error [65]. These nodes use activation functions to perform
nonlinear analyses. The most basic NN (aka shallow NN)
consists of three layers the input layer, hidden layer, and
output layer. Deep neural networks (aka Deep Learning) is
a term used for NNs with more than three layers, with
several hidden layers and neurons needed to process high-
dimensional data and learn increasingly complex models.
In Deep Learning (DL), neurons train a feature represen-
tation based on the previous layer’s output. Thus, they
perform better than traditional ML methods when handling
large-scale high-dimensional datasets [65, 66]. However,
DL methods require greater computational power like
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Table 1 Different review-based studies and their contribution to the research areas intersecting between SDNs, SDN Security and ML/DL for
SDN Security

Study Year Main focus Major topics covered Limitation
[41] 2018 Hybrid SDN (1) Overview of hybrid SDN frameworks and controllers (1) SDN Scope narrow to
Networks (HSDN) (2) HSDN testing, verification and traffic management HSDNs
(3) HSDN security and future directions (2) Minor emphasison Security
[64] 2019 Security threats and (1) SDN architecture overview (1) SDN scope limited to
mitigation for SDN (2) Security attacks and protection for SDN controllers Controllers
Controllers (3) Open research issues, challenges and direction (2) ML/DL discussion limited
[32] 2019 ML for SDNs (1) Background on SDN and ML (1) Focus on all ML techniques
(2) ML for SDN, challenges and future direction (2) Minor emphasis on security
[63] 2019 ML for SDNs (1) ML for SDNs (1) Focus on all ML techniques
(2) SDN applications with ML and future directions (2) Minor emphasis on security
[40] 2019 Route optimization (1) SDN overview (1) Security emphasis missing
using ML (2) ML for route optimization and future directions (2) ML Scope too narrow
[60] 2019 SDN intrusion (1) SDN overview (1) Limited Scope (IDS only)
Detection systems (2) SDN-based IDS (2) Limited Discussion
(IDS) (3) Research challenges of ML techniques
[61] 2021 SDN intrusion (1) SDN overview
Detection systems (2) SDN-based IDS (1) Limited Scope (IDS only)
(IDS) (3) ML DL techniques for IDS
[42] 2019 (1) Potential of SDN/NFV (1) ML discussion limited to
SDN/NFV (2) Algorithmic challenges of SDN/NFV Network Optimization
(3) ML for improved optimization of SDN/NFV (2) SDN Security missing
[44] 2019 Optimization of (1) Rationale for HSDNs (1) Scope limited to HSDNs
Hybrid SDNs (2) Control and data plane deployment solutions (2) Security discussion missing
(HSDNs) (3) HSDN deployment, optimization and use cases
[59] 2019 DDoS attacks in (1) Background on SDN, cloud computing and DDoS (1) Security Scope limited to
Cloud-based SDN (2) DDoS attacks in CSDN DDoS attacks
(CSDN) (3) Experimental setup for CSDN and open problems (2) Scope limited to CSDNs
[47] 2020 SDN/NFV for IoT (1) NFV overview (1) SDN Scope narrow to IoT
security (2) SDN and NFV for IoT and future direction
[62] 2021 Anomaly detection (1) SDN Overview and security challenges (1) Security Scope limited to
Systems (ADS) (2) ADS Taxonomy, challenges and future directions ADS
[39] 2020 Flow-based DDoS (1) DDoS attack classification (1) Security Scope narrow
Attacks in SDN (2) DDoS attack detection & mitigation to DDoS attacks
(3) Challenges and future direction
[45] 2021 Hybrid SDN (1) HSDN security and privacy (1) Scope limited to HSDN
(HSDN) (2) HSDN network management & deployment tools
(3) HSDN open research challenges & areas (2) Security discussion limited
[33] 2021 SDN control plane (1) Background on SDN CPs (1) Scope limited to SDN
(CP) (2) Centralized and decentralized CPs CP and SDN Controllers
(3) Controller, CP challenges and future directions
[35] 2021 SDN security (1) SDN security background (1) ML/DL discussion limited

Issues and
Solutions

(2) Security in SDN architecture
(3) Discussion, open challenges and future research

multiple GPUs, to train DL models in a reasonable time.
The advancements of DL model development are the

increased availability of GPUs, which allows for signifi-
cantly faster computation and layers that can be trained
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Table 2 The list of abbreviations used in this paper

Abbreviation Definition

SDN Software-defined network
NFV Network function virtualization
DDoS Distributed denial of service
IDS Intrusion detection system
ADS Attack detection system

ML Machine learning

DL Deep learning

NN Neural network

DNN Deep neural network

CNN Convolutional neural network
RNN Recurrent neural network
MLP Multi-layer perceptron

GRU Gated recurrent unit

GAN Generative adversarial network
AE Auto-encoder

SAE Stacked auto-encoder

DAE Deep auto-encoder

CAE Contractive auto-encoder
VAE Variational auto-encoder
SOM Self-organizing map

RBM Restricted Boltzmann machine
DBN Deep belief network

DTL Deep transfer learning

DRL Deep reinforcement learning
KNN K-nearest neighbor

SVM Support vector machine

NB Naive bayes

independently. Thus, a large model with million parame-
ters can be optimized in small, manageable chunks,
requiring significantly fewer resources [67]. DL is shown
to perform significantly well in a wide range of security
applications, especially when dealing with complex prob-
lems in high-dimensional data [67, 68]. In the broader
perspective, DL-based methods can be classified into three
as supervised, unsupervised, and hybrid methods as shown
in Fig. 2.

2.1.1 Supervised (discriminative) deep learning

This category of DL models is trained using labeled data-

sets. Supervised architectures mainly include Multi-Layer

Perceptron (MLP), Convolutional Neural Networks (CNN),

and Recurrent Neural Networks (RNN) along with their

variants [67].

e  Multi-layer perceptron (MLP) MLP is a feed-forward
artificial neural network model consisting of a fully
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connected input layer that receives the input data to be
processed, an output layer that performs prediction and
classification about the input, and one or more hidden
layers in between these two layers for doing computa-
tional functions. The neurons in the MLP are trained
with the backpropagation learning algorithm. Several
activation functions are used to determine the output of
an MLP network. Its multiple layers and non-linear
activation distinguish MLP from a linear perceptron and
offers to solve problems that are not linearly separable
[67].

Convolutional neural network (CNN) CNN consists of
two parts feature extraction and classification. Feature
extraction consists of convolution and pooling layers.
The convolution layer takes an input and performs a
series of convolution operations on that whereas the
pooling layer reduces the number of parameters by
downsampling along the spatial dimensionality of the
input [69]. It also deals with the problem of over-fitting,
which may occur in typical neural networks [67]. The
classification layer is a fully connected layer that uses
the features that were taken from a convolutional layer
in the previous steps to calculate the score for each
class. The architecture of CNN is depicted in Fig. 3.
Recurrent Neural Network (RNN) RNN is a dynamic
feed-forward neural network distinguished by its ability
to learn sequential data over timesteps as shown in
Fig. 4. In conventional feed-forward neural networks,
the output of each unit depends on the current input
with no direct dependency between the current input
and the previous output of the same unit. However,
some applications rely on sequential data, such as
speech recognition and time-series data in which
consecutive samples are correlated [67]. Long Short-
Term Memory (LSTM) and A Gated Recurrent Unit
(GRU) are popular variants of RNN. LSTM contains a
memory cell to remember previous data and three gates
(namely input, output, and forget) to manage the flow of
information in and out of the cell. This variant solves
the issue of the vanishing and exploding gradients that
could happen due to multiplexing many tiny or large
derivatives [70, 71]. GRU is another variant of RNN.
For avoiding vanishing or exploding gradients, LSTM
has a higher memory requirement given multiple
memory cells in their architecture. Similar to LSTM,
GRU uses gating methods to control and manage
information flow between cells in the neural network,
without having separate memory cells [72]. GRU
structure is similar to LSTM without an output gate
and because of this structure, it can capture dependen-
cies from extensive data sequences adaptively without
losing information from earlier portions of the sequence
[67].
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Fig. 2 Basic taxonomy of Deep Learning (DL) methods provided in [67], which classify DL methods into Supervised, Unsupervised and Hybrid

methods and their sub-categories
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Fig. 4 Representation of recurrent neural networks

