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Abstract

This paper presents a general framework for the design and analysis of exchange mechanisms
between two assets that unifies and enables comparisons between the two dominant paradigms
for exchange, constant function market markers (CFMMs) and limit order books (LOBs). In our
framework, each liquidity provider (LP) submits to the exchange a downward-sloping demand
curve, specifying the quantity of the risky asset it wishes to hold at each price; the exchange
buys and sells the risky asset so as to satisfy the aggregate submitted demand. In general, such
a mechanism is budget-balanced (i.e., it stays solvent and does not make or lose money) and
enables price discovery (i.e., arbitrageurs are incentivized to trade until the exchange’s price
matches the external market price of the risky asset). Different exchange mechanisms correspond
to different restrictions on the set of acceptable demand curves.

The primary goal of this paper is to formalize an approximation-complexity trade-off that
pervades the design of exchange mechanisms. For example, CFMMs give up expressiveness in
favor of simplicity: the aggregate demand curve of the LPs can be described using constant
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space (the liquidity parameter), but most demand curves cannot be well approximated by any
function in the corresponding single-dimensional family. LOBs, intuitively, make the opposite
trade-off: any downward-slowing demand curve can be well approximated by a collection of limit
orders, but the space needed to describe the state of a LOB can be large.

This paper introduces a general measure of exchange complexity, defined by the minimal
set of basis functions that generate, through their conical hull, all of the demand functions
allowed by an exchange. With this complexity measure in place, we investigate the design of
optimally expressive exchange mechanisms, meaning the lowest complexity mechanisms that
allow for arbitrary downward-sloping demand curves to be approximated to within a given level
of precision. Our results quantify the fundamental trade-off between simplicity and expressivity
in exchange mechanisms.
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As a case study, we interpret the complexity-approximation trade-offs in the widely-used
Uniswap v3 AMM through the lens of our framework.

1 Introduction

Decentralized exchanges are now an integral part of the broader ecosystem of blockchains, as
evidenced by their ever growing volume of transactions (Kaiko 2022). On model centralized
exchanges, the exchange of a risky asset for a numéraireis typically carried out by an exchange
mechanism known as an electronic limit order book (LOB), in which market participants specify
quantities of shares of the risky asset they would like to trade at specified prices. Trades then occur
as orders are matched in a greedy way: whenever there is overlap between bid and ask prices (i.e.,
between a buy and a sell), a trade is executed, and the matched orders are cleared from the LOB.
LOBs therefore maintain and update a list of all the currently outstanding buy and sell orders.

LOBs face two types of challenges in an decentralized environment such as the Ethereum
blockchain. First, because storage and computation in such an environment tend to be so scarce,
implementing an LOB can be prohibitively expensive. Second, LOBs are well known suffer from
liquidity problems in thin markets (markets with few buyers or sellers), for example, for “long-tail”
crypto assets.

These challenges have motivated an alternative exchange design that has become very widely
used in blockchains: automated market makers (AMMs) and, in particular, constant function market
makers (CFMMs). Uniswap (Adams et al. 2021; Adams et al. 2020) is the most well known and
widely used example of a CFMM.

AMNMs address the second challenge above by offering guaranteed liquidity, meaning at all times
there is a spot price between 0 and oo at which the AMM is willing to buy or sell. AMMs like
Uniswap address the first challenge by using only simple calculations and data structures. For
example, for the canonical (“zy = k”) constant product market maker, the state of mechanism
can be described by two numbers (the quantities z and y held by the pool), and there is a simple
closed-form formula (requiring only a small number of additions, multiplications, divisions, and
square roots) for computing the quantity of the risky asset received in exchange for a specified
amount of the numéraire (as a function of z and y).

In this paper, we provide a general framework for describing and reasoning about exchange
mechanisms, which enables “apples-to-apples” comparisons between LOBs and AMMSs on metrics
such as complexity and expressiveness. More specifically, our contributions can be delineated as
follows:

1. We provide a common framework for describing exchange mechanisms that encompasses
both CFMMs and LOBs. In our general model, liquidity providers (LPs) submit to the
exchange their preferences (in the form of what we define as demand curves for the risky
asset) along with appropriate deposits of the risky asset and numéraire (see Section 2 for
details).

2. We formalize the sense in which some methods of exchange are simpler than others, introducing
a general notion of exchange complexity. Exchange complexity is defined by the minimal
set of basis functions that generate, through their conical hull, all of the demand functions
allowed by an exchange. We classify the complexity of all the prominent types of exchange
mechanisms (see Section 3 for details).



