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Abstract

The reconstruction of quantum states from experimental measurements, often achieved using quantum state to-
mography (QST), is crucial for the verification and benchmarking of quantum devices. However, performing QST for
a generic unstructured quantum state requires an enormous number of state copies that grows exponentially with the
number of individual quanta in the system, even for the most optimal measurement settings. Fortunately, many phys-
ical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
In one dimension, such states are expected to be well approximated by matrix product operators (MPOs) with a finite
matrix/bond dimension independent of the number of qubits, therefore enabling efficient state representation. Never-
theless, it is still unclear whether efficient QST can be performed for these states in general. In other words, there exist
no rigorous bounds on the number of state copies required for reconstructing MPO states that scales polynomially
with the number of qubits.

In this paper, we attempt to bridge this gap and establish theoretical guarantees for the stable recovery of MPOs
using tools from compressive sensing and the theory of empirical processes. We begin by studying two types of
random measurement settings: Gaussian measurements and Haar random rank-one Positive Operator Valued Measures
(POVMs). We show that the information contained in an MPO with a finite bond dimension can be preserved using
a number of random measurements that depends only /inearly on the number of qubits, assuming no statistical error
of the measurements. We then study MPO-based QST with physical quantum measurements through Haar random
rank-one POVMs that can be implemented on quantum computers. We prove that only a polynomial number of state
copies in the number of qubits is required to guarantee bounded recovery error of an MPO state. Remarkably, such
recovery can be achieved by performing each random POVM only once, despite the large statistical error associated
with the outcome of each measurement. Our work may be generalized to accommodate random local or t-design
measurements that are more practical to implement on current quantum computers. It may also facilitate the discovery
of efficient QST methods for other structured quantum states.

1 Introduction

Driven by advances in hardware and experimental techniques, the size of quantum computers has rapidly increased
in recent years, with some of the most advanced processors having over 100 qubits [1-3]. As quantum computing
and quantum simulation continue to advance, fully characterizing the large quantum many-body states produced by
experimental quantum devices has become a significant challenge, as the number of parameters needed to characterize
these states scales exponentially in the number of qubits in general. Nevertheless, for verification and benchmarking
purposes, it is important to reconstruct such quantum states with an affordable amount of resources and with high
accuracy.

The reconstruction of quantum states is typically achieved by a technique known as quantum state tomography
(QST) [4]. A standard QST problem aims to find a density matrix that describes the quantum state under interest
with high accuracy.! In a quantum system consisting of n qudits (which are d-level quantum systems; qubits have
d = 2), the state can be expressed by a density matrix p of size d” x d”. To find p of an experimental quantum
state, in general we need to perform quantum measurements on many identical copies of the state. Any physical
measurement on a quantum system is described by a Positive Operator-Valued Measure (POVM), which is a collection
of positive semi-definite (PSD) matrices or operators { A1, ..., Ak} that sum to the identity operator. Each operator
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Ay (k =1,...,K) in the POVM corresponds to a possible measurement outcome, and the probability of obtaining
that outcome is given by py = trace(Ayp). Thus, this probabilistic nature of quantum measurements often requires
the state to be measured many (say M) times with the same POVM to obtain an approximately accurate statistical
estimate py, of each py. Without considering the statistical error, {py} can be viewed as K linear measurements of the
state p. Thus, adopting terminology from machine learning, we may refer to {ps} and their empirical estimates {py, }
as population and empirical measurements of the state, respectively. From this viewpoint, QST can be viewed as
a matrix sensing problem [5,6], but with a specific type of measurement operator, and with measurements that are
inherently probabilistic. Furthermore, according to quantum mechanics, when a projective measurement is performed
on a quantum state, the state collapses to one of the possible eigenstates of the measured observable, resulting in a
different state in general. Therefore, we need many identical copies of the state for performing many measurements.
Typically, an interesting quantum many-body state can be generated using a quantum computer or quantum simulator
in a time scale ranging from microseconds to milliseconds for common hardware platforms. If the number of state
copies required by QST scales exponentially in the number of qudits, then we cannot perform QST in practice for even
a few tens of qubits.