2.1.2 Unsupervised (generative) deep learning

This category of DL discovers hidden patterns or data
groupings in unlabeled datasets without the need for

manual data labeling [67]. Commonly used DNN tec
niques for unsupervised learning are as follows:

e Generative adversarial network (GAN) It learns reg

h-

Input

u-

larities or patterns in input data so that the model can

Fig.

generate samples similar to the ones in the original
dataset. Although GAN is mainly designed for unsu-
pervised learning problems, it is shown to perform well
for some semi-supervised and reinforcement learning
tasks. Figure 5 illustrates a typical GAN architecture.
Auto-Encoder (AE) Auto-Encoder creates noise-free
data representation by reducing the dimensionality of
input data as shown in Fig. 6. The encoder reduces the
dimension of the data and the decoder increases it back
to its original size. There are several hidden layers
between the encoder and decoder to learn the relation-
ship between input and output using a backpropagation
algorithm.

Self-organizing map (som) SOM is another unsuper-
vised learning technique with a feedforward structure
that is used to make a low-dimensional representation
of a dataset while preserving the topological structure

Real Data

s

Generated
Data

Discriminator

Generator

e =

5 Architecture of Generative Adversarial Networks (GAN)
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of the data. The SOM has the input and output layers,
without any hidden layers. Each neuron is simultane-
ously given a weight value based on the input space and
the weight value is passed to the output without using
any activation function in neurons [73].

2.1.3 Hybrid deep learning

Hybrid deep neural networks combine multiple supervised
or unsupervised deep neural networks. There are three
categories based on the integration of different unsuper-
vised or supervised models as follows:

e An integration of different unsupervised or supervised
models to extract more meaningful and robust features
such as CNN with LSTM and AE with GAN.

e An integration of an unsupervised model with a
supervised model such as DBN+MLP, GAN with
CNN, and AE with CNN.

e An integration of an unsupervised or supervised to a
non-deep learning classifier such as AE with Supper
Vector Machine (SVM) and CNN with SVM.

2.1.3.1 Deep transfer learning (DTL) DTL (illustrated in
Fig. 7) aims to eliminate the need for training data and test
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Fig. 7 The demonstration of Transfer Learning (TL)

data to be independent and identically distributed. As a
result, there is no need to train the model from scratch in
the target domain, which can significantly minimize the
need for training data and training time in the target
domain. Since DL models typically require significant
computational resources, DTL can tackle this issue by
obviating the need for training a new model for every
task/domain [74]. Yet, it may not be applicable to all
domains and may need human expertise and manual fea-
ture extraction/transformation to perform well.

2.1.3.2 Deep reinforcement learning (DRL) In Reinforce-
ment Learning (RL), an agent chooses actions using a
policy that performs them. These actions result in positive
or negative outcomes through which the agent learns
optimal actions [75]. When RL uses Deep Neural Network
to estimate the policy it is called Deep Reinforcement
Learning. Figure 8 shows the conceptual architecture of
DRL.

2.2 Software defined networking (SDN)

SDN adopts centralized network management and routing
approach to facilitate network management and optimize
routing decisions. SDN architecture is composed of three
layers (i) application layer, (ii) control layer and (iii) data
layer as illustrated in Fig. 9. The data plane (also known as

State

Action

<

State Environment

Y

Reward

Fig. 8 A representation of Deep Reinforcement Learning (DRL)
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Fig. 9 Basic three-tiered model of Software Defined Networks
(SDN). The tiers are called application layer, control layer, and data
(infrastructure) layer [43]

Data
Layer

the infrastructure plane) is the is comprised of hardware or
software-based forwarding devices which can forward,
drop, and modify packets depending on policies defined by
the control plane. The control plane manages the data
plane’s processing and forwarding functionalities (i.e.,
southbound communication), thus it can be considered the
“brain” of the SDN architecture. It can accept requests
from applications (i.e., northbound communication) and
defines forwarding rules to meet the requirements of the
requests. It can also gather performance statistics from data
layer devices to monitor network traffic. The application
layer is composed of applications that can communicate to
the control layer to specify networking demands of appli-
cations such as bandwidth and delay, such that the control
layer configures the data layer in a way that application
requirements can be met.

3 SDN security analysis: architectural
vulnerabilities and attack types

This section will attempt to create a foundation based on
earlier studies and cover aspects not discussed in earlier
review-based studies. Specifically, the use of DL methods
for SDN security is a relatively recent topic, thus we will
focus on presenting attack scenarios as well as proposed
DL-based methods to identify and/or overcome these
attacks.

Figure 10 outlines some of the major attacks that
threaten the different parts of SDN architecture. While
previous survey studies analyzed some of these attacks
[32, 34, 35, 38, 53], they typically do not cover all layers of
SDN. For example, [53] presented a broader perspective on
SDN security without detailing architectural breakdown.
[35] used the STRIDE (Stride, Tampering, Repudiation,
Information Conflict of interest, Denial of Service,

Elevation of Privilege) framework to evaluate the different
security issues and proposed solutions in the existing lit-
erature. This framework makes it challenging to identify
which part of SDN architecture is most vulnerable to which
types of attacks. Furthermore, the individual metrics within
STRIDE are not defined or discussed fully to understand
their relationship to security issues and particular attack
types. [34, 37, 38] provided a layer-wise assessment of
attack vulnerabilities and types as well as related studies.
Similarly, this study will attempt to pair each SDN archi-
tectural component with associated attack types (e.g., DoS,
DDoS, spoofing, and packet injection) and proposed solu-
tions for each attack type to provide a holistic overview of
the security vulnerabilities in each component of SDN.
Please note that we focus on attack types that researchers
applied DL to address them. Hence, not all attack types are
presented in the following sections.

3.1 Vulnerability analysis for control plane

This section will focus on highlighting some of the sig-
nificant security issues that threaten the safety of infor-
mation and data within the control plane. Table 3 lists the
vulnerabilities, proposed solutions as well as their merits.

3.1.1 Denial of service (DoS/DDoS) attacks

DoS/DDoS attacks intend to overwhelm network resources
by generating a large volume of illegitimate requests
thereby preventing network service delivery to legitimate
users. In the control plane context, the purpose of DoS/
DDoS attacks is to prevent the control plane function
properly by overwhelming it with fake requests. By doing
so, legitimate requests from application or data layers are
either delayed or completely dropped due to a lack of
resources. A considerable amount of effort has been put by
researchers to develop effective DoS/DDoS detection and
mitigation solutions [5, 6, 8, 9, 92-95]. Likewise, most of
the studies in DL for SDN security area are primarily
focused on DoS/DDoS detection and mitigation. In this
context, the purpose of a DDoS attack is very similar to a
DoS attack. Only the nature and intensity of the attack
differ from a DDoS attack.

