
Formalizing Preferences Over Runtime Distributions

Devon R. Graham
1

Kevin Leyton-Brown
1

Tim Roughgarden
2 3

Abstract

When trying to solve a computational problem,
we are often faced with a choice between algo-
rithms that are guaranteed to return the right an-
swer but differ in their runtime distributions (e.g.,
SAT solvers, sorting algorithms). This paper aims
to lay theoretical foundations for such choices
by formalizing preferences over runtime distribu-
tions. It might seem that we should simply prefer
the algorithm that minimizes expected runtime.
However, such preferences would be driven by
exactly how slow our algorithm is on bad inputs,
whereas in practice we are typically willing to
cut off occasional, sufficiently long runs before
they finish. We propose a principled alternative,
taking a utility-theoretic approach to characterize
the scoring functions that describe preferences
over algorithms. These functions depend on the
way our value for solving our problem decreases
with time and on the distribution from which cap-
times are drawn. We describe examples of real-
istic utility functions and show how to leverage
a maximum-entropy approach for modeling un-
derspecified captime distributions. Finally, we
show how to efficiently estimate an algorithm’s
expected utility from runtime samples.

1. Introduction

Imagine that we need to solve a series of instances of a given
computational problem such as SAT, MIP, TSP, or sorting,
and we have a set of different algorithms to choose from.
Suppose further that all these algorithms are guaranteed
to return the correct solution but vary in the runtime they
will take.Which algorithm should we choose? The obvious
answer would be to choose the algorithm that returns the
solution most quickly on average. But average runtime can

1Department of Computer Science, University of British
Columbia, Vancouver, BC 2Department of Computer Science,
Columbia University, New York, New York 3a16z crypto. Corre-
spondence to: Devon R. Graham <drgraham@cs.ubc.ca>.

Proceedings of the 40 th
International Conference on Machine

Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

be dominated by extremely rare, extremely long runtimes,
making the task of choosing between algorithms rely on cer-
tifying the nonexistence of rare but very costly tail events.
Does this describe the way we actually make choices be-
tween algorithms? Probably not. Consider the following
example.

Example 1.1 (Motivation). Suppose that we have 100 in-
teger programs to solve and two algorithms to chose from.
Algorithm A solves the first 99 problems in 1 second, but
runs the 100th problem for 10 days without solving it. Al-
gorithm B runs all 100 problems for 10 days each without
solving any of them.

In this case, we imagine that most readers would strongly
prefer Algorithm A to Algorithm B. However, the algo-
rithms’ average runtimes are unconstrained by the infor-
mation given; e.g., B could solve every problem in a bit
more than 10 days, whereas A could take 100 years to solve
the last problem. Furthermore, imagine that both A and B
contain a bug that prevents their long runs from terminating
at all. This would cause both averages to become infinite,
but we doubt that it would make most readers indifferent
between the algorithms. Such preferences are not described
by an average runtime scoring function.

We can learn a second lesson from this example: we are
at least sometimes able to express preferences between al-
gorithms even when some runs are “capped” (i.e., right
censored). Intuitively, the reason is that while the runtime of
an algorithm may be large or unbounded, the impact it has
on us is not: we will eventually terminate any sufficiently
long run and rely instead on some backup plan. Thus, one
algorithm run that would take a thousand years and another
that would take a trillion years are functionally equivalent:
neither stands any chance of running until completion. A
delivery service must route vehicles, but cannot wait so long
that solving the optimization problem delays its deliveries;
at some point, it must send the drivers out to do the best
they can. A chip manufacturer using a verification proce-
dure to test a new CPU design can wait much longer for a
solution—and probably never faces one moment at which
waiting a bit longer would not be acceptable—but as time
passes, managers or stakeholders will demand results and
the risk of being scooped by a competitor will increase. At
some point the manufacturer must decide either to ship their

1

Formalizing Preferences Over Runtime Distributions

product unverified or to scrap the project entirely.

Practitioners really do face such choices between algorithms.
For the task of automated algorithm design, the field has
seen a trend in past decades away from hand-crafting heuris-
tic algorithms. Instead, the selection of algorithms opti-
mized for practical performance is increasingly being ap-
proached as a machine learning problem: given an instance
distribution, highly parameterized algorithms are configured
to maximize empirical performance, just as a classifier’s
parameters are chosen to minimize empirical risk. Promi-
nent examples of this approach include heuristic approaches
for building algorithm portfolios (Rice, 1976; Huberman
et al., 1997; Gomes & Selman, 2001; Horvitz et al., 2001;
Leyton-Brown et al., 2003; Xu et al., 2008), performing
algorithm configuration, (Birattari et al., 2002; Hutter et al.,
2009; 2011; Ansótegui et al., 2009; López-Ibáñez et al.,
2016) and beyond (Lagoudakis & Littman, 2001; Gagli-
olo & Schmidhuber, 2006; Xu et al., 2010; Kadioglu et al.,
2010; Seipp et al., 2014). There is also a growing literature
on theoretically-grounded methods that offer performance
guarantees (Gupta & Roughgarden, 2017; Kleinberg et al.,
2017; 2019; Balcan et al., 2017; 2021; Weisz et al., 2018;
2019; 2020). This shift to learning new algorithms rather
than designing them by hand makes the choice of loss func-
tion crucial: as with any optimization problem, varying the
objective function profoundly impacts which solution is
returned.

Contests for evaluating the practical performance of solvers
for NP-hard problems are increasingly found as part of ma-
jor AI conferences. Naturally, these require a scoring metric
by which algorithms can be compared. Organizers of these
competitions must specify scoring functions by which to
evaluate algorithms, and are clearly aware that different
metrics will lead to different rankings. It is trivial to define
metrics that change the way algorithms are ranked. The
difficulty is to define metrics that properly reflect what the
organizers think of as “good” algorithms. The approach
in the International SAT Competition1 has essentially been
to choose a metric and then retrospectively evaluate the
rankings it leads to. The organizers have shown a clear
awareness of the way different scoring metrics can affect
rankings. Consider the SAT Competition of 2009.2 We
quote part of their rationale for considering different met-
rics: One interesting question is if the speed of a faster

solver can compensate for its failure to solve an instance.

For example, assume solver A can solve 100 instances in

1000s (cumulated time) and solver B can solve the same

100 instances in only 100s. At this point, solver B is clearly

better than solver A. Now assume solver A can solve one

1http://www.satcompetition.org/.
2http://www.satcompetition.org/2009/

spec2009.html.

more instance than B. Which solver is the best? The answer

is probably not unique and certainly depends on the user’s

applications and expectations.

Some competitions have given up on finding the right evalu-
ation metric altogether, and resorted to judging algorithm
performance by “a jury consisting of researchers with ex-
perience in computational optimization”,3 which highlights
rather keenly the need for more principled foundations. In-
stead of choosing a scoring function and then asking in a
vague way if it satisfies our idea of what it means to be a
“good” algorithm, our paper provides a framework within
which decision-makers such as the organizers of competi-
tions can define scoring metrics a priori that capture the
properties of algorithms they actually care about.

Various other scoring functions have been widely used in
the empirical algorithmics literature. One common choice
is to score algorithms according to their capped average
runtime, as in the literature on black-box algorithm configu-
ration approaches offering theoretical guarantees (Kleinberg
et al., 2017; 2019; Weisz et al., 2018; 2019; 2020). However,
this treats capped runs as being virtually the same as runs
that completed just before the captime. To address this, we
can count runs that reach the captime  as having taken
c ·  seconds, yielding a Penalized Average Runtime (PAR)
(Hutter et al., 2009) (where, e.g., c = 2, as in the 2021 SAT
Competition (Froleyks et al., 2021)). However, c is an arbi-
trary parameter to choose, and when c > 1 an algorithm’s
penalized runtime can actually fall as the captime increases,
since fewer runs will cap.

Other scoring functions that balance the risk of timeouts
with the desirability of short runs have been explored using
the tools of survival analysis (Tornede et al., 2020). For
instance, minimizing the expectation of runtime raised to
a large exponent will penalize long runs more heavily than
short runs, thus favouring algorithms that are less at risk of
timing out. A goal of our work is to formalize the reasoning
behind using such functions.

This paper seeks to formalize preferences over runtime dis-
tributions using an axiomatic approach. In Section 2 we
present six constraints on preferences over runtime distribu-
tions and prove that these axioms imply a general rule which
describes our preferences in general. Our technical approach
draws on the expected utility construction of Von Neumann
& Morgenstern (1944) with two key modifications. First,
we add two additional runtime-specific axioms, amounting
to the assertion that we actually care about solving our prob-
lem and that we will tend to want to solve it more quickly.
Second, the fact that runs can be censored at arbitrary points
requires some nontrivial changes to the classical axioms.
In Section 3 we work through instantiations of our utility

3https://www.mixedinteger.org/2022.

2

http://www.satcompetition.org/
http://www.satcompetition.org/2009/spec2009.html
http://www.satcompetition.org/2009/spec2009.html
https://www.mixedinteger.org/2022

Formalizing Preferences Over Runtime Distributions

functions for different practical applications and show how
to choose captime distributions in settings where these are
not known exactly by maximizing entropy. In Section 4,
we show that the time required to ✏-estimate the score of
an algorithm from capped samples depends on ✏ and on the
inverse of our utility function, but not on the algorithm’s
average runtime. Finally, in Section 5 we present some
real-world examples where the choice of utility function re-
ally is important and changes our conclusions about which
algorithm is considered “best.”

2. Preferences Over Runtime Distributions

Let I be a probability distribution over instances of some
computational problem. Let A be a set of (potentially ran-
domized) algorithms, where each A 2 A either runs forever
or produces a solution of identical quality4 when given any
input sampled from I . For a given algorithm A we will use t
to denote the algorithm’s running time when presented with
an instance from I; t is thus a random value that depends on
the instance sampled from I and on any other source of ran-
domness (e.g., on the choice of random seed, on allocation
choices made by the operating system, etc.). Some algo-
rithms may fail to terminate on some inputs or with some
random seeds; in such scenarios t is infinite. Each algorithm
is thus associated with a runtime distribution, a probability
distribution over the positive extended real numbers [0,1].
We overload notation and identify each algorithm A with
its runtime distribution,5 because this is the only fact about
each algorithm that concerns us. It is useful to consider al-
gorithms which always take a fixed, deterministic amount of
time regardless of their input or random seed. The runtimes
of such algorithms are Dirac delta distributions; we use �x
to denote the distribution that returns x with probability 1.

Let K be a probability distribution over the amount of time
we will have to run our algorithm; we denote a captime
sampled from K as . K can be deterministic: K = �.
For any distribution X , we use the the function FX to denote
the cumulative distribution function (CDF) of X .