Many different methods have been proposed for QST, including maximum likelihood [7,8], Bayesian [9-11], region
[12,13], and least squares [14,15] estimators, and machine learning techniques [16—18]. For generic quantum states, the
number of state copies needed for QST always grows exponentially with the number of qudits. A significant amount
of work has been dedicated, however, to optimal QST methods for states represented by low-rank density matrices,
which are physically common [19-23]. Various measurement settings have been adopted in this context, including
4-design [19], Pauli [20,24], Clifford [21], Haar-distributed unitary [22], etc. It has been shown that as long as the
measurements are performed on one state at a time, a minimum number of total state copies proportional to d"r? /e?
is required to estimate a rank-r density matrix with accuracy given by e in the trace norm between the reconstructed
density matrix and the true density matrix [21,23]. This means that even for a rank-one density matrix (corresponding
to a pure quantum state that can only be created by a noiseless quantum device), the number of state copies required
for QST still scales as 2" for n qubits.

To achieve QST for current quantum computers at the scale of ~100 qubits, the number of required state copies
should scale only polynomially with the number of qubits n. This is possible only if the target state itself is structured
in a way such that it has a compact representation with poly(n) independent parameters. Fortunately, many physical
quantum states indeed have such structure. Examples include ground states of most quantum systems with short-range
interactions and states generated by such quantum systems in a finite amount of time [25]. These states usually do
not contain a large amount of quantum entanglement such that a compact representation via a matrix product state
(MPS) or tensor network is often possible [25]. A similar intuition applies to states generated by noisy quantum
computers, where the noise could also limit the amount of quantum entanglement and thus enable an efficient state
representation. In particular, it has been recently shown that states generated by a one-dimensional noisy quantum
computer are well approximated by matrix product operators (MPOs) with a finite matrix dimension [26]. Therefore,
it becomes practically important to find efficient QST methods for states with an efficient MPO representation.

An MPO consists of nd? matrices each with dimension at most 7 x 7. The matrix dimension 7 is more often called
the bond dimension, or the rank of the MPO (see Section 2.3 for the detailed description of MPO). The MPO is also
mathematically equivalent to the tensor train (TT) used for compact representation of large tensors [27]. Assuming
the bond dimension 7 is finite, the MPO contains a number of parameters that scales only linearly with the number
of qudits, and is thus a very efficient representation. Nevertheless, such an efficient representation does not guarantee
that the number of state copies required for QST is also small. In fact, for a general MPO state with bond dimension
7, there exists no known QST method that guarantees a required number of state copies that scales polynomially with
the number of qubits [28,29]. This is in contrast to an MPS state (a pure state with a compact representation using nd
matrices), where such a guarantee exists for almost all physical MPS states [30-36]. Therefore, we ask the following
main question:

Question: Given a structured n-qudit quantum state represented by a finite bond dimension MPO, is it possible to
reconstruct the state with guaranteed accuracy using only poly(n) state copies?




1.1 Main results

In this paper, we show that the answer to the above main question is yes, assuming that we can perform measurements
of the given quantum state in Haar random bases. We note that this affirmative answer does not imply efficient QST
for general MPO states since an exponentially large number (in n) of local quantum gates may be required to achieve
such Haar random basis measurements. Nevertheless, our results paves the way to fully efficient QST methods as one
may be able to reduce such number of required local quantum gates to polynomial in n via unitary t-designs [37].

Our particular focus on Haar random bases is motivated by the tremendous success of randomized measurements in
compressive sensing for signals exhibiting low-dimensional structure such as sparse, low rank, or manifold structure [5,
38-42]. The incorporation of randomness often enables nearly optimal upper bounds to be established for the sufficient
number of measurements to recover structured signals. Moreover, randomized measurements have been recognized
as a powerful tool that can efficiently transform quantum systems into classical representations, capturing numerous
features of the original quantum state [21,43,44]; see [45] for a review on this topic.