Wang et al. discussed the development of SGuard, a
lightweight and efficient security mechanism, against DoS
attacks [3]. SGuard has two main components as access
control and classification components. The access control
component checks authorization information for packet
source tracing to perform gate-keeping by dropping pack-
ets from spoofed sources. The classification component
uses Self-Organizing Map-based ANN to separate normal
and malicious traffic flows. Future studies should attempt
to reduce system training time and practical assessment of
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Fig. 10 Some of the major security vulnerabilities in Software Defined Networks

SGuard on complex, functional network topologies. Jia et.
al. combine LSTM with SVM to process time-series flow
characteristics for DDoS attack detection in a Space-based
network with SDN [77]. SVM is used to solve the mis-
classification problem caused by the sensitivity of the
LSTM model during the network startup phase. The pro-
posed solution is shown to reduce the attack detection time
as well as the system overhead.

Alanazi et al. proposes a DL-based ensemble solution
for DDoS attack detection by adopting three ensemble
techniques and different DL architectures such as CNN,
LSTM, and GRU. Experiments are conducted using flow-
based dataset CIC-IDS2017. The results showed high
attack detection accuracy (99.77%) using a small number
of flow-based features [78].

Performance and Features (P and F) is a lightweight,
real-time framework to detect and mitigate Low-rate DoS
(LDoS) attacks [7]. It uses Gradient Boosting Decision
Tree-based ML method to analyze the performance of
normal traffic under attack state and then to detect the
presence of LDoS attacks. Moreover, P and F can also
locate attack sources and victims according to flow features
(F) of LDoS attacks based on time-frequency analysis. Shin
et al. proposed AVANT-GUARD to reduce southbound
(between the controller and network devices) communi-
cation requirement in OpenFlow protocol, thereby mini-
mizing DoS attack surface [4]. Results reveal the
effectiveness of AVANT-GUARD against TCP SYN
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flooding and network scanning attacks. However, it is
unable to protect other parts of SDN against DoS attacks. A
probabilistic model for proxying and blocklisting network
traffic is used in LineSwitch, a method to prevent DoS
attacks from affecting the control plane and preserving
network functionality [7]. Results from experiments under
different traffic and attack scenarios reveal the considerable
promise of LineSwitch in comparison with AVANT-
GUARD. However, there are some practical issues with
LineSwitch activation, such as jitter, which can cause
problems in the delivery of high-speed services (such as
Voice-over-IP (VoIP)).

Yuhua et al. proposed an unsupervised learning-based
method using K-means++ and Fast K-Nearest Neighbors
(K-FKNN) for DDoS detection using NSL-KDD dataset
[96]. In another study, a Gated-Recurrent Unit (GRU)
based Deep Learning (GRU-DL) model is combined with
fuzzy logic to detect and mitigate a variety of DDoS
attacks by exploiting commonly used applications and
services (e.g., MSSQL, NetBios, SSDP, and UDP). This
system was tested by a real-world dataset and an emulated
traffic and the results were compared with DNN, CNN, and
LSTM methods and show GRU has similar results to CNN
and LSTM but better than DNN [80]. A back-propagation
neural network-based deep reinforcement learning DDoS
mitigation strategy was developed in [76], which leveraged
multiple controllers and two modules (namely anomaly
detection and dynamic defense). The anomaly detection
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Table 3 Security vulnerabilities and proposed solutions for SDN control plane

Attack type Attack objective Proposed solution

Advantage

DL/ML method

DoS/DDoS Exhaust resources Safeguard scheme [76]

SNB-SDN [77]

Using small number of

Ensemble DL [78]

Deep CNN-Ensemble
[79]

GRU-DL [80]

sF-APS-DL [81]

LSTM-CSSD [82]
Limiting access to

network services DO-IDS [12]

Uses multiple controllers
Reducing attack detection time

flow-based features

Efficient/Scalable framework

Mitigates multiple DDoS attacks
Effective performance

High performance framework
Enhanced performance using

unbalanced datasets and optimized

Back propagation neural network
Long short term memory

Long short term memory
Convolutional neural network
Gated recurrent unit

Convolutional neural network

Gated recurrent unit
Stacked autoencoder

Long short term memory
Long short term
Memory-based autoencode

one-class detection algorithm

GRU-DL [80]
RNN-LSTM [83]

Mitigates multiple DDoS attacks
Good trade-off betweenprecision and

Gated recurrent unit

Long short term memory

recall metrics

CIDS [84]

Detect abnormal network behaviors at

Generative adversarial network

entire VANET

LEDEM [85]
Rl-shield [86]
CyberPulse [87]

Prevent saturation issues
Mitigate attack by persistent re-routing

Classify malicious flows with high

Extreme learning machine
Deep reinforcement learning

Multi-layer perceptron

accuracy

CNN ensemble
Framework [79]

DLSDN [88]

SD-IIoT [89]
Topology MLLG [90]

Poisoning

Limiting network
visibility
DRL-ATS [91]

Network service SD-IIoT [89]

disruption

Packet
Injection

Scalability and Cost-effectiveness

High accuracy using various DL
methods

Generating real-like network traffic
Prevent Link Fabrication

Effective recovery mechanism

Generating real-like network traffic

Convolutional neural network

Stacked auto-encoder multi-layer
perceptron

Deep reinforcement learning
Multi-layer perceptron

Deep reinforcement learning

Deep reinforcement learning

SNB-SDN space-based network based software-defined network, CNN-EF CNN-ensemble framework, GRU-DL gated recurrent unit deep
learning, sf-aps-dl sFlow and adaptive polling sampling for deep learning, LSTM-CSSD long short-term memory-based collaborative source-side
DDoS, DO-IDS deep learning-based one-class intrusion detection scheme, CIDS collaborative intrusion detection system, LEDEM learning-
driven detection mitigation, DLSDN deep learning for SDN, MLLG machine learning-based link guard, DRL-ATS deep reinforcement learning-

based attack tolerance scheme

module focuses on switches in the data plane for traffic
flow classification. The controller dynamic defense module
mitigates DDoS attacks by remapping the controller and
sending the access control message to switches. Another
study used sFlow and adaptive polling sampling with Snort
IDS to identify the network traffic, and then classify the
traffic using Stacked AutoEncoder (SAE) as benign and
malicious traffic in IoT networks [81]. In the data plane,
sFlow and adaptive polling-based sampling are leveraged
to capture network statistics. In the control plane, Snort
IDS with Stacked Auto-Encoders (SAE) Deep Learning
model is used to detect DDoS attacks. The proposed

solution attains 95% true positive and 4% false positive
rates, but incurs has high computational overhead.

Hu et al. proposed Deep One-Class Intrusion Detection
System for DoS detection in industrial SDNs using an
LSTM autoencoder. The authors first collected network
flow features into vector sequences and inputted them into
an encoder for the encoding process. The encoding result is
sent to a decoder, and a scorer, respectively. The decoder
outputs the reconstructed feature vector sequence. The
scorer calculates and returns a novelty score for encoding
which is compared to a predefined detection threshold to
detect the presence of abnormal traffic. This system is
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evaluated using two public datasets, KDD99 (data with 14
attack types) and NSL-KDD (data with 16 attack types).
The results of this system show high detection speed and
enhanced accuracy [12]. A recent study developed an early
warning system for intrusion detection in SDN using the
Deep CNN network that detects DDoS attacks. Using 11
features from the dataset InSDN, the proposed method was
able to provide an accuracy of 100% [13]. A comparison of
different ML and DL frameworks was presented for
intrusion detection systems in SDNs. The LSTM-FUZZY
system presented in this work has three distinct phases:
characterization, anomaly detection, and mitigation. Out of
the different ML and DL systems, the LSTM-based net-
work was able to provide the highest performance (accu-
racy greater than 98.0%) on two different flow datasets
(e.g., CICDoS 2017 and CICDDoS 2019) [97]. For SDN-
IoT applications, a novel Deep Learning-based three-tier
intrusion detection and mitigation system was developed in
another research. The proposed approach was evaluated
based on different network simulation scenarios, which
provided detection accuracy results of 97.7% [98].