Our goal is to define a scoring function that represents our
preferences for elements from A. This will turn out to cor-
respond with the expectation of a utility function. Von Neu-
mann & Morgenstern (1944) showed how to derive a real-
valued scoring function over arbitrary discrete outcomes

4We consider algorithms that return different quality solutions
in Appendix D, but this extension sheds little additional light on
the problem since it must simply appeal to the existence of a
runtime/quality tradeoff function. The binary setting we describe
here is in some sense fundamental; it arises often in practice (e.g.,
any decision problem), and our formalism and results are easily
extended to the general solution-quality case.

5We will have no further need of I beyond its role in defining
runtime distributions.

from a set of more basic assumptions about the properties of
a preference relation. We employ many of the same build-
ing blocks to derive a scoring function appropriate for our
setting. Our first four axioms correspond closely to theirs,
although Axiom 2.4 in particular is subtly different. Beyond
this, we introduce two additional axioms that are natural in
the runtime setting.

Given captime distribution K, let ⌫K be a binary rela-
tion over pairs of elements of A that describes our prefer-
ences among algorithms (runtime distributions) when faced
with captime distribution K. For A,B 2 A, we will use
A ⌫K B to denote the proposition that we weakly prefer
algorithm A to algorithm B, given captime distribution K.
Similarly, A �K B denotes the proposition that we strictly
prefer algorithm A to B given K, and A 'K B denotes the
proposition that we are indifferent between the two.6 What
properties should we insist that our relation ⌫K must have?
Our first axiom asserts that our relation is acyclic.
Axiom 2.1 (Transitivity). If A ⌫K B and B ⌫K C, then
A ⌫K C.

To explain our second axiom, we must introduce notation
to describe how algorithms (distributions) can be combined
to form new algorithms (compound distributions), for ex-
ample by creating a new algorithm that uses coin flips to
decide which of a set of existing algorithms to run. We
define two operations that describe the way some of these
combinations take place. For 0 � p � 1 the mixing opera-
tion creates convex combinations of runtime distributions.
We use the notation [p : A, (1� p) : B] to denote the new
runtime distribution induced by drawing a runtime from A
with probability p and from B with probability 1� p. The
next two axioms describe our preferences over such mix-
tures. Monotonicity says that if we prefer distribution A to
distribution B, then we prefer mixtures over A and B that
give more weight to A than B. That is, we prefer mixtures
that give us “more of a good thing.”
Axiom 2.2 (Monotonicity). If A ⌫K B then for any p, q 2
[0, 1] we have [p : A, (1� p) : B] ⌫K [q : A, (1� q) : B]
if and only if p � q.

Continuity says that whenever we have preferences over
three runtime distributions, there exists a mixture between
the most- and least-preferred distributions that makes us
indifferent between that mixture and the middle distribution.
Axiom 2.3 (Continuity). If A ⌫K B ⌫K C, then there
exists p 2 [0, 1] such that B 'K [p : A, (1� p) : C].

Given any mapping M that associates a distribution
M(t,) 2 A with the runtime–captime pair t,, the com-

pounding operation constructs a new distribution [M(t,) |
6The relations �K and 'K are used only for notational conve-

nience and are derived from ⌫K : we have A �K B iff A ⌫K B
and not B ⌫K A; similarly, A 'K B iff A ⌫K B and B ⌫K A.

3

Formalizing Preferences Over Runtime Distributions

t ⇠ A, ⇠ K] 2 A, which first draws t from A and  from
K, then returns a runtime drawn from the corresponding
M(t,). (We might think of this compound distribution as
an algorithm that first samples values for t and  from A and
K, then runs a master algorithm with some corresponding
parameter configuration, giving M(t,).) Our next axiom
describes the way our preferences for sure outcomes and
captimes affect our preferences for general algorithms and
captime distributions by relating them through compound
distributions. This axiom is commonly called Independence
because of the way it assures us that our preferences for
distributions can be determined from the parts of those dis-
tributions, independently of one another; no confounding
factors are created when we nest distributions.
Axiom 2.4 (Independence). If �t '� M(t,) for all t,,
then A 'K [M(t,) | t ⇠ A, ⇠ K].7

Observe that if M(t,) = �t then it is trivially obvious
why Independence should hold because the compound dis-
tribution [�t | t ⇠ A, ⇠ K] is exactly equal to A. When
M(t,) '� �t but M(t,) 6= �t, Independence says that
if t is drawn from A and  is drawn from K, then we should
be indifferent (under captime distribution K) between a
runtime of t and a runtime drawn from M(t,), since this
is precisely what it means to be indifferent (under a sure
captime of ) between �t and M(t,). In other words, if
we are indifferent between each of a set of outcome pairs,
we are also indifferent between mixtures that equally weight
respective elements of these pairs.

Our first three axioms can be found in the classical von
Neumann-Morgenstern setup. Independence has an ana-
logue in the classical setup but needs some adjustments
to address the facts that (a) base outcomes already corre-
spond to distributions from which we can sample; (b) our
preference relation is defined with respect to a captime dis-
tribution; and (c) the axiom relates preferences under deter-
ministic captime distributions � to those under a general
distribution K. Please see Appendix B for an extended
discussion of the history of this axiom and our own vari-
ant’s relationship to this history, as well as a survey of the
literature on why preferences might violate this axiom and
an argument that the runtime setting is different (because it
introduces the ability to limit losses via capping). Together,
these four axioms already suffice to show the existence of a
utility function whose expectation captures our preference
relation.

We now introduce two further axioms, which capture addi-
tional properties inherent in our runtime distribution setting
and hence constrain the utility function’s form. First, Eager-
ness says that a deterministic algorithm is preferable to any

7We state Independence this way for clarity of notation, but
strictly it only needs to hold when M(t,) =

⇥
p : �0, (1 � p) :

�1
⇤

for some p (that may depend on t and ).

algorithm that always takes at least as long.

Axiom 2.5 (Eagerness). For any t  t0, if the support of A
is contained in [t, t0], then �t ⌫K A ⌫K �t0 .

Second, the Relevance axiom states that we strictly prefer
deterministically solving our problem to deterministically
failing to solve it.

Axiom 2.6 (Relevance). �t �� �t0 for all t <   t0.

These axioms imply that our preferences for algorithms
correspond to a scoring function. Before stating our main
theorem, we define an important function p that describes
our propensity for risk.

Definition 2.7. For any t and , the function p : R+ ⇥
R+ ! [0, 1] is defined as follows. Set p(t,) = 0 if t �
, and otherwise set p(t,) to be the value that satisfies
�t '�

⇥
p(t,) : �0 ,

�
1� p(t,)

�
: �1

⇤
.

Since Eagerness tells us that �0 ⌫� �t ⌫� �1 when
t < , Continuity ensures that p(t,) exists for all t,, and
Monotonicity ensures that it is unique. So, p is well-defined.

We can now state that p is essentially (i.e., up to affine
transforms) the only utility function that corresponds with
our preferences, and can infer certain properties of its shape.
Theorem 2.8. If our preferences follow Axioms 2.1 to 2.6,

then a function u satisfies

A ⌫K B () E
t⇠A,⇠K

⇥
u(t,)

⇤
� E

t⇠B,⇠K

⇥
u(t,)

⇤
(1)

for any runtime distributions A and B and any timeout dis-

tribution K if and only if there are constants c0 and c1 > 0
such that u(t,) = c1p(t,) + c0. Furthermore, p(0,) =
1 (maximum achieved at t = 0), p(t,) � p(t0,) for

all t  t0 (monotonically decreasing), p(t,) > 0 for all

t <  (strictly positive), p(,) = 0 (minimum achieved at

t = ).

Please see Appendix A for the proof. The first three von
Neumann-Morgenstern axioms (Axioms 2.1 to 2.3) imply
the existence of the function u. The fourth, Axiom 2.4,
implies that the utility of an algorithm is the expectation of
u over the algorithm’s runtime distribution. The final two,
novel axioms (Axioms 2.5 and 2.6) give the function u its
particular form.

The function p is our “fundamental” utility function. Any
other valid utility function must be a positive linear trans-
formation of p. (It can be seen from linearity of expectation
that the constants c1 and c0 in no way affect the ordering
of our preferences.) The value p(t,) reflects our feelings
about an algorithm run that takes t seconds when  sec-
onds were available, and corresponds to a measure of how
happy we are when faced with a gamble that either gives us
our solution immediately or requires us to spend  seconds

4

Formalizing Preferences Over Runtime Distributions

to learn nothing. We can consider possible forms of p by
reasoning about our feelings regarding (i) spending t sec-
onds to solve the problem when  seconds were available,
(ii) wasting  seconds to accomplish nothing, and (iii) how
important it is to solve our problem. Having thus fixed a
specific form for p, our algorithm scoring function will be
the expected value of p with respect to runtime distribution
A and captime distribution K.

Since this paper is ultimately about formalizing our pref-
erences between algorithms, it is natural to consider the
case where we can learn about runtime distributions only
through sampling (discussed in Section 4), but where we do
know something about the captime —its mean, say, or the
fixed and bounded range in which it falls. The next section
discusses how we might give specific form to the function p
in practice.

3. Instantiating Utility Functions in Practice

We now present a series of examples with the aim of guiding
anyone who wishes to apply our framework to their own
particular setting. We present these in the context of two key
questions we should ask ourselves: (1) Are we sure about
what captime we will face?; and (2) Does an immediate
solution give us the same utility as a solution later in the
future?

3.1. The Case of Known Captime Distributions

We begin with the simplest scenario, where the answer to
both of the above questions is affirmative.
Example 3.1 (Known captime, step-function utility). Sup-
pose we know we face a fixed captime 0 (i.e., K = �0)
and we will receive the same value as long as we solve our
problem before the captime. If we set c1 = 1 and c0 = 0,
we have that u(t,) = 1 for t <  and 0 otherwise. So our
score for an algorithm A is FA(0), the value of A’s CDF
at 0. In other words, the best algorithm for this utility func-
tion is simply the one that is most likely to finish. Consider-
ing again the motivating scenario of Example 1.1, algorithm
A is at least as good as algorithm B for any 0 < 10 days
(if 0 � 10 days, the problem is indeterminate).