3. We characterize the fundamental trade-off between the complexity of an exchange (in a
sense that we define) and the expressibility of an exchange as measured by its ability to
approximate arbitrary preferences of the LPs (i.e., arbitrary demand curves). In particular, we
prove matching (up to constant factors) upper and lower bounds on the minimum exchange
complexity necessary to attain a specified approximation error (see Section 4 for details).

4. As a case study, we interpret the complexity-approximation trade-offs in the widely-used
Uniswap v3 AMM through the lens of our framework (see Section 5 for details).

1.1 Literature Review

The use of AMMs for decentralized exchange mechanisms was first proposed by Buterin (2016)
and Lu and Koppelmann (2017). The latter authors suggested a constant product market maker,
which was first analyzed by Angeris et al. (2019). Angeris et al. (2021a) and Angeris et al. (2021D)
define and use a reparameterization of a CFMM curve (established by Angeris and Chitra (2020))
in terms of portfolio holdings of the pool with respect to the price as a tool to replicate payoffs
and compute the pool’s value function; we use this same reparameterization for different purposes,
to define a general (i.e., not AMM-specific) framework of exchange and identify fundamental
complexity-approximation trade-offs in exchange design.

A separate line of work seeks to design specific CFMMs with good properties by identifying
good bonding functions, variations and combinations of CFMMs in a dynamic setting with a specific
focus on optimizing fees, and minimizing arbitrage and slippage (Angeris et al. 2022; Engel and
Herlihy 2021a; Engel and Herlihy 2021b; Port and Tiruviluamala 2022; Wu and McTighe 2022;
Ciampi et al. 2022; Forgy and Lau 2021; Krishnamachari et al. 2021; Wang and Krishnamachari
2022; Felekis and Kristensen 2022; Jensen et al. 2021). While fees could be easily integrated into our
model, they have no bearing on complexity-approximation trade-offs and thus we generally ignore
them in this paper for simplicity.

Some previous papers propose generalizations of CFMMs to somewhat wider classes of ex-
changes (Bichuch and Feinstein 2022; Xu et al. 2021) without considering LOBs.

CFMMs and LOBs have been compared before (in ways orthogonal to the questions studied
here) (Barbon and Ranaldo 2021; Lehar and Parlour 2021; Capponi and Jia 2021). Most of these
works either compare the observed liquidities and the price efficiency of these mechanisms (Lehar
and Parlour 2021; Capponi and Jia 2021) or study the same through the lens of arbitrage bounds
(Barbon and Ranaldo 2021). Young (2020) argues that AMMSs can be interpreted as “smooth order
books” and notes a type of non-uniform converse (with each possible state of a smooth order book
represented using a different AMM). Chitra et al. (2021) compare CFMMs and LOBs in terms of
the number of arbitrage transactions necessary to recover from a liveness attack on the underlying
blockchain.

Another line of work analyzes competition between CFMMs and LLOBs and the consequent
liquidity properties of both at equilibrium (Aoyagi 2020; Aoyagi and Ito 2021; Capponi and Jia
2021). Goyal et al. (2022) consider the computational complexity of computing such equilibria.

There is a large literature on the market microstructure of limit order books; see the textbook by
O’Hara (2011) and references therein. There are some examples of on-chain LOBs on high-throughput
blockchains (Shuttleworth 2022; Moosavi and Clark 2021).

Finally, Adams et al. (2021) suggest that Uniswap v3’s key feature is that “LPs can approximate
any desired distribution of liquidity on the price space,” with empirical backing provided by Huynh



(2022); one application of our work is to put this intuition on sound mathematical footing. There is
also work on Uniswap v3 from the LP perspective, such as how beliefs about future prices should
guide the choice of an LP’s demand curve (Fan et al. 2022; Yin and Ren 2021; Neuder et al. 2021).

2 Model

2.1 Model Primitives

We begin by describing our framework for exchange design. While this paper uses this framework
specifically to study fundamental complexity-approximation trade-offs in exchange mechanisms, we
believe it can serve also as a starting point for many future investigations.