The first main contribution of this paper—presented in Section 3—is that we investigate the number of population
measurements (without statistical errors) to guarantee a stable embedding of MPOs. In particular, we first establish the
restricted isometry property (RIP, see Definition 2) for complex Gaussian measurements where each matrix element
of Ay, is an independent and identically distributed (i.i.d.) standard complex Gaussian random variable for all k£ =
1,..., K. Although these measurement operators are not PSD and may not be implementable in practical quantum
experiments, this analysis sheds light on the optimal number of population measurements to ensure unique recovery
of the MPO. We then study rank-one Gaussian measurement ensembles { Ay} taking the form A, = akakH where
ay, is randomly generated from a multivariate Gaussian distribution. As such rank-one measurements do not obey the
RIP condition [46], we instead establish a weaker version of an embedding guarantee. In order to do this, we use
Mendelson’s small ball method [42,47,48], which has previously been used to establish stable embeddings for low-
rank matrices under rank-one measurements [19]. For both generic Gaussian measurement ensembles and rank-one
Gaussian measurement ensembles, we show that (nd?72) total linear measurements? are sufficient to achieve stable
embeddings of MPOs with high probability. This result is nearly optimal as the MPO contains nd?7> independent

parameters.
We then extend the results to Haar random rank-one POVMs, where each POVM is a collection of PSD matrices
{d)kd)kH Lk =1,...,d" with ® = [¢1 e ¢dn] being a Haar-distributed random unitary matrix. As will be

formally illustrated in Section 2, such a measurement scheme is equivalent to first rotating the state with the unitary
matrix ® and then performing measurements in the standard computational basis, which can be implemented (albeit
not efficiently) on current quantum computers [21]. We establish similar stable embedding results for Q = Q(nd?7?)
such random rank-one POVMs, assuming zero statistical error.

Second, we study the recovery of an MPO from empirical quantum measurements (physical measurements con-
taining statistical errors) and establish recovery bounds with respect to the number of state copies, using the above-
mentioned Haar random measurement bases. The second main contribution of this paper—presented in Section 4—is
that we establish theoretical bounds on the accuracy of a particular estimator—the solution to a constrained least-
squares optimization problem—for recovering an MPO. We summarize the results informally as follows.

Theorem 1 (informal version of Theorem 5). Given an n-qudit MPO state with bond dimension 7, randomly generate
Q Haar random rank-one POVMs and perform measurements with each POVM M times. For any ¢ > 0, assume
Q = Q(nd*7?) and the number of total state copies QM = Q(n>d?72 /e%). Then, with high probability, a properly
constrained least-squares minimization with the empirical measurements stably recovers the ground-truth state with
e-closeness in the Frobenius norm.

Our result ensures a stable recovery of the ground-truth state with a total number of state copies QM growing only
polynomially in the number of qudits n. Compared to the requirement of Q(d") state copies for estimating a low-rank
state, utilizing the MPO structure can significantly reduce the number of state copies (from d” to n?). In addition,
there is no other requirement on the number of state copies M for each POVM. In other words, our result also provides
theoretical support for the practical use of single-shot measurements (setting M = 1, i.e., measuring each POVM only
once) that have been practically adopted in [32,43].

We note that obtaining the constrained least squares estimate requires solving a nonconvex problem. To tackle this
problem, we employ iterative hard thresholding (i.e., projected gradient descent) [49] and showcase its efficacy through

2The notation €2(-) is defined in Section 1.3.



numerical experiments. We do not provide a formal guarantee for the algorithm and leave its analysis for future work.

1.2 Related work involving tensor train decompositions

Having mentioned that the MPO model is equivalent to a tensor train (TT) decomposition, we discuss some related
work on sampling and recovery of tensors. The work [49] established the first RIP bound for structured tensors
(including the TT format) with real generic subgaussian measurements. Our proof of the RIP for complex Gaussian
measurements uses the same technique as [49]; see the discussion following Theorem 6 for more information. The
work [50] studied the tensor completion problem with random samples of a TT format tensor, but the result requires an
exponentially large number of samples. Another line of work [51-53] extended matrix cross approximation techniques
[54-56] for computing a TT format from selected subtensors. The work [57] has provided accuracy guarantees in terms
of the entire tensor for TT cross approximation, and the work [29] applied TT cross approximation for reconstructing
MPOs by only measuring local operators. Numerical simulation results demonstrate the effectiveness of this technique,
but no explicit theoretical bound on the number of state copies is provided [29]. While the algorithm is not the focus of
this work, we note that there are many proposed algorithms for estimating TT format tensors from linear measurements
[49,50,58-63]. These include algorithms based on convex relaxation [58,59], alternating minimization [60], projected
gradient descent (also known as iterative hard thresholding (IHT)) [49], and Riemannian methods [50,62,63].