The scoring function in Example 3.1 is simple and intu-
itive, and similar metrics are commonly used in practice
(under names like “number of instances solved”). Choos-
ing to optimize this binary utility function implies that we
are indifferent between learning an answer to our problem
immediately and learning it t seconds (or minutes or hours)
from now, so long as t is less than 0. Next, if we have to
pay for runtime and get paid for solving our problem, then
we might instead be interested in how much money we can
make from an algorithm.
Example 3.2 (Known captime, linear utility for compute

time). Suppose that we face a fixed and known captime 0,
that we pay ↵ dollars for each second of compute, and that
we earn v dollars if we are able to solve our problem. Further
suppose that we have a linear value for money and that
money is the only variable we care about. If we complete
a run in t < 0 seconds, we earn v � ↵ · t dollars. If the
run caps, we lose �↵ · 0 dollars. So our utility function
is u(t,0) = v � ↵ · t if t < 0 and u(t,0) = �↵ · 0

otherwise. Since u(t,) = c1p(t,) + c0, by setting c1 =
v+↵ ·0 and c0 = �↵ ·0 we can normalize to the interval
[0, 1]. We find that p(t,0) = v+↵·(0�t)

v+↵·0
if t < 0, and

p(t,0) = 0 otherwise.

We can see the three aspects of the function p (mentioned
at the end of Section 2) explicitly: (i) spending t seconds
to solve the problem costs us �↵ · t, (ii) wasting 0 sec-
onds costs �↵ · 0, and (iii) the importance of solving the
problem is given by v, the value we gain from solving it.
To see the full strength of our method we can compare the
above scoring function to the simple capped average run-
time, which is commonly used in practice and may seem like
an obvious choice of objective, but which actually implies a
logical contradiction. If runtime is what we care about, then
whether each run caps or not, our utility is proportional to
the time of the run (perhaps also penalizing runs that cap,
e.g., PAR10). This gives the utility function u(t,0) = �t
if t < 0, and u(t,0) = �0 otherwise. Choosing to
optimize this capped average has a strange implication that
can be seen when we compare this utility function to the
one above. Scaling so that the parameter ↵ = 1, the only
difference between these two utility functions is the param-
eter v, the value we gain from solving our problem. For the
capped average objective, this term is 0. This amounts to the
assertion that we gain no value from solving our problem!
Clearly this is ridiculous (otherwise, why solve it?). We
may also be interested in considering more general cost and
value functions, as in the next example.

Example 3.3 (Known captime, linear utility for money).
Suppose that we face a fixed and known captime 0, that
we pay cost(t) dollars for t seconds of compute, and that
if we are able to solve our problem within t seconds, we
can sell the answer and earn revenue(t) dollars. So if we
solve our problem in t < 0 seconds, we will earn a profit of
revenue(t)�cost(t) dollars; if not, we will lose � cost(0)
dollars. If we only care about money, and we care about
money in a linear way, then our utility is simply propor-
tional to the number of dollars we earn. Setting c1 =
revenue(0)+cost(0)� cost(0) and c0 = � cost(0), we
find that p(t,0) = revenue(t)+cost(0)�cost(t)

revenue(0)+cost(0)�cost(0) if t < 0,
and p(t,0) = 0 otherwise.

The preference for money in Example 3.3 implies a spe-
cific utility function. The denominator revenue(0) +
cost(0) � cost(0) can be interpreted as money “on the

5

Formalizing Preferences Over Runtime Distributions

table”; revenue(0) is the maximum we stand to earn and
cost(0)� cost(0) is the maximum cost we can save. The
numerator revenue(t) + cost(0)� cost(t) represents the
portion of this total available money that we were actually
able to collect by finishing our run at time t. So p(t,0)
is the proportion of the total available money that we were
able to earn. We can again see the three aspects of our risk
preferences mentioned above: (i) the value of spending t of
0 seconds to solve our problem is revenue(t)�cost(t); (ii)
the loss from wasting 0 seconds to accomplish nothing is
cost(0); and (iii) the value of the information to be gained
from solving our problem is revenue(0)� cost(0). We can
generalize the above to arbitrary functions.

Example 3.4 (Known timeout, general utility). Suppose
V (t,0) is some arbitrary benefit we assign to spending t
out of the 0 available seconds to solve our problem, W (0)
is some arbitrary loss we assign to wasting 0 seconds to
accomplish nothing, and V (0,) is the benefit we gain from
solving our problem. Setting c1 = V (0,0) +W (0) and
c0 = �W (0), we find that p(t,0) =

V (t,0)+W (0)
V (0,0)+W (0)

for
t < 0, and p(t,0) = 0 otherwise.

We now turn to the case where we are uncertain about cap-
time (i.e., where K is not deterministic) in the special case
of step-function utilities described in Example 3.1. We do
this both because this is the simplest case and because we
often really do not care about how long an algorithm run
takes given that it completes before our captime (e.g., we do
not pay for compute or electricity; our solution will not be
used until some point in the future anyway). Indeed, we will
see that captime distributions can induce utility functions
whose expected values decrease smoothly with time even
in this case, and so captime distributions can be seen as one
principled way of modeling the way utility depends on time.

Example 3.5 (Unknown captime, step-function utility).
Suppose we have a step-function utility as in Example 3.1
but face captime distribution K. Setting c1 = 1 and c0 = 0
again gives u(t,) = 1 for t <  and 0 otherwise, but this
time u is not fixed with respect to . Our scoring function
for an algorithm A is the expectation over A’s runtime of
the probability that A will finish before it times out, i.e.,
K’s survival function. Thus, algorithm A’s score is given
by Et⇠A

⇥
1� FK(t)

⇤
.

Indeed, the function FK plays an integral part in utility func-
tions beyond the step-function case as well. For example,
suppose we model  as being distributed uniformly in the
range from 0 to 0 seconds. Then the distribution K has
CDF Funif (t) = t/0 for t < 0 and Funif (t) = 1 oth-
erwise. The utility function whose expectation we should
maximize in this case is linear: uunif (t) = 1� t

0
if t < 0,

and uunif (t) = 0 otherwise.

3.2. The Case of Underspecified Captime Distributions

Often, we may know some properties of K without know-
ing it exactly. In such cases, we advocate employing the
method of maximum entropy of Jaynes (1957), which al-
lows us to incorporate such knowledge without introducing
additional, unjustified assumptions. Entropy is a measure of
the average information content that would be revealed to
us by observing some unknown quantity. The principle of
maximum entropy tells us to use the distribution for which
this value is highest, subject to satisfying whatever restric-
tions we have. It allows us to impose only the assumptions
we want to make when assigning probability mass to our
captime distribution. In this sense, the principle of maxi-
mum entropy is an application of Occam’s razor. We can
consider how different pieces of information imply different
distributions K that affect the form of our algorithm scoring
function through their CDF FK(t).

The simplest restriction our prior information could place
on the distribution K is a bound on its support. If we need
a solution to our problem before some fixed deadline, but
we do not perfectly trust our equipment and realize that
a failure may leave us with somewhat less time, then we
know  falls in some fixed range, but nothing more. With no
restrictions on the prior K beyond having bounded support,
the maximum entropy captime distribution is the same uni-
form distribution we derived above (please see Appendix C
for all maximum entropy derivations): uunif(t) = 1� t

0
if

t < 0 and uunif(t) = 0 otherwise.

Perhaps we do not know an upper bound on the timeout we
will face, but instead know that we will have 0 hours on
average (based on the average lifetime of our equipment,
say). In this case the maximum entropy distribution for all
priors with the condition that E⇠K [] = 0 is an expo-
nential distribution with rate parameter 1/0, so we should
optimize an exponential utility function: uexp(t) = e�t/0 .

Maybe we do not quite know the average time limit, but
we do know its expected order of magnitude. This amounts
to a constraint on the expectation of the log of the timeout:
E⇠K [log (/0)] = 1/↵ where  > 0 (i.e., we know the
order of magnitude measured in units of 0). The maximum
entropy distribution under this constraint is a Pareto with
shape parameter ↵, so we should optimize a geometric utility
function: uPareto(t) = 1 if t < 0 and uPareto(t) =

�
0
t

�↵

otherwise.

We summarize how a decision maker might identify an
appropriate utility function by reasoning about both their
knowledge about the captime and any costs they incur for
the passage of time in Figure 2.

Example 3.6 (Pareto timeout, constant utility). Suppose
that we face no decrease in utility from time spent run-
ning our algorithm, but that we do not know the distribu-

6

Formalizing Preferences Over Runtime Distributions

Figure 1. Utility functions from Section 3.2, obtained from different maximum-entropy prior distributions.

“The best algorithm...
constant utility general utility

known
captime:
 = 0

... solves the most instances.”
(Example 3.1)

... gives the greatest expected
proportion of benefit.”

(Example 3.4)

known
distribution:
 ⇠ K

... is most likely to solve
an instance from K.”

(Example 3.5)

... gives the greatest expected
proportion of benefit, in

expectation over K.”
(numerical methods)

unknown
distribution:

 ⇠?

... is most likely to solve an
instance from the Maximum

Entropy distribution.”
(Section 3.2)

... gives the greatest expected
proportion of benefit, in

expectation over the
Maximum Entropy

distribution.”
(numerical methods)

Figure 2. Implied scoring functions for different scenarios.

tion of  with certainty, only that we expect it to be on
the order of seconds. If we are also measuring time in
seconds, we can interpret this condition as the restriction
E⇠K [log()] = 1, which implies a Pareto distribution for
K with parameters 1 and 1. Setting the constants c1 = 1
and c0 = 0 we get the score function Et⇠A,⇠K [u(t,)] =
FA(1)+Et⇠A

⇥
1
t |t � 1

⇤�
1�FA(1)

�
. Further, if it happens

to be the case (as in Example 1.1) that A always takes at least
1 second, so that FA(1) = 0, our scoring function becomes
A’s expected inverse runtime Et⇠A[1/t]. Applied to the two
algorithms in Example 1.1, this gives Et⇠A[1/t] � 0.99,
while Et⇠B [1/t]  1/864000.

The geometric (Pareto) utility function offers an appealing,
alternative interpretation. Consider how our utility would
change if our runtime doubled from t to 2t. Fixing ↵ = 1 for
simplicity, we see that u(2t) = u(t)/2: doubling runtime
halves our utility. Different values of ↵ would give different
rates of geometric progression. The parameter 0 serves to
calibrate our runtimes, determining our units of measure-
ment.8 Are we expecting a runtime of seconds, hours or
days? If hours, the Pareto utility pays no consideration to
runtimes smaller than one hour; these are indistinguishable
to us and all represent perfect utility. But we do not need
to be so indiscriminate of small runtimes. The Pareto util-
ity was derived from an order-of-magnitude condition like
E⇠K [log(/0) |  � 0] = 1/↵. An equivalent left-tail

8Mathematically, 0 serves to remove the units from inside the
logarithm, which is a transcendental function.

condition would be E⇠K [log(0/) |  < 0] = 1/↵.
If we insist on continuity at 0 (implying a smooth utility
function), the maximum entropy distribution under these
conditions is a log-Laplace9 with parameters log 0 and
↵, giving a utility function with geometric decay above
0 as well as geometric growth (towards unity) below it:
uLL(t) = 1 � 1

2

�
t
0

�↵ if t < 0 and uLL(t) = 1
2

�
0
t

�↵

otherwise.