Suppose there are two assets, a risky asset and a numéraire asset. Each LP comes separately to
the exchange, and declares the amount of risky asset they would like to hold at each possible price
p, i.e., a non-increasing, non-negative function g;: (0,00) — R*. We call the function g;(-) the ith
LP’s demand curve for the risky asset, because it refers to the demand of the LP for the risky
asset (i.e., we are considering the perspective of the LP). Assuming that the current price is pg, the
LP simultaneously deposits a quantity g;(po) of the risky asset in the common pool, along with an
amount of numéraire given by the Riemann—Stieltjes integral

- /popdgz-(p)- (1)
0

Note that this integral is well-defined (though possibly infinite) since g;(-) is monotonic. Moreover,
the integral is non-negative since g;(-) is non-increasing. In cases where g;(p) is differentiable, the
differential takes the form dg;(p) = ¢.(p) dp. We will show later that this deposit of numéraire is
necessary and sufficient for the exchange to be budget-balanced or solvent, i.e., the exchange system
does not extend credit.

The exchange mechanism maintains the demand curves of the LPs, along with the current price
po- Assuming that n liquidity providers have contributed to the exchange their demand curves along
with respective payments of risky asset and numéraire, the aggregate demand curve (i.e., the total
quantity of risky asset that the exchange will hold at any given price) is given by the non-increasing
function

o) = ailp). @)
=1

Addition and removal of liquidity (LP “mints” and “burns”, as they are known in practice) simply
occur through additions and removals of particular g;’s to the aggregate demand curve of the
exchange. These demand curves of the LPs can arise through bonding curves of traditional CFMMs
(i.e., functions f such that the holdings of the joint pool (z,y) satisfy f(z,y) = ¢ for some ¢) but
this is not necessary; i.e., the exchange mechanisms defined by our framework strictly generalize
AMDMs.

Trading A liquidity demanding trader who wants to trade with the exchange will do so by
specifying a target (new) price p; # po. The trader gets a quantity g(pg) — g(p1) of risky asset, and
pays the following amount in numéraire:

- / " pdg(p), (3)
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as determined by the aggregate liquidity of the exchange g(p) of Eq. (2). As was the case for Eq. (1),
this integral is well-defined, it is non-negative if p; > pg, and non-positive if p; < pg.

Uniswap v2 example To give a simple example, the particular case of a constant product market
maker (CPMM), such as Uniswap v2, arises from our mechanism as follows: restrict the set of
allowable demand curves g; that an LP may submit to the form

Ci

gi(p) = % )

for some constant ¢; > 0. Then, the aggregate demand curve of the exchange will be of the form

n
c
9(p) =>_gilp) = —,
i=1 VP
for ¢ = > 1 ¢; > 0. A trader who will trade with this exchange at a current price pg with a
target price p; (or equivalently, with a specific quantity of risky asset to be purchased, since there a
1 1

one-to-one correspondence) will obtain a quantity g(pp) — g(p1) = ¢ (\/ﬁ — \/?) of risky asset, and

pay in numéraire

—/pplpg’(p)dpz/ppl2\0/]36129:0(\/171—\/170) :

Comparing this to the same expressions for an “zy = k” CPMM, the trader gets exactly the same
quantity of risky asset and pays exactly the same amount of numéraire as they would in the “xzy = k”
CPMM, with k = ¢?. Essentially, the curve g(p) above is just a reparameterization of the CPMM
curve xy = k in terms of prices (Angeris et al. 2021b) where the risky asset is available in quantity
x in the pool and the amount of numéraire is y'.

Significance of LPs’ demand curves In this mechanism, we view the individual demand curves
chosen by the LPs as their ideal preferences with respect to risky asset holdings at each price in
regards to their market making activity. They are in some sense “forced” to make the market
—this is tautologically the reason that they participate in the exchange as LPs?>— but ezactly how
they do this is specified by the shape of their demand curves. The requirement that each g; be
non-increasing can be explained through this argument: each demand curve of any LP has to always
correspond to making the market; as the price of the risky asset increases, a market maker may
only decrease their holdings of the asset (i.e., sell the asset), because if at any given price their
holdings as defined in the exchange mechanism marginally increased (i.e., the LP would buy the
risky asset at the marginal price), then any trader would sweep such a marginal quantity as it is to
their advantage.

2.2 Price Discovery and Budget Balance

In the previous section, we defined a framework for an exchange mechanism. In order for an exchange
to be reasonable, two properties would be necessary: (1) price discovery should occur, i.e., given an

1n particular, z = g(p) = ¢/\/p and y = c,/p at all times in the pool for the corresponding defined price p.