1.3 Notation

We use calligraphic letters (e.g., X) to denote tensors, bold capital letters (e.g., X) to denote matrices, bold lowercase
letters (e.g., ) to denote vectors, and italic letters (e.g., ) to denote scalar quantities. Elements of matrices and tensors
are denoted in parentheses, as in Matlab notation. For example, X (i1, iz, i3) denotes the element in position (41, iz, i3)
of the order-3 tensor X. The calligraphic letter A is reserved for the linear measurement map. For a positive integer
K, [K] denotes the set {1,..., K}. The superscripts (-)7 and (-)¥ denote the transpose and Hermitian transpose
operators, respectively. For two matrices A, B of the same size, (A, B) = trace(A* B) denotes the inner product
between them. || A|| (or || Al|2—2) and || A || respectively represent the spectral norm and Frobenius norm of A. For a
vector a of size N x 1, its [,,-norm is defined as ||al|,, = (Zzzl |am|™) . For two positive quantities a, b € R, the
inequality b < a or b = O(a) means b < ca for some universal constant c; likewise, b 2 a or b = Q(a) represents
b > ca for some universal constant c. We define € as the function obtained by removing the logarithmic factors from 2.

2  Quantum Mechanics

Quantum mechanics is a mathematical framework for the development of quantum theories [64]. While this subject
may be unfamiliar to some researchers in information theory and signal processing, fortunately, most of its essential
concepts can be understood using basic concepts from linear algebra and probability. In this section, we review the
elements of quantum mechanics necessary for describing QST.

2.1 States and density operators

In quantum mechanics, the state of an isolated quantum system is fully described by a state vector |¢) (using the Dirac
notation), which represents a unit-length vector in a complex vector space known as the Hilbert space. For example,
the state of the simplest quantum system, known as a qubit, is represented by a vector in a two-dimensional Hilbert
space. One can choose two orthonormal basis vectors for this Hilbert space denoted by |0) and |1), which represent
two distinct physical states of a qubit (e.g., the lowest and second-lowest energy states of an atom). An arbitrary state
of the qubit can then be written as |¢)) = a|0) + b|1), where a and b are complex numbers satisfying |a|? + |b]? = 1,
which ensures that |) is unit length. The state vector |¢)) can thus be equivalently represented by a 2 x 1 vector
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A qudit is a generalization of the idea of a qubit to a d-level system or d-dimensional Hilbert space, where each
state vector can be equivalently represented by a unit-length vector in C?. While most quantum computers process



information using qubits just as most classical computers use bits, we use qudits in this paper for a more general
framework, as they are commonly used for quantum simulation and may be used for future quantum computers as
well.

A quantum system can consist of multiple qudits. For such many-body systems, which are the focus of this paper,
the full state space is the tensor product of the state spaces of each qudit. Specifically, for a composite system of n
qudits, each state vector 1) belongs to C?" and has unit length.

Until now we have considered quantum systems whose state can be fully described by a state vector @». Such a
quantum system is said to be in a pure state. More broadly, though, a quantum system can be in one of a number of
states 1; with respective probabilities «;. In this case, we say the quantum system is in a mixed state, which may be
described as {«;, 1p;} where 0 < «; < 1 are the probabilities with Zi a; = 1. A mixed state naturally arises due to
the interactions (which create quantum entanglement) between the quantum system and its environment, such that the
state of the system becomes indeterminate.

A quantum system in a mixed state is described by a density operator or density matrix.> The density operator of a
pure state 1 € C%" is given by

p= ,(p,‘pH c Cd“’xd".

For a mixed state, the density operator can be written as
p= Zaﬂﬁﬂ/fﬁ € CH x4,
i

Thus, a density operator with rank equal to one corresponds to a pure state; otherwise it corresponds to a mixed state.
In all cases, we have that (¢) the density operator p > 0 is a PSD matrix, and (1) trace(p) = 1.

2.2 POVM measurements

Quantum state tomography aims to construct or estimate the density operator p of a quantum system using measure-
ments on an ensemble of identical quantum states. Many copies of the quantum state are needed due to the probabilistic
nature of quantum measurements, which are described using Positive Operator Valued Measures (POVMs) [64].