The log-Laplace distribution divides its probability mass
equally between values greater and less than 0 (i.e., it as-
sumes the probability that we get an extension is equal
to the probability that we face a mishap). This might
not be the case (e.g., if our client is a stickler and our
servers are old). We can insist that Pr⇠K( < 0) = p,
and impose similar but more flexible order-of-magnitude
tail conditions: E⇠K [log(0/) |  < 0] = 1/� and
E⇠K [log(/0) |  � 0] = 1/↵. The maximum en-
tropy distribution with these conditions gives us control
over how much probability mass we place on either side
of 0, and over the decay rates for timeouts that deviate
from 0. However, if we want a distribution that is con-
tinuous at 0 (so that u is smooth) we find that we re-
quire p = ↵

↵+� . The resulting distribution is a generalized

log-Laplace: uGLL(t) = 1 � ↵
↵+�

�
t
0

�� if t < 0 and
uGLL(t) =

�
↵+�

�
0
t

�↵ otherwise.

The Pareto and log-Laplace distributions constrain the mean
absolute deviation (in log space), but we could choose
to constrain the more familiar squared deviation instead.
Fixing E[(log(/0))2] = �2, with the centering condi-
tion E[log(/0)] = 0, gives a log-normal maximum en-
tropy distribution and an error-function utility: uLN (t) =
1
2 � 1

2 erf
� log(t/0)p

2�

�
.

Finally, we can incorporate tail constraints as maximum
entropy conditions. Maybe we have 0 hours and we know
our server might fail, but it is brand new and we know that
the chance it will fail within the first 0 hours is very low,
so that Pr⇠K( < 1)  �. Then we should optimize
the piecewise linear utility function: upiece(t) = 1 � �t

1

if t < 1, upiece(t) = (1��)(0�t)
0�1

if 1  t < 0, and
upiece(t) = 0 otherwise.

9X follows a log-Laplace distribution if logX follows a
Laplace distribution, analogous to log-normal.

7

Formalizing Preferences Over Runtime Distributions

Figure 3. Failing to optimize the right function can yield significantly less utility. We optimized the minisat solver according to one
utility function and then assessed its performance according to another. Rows indicate true utility functions; columns indicate the utility
function used to perform the optimization; each function was normalized to have maximum 1. Colour intensity indicates degree of
suboptimality.

Figure 1 illustrates the utility functions we have discussed
in this section. Overall, the method of maximum entropy
gives us a principled way to adopt partial knowledge about
K into our scoring function; of course, it applies similarly
beyond the case of step-function utilities.

4. Estimating Expected Utility from Samples

So far we have talked about choosing between algorithms
in the case where their runtime distributions are known. In
practice, we must estimate runtime distributions via sam-
pling and try to make high-probability claims about the
distributions based on these estimates. In this setting, each
sample we draw imposes a runtime cost equal to its (capped)
value. Thus, if we want to be efficient in our estimation pro-
cedure, it is not the number of samples that concerns us,
but the sum of their values. This raises the question of how
cheaply we can estimate an algorithm’s score.

Suppose t1, . . . , tm are runtimes sampled from A. We do
not get to observe each tj , but instead observe capped

runtimes tj() = min{tj ,}. We have a utility func-
tion u(t) = uK(t) = E⇠K [u(t,)] incorporating our
knowledge of the captime distribution K, as in Section 3.2.
The utility values of the capped runtimes we observe are
u(tj()), and we want to know if these are a good estimate
of the true expected utility. The problem’s saving grace is
that we do not need to learn about the distribution of run-
times, we need to learn about the distribution of utilities,
which is a monotonically decreasing function of runtime,
bounded from below by 0. If we are estimating average run-
time, long but exceedingly unlikely runs can always impact
the expected value, and searching for them (to rule them
out) becomes important. When estimating utilities on the
other hand, long runs become less and less important since
the utility they contribute approaches 0 (as does their likeli-
hood of occurring) and so they contribute virtually nothing
to the expectation. Thus, expected utility can be accurately
determined from capped samples even when expected run-

time cannot. For simplicity, we assume in this section that
u is invertible and bounded in [0, 1]. Theorem 4.1 shows
that the total time required to estimate an algorithm’s score
depends on u�1(·), and on parameters ✏ and �, but has no
dependence on A’s average runtime. That is, regardless
of A’s runtime distribution—even if A’s mean runtime is
infinite—we can accurately estimate its true expected utility
from capped samples, with the number of samples required
and the captime depending on ✏, �, and u.

Theorem 4.1. The time to estimate the score of an arbitrary

algorithm A to within an ✏ additive factor with probability

1� � will be greater than m ·u�1(2✏) in the worst case, but

always less than m · u�1(✏/2), where m = ln(2/�)
2

�
2�✏
✏

�2
.

See Appendix A for a proof. Briefly, the captime is set large
enough that runtimes beyond it are too small to matter. With
this captime it is necessary and sufficient to do m runs.

5. The Effect of Different Utility Functions

In Section 2 we showed that our preferences for algorithm
runtime distributions will imply specific utility functions,
which in turn imply specific algorithm scoring functions.
But does this matter? Will our choices actually be affected?
In this section we argue that it does indeed matter. We
demonstrate this in two settings: automated algorithm con-
figuration and counterfactual analysis of the 2021 Interna-
tional SAT Competition10.

Algorithm Configuration. We considered a dataset due to
Weisz et al. (2018) which evaluated 972 randomly-sampled
configurations of the minisat (Sorensson & Een, 2005)
SAT solver on 20118 instances generated by CNFuzzDD11

that each took at least a second to solve with the default con-
figuration. In order to explore the extent to which it would

10Code to reproduce all figures can be found at https://
github.com/drgrhm/formalizing-preferences

11http://fmv.jku.at/cnfuzzdd/

8

https://github.com/drgrhm/formalizing-preferences
https://github.com/drgrhm/formalizing-preferences
http://fmv.jku.at/cnfuzzdd/

Formalizing Preferences Over Runtime Distributions

Figure 4. Results from the Parallel Track of the 2021 International SAT Competition under different utility functions. Colours correspond
to different solvers. Although various patterns emerge, each utility function yields a different top-three ranking.

matter if we optimized for one utility function but really
cared about another, we identified the best configuration
according to each of four utility functions (uniform, expo-
nential, Pareto, log-Laplace) and then evaluated the quality
of each configuration according to all of the utility functions.
Our results (Figure 3) show that these differences were sig-
nificant in practice: we often lost a substantial fraction of
the available utility when we optimized for the wrong utility
function.

International SAT Competition. Figure 4 shows the
ranking of the Parallel Track of the 2021 International SAT
Competition.12 As discussed in Section 1, the organizers
of these competitions have recognized that there are differ-
ent reasonable choices for evaluation metrics (e.g., do we
reward algorithms that are likely to finish, or those that are
fast when they do finish), and that different choices will lead
to different rankings of solvers. Figure 4 ranks each solver
according to its average score on the competition’s set of
test instances. No two rankings are exactly alike; each utility
function gives a different top-three ranking. It is important
to note that there is no objective “best” algorithm. Each
of the entrants has its own merits, having been carefully
developed by individuals who genuinely believed it to be a
good solver. How good depends substantially on our metric
for “good”, as Figure 4 demonstrates.

6. Conclusion

It is nontrivial to identify a general scoring function that re-
flects our preferences over runtime distributions, particularly
given that we often observe only capped runtimes. Such

12The Parallel Track had fewer entrants than other tracks, yield-
ing an easier-to-read figure. Other tracks exhibit qualitatively
similar responses to changing the utility function used.

functions are needed whenever algorithms are compared
based on their performance, particularly when these compar-
isons are done programatically, as in the case of automated
algorithm design. Following Von Neumann & Morgenstern
(1944), this paper has identified the constrained family of
utility functions that results when our preferences obey six
simple axioms. We have worked through a wide range of
examples showing utility functions that would be appropri-
ate in different scenarios, both when captime distributions
are known and when they are underspecified; in the latter
case, we appeal to the method of maximum entropy. Finally,
we have shown that, given a specific utility function, we
can estimate an algorithm’s score to within a desired degree
of accuracy using capped runtime samples, where the size
of the captime depends on the desired accuracy and on the
utility function.

Acknowledgements

The first two authors were funded by an NSERC Discov-
ery Grant, a DND/NSERC Discovery Grant Supplement,
a CIFAR Canada AI Research Chair (Alberta Machine In-
telligence Institute), a Compute Canada RAC Allocation,
awards from Facebook Research and Amazon Research,
and DARPA award FA8750-19-2-0222, CFDA #12.910 (Air
Force Research Laboratory). The research of the third au-
thor was supported in part by NSF awards CCF-2006737
and CNS-2212745.

References

Allais, M. Le comportement de l’homme rationnel devant
le risque: critique des postulats et axiomes de l’école
américaine. Econometrica: Journal of the Econometric

Society, pp. 503–546, 1953.

9

Formalizing Preferences Over Runtime Distributions

Ansótegui, C., Sellmann, M., and Tierney, K. A gender-
based genetic algorithm for the automatic configuration
of algorithms. In International Conference on Principles

and Practice of Constraint Programming, pp. 142–157.
Springer, 2009.

Bacci, S. and Chiandotto, B. Introduction to Statistical

Decision Theory: Utility Theory and Causal Analysis.
CRC Press, 2019.

Balcan, M.-F., Nagarajan, V., Vitercik, E., and White, C.
Learning-theoretic foundations of algorithm configura-
tion for combinatorial partitioning problems. In Confer-

ence on Learning Theory, pp. 213–274. PMLR, 2017.

Balcan, M.-F., DeBlasio, D., Dick, T., Kingsford, C., Sand-
holm, T., and Vitercik, E. How much data is sufficient to
learn high-performing algorithms? generalization guaran-
tees for data-driven algorithm design. In Proceedings of

the 53rd Annual ACM SIGACT Symposium on Theory of

Computing, pp. 919–932, 2021.

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K.
A racing algorithm for configuring metaheuristics. In
Proceedings of the 4th Annual Conference on Genetic

and Evolutionary Computation, pp. 11–18. Morgan Kauf-
mann Publishers Inc., 2002.

Cover, T. M. and Thomas, J. A. Elements of Information

Theory. John Wiley & Sons, Inc., 2 edition, 2006.

Ellsberg, D. Risk, ambiguity, and the Savage axioms. The

quarterly journal of economics, pp. 643–669, 1961.