2Note that LPs may also hold other portfolios of the risky asset, which of course need not be restricted to be
non-increasing in the asset price, but their individual demand curves when they participating in an exchange mechanism
need to reflect exactly and only the activity of making the market.



outside market with a fixed external market price, the exchange’s price should eventually become
identical to the market price; and (2) the exchange should at no point in time become insolvent, i.e.,
any feasible trade should always keep the amount of numéraire non-negative. (Because demand
curves are non-negative, the amount of the risky asset is automatically non-negative.) Equivalently,
the second property is broadly known in financial markets as a “no credit” requirement, i.e., that
the exchange does not incorporate the ability of LPs to take credit. In the remainder of the section,
we formalize and prove these properties for our model.

Proposition 2.1 (Price discovery). If there exists an outside market with fized external market price
p of the risky asset with respect to the numéraire, then external market participants (arbitrageurs)
always have financial incentive to trade with an exchange defined as per the framework of Section 2.1
until the price of such exchange becomes equal to the external market price.

Proposition 2.2 (Budget balance). An exchange defined as in the framework of Section 2.1 is
budget-balanced or solvent, i.e., the amount of numéraire that the joint pool contains at all times
(with any sequence of feasible trades, or liquidity additions/removals) is non-negative.

We defer the full proofs of these two propositions to Appendix A.

3 Exchange Description Complexity & Examples

Our general model in Section 2.1 allows LPs to submit arbitrary downward-sloping demand curves.
Such curves are not generally representable in a finite amount of space, so practical considerations
suggest restricting the space of demand curves that LPs are allowed to submit. We will say that an
exchange mechanism is a restriction of the general exchange framework of Section 2.1 in which each
LP demand curve is required to belong to a set of allowable demand curves, i.e., g; € G for some
class G of non-increasing, non-negative functions over the positive reals. An exchange mechanism,
then, is defined by the choice of class G.

Towards defining a measure of exchange complexity, we will be interested in succinct ways of
representing all the demand functions ¢ in a class G. Specifically, given an arbitrary such class G,
we can consider its conical hull. This is the smallest convex cone that contains® G or, equivalently,
the closure of G under finite non-negative linear combinations:

k
cone(G) = {Z ¢igi(p) : 9i(p) € G,c; = 0,k € N} .
i=1

In our context, non-negative linear combinations can be interpreted as aggregations of multiple LP
positions.

A basis of a cone is a minimum-cardinality set of elements that generates the cone, meaning a
set S such that cone(S) = cone(G). We then define the exchange complexity of an exchange (i.e.,
a choice G of allowable demand functions) as the cardinality of a basis for cone(G).* By definition,

3This definition makes sense because the intersection of convex cones is again a convex cone; see, e.g., Rockafellar
(1996) for further background.

4While our formalism in principle accommodates exchanges with infinite exchange complexity, any practical
exchange needs to be defined by a finite basis on any compact (sub-)domain. Additionally, our results only make use of
exchanges that have a finitely generated conic closure to approximate any demand curve within a finite approximation
error under reasonable assumptions about the error metrics.



Figure 1: g € cone(G) for three typical cases: (a) CPMM, (b) LOB, (c¢) Uniswap v3

if a set G of demand functions has exchange complexity k, every function of G can be represented
by a k-tuple of non-negative real numbers (one coefficient for each of the basis functions).’

Our measure of exchange complexity is, by design, well defined for an arbitrary collection G of
allowable demand functions. In all the real-world examples that we are aware of, this set G is already
closed under non-negative linear combinations (i.e., is a cone). In this case, exchange complexity
effectively counts an exchange’s “primitive” LP positions from which all possible aggregations of LP
positions can be derived.

This definition of exchange complexity allows us to formalize the intuition that some exchanges
are easier to represent than others (e.g., that CFMMs are simpler than LOBs). Next, we evaluate
the exchange complexity of all of the most popular types of exchanges used to trade crypto assets.

CFMMs CFMDMs are generated by the restriction to non-negative scalar multiples of a single
basis function, i.e., G = {c- g(p) : ¢ > 0}, where g(p) is one reference demand curve, out of all the
possible curves of the CFMM. The coefficient ¢ of this basis function can then be interpreted as the
liquidity parameter. As an example, for the CPMM, we can choose g(p) = 1/,/p (cf., Figure 1a);
the coefficient can be interpreted as vk for the k in “zy = k.’ In general, irrespective of the bonding
curve, the exchange complexity of a CEFMM is 1. Under standard assumptions (e.g., as in Angeris
et al. (2021a)) on a CFMM’s bonding curve f, the corresponding basis function g can be derived
from f in a mechanical way, through optimization.