In another study, LSTM and CNN models are used for
DDoS (TCP, UDP, and ICMP flooding) detection and
mitigation that can be launched against SDN controllers.
The training dataset comprising normal and malicious
(DDoS) traffic is collected using Mininet. The performance
of the deep learning models is compared against classical
machine learning models (KNN, NB, and SVM) to show
that the LSTM model produced higher performance than
ML methods [83]. For distributed SDN-based VANETS, a
GAN (Generative Adversarial Networks)-based solution
for DDoS detection has been developed in [84]. It enables
multiple SDN controllers to collectively train a global IDS
for the entire network without directly exchanging sub-
network flows. A semi-supervised Deep Extreme Learning
Machine (SDELM) was developed in [85] for DDoS
detection and mitigation for SDN-managed IoT networks.
The performance of the proposed method is compared
against other learning-based methods (e.g., AdaBoost,
SVM, Deep Belief Network, Naive Bayes) to demonstrate
its superior performance.

Rezapour et al. proposed a novel Deep Reinforcement
Learning-based approach, RL-Shield, for Link Flooding
Attack (LFA) detection and mitigation [86]. Using differ-
ent attack strategies (e.g., persistent attack, strategic attack,
and collusion attack) on four separate real network
topologies (e.g., ARPANet, NSFNet, Evolink, and GTS-
CS), authors demonstrated that RL-Shield outperforms
other routing-based approaches such as GKLD [99].
CyberPulse is a DL-based method for flooding attack
mitigation on SDN control channel [87]. A comprehensive
review has been conducted to assess the performance of
deep learning classification, and a side-by-side comparison
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has been made against other solutions to show that
CyberPulse can classify malicious flows with high accu-
racy and mitigate them effectively.

Ahuja et al. applied DL models to detect DDOS attacks
such as TCP-SYN, UDP flooding, and ICMP flooding
attacks. Authors generated a custom dataset to train the
models [100]. The results show 99.75% accuracy by
applying a Stacked Auto-Encoder Multi-layer Perceptron
(SAE-MLP) that is comprised of several autoencoders tied
together where the output of one autoencoder is fed to the
input of another, and a SoftMax classifier also is used for
feature extraction [88]. Wang et al. proposed a deep rein-
forcement learning (DRL)-based attack tolerance
scheme to let regular traffic bypass forwarding nodes and
controllers in software-defined IloT (Industrial Internet of
Things) that have been targeted by DDoS attacks (e.g.,
packet flooding, packet injection, link fabrication, etc.).
The proposed approach uses a generative adversarial net-
work (GAN) to flexibly generate real-like network traffic
for more sufficient and effective experimental verification
of the attack tolerance scheme. Experimental results show
that the proposed scheme can significantly improve the
successful arrival rate of IIoT traffic and achieve near-op-
timal results [89].

3.1.2 Topology poisoning attacks

In this attack type, the attacker hijacks the control plane
resources and prevents the controller from accurately
assessing the network topology. Due to the lack of effective
authentication mechanisms in the SDN control plane, the
legitimacy of topology information, including switches,
hosts, and internal links cannot be verified reliably [44].
Furthermore, the existing mechanisms are simple and
predictable thus attackers can easily hack the system and
gain unauthorized access. In order to provide reliable
protection from these attacks, a number of studies have
proposed reliable and robust security mechanisms. An
attacker can forge link layer discovery protocol (LLDP)
packets to create a fake link (link fabricating attack) [89]. If
the controller updates the network topology according to
forged LLDP packets, it will have a false network view and
make wrong decisions based on it. Jiadai et al. introduced a
deep reinforcement learning (DRL)-based attack tolerance
scheme to separate actual traffic from attack traffic such as
link fabrication that targets forwarding nodes and con-
trollers in software-defined IIoT (Industrial Internet of
Things) networks. TopoGuard [101] avoids poisoning
attacks by assigning a special attribute to active ports of all
switches, which enables the controller to identify the origin
of the traffic. It uses an encryption-based authentication
mechanism to avoid spoofing attacks. One of the limita-
tions of TopoGuard is that it is unable to protect against
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relay-type link fabrication attacks. Consequently, Topo-
Guard+ was developed after two major vulnerabilities of
TopoGuard against new topology attacks were discovered,
namely port amnesia and port probing [102]. TopoGuard+
checks for suspicious port reset events and tracks the
latency of inter-switch links to detect link fabrication
attacks using topology packets leveraging out-of-band
channels.

In another study, the Link Latency Attack (LLA) is
introduced in which an adversary can add a fake link into
the network and corrupt the controller’s network topology
view [90]. This attack can compromise the end hosts
without the need to attack the SDN-enabled switches. The
authors developed an ML-based Link Guard (MLLG)
framework to defend against LLAs. Results show an
accuracy of 98.22% in detecting the attack. MLLG out-
performed TopoGuard+ by 16% in accuracy. A Deep
Reinforcement = Learning-based  Attack  Tolerance
Scheme (DRL-ATS) for SDN-based Internet-of-Vehicles
(IoVs) has been discussed in [91]. The scheme can tolerate
topology poisoning attacks by adaptively adjusting the
service deployment in the SDN-enabled vehicular edge
network.

3.1.3 Packet injection attacks

This is a relatively recent vulnerability for SDN thus
received little attention in the literature. Yet, it can have a
severe impact on different parts of SDN architecture by
injecting manipulated packets into SDN. It can lead to
service disruption in the control plane along with an
increase in resource consumption in the data plane [103].
Wang et al. uses the SDN controller’s improper exception
handling to disconnect the control channel. Specifically, it
tampers the packet-in message’s length field and sends it to
the controller. The authors propose a DRL-based attack
tolerance scheme to distinguish real traffic from fake ones
[89].

3.2 Vulnerability analysis of data plane

Most common data plane attack types include DoS/DDoS,
unauthorized access, side-channel attacks, fraudulent rule
insertion, flow-rule flooding, and ARP poisoning
[34, 37, 38]. In this study, we present Denial-of-Service
(DoS/DDoS), and side-channel attacks based on the
availability of DL-based methods.

3.2.1 Denial of service (DoS/DDoS) attacks
In DoS/DDoS attacks, the attacker generates traffic flow

that overwhelms the links between switches in the data
plane and creates a bottleneck to prevent network service

delivery to legitimate users and their generated traffic. It is
for this reason, DoS/DDoS attacks affect multiple parts of
SDN architecture and cause considerable damage in terms
of service delivery. Table 4 highlights different DL-based
solutions that target data plane attacks.

According to [112], DoS attacks targeting SDN data
planes can be classified into two groups, M-DoS and
S-DoS. Multiple flow entries (M-DoS)-based attacks intend
to exhaust the Ternary Content-Addressable Memory
(TCAM) resource of the switch. Single entry (S-DoS)
attacks, on the other hand, target a link between the net-
work device and the SDN controller. In this respect, the
authors proposed a Back-Propagation Multi-feature-based
Neural Network (BP-MFDD). Results reveal that BP-
MFDD is able to effectively detect both types of attacks.
However, the computational time of the proposed mecha-
nism increases with an increase in flow rate, which is one
limitation that future work can attempt to rectify.