Fishburn, P. and Wakker, P. The invention of the indepen-
dence condition for preferences. Management Science,
41(7):1130–1144, 1995.

Fishburn, P. C. Utility theory for decision making. Technical
report, Research analysis corp McLean VA, 1970.

Fishburn, P. C. Retrospective on the utility theory of von
Neumann and Morgenstern. Journal of Risk and Uncer-

tainty, 2(2):127–157, 1989.

Froleyks, N., Heule, M., Iser, M., Järvisalo, M., and Suda,
M. SAT competition 2020. Artificial Intelligence, 301:
103572, 2021.

Gagliolo, M. and Schmidhuber, J. Learning dynamic algo-
rithm portfolios. Annals of Mathematics and Artificial

Intelligence, 47(3-4):295–328, 2006.

Gomes, C. P. and Selman, B. Algorithm portfolios. Artificial

Intelligence, 126(1-2):43–62, 2001.

Gupta, R. and Roughgarden, T. A PAC approach to
application-specific algorithm selection. SIAM Journal

on Computing, 46(3):992–1017, 2017.

Horvitz, E., Ruan, Y., Gomes, C. P., Kautz, H., Selman, B.,
and Chickering, D. M. A Bayesian approach to tackling
hard computational problems. In Proceedings of UAI, pp.
235–244, 2001.

Huberman, B., Lukose, R., and Hogg, T. An economics
approach to hard computational problems. Science, 265:
51–54, 1997.

Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T.
ParamILS: an automatic algorithm configuration frame-
work. Journal of Artificial Intelligence Research, 36:
267–306, 2009.

Hutter, F., H. Hoos, H., and Leyton-Brown, K. Sequential
model-based optimization for general algorithm config-
uration. In International Conference on Learning and

Intelligent Optimization, pp. 507–523. Springer, 2011.

Jaynes, E. T. Information theory and statistical mechanics.
Physical review, 106(4):620, 1957.

Kadioglu, S., Malitsky, Y., Sellmann, M., and Tierney, K.
ISAC: Instance-Specific Algorithm Configuration. In
Proc. of ECAI’10, pp. 751–756, 2010.

Kahneman, D. and Tversky, A. Prospect theory: An analysis
of decision under risk. Econometrica, 47(2):263–291,
1979.

Kleinberg, R., Leyton-Brown, K., and Lucier, B. Efficiency
through procrastination: Approximately optimal algo-
rithm configuration with runtime guarantees. In IJCAI,
volume 3, pp. 1, 2017.

Kleinberg, R., Leyton-Brown, K., Lucier, B., and Graham,
D. Procrastinating with confidence: Near-optimal, any-
time, adaptive algorithm configuration. Advances in Neu-

ral Information Processing Systems, 32, 2019.

Kolmogorov, A. N. Sur la notion de la moyenne. Atti Ac-

cad. Naz. Lincei. Rend., 12(9):388–391, 1930. Reprinted
as “On the Notion of Mean” in Selected Works of AN

Kolmogorov: Volume I: Mathematics and Mechanics.
Tikhomirov, Vladimir M, ed. Springer Science & Busi-
ness Media. (1991). pages 144–146.

Lagoudakis, M. G. and Littman, M. L. Learning to select
branching rules in the DPLL procedure for satisfiability.
In LICS/SAT, pp. 344–359, 2001.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden,
J., and Shoham, Y. A portfolio approach to algorithm
selection. In Proceedings of IJCAI, pp. 1542–1543, 2003.

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Bi-
rattari, M., and Stützle, T. The irace package: Iterated
racing for automatic algorithm configuration. Operations

Research Perspectives, 3:43–58, 2016.

10

Formalizing Preferences Over Runtime Distributions

MacCrimmon, K. R. and Larsson, S. Utility theory: Axioms
versus ‘paradoxes’. In Expected utility hypotheses and

the Allais paradox, pp. 333–409. Springer, 1979.

Malinvaud, E. Note on von Neumann-Morgenstern’s strong
independence axiom. Econometrica (pre-1986), 20(4):
679, 1952.

Moscati, I. Retrospectives: how economists came to accept
expected utility theory: the case of Samuelson and Savage.
Journal of economic perspectives, 30(2):219–36, 2016.

Parmigiani, G. and Inoue, L. Decision theory: Principles

and approaches. John Wiley & Sons, 2009.

Rice, J. R. The algorithm selection problem. Advances in

Computers, 15:65–118, 1976.

Samuelson, P. A. Probability, utility, and the independence
axiom. Econometrica: Journal of the Econometric Soci-

ety, pp. 670–678, 1952.

Savage, L. J. The foundations of statistics. Courier Corpo-
ration, 1972.

Seipp, J., Sievers, S., Helmert, M., and Hutter, F. Automatic
configuration of sequential planning portfolios. In Proc.

of AAAI’15, 2014.

Shoham, Y. and Leyton-Brown, K. Multiagent systems: Al-

gorithmic, game-theoretic, and logical foundations. Cam-
bridge University Press, 2008.

Slovic, P. and Tversky, A. Who accepts Savage’s axiom?
Behavioral science, 19(6):368–373, 1974.

Sorensson, N. and Een, N. Minisat v1. 13-a sat solver with
conflict-clause minimization. SAT, 2005(53):1–2, 2005.

Tornede, A., Wever, M., Werner, S., Mohr, F., and
Hüllermeier, E. Run2survive: a decision-theoretic ap-
proach to algorithm selection based on survival analysis.
In Asian Conference on Machine Learning, pp. 737–752.
PMLR, 2020.

Von Neumann, J. and Morgenstern, O. Theory of games and

economic behavior. Princeton university press, 1944.

Weisz, G., György, A., and Szepesvári, C. LeapsAnd-
Bounds: A method for approximately optimal algorithm
configuration. In Proceedings of the International Con-

ference on Machine Learning (ICML), 2018.

Weisz, G., Gyorgy, A., and Szepesvári, C. CapsAndRuns:
An improved method for approximately optimal algo-
rithm configuration. In International Conference on Ma-

chine Learning, pp. 6707–6715. PMLR, 2019.

Weisz, G., György, A., Lin, W., Graham, D. R., Leyton-
Brown, K., Szepesvári, C., and Lucier, B. ImpatientCap-
sAndRuns: Approximately optimal algorithm configura-
tion from an infinite pool. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., and Lin, H. (eds.), Proceedings

of NeurIPS, 2020.

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K.
SATzilla: portfolio-based algorithm selection for SAT.
Journal of Artificial Intelligence Research, 32:565–606,
June 2008.

Xu, L., Hoos, H., and Leyton-Brown, K. Hydra: Automati-
cally configuring algorithms for portfolio-based selection.
In Proc. of AAAI’10, pp. 210–216, 2010.

11

Formalizing Preferences Over Runtime Distributions

A. Proofs of Theorems

Theorem 2.8: If our preferences follow Axioms 2.1 to 2.6, then a function u satisfies

A ⌫K B () Et⇠A,⇠K

⇥
u(t,)

⇤
� Et⇠B,⇠K

⇥
u(t,)

⇤
, (2)

for any runtime distributions A and B and any timeout distribution K if and only if there are constants c0 and c1 > 0 such
that u(t,) = c1p(t,) + c0. Furthermore, p has the form

1. p(0,) = 1 (maximum achieved at t = 0),

2. p(t,) � p(t0,) for all t  t0 (monotonically decreasing),

3. p(t,) > 0 for all t <  (strictly positive),

4. p(,) = 0 (minimum achieved at t = ).

Proof. Given an arbitrary runtime distribution A and a timeout distribution K, we will construct a new synthetic algorithm
X that returns an answer either instantaneously or after some amount of time sampled from K. Formally,

X =

h
p(t,) : �0 ,

�
1� p(t,)

�
: �1

i �� t ⇠ A, ⇠ K

�
, (3)

where p is defined in Definition 2.7. Setting

pA =

Z 1

0

Z 1

0
p(t,)dFA(t)dFK() = Et⇠A,⇠K

⇥
p(t,)

⇤
,

we can write X’s runtime distribution as

X =
⇥
pA : �0 , (1� pA) : �1

⇤
. (4)

Consider the function M(t,) = [p(t,) : �0 , (1� p(t,)) : �] that maps runtime–captime pairs to mixture distributions.
Since p was defined in Definition 2.7 so that �t '� M(t,), we can conclude from Independence that

A 'K

h
p(t,) : �0 ,

�
1� p(t,)

�
: �1

i �� t ⇠ A, ⇠ K

�
. (5)

Equations (3) to (5) together then give that

A 'K

⇥
pA : �0 , (1� pA) : �1

⇤
. (6)

Now consider a second algorithm B, and define Y and pB analogously to X and pA, but with B in place of A, so that by
the same argument we have

B 'K

⇥
pB : �0 , (1� pB) : �1

⇤
. (7)

Since �0 ⌫K �1 by Eagerness, Monotonicity tells us that
⇥
pA : �0 , (1 � pA) : �1

⇤
⌫K

⇥
pB : �0 , (1 � pB) : �1

⇤
iff

pA � pB , and thus

A ⌫K B () Et⇠A,⇠K

⇥
p(t,)

⇤
� Et⇠B,⇠K

⇥
p(t,)

⇤
. (8)

So the function p can serve as a utility function, and we can use the biconditional Equation (8) to infer certain aspects of p’s
form:

1. By definition of p we have �0 '�

⇥
p(0,) : �0 , (1 � p(0,)) : �1

⇤
, where p(0,)  1, and by Eagerness we

have �0 ⌫� �1 so applying Monotonicity with A = �0, B = �1 and q = 1, we have that p(0,) � 1, and thus
p(0,) = 1.

12

Formalizing Preferences Over Runtime Distributions

2. For any t  t0 < , Eagerness tells us that �t ⌫� �t0 , and so p(t,) � p(t0,).

3. Relevance states that �t �� �, and so p(t,) > p(,) = 0.

4. By definition, p(,) is set to 0.

Together this all means that the function p is monotonically decreasing from 1 to 0, reaching 0 only at t =  (i.e., it is
strictly greater than 0 for all t < ). So p has the given form and can serve as a utility function.