LOBs Limit order books consist of limit orders, which are (buy or sell) orders of quantities of
the risky asset at some price. The predetermined prices at which limit orders can be specified are
called ticks. In our framework, limit orders can be represented by a set of basis functions in which
each function corresponds to a limit order at a specific tick (i.e., a step function, where the step
occurs at the tick). According to our definition of exchange complexity above, then, the exchange
complexity of a limit order book (cf., Figure 1b) with k ticks is k. If we restrict our attention to a
price range [Pmin, Pmax] With ticks pmin, Pmin + €, Pmin + 2€, ..., Pmax, the exchange complexity of
such a LOB would be (pmax — Pmin) /€.

There is a superficial difference in convention between traditional LOBs and our model of them
in the preceding paragraph, concerning the default action after a trade that crosses the price of a
limit order. In an LOB, the matching limit order would be automatically removed from the order

5The focus of this work is on information-theoretic complexity — approximation trade-offs, and we do not explicitly
model computation. However, our positive results only make use of mechanisms for which computation with basis
functions is straightforward.



book, whereas in our framework here the corresponding LP would, in effect, automatically place a
new limit order in the opposite direction at the same price. In other words, a LOB basis function is
equivalent to both a limit buy and a limit sell at the tick price, and which one takes effect depends
on the current price pg and the trade to be executed. Because limit orders can be easily added to or
removed from traditional LOBs, and because our model accommodates LP mints and burns, there
is no material difference between the two viewpoints.

Uniswap v3 Uniswap v3 (cf., Figure 1c) can be viewed as a hybrid of a CFMM and a LOB, with
the CPMM curve applied only within a short price interval (in between two of the pre-defined ticks).
By allowing multiple intervals, Uniswap v3 allows concentrated positions in the spirit of LOBs, a
property known as concentrated liquidity. If there are k ticks contained in the interior of an interval
[Pmins Pmax], then Uniswap v3’s complexity on this interval is k. (There is one basis function for each
price segment [¢;,t;11] between two successive ticks; the function is constant up until the interval,
decreases as in a CPMM within the interval, and is zero after the interval, as in Eq. (4)).

1 1 A
Vi T Vi forpst

gi(p) = ﬁ - ﬁ7 for t; <p <tipq (4)
0, for p > t;1

Thus, the exchange complexity of both LOBs and Uniswap v3 is controlled by the number of
ticks (independent of the spacing between them). In practice, ticks are sparser in Uniswap v3 than
in a traditional LOB, and the former accordingly has lower exchange complexity than the latter.
For an example calculation, if the ticks in Uniswap v3 are assumed to be of the form 1.0001%, and
Pmin = 1.0001%, pax = 1.0001°T then Uniswap v3’s complexity in the price interval [pmin, Pmax] iS

_ 10g (pmax /pmin)

~ 10000.5 108 (Pmax /Prmin) -
log 1.0001 08(Pmax/Pmin)

We note that range orders in Uniswap v3 correspond to sums of single-interval positions (with one
position per interval in the range) and are therefore automatically included in the cone generated
by the basis functions defined above.

4 Complexity — Approximation Trade-offs

4.1 Notions of Approximation

Having defined the complexity of an exchange mechanism, we turn to defining the expressiveness
of such a mechanism and proving fundamental trade-offs between complexity and expressiveness.
Informally, we will measure the expressiveness of an exchange mechanism via the extent to which its
allowable demand curves (i.e., the functions in the class G) can represent arbitrary LP preferences
(i.e., an arbitrary demand curve).

Precisely, denote by F the class of all non-increasing functions f : [pmin, Pmax) — [fmin, fmax]-
This is the most general class of bounded demand curves according to our framework. Any arbitrary
(bounded) preference of an LP will be some specific non-increasing function f € F.° We next

SNote that in what follows f is a demand curve, as defined in Section 2.1, and not a bonding curve of a CFMM.



define the extent to which some allowable demand curve g € G (with the same domain and range)
approximates f. (In this section we use g rather than g; to denote an arbitrary function of G.)”