Definition 1 (POVM and quantum measurements [64]). A Positive Operator Valued Measure (POVM) is a set of PSD
matrices { Ay, ..., A} such that

ZAk:I. )

Each POVM element Ay, is associated with a possible outcome of a quantum measurement, and the probability py, of
detecting the k-th outcome when measuring the density operator p is given by

where Zszl pr = 1 due to (1) and the fact that trace(p) = 1. We often repeat the measurement process M times and
take the average of the statistically independent outcomes to generate the empirical probabilities

ﬁk:%,kem = {1,...,K}, 3)

where fi, denotes the number of times the k-th outcome is observed in the M experiments. For convenience, we call
{pr} and {pi.} the population and empirical (linear) measurements, respectively.

Collectively, the random variables f1, . .., fx are characterized by the multinomial distribution Multinomial(M, p)
[65] with parameters M and p = [pl cee pK] T, where py, is defined in (2). It follows that the empirical probability
Dk in (3) is an unbiased estimator of the probability pi. One can bound the estimation error |py, — pi| by O(1/vV M)

3Formally speaking, a density matrix is a representation of a density operator in a given choice of basis in the underlying Hilbert space. In this
paper, we always choose the standard computational basis for the qudits denoted by {|0), 1), - - - , |d— 1) }. Therefore, we use the two terms density
matrix and density operator interchangeably.



with high probability via concentration inequalities. For example, the Dvoretzky-Kiefer-Wolfowith (DKW) theorem
[66,67] ensures that the empirical probability py is close to py, for all k& simultaneously when M is sufficiently large.
In particular, for any € > 0,

P <mkax Dk — Dk| > 6) < 2 zME “)

Rank-one POVMs A garticular type of POVM that is commonly used in practice is the rank-one POVM of the form
{Ay = ¢ropf?} with >°,_, ¢rd} = L In this case, the probability in (2) can be rewritten as

i = (Aw, p) = (¢di, p) = O pi.. ®)

When @ = [¢1 -+ k]| € C4"*K further forms an orthonormal basis, in which case K = d", we call
{prpT}E | a Haar random rank-one POVM. In this case, it is revealing to write

i = (dnd), p) = &) por = e (" p®) ey, (6)

where the last equation implies that the measurement is equivalent to first applying the unitary operator ® to the

unknown state p — ® p® and then performing measurements in the canonical basis e1, . .., e4». Both steps can be

implemented on a universal quantum computer in practice, though the number of single and two-qubit quantum gates
required of preparing the unitary matrix ® in general scale exponentially with the number of qubits [68]. Nevertheless,
the use of Haar random rank-one POVMs is common in QST as it often provides the minimal number of required state
copies [21].

Experimentally, QST always utilize the empirical probabilities {py } in order to recover or estimate the unknown
density operator p. Note that in general the outcomes from a single POVM are not sufficient to recover the underlying
density operator p since the number of measurements is much smaller than the size, d* x d", of p. For example, a
Haar random rank-one POVM only provides d™ linear measurements. Thus, a complete measurement scheme often
consists of measuring the state using more than one POVM to generate more measurements.

Ensembles of POVMs Suppose we have Q POVMs {A; 1,..., A; g} fori = 1,...,Q; for simplicity, we assume
that each POVM contains the same number of PSD matrices, although in general this may vary between POVMs. We
use each POVM to measure a state M times to obtain the empirical measurements as described in Definition 1.

The experimental costs of acquiring measurements with ensembles of POVMs, including the required number of
total state copies QM, remain prohibitively high for general states, making such measurements impractical for large
quantum systems. Fortunately, practical quantum states exhibit certain low-dimensional structure that can be exploited
for the inverse process. For example, the low-rank model has been widely used to reduce the number of measurements
in QST [20,21,23]. However, for a low-rank density operator with rank r, at least Q(d"rQ) state copies are needed
for stable recovery [21]. The required number of state copies grows exponentially with the number of qudits, making
the low-rank model inefficient for large quantum systems. However, another compact representation, called the matrix
product operator (MPO) [36], has emerged for approximating practical density matrices [26]. As formally described
in the next subsection, the MPO representation is remarkably scalable as its number of parameters only grows linearly
in terms of the number of qudits.