We can now show that a function u satisfies Equation (1) if and only if it has the form u(t,) = c1p(t,) + c0 for some
c1 > 0 and c0. The reverse, ‘only if’ direction follows immediately from linearity of expectation. For the forward, ‘if’
direction, suppose that u does satisfy Equation (1) for all A,B and K. Since �0 ⌫K A ⌫K �1 by Eagerness, Continuity
says that there exists a constant ↵ such that A 'K

⇥
↵ : �0, (1� ↵) : �1

⇤
. Using this equivalence, Equation (8) tells us that

Et⇠A,⇠K

⇥
p(t,)

⇤
= ↵,

and applying Equation (1) to A and the equivalent mixture
⇥
↵ : �0, (1� ↵) : �1

⇤
tells us that

Et⇠A,⇠K

⇥
u(t,)

⇤
= ↵E⇠K

⇥
u(0,)

⇤
+ (1� ↵)E⇠K

⇥
u(1,)

⇤

= ↵
�
E⇠K

⇥
u(0,)� u(1,)

⇤�
+ E⇠K

⇥
u(1,)

⇤
,

so setting c1 = E⇠K

⇥
u(0,)� u(1,)

⇤
and c0 = E⇠K

⇥
u(1,)

⇤
we have that

Et⇠A,⇠K

⇥
u(t,)

⇤
= c1Et⇠A,⇠K

⇥
p(t,)

⇤
+ c0

for any A and K. In particular, when A = �t and K = � for arbitrary t and  we get that u(t,) = c1p(t,) + c0, which
completes the proof.

Theorem 4.1: The time to estimate the score of an arbitrary algorithm A to within an ✏ additive factor with probability
1� � will be greater than m · u�1(2✏) in the worst case, but always less than m · u�1(✏/2), where m = ln(2/�)

2

�
2�✏
✏

�2.

The proof follows from the next two lemmas. The number of samples required is determined by Hoeffding’s inequality,
independent of the choice of captime. If we are constrained by an accuracy parameter ✏, then we must do runs at an implied
captime of u�1(✏/2). If we are constrained by a captime , then we must do enough runs to apply Hoeffding’s inequality
with an accuracy parameter of u().

Lemma A.1. For any ✏, �, any algorithm A, and any utility function u, if we take m = ln(2/�)
2

�
2�✏
✏

�2
runtime samples from

A at captime  = u�1(✏/2), then the capped sample mean utility will be within ✏ of the true, uncapped mean utility with

probability at least 1� �.

Proof. By the triangle inequality

Pr

✓����
1

m

mX

j=1

u(tj())� E
t⇠A

⇥
u(t)

⇤���� � ✏

◆

= Pr

✓����
1

m

mX

j=1

u(tj())� E
t⇠A

⇥
u(t())

⇤
+ E

t⇠A

⇥
u(t())� u(t)

⇤���� � ✏

◆

 Pr

✓����
1

m

mX

j=1

u(tj())� E
t⇠A

⇥
u(t())

⇤����+
���� E
t⇠A

⇥
u(t())� u(t)

⇤���� � ✏

◆
.

But since Et⇠A

⇥
u(t())� u(t)

⇤
= Et⇠A

⇥
u(t())� u(t)

��t � 
⇤
Prt⇠A

�
t � 

�
, and u(t()) = u() = ✏/2 for t � , we

have that

E
t⇠A

⇥
u(t())� u(t)

⇤
 ✏

2
.

13

Formalizing Preferences Over Runtime Distributions

Together these tell us that

Pr

✓����
1

m

mX

j=1

u(tj())� E
t⇠A

⇥
u(t)

⇤���� � ✏

◆
 Pr

✓����
1

m

mX

j=1

u(tj())� E
t⇠A

⇥
u(t())

⇤���� �
✏

2

◆
.

Then using the fact that u(tj()) 2 [✏2 , 1] for all j, Hoeffding’s inequality tells us that

Pr

✓����
1

m

mX

j=1

u(tj())� E
t⇠A

⇥
u(t)

⇤���� � ✏

◆
 �

if we take at least m = ln(2/�)
2

�
2�✏
✏

�2 capped samples.

Lemma A.1 shows that if we take enough samples at a large enough captime, then we can accurately estimate any
distribution’s mean utility. We know that if we take too few samples we will never be able to estimate a distribution well
(even if they are uncapped samples). The next lemma shows it is also true that no matter how many samples we take, if the
captime we take them at is too small, then we will fail to estimate some distributions well.
Lemma A.2. For any ✏ and any utility function u, there exists a distribution A such that no matter how many samples we

take, if the captime  < u�1(2✏), then the capped sample mean utility will be at least ✏ from the true, uncapped mean.

Proof. By the (reverse) triangle inequality, and since utilities are positive, we have
����
1

m

mX

j=1

u(tj())� E
t⇠A

⇥
u(t)

⇤���� �
1

m

mX

j=1

u(tj())� E
t⇠A

⇥
u(t)

⇤
.

Since tj()   < u�1(2✏) for all j, we have u(tj()) � u() > 2✏, and so

1

m

mX

j=1

u(tj()) > 2✏.

Since u(t) ! 0 as t ! 1, there exists some t✏ such that u(t✏) < ✏. If we choose A to always return t✏, we have that

E
t⇠A

⇥
u(t)

⇤
< ✏.

Combining the above we have that
����
1

m

mX

j=1

u(tj())� E
t⇠A

⇥
u(t)

⇤���� � ✏

regardless of how many samples are taken.

B. Independence, Decomposability, and the Compounding of Preferences

The Independence axiom plays an important role in the proof of our main theorem, and in expected-utility theory in general.
It is this axiom that makes our scoring function an expectation.

The Independence axiom was not one of the axioms stated by Von Neumann & Morgenstern (1944), but emerged from
a frenzy of activity that followed the publication of their result. Malinvaud (1952) revealed that in fact their framework
did contain an Independence assumption, it was just hidden in their formal setup. We discuss this further below, with
specific reference to our own setting of runtime distributions. Whatever its origins in decision theory, the mathematics of the
Independence axiom were explored at least by Kolmogorov (1930), in whose condition (iv) can be found the essence of
the axiom. For detailed histories of Independence, its development, and incorporation into expected utility theory see, e.g.,
Fishburn (1989); Fishburn & Wakker (1995); Moscati (2016)

Different sources use different notation and slightly different forms of the Independence axiom, which can obscure the fact
that they are all really saying the same thing, which is also what our own Independence axiom is saying: when we choose

14

Formalizing Preferences Over Runtime Distributions

between two gambles, we can focus on the places those two gambles differ, because this is the part that will determine our
preferences. We present a handful of different versions here, just to give an idea of how these are similar to our own.

Axiom II (Strong Independence) (Samuelson, 1952): If lottery ticket (A)1 is (as good or) better than (B)1, and lottery

ticket (A)2 is (as good or) better than (B)2, then an even chance of getting (A)1 or (A)2 is (as good or) better than an even

chance of getting (B)1 or (B)2.

Condition 2: Independence (Fishburn, 1970): (P � Q, 0 < ↵ < 1) =) ↵P + (1� ↵)R � ↵Q+ (1� ↵)R.

P2: sure-thing principle (Savage, 1972): If f , g, and f 0,g0 are such that:

1. in ⇠ B, f agrees with g, and f 0 agrees with g0,

2. in B, f agrees with f 0, and g agrees with g0,

3. f  g;

then f 0  g0.

Axiom 3.1.3 (Substitutability) (Shoham & Leyton-Brown, 2008): If o1 ⇠ o2, then for all sequences of one or more

outcomes o3, ..., ok and sets of probabilities p, p3, ..., pk for which p +
Pk

i=3 pi = 1, [p : o1, p3 : o3, ..., pk : ok] ⇠ [p :
o2, p3 : o3, ..., pk : ok].

NM2 Independence (Parmigiani & Inoue, 2009): for every a, a0, and a00 in A and ↵ 2 (0, 1], we have

a � a0 implies (1� ↵)a00 + ↵a � (1� ↵)a00 + ↵a0.

Axiom 3.13. Independence (Bacci & Chiandotto, 2019): Given ci, cj , ch 2 C such that ci ⇠ cj , then hcipchi ⇠ hcjpchi.

We can see that all of these statements are really saying the same thing. Our preferences between gambles are determined by
our preferences for their component parts; or put another way, our preferences for gambles are independent of the parts of
those gambles that are the same. We can understand our own Independence axiom of Section 2 in the context of these others.
We can trivially write any distribution A as [�t | t ⇠ A, ⇠ K] and if we note that A ⌫K B is really just shorthand for
A⇥K ⌫ B ⇥K, our Independence axiom can be stated as

“if

�t ⇥ � ' M(t,)⇥ � (9)

for all t,, then

[�t | t ⇠ A, ⇠ K]⇥K ' [M(t,) | t ⇠ A, ⇠ K]⇥K”. (10)

This says that our preferences for compound distributions (Equation (10)) are determined by our preferences for their
individual components (Equation (9)). Taking (Samuelson, 1952) as an example, we can write the “Strong Indedpendence”
axiom in our notation as:

“if

A1 ⌫ B1 and A2 ⌫ B2

then

[p : A1, (1� p) : A2] ⌫ [p : B1, (1� p) : B2]”.

We can stress the similarity between the above and our version, by noting the irrelevant differences: We use indifference while
Samuelson uses weak preference. Our compound distributions are mixtures over all t,, while Samuelson’s are mixtures
over just the indices 1, 2. Samuelson’s preferences are over arbitrary gambles A1, B1, A2, B2, while our indifferences are
stated only for sure outcomes �t with mixtures M(t,) between the best and worst outcome, under sure captimes �. Finally,
and perhaps most significantly, the use of product distributions in our Independence axiom means that captimes compound in
a somewhat non-obvious way, which essentially amounts to an assumption that any two draws from the captime distribution
are the same to us, given the runtime t.

15

Formalizing Preferences Over Runtime Distributions

Independence does something important that no other VNM axiom does: it makes a statement about the way our preferences
“carry over” when distributions are nested within each other. If we prefer one distribution to another, how would we feel
about the result of each of these nested within some third distribution? Monotonicity and Continuity make statements
about nested distributions, but they do not say anything about how our preferences for distinct components extend to our
preferences for the distributions they are part of. That is the role that Independence plays. It says that our preferences for
complex, nested outcomes are determined by our preferences for their simple components.

B.1. Violations of the Independence Axiom

Violations of the Independence Axiom are well-known (Allais, 1953; Ellsberg, 1961; Slovic & Tversky, 1974; MacCrimmon
& Larsson, 1979; Kahneman & Tversky, 1979). When presented with simple choices between gambles, seemingly rational
individuals make apparently reasonable selections that are not consistent with the Independence axiom. Some decision
theorists have been quick to dismiss these choices as “wrong”, stressing the rationality of the Independence axiom and thus
the irrationality of violating it. Others have been happy enough to just discard Independence.