First, we introduce the weighted ¢, norm in the function space as a distance metric; without loss
of generality, assume we have a normalized (and integrable) weight function w : [pmin, Pmax] — RT
such that fg{:;i" w(p) dp = 1. Then, the weighted ¢, distance of two functions f,g € F is

d(f,g) = ( / " w(s) 1£(5) — ()P ds) "

The weight function w can be interpreted as a measure on the price space, for example reflecting a
belief (by an LP, the AMM designer, or the community) that some prices may be more relevant
than others. On a first read, we encourage the reader to take w to be the constant function
’LU(S) = 1/(pmax - pmin) for all s € [pminapmax]-

Given this definition, we define the approximation error of the exchange defined by G as
the worst-case (over arbitrary LP preferences/demand curves f € F) distance from the best-case
approximation (over allowable functions g € cone(G)) of f, as above:

~—

err(G) = sup { inf d(f, g)} . (5

feF | g€cone()

4.2 Upper and Lower Bounds

From the AMM designer’s perspective, an “optimal” AMM would enable LPs to have their preferences
expressed closely; a bit more formally, the worst-case approximation error through the AMM for
arbitrary LP demand curves should be low, and intuitively should decrease with the complexity
of the exchange mechanism: the higher exchange complexity should result in a payoff of lower
worst-case approximation error. The results below characterize this trade-off, by identifying the
best-possible worst-case approximation error as a function of the exchange complexity. For example,
for the special case in which the approximation metric between two functions is the (unweighted) ¢;
distance, an exchange complexity (equivalently, number of basis functions) of ©(1/¢) is necessary
and sufficient to achieve an € worst-case approximation error.

Our upper bound argument also implies the (intuitive but previously unformalized) fact that limit
order books at appropriately defined price ticks attain the optimal approximation error guarantee
for a given level of exchange complexity (up to a factor of 2). In other words, when computation and
storage are not first-order constraints, LOBs are nearly optimally expressive exchange mechanisms.

Theorem 4.1 (Upper bound). For every ¢ > 0, there exists a limit order book (LOB) exchange

mechanism G with exchange complexity k = O(1/€P) that attains approximation error

err

(g) <e- fmaz;fmin.

"The restricting to a bounded domain and range is convenient but can be relaxed considerably. The fundamental
issue is that, to meaningfully speak about function approximations and avoid infinite distances between distinct
functions, we need to impose constraints on allowable demand functions and/or the choice of distance function and
underlying measure (on prices). Functions with bounded domain and range are convenient because they are integrable
no matter what the distance notion and measure. Our results can be generalized by considering combinations of
demand function classes and classes of measures for which the same integrability properties are guaranteed.

Additionally, it will be apparent from our lower bound (Theorem 4.2) that, if the family of functions F was not
bounded by some finite bound fmax < 0o, there would be no finite approximation error guarantee with any finite
complexity (under any natural notion of approximation error).



Theorem 4.2 (Lower bound). For every e > 0, every exchange mechanism G with exchange
complexity O(1/€P) suffers approzimation error

err(G) > € - Qfmaz — fmin) -

For the detailed proofs of Theorems 4.1 and 4.2 we refer to Sections 6.1 and 6.2 respectively.

5 Uniswap v3

Next, we answer the question: to what extent do various formats in practice come close to this
complexity — approximation trade-off? Historically, constant product market makers (CPMMs)
were first built for gas efficiency purposes (Adams et al. 2020), but when it was realized that this
came often at the expense of capital efficiency, the proposal of Uniswap v3 came around (Adams
et al. 2021), which trades like a CPMM curve inside tight intervals at a pre-defined tick spacing,
which are otherwise independent. In this section, we consider Uniswap v3, which is at the time of
writing a widely used AMM, as an enlightening example to showcase how our theory can be applied
to formally prove approximation guarantees for AMMs employed in practice.

More specifically, we can prove that —under a particular assumption of the returns distribution
with maximum entropy, i.e., a uniform prior in the returns space— a variation of Uniswap v3 with
variable tick spacing 0 achieves an approximation error that matches (up to a constant multiplicative
factor) the lower bound in Theorem 4.2. The precise formulation follows.

Theorem 5.1. For every € > 0, there exists a Uniswap v3-like exchange mechanism G with
n = O(1/€P) ticks at prices pmin(1+6)" for i € {0,1,...,n} where log(1 + ) = € 10g(Pmaz/Pmin),
that attains approrimation error according to Eq. (5) with a normalized weight function w(p) which

assigns measure at most O(1/n) to each of the intervals defined by these ticks, of

ETT(g) < O(E : (fma:p - fmm)) :

The detailed proof of Theorem 5.1 is relegated to Section 6.3.