Razib et al. developed a DNN-LSTM-based method for
intrusion detection system in SD-IoT networks [105].
Three different DNN-LSTM variations (namely Cu-
DNNLSTM, Cu-DNNGRU, and Cu-BLSTM) are imple-
mented and validated using CICIDS 2018 dataset. Their
performance is also compared to state-of-the-art solutions
that utilize GRU-LSTM, GRU-RNN, and Generalized
Suffix Tree models. However, the authors fail to provide an
attack-level performance evaluation for this system. A
Double Deep Q-Network-based intrusion response algo-
rithm developed in [104] to provide rapid response against
TCP SYN Flooding and Link Layer Flooding attacks. The
performance of the proposed method for detecting the
attacks is evaluated using metrics such as the ratio of
malicious packets dropped and the number of flow rules.
Ali et al. analyzed current strategies for malicious traffic
identification and listed the shortcomings of the classical
machine learning method. The authors showed that DNN
attains higher accuracy. The presented models were eval-
uvated using KDD-CUP99 and NSL-KDD datasets and
obtained 99.6% accuracy on attack detection [113].

Thu et al. proposed Deep Deterministic Policy Gradient
(DDPG)-based Deep Reinforcement Learning approach for
DDoS detection and mitigation system in Software-defined
satellite networks (SDSNs) [106]. The proposed model is
composed of an actor-network and a critic network. The
actor-network adjusts policy parameters, and the critic
network evaluates the policy function of the actor-network
using a time-difference error. The performance of the
proposed DDoS mitigation system is compared against
different types of DL models such as LSTM, Densely
Connected Network, and Gated Recurrent Unit in terms of
power consumption for normal, abnormal, and total traffic.
A semi-supervised Deep Extreme Learning Machine
(SDELM) was developed in [85] for DDoS detection and
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Table 4 Security vulnerabilities and proposed solutions for SDN data plane

Attack  Attack objective  Proposed solutions Advantage DL method
type
Deepair [104] Superior compared to the Q-learning based Deep reinforcement learning
approach
DNNLSTM [105] Efficient threat detection, high accuracy and low Deep neural network and long short
resource consumption term memory
SDSN [106] Reduce energy consumption Deep reinforcement learning
DNN-IDS [107] High efficiency Deep neural network
LEDEM ([85] Successful working in a real hardware network Deep belief network
DoS/ Network service ~ Hybrid framework High bandwidth and low latency Restricted Boltzmann machine
DDoS disruption [108]

LSTM-Autoencoder-
based [109]

DDoS defender [110]

DCNN [79]

Distributed SDIN
[50]

LSTM-FUZZ [97]
DeepGuard [1]
IDPS [111]
DLSDN [88]

High performance of controller

Easy real-time update of detection

Minimal computational complexity

Distributed control plane

Automatic execution of activities
Enhanced traffic flow monitoring capability
High performance of controller

High accuracy using various DL methods

Long short term memory

Convolutional Neural Networks

Long short term memory and
recurrent neural networks

Convolutional neural networks

Deep reinforcement learning

Long short term memory
Deep reinforcement learning
Recurrent neural networks

Multi-layer perceptron

mitigation for IoT using SDN-Cloud architecture. The
performance of the proposed method was compared against
other ML/DL methods (e.g., AdaBoost, SVM, Deep Belief
Network, Naive Bayes) to demonstrate superior
performance.

A hybrid Deep Learning framework with Restricted
Boltzmann Machines (RBM) and SVM was utilized for
anomaly detection in multimedia applications in SDNs
[108]. The proposed system was evaluated on different
datasets (e.g., KDD99 and custom dataset) and it is shown
to attain a detection accuracy rate of 99.0% for KDD99. It
also obtained more than 90% accuracy for the custom-
generated dataset in detecting stealthy DDoS and volu-
metric DDoS attacks. ElSayed et al. proposed an LSTM-
Autoencoder-based model for DDoS attack detection and
mitigation. This paper uses two popular feature selection
methods as Information Gain (IG) and Random Forest (RF)
to find the most relevant features for each dataset (InSDN,
CICIDS2017 and CICIDS2018). The comparison against
other ML/DL models (e.g., SVM, Naive Bayes, Decision
Trees, Random Forest, Logistic Regression, and DDoSNet
[114]) showed the proposed approach provides a high
attack detection rate, more efficient training time, and
lower overhead on network performance [115]. Scaranti
et al. developed anomaly detection models using Using
Artificial Immune System (AIS) and Fuzzy Logic models
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[116]. The proposed solution is tested with experimental
and open-source datasets (i.e., CiCDDo0S2019) and com-
pared against state-of-the-art solutions. The results indicate
that AIS was able to surpass other ML-based techniques
(e.g., Naive Bayes, Random Forest, K-NN, and Local
Outlier Factor) for most of the evaluation metrics. Another
study compared the performance of ANN with various
classic ML algorithms (e.g., Logistic Regression, Support
Vector Classifier, KNN, Random Forest, Ensemble Clas-
sifier, and Support Vector Classifier with Random Forest)
for DDoS detection. Results show that the hybrid model of
the Support Vector classifier with Random Forest has the
highest accuracy [117]. Tang et al. introduced a Gated
Recurrent Unit (GRU)-based approach for DDoS attack
detection in SDNs [11]. The proposed model achieved
higher accuracy compared to other ML-based approaches
(e.g., Naive Bayes, SVM, and DNN) using six features
from the NSL-KDD dataset. Another study [110] built an
efficient defense mechanism using three different DL
algorithms against DDoS attacks in SDNs. The proposed
models are evaluated on the ISCX dataset and they were
found to attain 98% accuracy. Novaes et al. used Genera-
tive Adversarial Network (GAN) framework to alleviate
the impact of DDoS attacks in SDNs. The authors com-
pared the obtained results from the GAN framework with
different DL algorithms (e.g., LSTM, CNN, MLP) to
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highlight superior performance using the public dataset
such as CiC-DDo0S2019) [118].

To classify DDoS attacks based on IP flow traffic, [79]
utilized an ensemble Deep CNN framework. The perfor-
mance of the proposed network was compared against
other state-of-the-art solutions using the CICIDS2017
dataset. In various performance metrics, the proposed
solution was able to obtain 99.4% detection accuracy. For
industrial SDNs, an attack mitigation scheme using Deep
Reinforcement Learning and distributed control plane has
been proposed in [50]. The performance of the proposed
system is tested against different types of attacks (e.g.,
topology forgery and packet in flooding attacks scenarios)
and performance metrics (e.g., detection time). The pro-
posed system can isolate the attack source by adaptively
adjusting the switch takeover and can achieve near-optimal
performance. The use of a hybrid deep learning framework
was discussed in another study [97]. The framework
combined LSTM memory cells and Fuzzy Logic networks
to prevent different types of attacks including DDoS and
port scan attacks. The framework was able to provide a
high level of performance (Recall = 93.13% for one of the
attack scenarios) on CICDDoS 2019 dataset. A Double
P-value of Transductive Confidence Machines for the
K-Nearest Neighbors algorithm (DPTCM-KNN) was pro-
posed for detecting anomalous flows in SDNs [119].
Although the attack-level analysis is missing, the system-
level analysis and comparison with other methods (e.g.,
TCM-KNN, KNN-ACO, and ABT-SVM) using different
metrics (e.g., accuracy, FPR, TPR) returned promising
results.