The validity of the Independence axiom is not the subject of this paper. We claim only that if a decision-maker’s choices
follow the axioms, then

13 they will act as though they are choosing algorithms according to a utility function of the given
form. We note, however, that our setting is somewhat unique among decision problems in that we do not have to incur

the full loss of a bad outcome. Since many of the observed violations of Independence can be understood as individuals
trying to avoid worst-case outcomes (i.e., they do not want to end up with nothing when they had a decent chance of getting
something), there is good reason to suppose that it does hold in our particular setting. Implicit in the assumption that we
face a captime is the assumption that there is some default action available to us, and because we can always choose to
terminate the algorithm ourselves, we can take this option at any time. This is a unique characteristic of our setting.

Consider an algorithm that either finishes in 1 second or in 100 years. If we use this algorithm, we will likely decide that it
is not worth waiting 100 years for the solution in those cases where it does not finish in 1 second, and in practice never run
for much more than, say, 2 seconds. Now consider an investment with analogous monetary payouts. If say, we either gain $1
million or lose $10 million we cannot simply decide in the bad case that we have lost too much money and take some other,
smaller loss. We cannot simply “stop” the investment the way we can stop an algorithm run (at least not if we want to keep
investing). We can only hedge against the bad case before we observe the outcome by buying an option on the same asset,
for instance. In the algorithm runtime case, we can decide to limit our losses while we observe the outcome, as if we had
actually purchased some sort of “hedge” option on our “runtime investment.” In effect, we never have to accept large losses.

Finally, we note that whatever psychological effects a decision-maker may experience when choosing between complex,
nested gambles in general, in the case of algorithm runtime distributions it is especially reasonable to suppose that differences
in the structure of randomness do not matter to us, since they are essentially hidden from us in practice. When we run our
algorithm, we generally will not be, and certainly need not be aware of its inner workings in any detailed way. We are not
explicitly exposed to the structure of the randomness, only the final outcome. An algorithm that either runs some subroutine
A or some subroutine B with a 50/50 chance depending on its random seed does not appear to us as a coin toss followed by
a draw from one of A or B. It simply returns an answer to us after some elapsed time. Whatever the case may be in other
settings, we really are only concerned with the distribution of final outcomes, because that is really all we observe.

B.2. Decomposability

Von Neumann & Morgenstern (1944) established a kind of preference-nesting that is related to, but different from,
Independence with an axiom they called the “algebra of combining.” Stated in our notation this would be

h
p :

⇥
q : A, (1� q) : B

⇤
, (1� p) : B

i
=

h
pq : A, (1� pq) : B

i
, (11)

which simply says that the probabilities of nested distributions over outcomes obey the normal rules of probability (i.e., they
compound in the normal way). Note, however, the equality in Equation (11). To von Neumann and Morgenstern this was a
true equality, not an indifference. In fact, they did not axiomatize an indifference relation at all. In effect, their outcome
space was a set of indifference classes, the elements of each class being represented by what they called an “abstract utility.”
In this way, they do not talk about specific outcomes, or even about distributions over specific outcomes, they simply define
the operation [p : A, (1� p) : B], where A and B are “abstract utilities”, and state that the outcome space is closed under
this operation. In this way, their mixture operation is not a probability distribution per se, and an axiom like Equation (11) is

13In fact, the implication is bidirectional, but we are less interested in the other direction.

16

Formalizing Preferences Over Runtime Distributions

necessary to establish the rules for manipulating such expressions (literally, to establish their algebra). What’s more, since
A and B are equivalence classes, Equation (11) has a more subtle interpretation than it might first appear. In particular,
when we note that A and B are actually sets of (distributions over) outcomes, we can see why an axiom describing this
combination process becomes necessary.

In our setting of runtime distributions, the equality in Equation (11) follows immediately from the mathematical fact that
distributions can be combined to form new distributions using the normal compounding operation. Hence, no such axiom is
needed. Some later authors have axiomatized this property, calling it Decomposability, and replacing the equality with an
indifference. This is not strictly necessary and others have simply taken for granted, correctly, that this operation can be
performed. A distribution over distributions is a distribution and no preference can change this fact. Thus, if A and B are
(distributions over) fixed outcomes, and if we interpret [p : A, (1� p) : B] not as an abstract operation like von Neumann
and Morgenstern did, but as a lottery that gives (a draw from) A with probability p and (a draw from) B with probability
1� p, then the equality in Equation (11) is a true equality, regardless of what the outcome space is. This makes no assertion
about how such nesting affects our preferences, only that such nesting is possible, and that the result is a valid object for
which preferences can be defined. The assertion of how such nesting affects our preferences is made by the Independence
axiom.

Independence was shown by Malinvaud (1952) to be implicit in Von Neumann and Morgenstern’s use of indifference classes.
We can understand this in the language of our algorithm runtime setting as follows.

The “abstract utilities” U and V are equivalence classes of algorithms (i.e., indifference sets of algorithms). We are
“indifferent” between two algorithms if and only if they belong to the same equivalence class. As noted above, von Neumann
and Morgenstern define an abstract operation [p : U, (1�p) : V] = W on equivalence classes. The resulting equivalence class
W is understood to be the set of all algorithm runtime distributions of the form [p : A, (1�p) : B] where A 2 U and B 2 V .
Thus, if A1, B1 2 U and A2, B2 2 V , then [p : A1, (1� p) : A2] 2 W and [p : B1, (1� p) : B2] 2 W . Or saying the same
thing in the language of indifference we have: if A1 ' B1 and A2 ' B2, then [p : A1, (1�p) : A2] ' [p : B1, (1�p) : B2],
which is a form of the Independence axiom.

C. Maximum Entropy Distribution Derivations

Entropy represents the average number of bits required to specify the value of an outcome. When that value is a continuous
quantity, as in the case of time, entropy is technically infinite. However, we are actually never interested in entropy in
an absolute sense, only relative differences in entropy matter. The continuous analogue of entropy, and the quantity we
maximize, is referred to as differential entropy (of the distribution f), and is given by

h
⇥
f
⇤
= �

Z 1

0
f() log f() d.

Informally, the entropy of a continuous distribution f approaches h[f] +1 as it is represented with increasing precision, so
differences in differential entropy are the same as differences in Shannon entropy, since the 1 “cancels” by subtraction.
This justifies the use of differential entropy as a stand-in for Shannon entropy. In real implementations, the entropy of an
n-bit quantization of a continuous quantity is approximated by h[f] + n. See e.g., (Cover & Thomas, 2006) for details.

Derivation of the maximum entropy distributions is done using the calculus of variations and the method of Lagrange
multipliers.

C.1. Bounded (uniform).

Timeout is bounded in [0,0].

The functional is

L[f(),�] = �
Z 0

0
f() log(f()) d� �0

✓Z 0

0
f() d� 1

◆
.

17

Formalizing Preferences Over Runtime Distributions

The partial derivatives are
@L

@f()
= � log(f())� 1� �0

@L

@�0
= �

Z 0

0
f() d+ 1

giving

f() = exp (��0 � 1)

with condition
Z 0

0
f() d = 1.

Solving for �0 gives

�0 = log(0)� 1

and

f() = 1/0

and

F (t) = t/0.

C.2. Fixed Expectation (exponential).

Timeout has expectation µ.

The functional is

L[f(),�] = �
Z 1

0
f() log(f()) d� �0

✓Z 1

0
f() d� 1

◆
� �1

✓Z 1

0
f() d� µ

◆
.

The partial derivatives are
@L

@f()
= � log(f())� 1� �0 � �1

@L

@�0
= �

Z 1

0
f() d+ 1

@L

@�1
= �

Z 1

0
f() d+ µ

giving

f() = exp (��1� �0 � 1)

with conditions,
Z 1

0
f() d = 1

Z 1

0
f() d = µ.

Solving for �0 and �1 gives

�0 = log(1/�1)� 1

�1 = 1/µ

and

f() =
1

µ
exp

✓
� 

µ

◆

18

Formalizing Preferences Over Runtime Distributions

C.3. Fixed order of magnitude (Pareto).

Timeout has E⇠K [log(/0)] = 1/↵ with  > 0.

The functional is

L[f(),�] = �
Z 1

0

f() log(f()) d� �0

✓Z 1

0

f() d� 1

◆
� �1

✓Z 1

0

log(/0)f() d� 1

↵

◆
.

The partial derivatives are

@L

@f()
= � log(f())� 1� �0 � �1 log(/0)

@L

@�0
= �

Z 1

0

f() d+ 1

@L

@�1
= �

Z 1

0

log(/0)f() d+
1

↵

giving

f() = exp (��0 � 1)

✓


0

◆��1

with conditions,
Z 1

0

f() d = 1 (12)
Z 1

0

log(/0)f() d =
1

↵
. (13)

Integrating (1) gives

exp(��0 � 1) =
�1 � 1

0

so

f() =
(�1 � 1)�1�1

0

�1
,

which is a Pareto pdf with parameter �1 � 1. Integrating gives that �1 � 1 = ↵.

C.4. Two-tailed fixed order of magnitude, (un)equal tails ((generalized) log-Laplace).

The conditions are E⇠K [log(0/) |  < 0] = 1/� and E⇠K [log(/0) |  � 0] = 1/↵, with Pr⇠K( < 0) = p.
The functional is

L[f(),�] = �
Z 1

0
f() log(f()) d� �0

✓Z 1

0
f() d� 1

◆

� �1

✓Z 0

0
f()� p

◆

� �2

✓Z 0

0
log(0/)f() d� p

�

◆

� �3

✓Z 1

0

log(/0)f() d� 1� p

↵

◆
.

19

Formalizing Preferences Over Runtime Distributions

The main partial derivative is
@L

@f()
= � log(f())� 1� �0 � �1 ( < 0)� �2 log(0/) ( < 0)� �3 log(/0) ( � 0),

giving the pdf:

f() = exp
⇣
� 1� �0 � �1 ( < 0)

⌘✓ 

0

◆�2 (<0)��3 (�0)

(14)

with the conditions
Z 1

0
f() d = 1

Z 0

0
f() = p

Z 0

0
log(0/)f() d =

p

�Z 1

0

log(/0)f() d =
1� p

↵
,

which give us that

�3 = ↵+ 1

�2 = � � 1

exp(��1) =
p�

(1� p)↵

exp(�1� �0) =
(1� p)↵

0

and so

f() =

8
><

>:

p�
0

⇣

0

⌘��1
if  < 0

(1�p)↵
0

⇣
0


⌘↵+1
otherwise

.

Ensuring the continuity condition lim!�
0
f() = f(0) means that p = ↵

↵+� , giving the generalized log-Laplace pdf.
When ↵ = �, it becomes the standard log-Laplace.

C.5. Fixed squared-deviation (log-normal)

The conditions are E⇠K [log(/0)] = 0 and E⇠K [(log(/0))2] = �2. The functional is

L[f(),�] = �
Z 1

0
f() log(f()) d� �0

✓Z 1

0
f() d� 1

◆

� �1

✓Z 1

0
log(/0)f() d

◆

� �2

✓Z 1

0
(log(/0))

2f() d� �2

◆
.