6 Proofs

6.1 Proof of Theorem 4.1

Let € > 0, and a normalized weight function w: [pmin, Pmax] — R such that f]?rnmiix w(p) dp = 1. Then,
since w(p) > 0 Vp € [Pmin, Pmax], split the interval [pmin, Pmax] into n = 1/€eP equal measure (according
to the weight function) sub-intervals [t;,t;41], Vi € {1,2,...,n}, i.e., such that ﬁi_”l w(p)dp = %
Define the limit order book (LOB) exchange mechanism G = cone(G) as the conical hull of the
following set of basis functions: each basis function represents a limit order at each price point ¢;
above, i.e., the basis function is a unit step function dropping from 1 to 0 at price ¢;. The exchange
complexity of this G is therefore 1/¢€P.
Consider any f € F, and define the following g¢ € cone(G) that will “approximate” this f:
f(t:) + f(tiy1)

Vp € (ti, tiy1), gr(p) = — (6)

It is true that this g; € cone(G), because gy is piecewise constant, with function value drops
occurring only at the prices ¢; (see Figure 1b for an example representation).
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We have that

Vp € (tistit1), |f(p) —gr(p)| < 5 ;

since f is non-increasing, and by the definition of g; in Eq. (6).
Hence, we obtain the desired result:

n tit1 1/P
err(G) = Sup{ inf d(f, 9)} < sup (Z: /t w(s) [f(s) = gs(s)| dS)

feF | g€cone(G)
N NG (O R (AN
<sup (S5 [ ot (142 )

i=1""%
, . 1/p
- g (B )
=1
1 n

IN
@)

where the second-to-last inequality follows from the inequality between ¢; and £, norms in the
function space.

6.2 Proof of Theorem 4.2

Let € > 0, and a normalized weight function w: [pmin, Pmax] — RT such that f;;;i" w(p)dp = 1.
Similarly to the upper bound, but with double the amount of intervals, split the interval [pmin, Pmax]
into 2(n + 2) (where n = 1/€P) equal measure (according to the weight function) sub-intervals
[tistiv1], Vi€ {1,2,...,2n+ 4}, i.e., such that ftt;“ w(p)dp = 2(7171—1—2) Now, consider any exchange
mechanism G with exchange complexity < }p — 1, i.e., such that cone(G) is generated by < eip -1
basis functions; suppose without loss of generality that these are g1,92,...,gn—1 € cone(G).

Lemma 6.1. For every basis function g; (where i € {1,2,...,n— 1} as above), there exists at most
one interval of the form [toiy1,to43] for somel € {1,...,n} (where t’s are defined as in the above
paragraph) such that
9i(ts) — gi(tant3)

2

gi(tars1) — gi(tares) >

Proof. Let g; be any basis function. Assume that the lemma’s hypothesis is not true, i.e., there exist
at least two intervals [t i1, toj13] and [tom11, tam3] for some [, m such that the lemma’s equation
holds for each of these intervals. But since g; is non-increasing, this would necessitate that

gi(t3) — gi(tant3) > [gi(tat1) — gi(ta+s)] + [gi(tam+1) — gi(tam+3)]
> gi(t3) — gi(tan+3) ,

which completes the proof by contradiction. O

From Lemma 6.1 and the pigeonhole principle (there exist n odd-indexed intervals of the form
[to14+1,toi4+3] for some [ € {1,...,n}, but only n — 1 basis functions), we get that there exist at least
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one interval of the form [to;11,to43] (for some [ € {1,...,n}) such that for all i € {1,2,...,n — 1},

9i(ts) — gi(tan+3)
2 )
and because cone(G) is finitely generated, it holds that for all g € cone(G),

gi(tap1) — gi(tarys) <

g(t3) —29(t2n+3) ' (7)

Note that the interval is not the leftmost [¢1,t3] or the rightmost [t2,,13, t2n+5] interval.
Consider the following specific f, € F:

g(tary1) — g(tary3) <

fmax , for Pmin < p < o142
fa (p) = .
fmin , for t2l+2 <P < Prmax

Consider any g € cone(G). We distinguish a few cases for the extreme values of g outside of the
outermost odd-indexed intervals, i.e., g(t3) and g(ton+3):

o T6g(t3) > finax + L22pdoin then

ts P (fmax - fmin)p
/ w(s) | fa(s) — g(s)[" ds > m-

t1

o If g(tanss) < fmin — L2opfmin then

tonts B |
/t2n+3 W(s) ’fa(8> - g(s)’p ds > W.