A Sampled Density Peak-based Clustering algorithm is
leveraged to develop Anomaly Detection System (ADS) in
[120]. The performance of the proposed system is com-
pared to other clustering-based approaches (e.g., DBScan,
Birch, K-means, MeanShift) to reveal higher detection
accuracy. FADE [121] is an ADS that analyzes the network
topology and flow rules and computes a minimal set of
flows that covers all forwarding rules. It then calculates an
optimal number of monitoring positions on its path and
installs dedicated rules for flow statistics collection. FADE
also manages the expiration of existing rules and the
installation of updated rules to ensure the accuracy of
collected statistics. The authors also proposed a scalable
version of FADE, called iFADE, that can reduce the
number of rules by 40% when compared to FADE. FADE
and iFADE are lightweight ADS models, as they reduce the
overhead of control messages by about 50%-90% com-
pared to state-of-the-art solutions such as SPHINX [122]).
Another study utilized a Deep Reinforcement Learning-
based system (DEEPGUARD with Double Deep Q-Net-
work (DDQN)) for anomaly detection and effective traffic
flow management in SDNs. The learned optimal traffic

flow matching control policy allows the extraction of
useful traffic information that improves anomaly detection
[1]. Shafi et al. developed an ADS for Fog-Assisted DDoS
section framework for IoT networks, E3ML, using
Recursive Neural Networks (RNN), Multi-Layer Percep-
tron (MLP), and Alternate Decision Trees (ADT) to detect
DoS attacks [111]. The models are tested using UNSW-
NB15 dataset and the results show that ADT model yields
the best performance (near 100% precision and recall)
when the attack detection interval is set to 60 seconds or
more. On the other hand, the proposed hybrid model,
E3ML, attains better results at shorter detection intervals
and comparable results when using higher detection
intervals.

Musumeci et al. investigates how data plane pro-
grammability, enabled by P4 language, can be used to
detect DDoS attacks directly on network switches with the
need to involve SDN controllers. It investigates the
potential of using ML models to perform automated DDoS
detection such as SYN flooding attack detection. The
results show that all ML algorithms achieved more than
98% in accuracy, precision, recall, and Fl-scores. Classi-
fication time remained in the order of a few hundred
microseconds, indicating a significant reduction in detec-
tion latency when models are evaluated in the data plane
[123]. pHeavy is another ML-based method for P4-enabled
devices to detect elephant flows which can be used for DoS
attack prediction in the data plane [124]. Thus, the results
show that pHeavy can predict heavy flows accurately.
Euclid is also a p4-based method that utilizes information-
theoretic and statistical analysis for DDoS attack detection
and packet classification [125]. This paper uses the CAIDA
[126, 127] dataset to evaluate the proposed mechanisms
and the results show that Euclid can detect attacks with
high accuracy (98.2%) and low delay (around 250 ms).

3.2.2 Side-channel attacks

In side-channel attacks, attackers use various methods
(analyze the time gap or the flow configuration delay in the
flow tables) to access confidential information such as
network configuration [38]. Previous research analyzed the
intricacies of the attacks and the level and extent to which
these attack types can cause SDN security vulnerabilities.
For example, different fingerprinting-based techniques
have been developed to explore and exploit the different
weaknesses such as the time gap in flow table update
messages. In this respect, a time-based fingerprinting
method was developed in [128]. Cui et al. used dispersion
in packet pairs sent between controllers to switches to
deduce flow rules, network configuration, and controller
type [129-131].
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Interestingly, most studies on data plane side-channel
attacks are focused on finding new attack surfaces in the
existing SDN implementations. FlowKeeper is one of the
very few studies that attempt to robustify the SDN data
plane to mitigate attacks including side-channel attacks
[132]. It introduces a dynamic delay adjustment method for
communication between switches and a controller to pre-
vent side-channel attacks without hampering the perfor-
mance of benign traffic considerably. Another research
proposed an integrated SDN-IoT architecture that can
detect side channel attacks in IoT networks [133]. In this
architecture, a Fuzzy Neural Network (FNN) based attack
detection system is developed using NSL-KDD datasets.
The proposed model uses the value of signal noise ratio and
sudden lack of memory as features to detect the attacks.
The confusion matrix analysis reveals that the proposed
FNN-based attack detection system can detect the attacks
with an accuracy of 83%.

3.3 Vulnerability analysis of application plane

Application plane is susceptible to different attacks
including service neutralization, application termination,
and communication disruption [34]. Singh et al. mentioned
fraudulent rule manipulation, network service adversary,
and unauthorized access into the list [38]. Rahouti et al.
added malicious application-based attacks and authoriza-
tion-related attacks to the list of vulnerabilities [37]. Hence,
it can be said that control and data plane security vulner-
abilities and proposed solutions have been given consid-
erable attention in the literature. In comparison, application
layer and communication interface have not been studied
sufficiently. This is mainly because SDN controllers
(control plane) and switches (data plane) are considered
more critical components that regulate and manage flows.
Consequently, Table 5 merges the vulnerabilities for
application plane and communication interfaces.
Application layer flooding attacks targeting higher lay-
ers of the protocol stack such as DNS, NTP, SNMP, and
HTTP are widespread. VARMAN (adVanced multi-plAne

secuRity fraMework for softwAre defined Networks) is an
Intrusion detection system that used Poisson distribution
for the traffic generator and replayed the collected traffic
trace files using the fprobe tool to target HTTP services.
The proposed ML workflow for attack detection and mit-
igation in the SDN controller consists of two main types of
traffic flow classifiers, namely Non-Symmetric, Stacked,
Deep Autoencoder Learning, and Random Forest Classi-
fier. VARMAN detects the application layer attack traffic
patterns by matching the request/response packets and
identifying malicious behavior in the protocol semantics
[134].

Griffin is an unsupervised learning-based (Deep
Autoencoders) IDS for the detection of known and zero-
day intrusion attacks in real time [14]. Griffin employs
feature extraction, cluster analysis for dimensionality
reduction, and an ensemble autoencoder to further extract
features with low complexity and high precision before
training a model. The authors state that the application
plane of SDN is vulnerable to reconnaissance attacks in
which malware finds devices that use the default username
and password combinations. Griffin has been evaluated
with the open datasets (e.g., Mirai, Active Wiretap) to
demonstrate its detection effectiveness. The results show
that Griffin’s complexity is about 40% lower, and its
accuracy is up to 19% higher than existing NIDSs (e.g.,
flow-level clustering, SVM, Random Forest, Suricata).
INDAGO [136] is a proactive mechanism that statistically
analyzes the application behavior using an unsupervised
learning-based K-means clustering algorithm and auto-
matically detects malicious activities in applications. They
implement Security Sensitive Behavior Graph (SSBG)
used for extracting the control plane semantic features and
behavior profiling [136]. However, one of the limitations of
INDAGO [136] is that it does not provide real-time mali-
cious application detection.