The main partial derivative is
@L

@f()
= � log(f())� 1� �0 � �1 log(/0)� �2

�
log(/0)

�2

giving the pdf:

f() = exp
⇣
� 1� �0

⌘✓0



◆�1

exp

✓
� �2

�
log(/0)

�2
◆
, (15)

which is a log-normal distribution when �2 = 1
2�2 , �1 = 1, and exp(�1� �0) =

1
0�

p
2⇡

.

20

Formalizing Preferences Over Runtime Distributions

C.6. Bounded support and left tail (peicewise).

Timeout is bounded in [0,0] and Pr⇠K( > 1) � 1� �.

The functional is

L[f(),�] = �
Z 0

0
f() log(f()) d� �0

✓Z 0

0
f() d� 1

◆

� �1

✓Z 0

1

f() d� 1 + �

◆

The partial derivatives are

@L

@f()
= � log(f())� 1� �0 � �1 ( > 1)

@L

@�0
= �

Z 0

0
f() d+ 1

@L

@�1
=

Z 0

1

f() d� 1 + �

giving

f() = exp (��0 � 1� �1 ( > 1))

with conditions,
Z 0

0
f() d = 1

Z 0

1

f() d = 1� �.

Solving for �0 and �1 gives

exp(��0 � 1) =
�

1

exp(��1) =

✓
1� �

�

◆✓
1

0 � 1

◆

and

f() =

(
�
1

if t  1
1��

0�1
otherwise

and

F () =

(
� t
1

if t  1

� + (1� �) t�1
0�1

otherwise.

D. Extending Our Theory to Solution Quality

The extension to include solutions of differing quality is fairly straightforward. We can mean anything we want by “quality”,
as long as we can assign it a numerical value (e.g., mean-squared error on a machine learning model, fuel saved on our
delivery route, our subjective rating of the beauty of a generated image, etc.). For our purposes, all that matters is that
algorithms are now distributions over pairs of numbers (t, q) where t is the runtime and q 2 [q�1, q1] is the quality of the

21

Formalizing Preferences Over Runtime Distributions

solution returned. We have some default action available to us that gives a solution with quality q0 (maybe this is the loss on
the model with the default parameter setting, or our impression of a random white-noise image). This means that we can
effectively constrain q to the interval [q0, q1], where the worst-quality solution q0 is always available to us. We assume that
q1 > q0.

The statement of the first three axioms is unchanged. The statements of Independence, Eagerness and Relevance do change,
but each retains its fundamental interpretation and ultimately plays the same role in the theorem’s proof.

Axiom 1 (Transitivity). If A ⌫K B and B ⌫K C, then A ⌫K C.

Axiom 2 (Monotonicity). If A ⌫K B then for any p, q 2 [0, 1] we have [p : A, (1� p) : B] ⌫K [q : A, (1� q) : B] if
and only if p � q.

Axiom 3 (Continuity). If A ⌫K B ⌫K C, then there exists a p 2 [0, 1] such that B 'K [p : A, (1� p) : C].

Axiom 4
0 (Independence). If �t ⇥ �q '� M(t, q,) for all t, q,, then A 'K [M(t, q,) | (t, q) ⇠ A, ⇠ K].

Axiom 5
0 (Eagerness). For any t  t0 and q � q0, if the support of A is contained in [t, t0] ⇥ [q0, q], then �t ⇥ �q ⌫K

A ⌫K �t0 ⇥ �q0 .

Axiom 6
0 (Relevance). �t ⇥ �q �� �t ⇥ �q0 for all t <  and all q > q0.

The function p now takes three arguments, but its interpretation as the “balance point” between the best and worst possible
outcomes remains the same.

Definition D.1. Set p(t, q,) = 0 if t � , and otherwise set p(t, q,) to be the value that satisfies

�t ⇥ �q '�

h
p(t, q,) : �0 ⇥ �q1 ,

�
1� p(t, q,)

�
: � ⇥ �q0

i
. (16)

Since Eagerness tells us that �0 ⇥ �q1 ⌫� �t ⇥ �q ⌫� � ⇥ �q0 when t < , Continuity ensures that p exists for any t < 
and any q, and Monotonicity ensures it is unique. So p is defined for all t, q and .

The main theorem of Section 2 (Theorem 2.8) can now be restated to include solution quality. The function p is monotonically
increasing in quality q, and for any fixed q > q0 it behaves just as it did in Theorem 2.8.

Theorem D.2. If our preferences follow the axioms as stated in this section, then a function u satisfies

A ⌫K B () E(t,q)⇠A,⇠K

⇥
u(t, q,)

⇤
� E(t,q)⇠B,⇠K

⇥
u(t, q,)

⇤
, (17)

for any runtime distributions A and B and any timeout distribution K if and only if there are constants c0 and c1 > 0 such

that u(t, q,) = c1p(t, q,) + c0. Furthermore, p has the form

1. p(0, q1,) = 1 (maximum achieved at t = 0 and q = q1),

2. p(t, q,) � p(t0, q,) for all t  t0 and any q (monotonically decreasing in t),

3. p(t, q,) � p(t, q0,) for all q � q0 and any t (monotonically increasing in q),

4. p(t, q,) > 0 for all t < , q > q0 (strictly positive if we improve q),

5. p(, q,) = 0 for any q (minimum always achieved at t = ).

Proof. Given an arbitrary runtime distribution A and a timeout distribution K, we will construct a new synthetic algorithm
X that returns an answer either instantaneously or after some amount of time sampled from K. Formally,

X =

h
p(t, q,) : �0 ,

�
1� p(t, q,)

�
: �

i �� (t, q) ⇠ A, ⇠ K

�
. (18)

22

Formalizing Preferences Over Runtime Distributions

Where p is defined in Definition D.1. Setting

pA =

Z



Z

t,q
p(t, q,)dFA(t, q)dFK()

= E(t,q)⇠A,⇠K

⇥
p(t, q,)

⇤
,

we can write X’s runtime distribution as

X =
⇥
pA : �0 , (1� pA) : K

⇤
. (19)

Consider the function M(t, q,) = [p(t, q,) : �0 ⇥ �q1 , (1� p(t, q,)) : � ⇥ �q0] that maps runtime–quality–captime
triplets to mixture distributions. Since p was defined in Equation (16) so that �t ⇥ �q '� M(t, q,), we can conclude from
Independence that

A 'K

h
p(t, q,) : �0 ⇥ �q1 ,

�
1� p(t, q,)

�
: � ⇥ �q0

i �� (t, q) ⇠ A, ⇠ K

�
. (20)

Equations (18) to (20) together then give that

A 'K

⇥
pA : �0 ⇥ �q1 , (1� pA) : K

⇤
. (21)

Now consider a second algorithm B, and define Y and pB analogously to X and pA, but with B in place of A, so that by
the same argument we have

B 'K

⇥
pB : �0 ⇥ �q1 , (1� pB) : K ⇥ �q0

⇤
. (22)

Since �0 ⇥ �q1 ⌫K K ⇥ �q0 by Eagerness, Monotonicity tells us that
⇥
pA : �0 ⇥ �q1 , (1 � pA) : K ⇥ �q0

⇤
⌫K

⇥
pB :

�0 ⇥ �q1 , (1� pB) : K ⇥ �q0
⇤

iff pA � pB , and thus

A ⌫K B () E(t,q)⇠A,⇠K

⇥
p(t, q,)

⇤
� E(t,q)⇠B,⇠K

⇥
p(t, q,)

⇤
. (23)

So the function p can serve as a utility function, and we can use the biconditional Equation (23) to infer certain aspects of
p’s form:

1. By definition of p we have �0 ⇥ �q1 '�

⇥
p(0, q1,) : �0 ⇥ �q1 , (1� p(0, q1,)) : � ⇥ �q0

⇤
, where p(0, q1,)  1,

and by Eagerness we have �0 ⇥ �q1 ⌫� � ⇥ �q0 so applying Monotonicity with A = �0 ⇥ �q1 , B = � ⇥ �q0 and
q = 1, we have that p(0, q1,) � 1, and thus p(0, q1,) = 1.

2. For any t  t0 <  and any q, Eagerness tells us that �t ⇥ �q ⌫� �t0 ⇥ �q , and so p(t, q,) � p(t0, q,).

3. For any q � q0 and any t < , Eagerness tells us that �t ⇥ �q ⌫� �t ⇥ �q0 , and so p(t, q,) � p(t, q0,).

4. Relevance states that �t ⇥ �q �� �t ⇥ �q0 for all t <  and all q > q0, and Eagerness says that �t ⇥ �q0 �� � ⇥ �q0 ,
and so p(t, q,) > p(, q,) = 0.

5. By definition, p(, q,) is set to 0 for all q.

So p has the given form and can serve as a utility function. We can now show that a function u satisfies Equation (17) if
and only if it has the form u(t, q,) = c1p(t, q,) + c0 for some c1 > 0 and c0. The reverse, ‘only if’ direction follows
immediately from linearity of expectation. For the forward, ‘if’ direction, suppose that u does satisfy Equation (17) for all
A,B and K. Since �0 ⇥ �q1 ⌫K A ⌫K �1 ⇥ �q0 by Eagerness, Continuity says that there exists a constant ↵ such that
A 'K

⇥
↵ : �0 ⇥ �q1 , (1� ↵) : �1 ⇥ �q0

⇤
. Using this equivalence, Equation (23) tells us that

E(t,q)⇠A,⇠K

⇥
p(t, q,)

⇤
= ↵,

and applying Equation (1) to A and the equivalent mixture
⇥
↵ : �0 ⇥ �q1 , (1� ↵) : �1 ⇥ �q0

⇤
tells us that

E(t,q)⇠A,⇠K

⇥
u(t, q,)

⇤
= ↵E⇠K

⇥
u(0, q1,)

⇤
+ (1� ↵)E⇠K

⇥
u(1, q0,)

⇤

= ↵
�
E⇠K

⇥
u(0, q1,)� u(1, q0,)

⇤�
+ E⇠K

⇥
u(1, q0,)

⇤
,

23

Formalizing Preferences Over Runtime Distributions

so setting c1 = E⇠K

⇥
u(0, q1,)� u(1, q0)

⇤
and c0 = E⇠K

⇥
u(1, q0,)

⇤
we have that

E(t,q)⇠A,⇠K

⇥
u(t, q,)

⇤
= c1E(t,q)⇠A,⇠K

⇥
p(t, q,)

⇤
+ c0

for any A and K. In particular, when A = �t and K = � for arbitrary t and  we get that u(t, q,) = c1p(t, q,) + c0,
which completes the proof.

24