o Otherwise, we have that g(t3) — g(tont3) < % (fmax — fmin). We now distinguish 3 sub-cases:

— If g(tor+1) > fmax, then g(tario) > g(tayys) > Lmact3imn by T (7), thus

o143 o
[ (o) o) = (o s > U Pl

toryo
— If g(ta+3) < frnin, then g(tarsa) < g(tary) < 3maxhimin by B (7), thus

tai4-2 fmax - fmin P
L w6 o) g ds = e

tory1
— Otherwise, for some d1,02 > 0 we have that fiin < fmin + 02 = g(t243) < g(tos1) =
fmax — 01 < fmax; then by Eq. (7) we get §; + d2 > f‘“‘""‘%;fmi“, therefore

to143 511) + 55 (51 + 52)p (fmax - fmin)p
/t21+1 wis) fals) —g(o)f" ds 2 2(n +2) = (n+2)-2° = (n+2)-82 °

where the second-to-last inequality follows from Hoélder’s inequality.

Hence, we obtain the desired result:

Prmax 1/
err(G) = sup { inf  d(f, g)} > inf (/p w(s) |fa(s) —g(s)? ds) p

feF | g€cone(G) " g€cone(G)

min

Z € Q(fmax - fmin)-
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6.3 Proof of Theorem 5.1

Let € > 0, and consider ticks t; = pmin(1+9) fori € {0,1,...,n} where log(1+6) = €” 10g(Pmax/Pmin);
and n = 1og(Pmax/Pmin)/log(1l + §), so that tg = pmin and t, = pPmax. Consider the normalized
weight function w: [Pmin, Pmax] — RT such that f;’r::" w(p)dp = 1, with the property that for
some constant C' > 0, Vi € {0,1,...,n — 1}, ftt:“ w(p) dp < % Our Uniswap v3-like exchange
mechanism G = cone(G) is described with the following n 4 1 basis functions: one basis function for
each of the intervals [t;,t;41] for i € {0,1,...,n — 1} defined by

\/15_\/517 for pmin <p < t;
gi(p) = %_ \/tli?, for ¢; <p <ttt >
0, for tit1 < P < Pmax

along with the additional basis function g,(p) that is everywhere 1°.
Consider any f € F, and define the following g; € cone(G) that will “approximate” this f:

1 1 gi(p>'
i=0 V& Vi

n—1 N A
97(p) = f(Pmax)gn(p) + ) ft) = f(tis1)

Then, it holds that

Vp € (ti,tiv1), |f(p) —gr()| < f(t:) — f(tiv1)-

Hence, we obtain the stated result by a similar argument to that of Section 6.1.
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A  Deferred Proofs of Section 2.2

Price discovery. Assume that the current price of the exchange is pg # p. Suppose that an external

market participant comes to the exchange and is willing to trade to some price p;, and then uses

the external market to trade back. We prove that the maximum profits will be obtained at p; = p;

therefore, if the trader does not maximize their profits, other external market participants will

continue to have an incentive to trade until the price of the exchange is p and the conclusion follows.
Due to Eq. (3), the external market participant’s optimization problem for their profit is:

P1 P1
max plg(po) — 9(p1)) + | pdg(p) = max (p1 —p)glp) — [ 9(r)dp
p1ERT Po p1ERT 0

First-order conditions then prove that the optimum is attained at p; = p. ]

Budget balance. Assume that the current price of the exchange is pg. First, we note that liquidity
additions and removals, due to the linear nature of the aggregate demand curves and the numéraire
contributed /removed by Eq. (1) with respect to the curves g;(p), do not affect the rest of the joint
pool, i.e., if the amount of numéraire was non-negative before the operation, so it is after it. Trading
is the only action which is yet unclear how it affects the amount of numéraire in the pool. In
aggregate, the joint pool contains a quantity g(pg) of risky asset, and in numéraire by Eq. (1):

n Do Do
) —/ pdgi(p) = —/ pdg(p) >0,
i=1 70 0

because ¢ is non-increasing (as the sum of non-increasing functions) and py > 0. Suppose that a
trader comes and moves the pool price to p;. The new amount of numéraire contained in the pool
by the above equation and Eq. (3) is

—/Opo pdg(p) —/;1 pdg(p) = —/Op1 pdg(p) 20,

0

thereby completing our argument. O
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