Table 5 Security vulnerabilities and proposed solutions for application plane and communication interface in SDN architecture

Attack type Attack objective

Proposed solutions

Advantage DL method

Application plane

Flooding attack Higher layers of protocol stack

Reconnaissance Unauthorized Griffin [14]
Attack Access

Communication interfaces

MiTM Data sniffing Griffin [14]

CNN-LSTM [135]

VARMAN [134]

Real-time detection Deep Autoencoder Learning

Real-time and high accuracy Deep Autoencoder Learning

Real-time and high accuracy Deep autoencoder Learning

High detection speed CNN and LSTM
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3.4 Vulnerability analysis of communication
interfaces

Some of the attack types discussed by [38] for the different
communication interfaces include man-in-the-middle,
sniffing, resource saturation, and service chain jamming.
Some of the cross-layer attacks mentioned in [37] include
cross-path attacks, teleportation attacks, rootkit attacks, and
controller placement-related attacks. Cross-path attack is
another type of attack that the communication interfaces
are vulnerable to. In a cross-path attack, the attacker’s
objective is to disrupt the communication between data
plane devices and controller [137]. The attacker can
achieve this goal by launching a saturation attack that sends
a vast number of spoofed packets to reduce the possibility
of matching any of the existing flow entries on the targeted
switch [138]. Such a data-to-control plane flooding attack
may exhaust the controller’s computation resources
thereby disrupting the effective operation of OpenFlow
switches [138]. To tackle this problem, authors in [138]
investigate the impact of measurement time-window on
attack detection performance for SVM, Naive Bayes (NB),
and K-NN classifiers. The NB model obtained the highest
performance with 85% precision, 96%, 91% F-1 scores
using one minute as an attack detection time window.

Man-in-the-Middle (MiTM) attacks can threaten one or
more of the communication channels and interfaces
between the different layers of the SDN architecture. In
MiTM, an intruder injects a host between source and des-
tination communication to sniff the data during commu-
nication [38]. Griffin [14], a Network Intrusion Detection
System, uses an ensemble of autoencoders to detect both
known and zero-day intrusion attacks in real-time with
high accuracy. Specifically, Griffin uses an efficient feature
extraction framework to capture the sequential features of
the traffic packets. It shows higher accuracy in detecting
MiTM attacks compared to Support Vector Machines and
Random Forest models.

Ahuja et al. developed ML models to detect ARP Poi-
soning and ARP Flooding attacks [135]. The CNN-LSTM
model outperformed the other machine and deep learning
algorithms tested including LR, NB, SVC, DT, RF, EC,
ANN, CNN, LSTM, and CNN-LSTM, with an accuracy
score of 99.73% and a false positive rate of 0.017%.
Another research proposed to detect side channel, man-in-
the-middle, malicious code, and DDoS attacks using Fuzzy
Neural Network (FNN) [133]. The FNN is trained and
tested using NSL-KDD datasets. SSH alarms for redirect-
ing SSH/HTTPS sessions, security certificate error mes-
sages, and phishing emails are being used to detect MiTM
attacks. The confusion matrix analysis reveals that the

proposed FNN-based attack detection system can detect the
attacks with an accuracy of 83%.

4 Training datasets and performance
evaluation metrics

In this section, three main aspects at the intersection of
Deep Learning and SDN will be highlighted in three sep-
arate sub-sections. Due to the importance of data quality
and quantity for training and validation of DL methods, we
start with the review of some of the existing publicly-
available datasets to revisit the claims that data limitation is
a major challenge in the adoption of DL methods for SDN
security [32]. In the second subsection, we outline the
performance evaluation metrics developed to examine the
performance of various security enhancement models. In
the third subsection, we discuss the types of DL-based
SDN security applications and provide a taxonomy based
on the scope of the work.

Another interesting insight from examining the perfor-
mance metrics outlined in different studies is that they do
not provide an attack-by-attack performance, rather they
provide an overview of the overall performance of the
proposed systems. However, providing performance in this
manner would allow the authors as well as other
researchers to have a better appreciation of the strengths as
well as weaknesses, and deficiencies of the different SDN
security systems against different attack types. Similarly,
most of the studies in this field do not provide a link
between earlier studies and their study when providing
relevant metrics to gauge the performance of their SDN
security systems. This disconnect and lack of validation
with respect to utilizing different statistical measures make
it difficult to provide a reliable cross-examination between
different studies outlining different SDN security systems.
This apparent disconnect can be reduced by clearly high-
lighting which measures they are using (this part is present)
and providing an effective rationale regarding why they are
using those specific measures by mentioning relevant and
credible studies that have suggested the usage of those
metrics (this part is currently lacking).

4.1 Dataset for deep learning-based SDN
security methods

For any learning-based method, the quality and quantity of
data is the key to developing a successful solution. This is
even more critical for DL-based methods as they, by
design, require a considerable amount of data to ensure that
the developed model is accurate and performs well with
new data. Yet, earlier SDN security studies did not inves-
tigate this aspect in sufficient detail. Thus this study
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provides the first in-depth analysis of the dataset used in
SDN security papers. Table 6 lists the major datasets used
for SDN security. Luckily, many of the public datasets
[139-145] contain more than a million entries, which is a
promising sign, especially for DL models that are highly
dependent on quality and quantity of data. Feature set size
for each dataset ranges between 14 and 83. It is important
to note that feature set size is not necessarily an indicator of
performance since most studies apply feature extraction to
remove redundant or irrelevant attributes before training
DL models. Moreover, some of the datasets provide
metadata [141-147] along with raw data, while others
[139, 140, 148] do not provide such accompanying
information.

Existing dataset are either generated using real-world
networks [141-148] or simulations [139, 140, 149]. While
the dataset captured from real-world networks offer more
realistic results, they typically suffer from class imbalance
as many types of attacks are either detected rarely or not
detected at all. On the other hand, synthetic datasets cap-
tured in simulated networks can be misleading due to
failure to reflect real network behavior in terms of scale,
topology, and traffic characteristics. Moreover, it is nearly

impossible to assess the reliability and credibility of the
generated data.

Another issue with the most available dataset is that they
are collected from small, non-SDN networks; thus, trained
models may not work well in large-scale production SDN
networks due to differences in traffic scale and behavior.
InSDN [149] is the only dataset that was generated in a
simulated SDN network, but it also has similar issues due
to being generated in a simulated environment using syn-
thetic traffic. Consequently, in the absence of an open-
source dataset generated from actual, physical SDNS, it is
nearly impossible to establish a benchmark to test the
feasibility of proposed mechanisms for real-world
networks.

4.2 Performance evaluation metrics for SDN
security methods

An essential aspect of evaluating a solution is presenting
evaluation results using well-known performance metrics.
Hence, this section presents commonly used performance
metrics in existing studies. Table 7 presents performance
metrics used in previous SDN security papers. True

Table 6 Open-source datasets used to train and evaluate Deep Learning models

Study Dataset Year Attack Attack types Sample Features Limitations
name classes size
[139] KDD99 1998 22 train/ DoS, Probe, R2L, U2R 5.0 M 41 Data duplication very high
15 test
[140] Kyoto 2006 N/A N/A 93 M 24 Imbalanced class distribution, attack
sessions types not known, synthetic dataset
[148] NSL- 2009 N/A DoS, Probe, R2L, U2R 150,000 41 Synthetic dataset
KDD
[141] ISCX- 2012 4 train/ HTTP DDoS, SSH-BF, Infiltration 2.0M N/A Only contains HTTP traffic, limited
2012 test packets features for ML/DL training
[142] UNSW- 2015 9 train/ DoS, Fuzzer, Backdoor, Shellcode, 2.54 M 49 Imbalanced train/test distribution
NBI15 test Worm
[143] AWID 2016 3 Flooding, Injection,Impersonation 2.4M 58 Highly unbalanced dataset
test/train
[144] CICIDS- 2017 14 DoS, DDoS, Botnet, CSS, Portscan, 2.83M 83 Redundant records, missing class
2017 test/train SSH-HB, Infiltration, SQL-I labels
[146] CIDDS- 2017 4 train/ Portscan, Pingscan,DoS, BF 325,865 14 Imbalanced dataset
001 test
[145] CSE-CIC- 2018 7 Botnet, Slowloris, DoS, DDoS, CSS, 16.2M 83 Synthetic dataset, high class
IDS- test/train SSH-BF, SSH-HB, Portscan, SQL-I instances imbalance
2018
[147] CiC- 2019 12 train/6 DDoS 674,463 87 Slightly Unbalanced dataset
DDoS test
2019
[149] InSDN 2020 7 train/ Botnet, DoS, DDoS, Web attacks, 343,939 83 High class imbalance, synthetic
test Password, BF, Probe, Exploitation instances dataset

CSS cross-site scripting, BF brute force, SQL-I sequential query language injection, HB heartbleed, AWID aegean wi-fi intrusion dataset, CIDDS

coburg network intrusion detection dataset
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e i iferent studies covered DL and ML metic
in this review-based study in Study  Year  Accuracy  Precision Recall F-scoe DR TNR TPR FPR FNR
relation to ML/DL-based
studies [115] 2022 X X X X
[150] 2021 X X X X
[151] 2021 X X X X X
(1211 2021 X X X
[111] 2018 X X X X X X X X
[971 2020 X X X X X X
[1200 2017 X
[152] 2018
[79] 2020 X X X X X X
[153] 2017 X X X
[6] 2020 X X X
[82] 2022 X X X
(7] 2022 X X X
[116] 2020 X X X X X X
[154] 2020 X X X X
[86] 2022 X X
[155] 2018 X X
[92] 2017 X X
[119] 2018 X X X
[156] 2021 X
[1571 2019 X X X X X
[95] 2021 X X X X X
[158] 2022 X
[84] 2021 X X X X
[13] 2020 X X X X
[105] 2022 X X X X X X X X
[14] 2018 X
[98] 2020 X X X
[159] 2022 X X X X
[15] 2022 X X X X X X X X
[160] 2020 X X X
[89] 2022
[161] 2021 X X X X
[162] 2018 X X X X X X X X
[134] 2019 X X X X X X X X

FPR false positive rate, TPR true positive rate, DR detection rate, TNR true negative rate, FNR false

negative rate

Positive (TP) signifies how many positive class samples a
model predicted correctly. True Negative (TN) refers to
how many negative class samples a model predicted cor-
rectly. False Positive (FP) and False Negative (FN), on the
other hand, indicates incorrect positive or negative pre-
dictions by a model, respectively. Accuracy is the simplest
metric to implement and is defined as the number of correct
predictions made as a ratio of all predictions made. It
works well only if there are an equal number of samples

belonging to each class and can be calculated with the help
of the following formula:
TP + TN
TP + 1N + FP + FN

(1)

Precision explains the percentage of correctly identified
positive samples to the total number of positive predictions.
It is calculated as follows:

Accuracy =
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. TP
Precision = — (2)
TP + FP
Recall, on the other hand, refers to the ratio of correctly

predicted samples to all positive samples in the dataset.
TP
(3)

Recall = ———
TP + FN

Finally, F-Score is the harmonic mean of precision and
recall values and shows how precise and robust a model is.

F — Score — 2 % Recall * Preci.silon (4)
Recall + Precision

Accuracy, precision, recall, and F-score value are all rel-
evant and important metrics when evaluating the perfor-
mance of ML models. Yet, many papers do not report these
metrics as shown in Fig. 11. For example, only 30-40% of
all studies did not include precision, recall, or F-Score
metrics. Although some studies presented a different set of
evaluation metrics, this indicates that the majority of
studies fail to provide a sufficient level of performance
analysis.

Besides typical machine learning evaluation metrics,
researchers also used some other metrics to evaluate DL
models including Round Trip Time, CPU utilization,
memory utilization, request per second, number of
accommodated flows, and response time [6, 163]. In [155]
authors presented CPU Utilization time, HTTP response
time, rate of infected packets, and the average number of
installed entries. Moreover, Vishwakarma et al. used
computational cost, storage cost, communication cost,
consensus delay, and energy consumption when perform-
ing the theoretical analysis of a proposed framework [164].
[120] presented Adjusted Mutual Information, Adjusted

Performance Metrics and their usage in literature
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Fig. 11 The statistical evaluation of the different performance metrics
used in the literature. Each metric is measured in terms of the
percentage of the overall literature presented in evaluations. For
example, accuracy is presented in 90% of the papers we presented in
this review. DR stands for detection rate

@ Springer

RAND, Completeness, Homogeneity, and Mutual Infor-
mation when comparing different clustering-based unsu-
pervised learning methods for attack detection.

5 Issues, challenges and opportunities
for the future

In this section, we list the limitations and challenges that
SDNs face despite the advancements in the protocol and
application areas (e.g., centralized/decentralized con-
trollers, controller types, hybrid SDNs, stateful/stateless
data planes, etc.). Some of the open challenges and issues
have been discussed in prior survey [29, 32, 34, 37, 53],
thus, the purpose is not to repeat existing information but to
provide updated, contextually relevant, and cohesive
information in light of the literature findings in recent
years. Wherever applicable, we will also provide potential
research directions to inspire future work.

One of the major issues that affect the overall perfor-
mance of DL models is the need for large-scale, high-
quality datasets [1, 33, 165]. Section 4 discussed that while
some researchers generate custom datasets in simulated
environments, it raises concerns about the quality of the
data as the characteristics of reproduced anomalies may not
be similar to the ones observed in production systems.
Moreover, the scale and structure of network topology may
not be able to represent the complexity of real-world net-
works. While there are few open source datasets, more
labeled datasets from production systems are necessary to
develop robust DL solutions and evaluate the performance
of existing DL solutions in a wide range of network con-
figurations and attack scenarios.

Another challenge in the adoption of DL methods is the
computational needs of the training phase as DL is noto-
rious for its long and resource-intensive training times.
While the cost of one time training may not be significant,
especially when using high-performance clusters, it
becomes prohibitively expensive as the complexity of
models as well as training frequency increases. Researchers
proposed online training to initiate a model with a rela-
tively small dataset and update it with new data as it
becomes available to avoid the cost of retraining from
scratch every time models need to be updated [166].
Moreover, deep transfer learning can also be used to mit-
igate the need for complete model training for each net-
work [167-169]. Once challenges to adopting DL solutions
are handled, they can be widely adopted for more attack
types. Section 3 showed that there is a wide gap between
the existing vulnerabilities and the utilization of DL-based
approaches for developing mitigation mechanisms. Except
for DDoS attacks, most other attack types have not
received any attention from researchers for the
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development of DL-based mitigation mechanisms. Hence,
the application of DL for other types of attacks in any level
of SDN architecture is worth investigating to take advan-
tage of it or at least evaluate its performance.

Finally, Virtualized Network Functions (VNFs) and
associated network services offer many possibilities for
enhancing security in SDN environments [34]. Using VNFs
can reduce the need for middle-box-based security
approaches for SDNs, as VNFs can be directly imple-
mented at the different layers to protect against various
security vulnerabilities. Although SDN and NFV evolve as
essential technologies for developing next-generation
telecommunications, the sufficient effort has not been put
towards the development of standard binding interfaces
between SDN and NFV paradigms [34]. One of the
potential solutions for enhancing the optimization of SDN
resource utilization and management is also through the
synergy between NFV and SDN [32]. Existing ML-based
methods have been leveraged to improve network opti-
mization and service utilization costs (e.g., Reinforcement
Learning, Markov Decision Processes, and Bayesian
learning) [32, 170]. Therefore, there is considerable
potential regarding utilizing NFV in conjunction with DL
methods to enhance the security of SDNs in particular and
provide other benefits (e.g., network optimization, service
delivery costs, optimal resource utilization) in the future.
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