2.3 Matrix Product Operator (MPO)

For a density matrix p € C?"*?" corresponding to an n-qudit quantum system, we use a single multi-index 4, - - - i,
(correspondingly j; - - - j,) to specify the indices of rows (correspondingly columns), where iy, .. .,4, € [d].* Then
we say p is an MPO if we can express its (i1 - - - in, J1 - - - jn )-element as the following matrix product [35]

P(il N ]n) _ Xi‘h]dX;z,jz . X;:Lwnjn’ 7

where X?’” € Cre-1*"t with rg = r,, = 1. See Figure 1 for an illustration. The dimensions 7 = (ry,...,r,_1)
are often called the bond dimensions> of the MPO in quantum physics, though we may also call them the MPO ranks.

4Specifically, i1 - - - i, represents the (i1 + > j_o d*~1(ip — 1))-th row.
51t is also common to simply call 7 = max{ri,...,rn—1} the bond dimension.
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Figure 1: Tustration of the MPO in (7).

These dimensions can indeed be viewed as the ranks of certain matrices that are obtained by reshaping the density
matrix p in various ways. Rather than directly presenting the reshaped matrices, however, it is more enlightening to
first discuss the connection between MPO and an equivalent form for describing tensors, the so-called tensor train
format [27,69].

Connection to the tensor train (TT) format To illustrate the connection between the MPO and the tensor train (TT)
format [27], we first reshape p into an n-th order tensor X of size d? x d? x - - - x d* by mapping each pair (i, j,) into

a single index s; = i + d(js — 1), £ = 1,...,n such that the elements of .X' are given by

X(s1,---y80) = pli1- - in,J1° " Jn)- (8)
Note that A" is just a reshaping of p and that both objects contain exactly the same entries. Then, according to (7), the
(s1,...,8,)-th element of X can also be represented as a matrix product

X(s1,.o,80) = X" X532 - X3, (&)

where with abuse of notation we denote X;* = X :" J¢ The decomposition in (9) is known as the TT decomposition
and has been widely studied in the literature [27,69-73].

Canonical form When n = 2, the decomposition (9) is equivalent to the standard matrix factorization of the form
A = BC, where A € RT x4 B € RI*" € € R™*, the rows of B correspond to X:* and the columns of C
correspond to X357, There exist infinitely many possible choices of (B, C) such that BC' = A, but all of them require
r > rank({A). Among all these possible factorizations, if rank(B) = rank(C) = r, thenr = rank(BC) = rank(A),
implying that this is the minimal r allowed for the factorization A = BC. Moreover, one can always construct a
factorization (say by the singular value decomposition) such that B is orthogonal with B" B = I,., or C is orthogonal
with CC'T = I,.

Likewise, the decomposition of the tensor A" into the form of (9) is generally not unique: not only are the factors
{X,"”*} not unique, but also the dimensions of these factors can vary. To introduce the factorization with the smallest
possible dimensions » = (rq1,...,r,_1), for convenience, for each £, we put X; = {X:."‘j"}i,.je together into the
following two forms

X ;.1
LX) =| ¢ [ RO =[x X2,
Xzi.d



where L(X,) and R(X) are often called the left unfolding and right unfolding of X/, respectively, if we view X, as a
tensor. We say the decomposition (9) is minimal if the rank of the left unfolding matrix L(X/) is 7, and the rank of the
right unfolding matrix R(X) is 7¢—1. The dimensions » = (71, ...,7,_1) of such a minimal decomposition are called
the TT ranks of X. According to [70], there is exactly one set of ranks = that X admits a minimal TT decomposition.
Moreover, in this case, ¢ equals the rank of the ¢-th unfolding matrix X 9 € C%* %4 of the tensor X, where

the (s1--- 8¢, 5041 - - - 5n)-th element of X ¥ is given by X ¥ (s1--- s, 8041 - Sn) = X(s1,...,5,). This can also
serve as an alternative way to define the TT rank. As for the matrix case, for any MPO p of the form (7), there always
exists a factorization such that L(X) are unitary matrices forall = 1,...,n — 1; that is
CONH
LX) L(X0) =) (Xz“‘) X =1, 0=1,...,n—1, (10)
ie,Je

which is called the left-canonical form® [74]. According to [70, Theorem 1], such a canonical form is unique up to
the insertion of orthogonal matrices between the factors. Thus, we will denote by X7 the set of MPOs with maximum
MPO rank equal to 7:

X7 = {p S (Cand” P = pH’p(zl o 'inajl o ]n) = Xi17lj1X§27j2 o 'ij,n’jna Xzbjl € CW?IXTQ
ie,je H ie,je _ (1)
Z(Xe’ ) X,- :IW,EZ1,...,n—1,r0:rnzl,r:max{rg}}.

ig,Je

Note that the set (11) contains not only PSD matrices but also non-PSD matrices. Indeed, one may impose additional
structure, such as [33, eq. (3)], on the factors {X;""“} to ensure p is PSD. However, the condition in [33, eq. (3)] is
only sufficient rather than necessary for ensuring p is PSD. Moreover, adding the PSD constraint does not significantly
reduce the number of degrees of freedom of elements in the set X7. Therefore, in the following, we will simply focus
on the set of generic MPOs (11) without a PSD constraint.

Efficiency of MPO representation Due to the curse of dimensionality, the number of elements in the density matrix
p grows exponentially in the number of qudits n. In contrast, the MPO form (7) can represent p using only O(nd?72)
elements, where 7 = max{r1, ..., ,—_1}. This makes the MPO form remarkably effective in combatting the curse of
dimensionality as its number of parameters scales only linearly in terms of n. The concise representation provided by
MPO is remarkably useful in QST since it may allow us to reconstruct a quantum state with both experimental and
computational resources that are only polynomial rather than exponential in the number of qudits [75-78]. Beyond
applications in quantum information processing, the equivalent form of TT decomposition mentioned above has also
been widely used for image compression [58,79], analyzing theoretical properties of deep networks [80], network
compression (or tensor networks) [81-86], recommendation systems [87], probabilistic model estimation [88], and
learning of Hidden Markov Models [89] to mention a few usages.’

Linear combination of MPOs In linear algebra, the (matrix) rank of the sum of two matrices is less than or equal
to the sum of the (matrix) ranks of these matrices. This also holds for MPO ranks. In particular, for any two MPOs
p,p € Cx" of the form (7) with factors { X ¢3¢ € CTe-1%7¢} and { X -3¢ € CTe-1%7¢} respectively, the elements
of their summation p = p + p can be expressed by

) ) ) ) . . E;%]é 0 :fin_—lhjn—l 0 Ei'mjn
pliv--in,ju--jn) = | Xy Xihjl}[ 0o X "o X X\Zn,jn (12

implying that the MPO ranks ry of p satisfy ry <7y + 7y forall{ =1,...,n— L.

5The right-canonical form refers to the case where R(X ) are unitary matrices forall £ = 2,...,n.
7See [90] for a python library for TT decomposition.



3 Stable Embeddings of Matrix Product Operators
3.1 Background

Measurements must satisfy certain properties to enable recovery of quantum states. One desirable property known as
a stable embedding has been widely studied and popularized in the compressive sensing literature [5,38—41]. In this
section, we will study the embedding of MPOs from various measurement types including quantum measurements.
Towards that goal, we will first consider population measurements, and in the next section, we will study stable recovery
with empirical measurements.

As described in Section 2.2, the population measurements from one POVM are linear measurements that can be
described through a linear map A : C%"*¢" — RX of the form

(A1, p)
Ap)=| = |. (13)
<AKa p>

According to the discussion in Section 2.2, the choice of { A} can vary. Our goal is to study the properties of the
associated measurement operators.

Our study of stable embeddings of MPOs from population measurements concerns the quantity || A(p)||3. As
described in Section 3.2, a favorable situation is when A satisfies the restricted isometry property (RIP), where ||.A(p)||3
is guaranteed to be proportional to ||p||% for any MPO p. In some cases, only a lower bound on this proportionality
can be established. In particular, in Section 3.3, we establish a guarantee of the form

JA(P) |2 > Can.xllpll%, (14)

where Cy ,, i iS a positive constant depending on d, n, K, and the guarantee holds uniformly for all MPOs up to some
maximum rank. When this holds, then for any two MPOs p; and p2, noting that p; — ps is also an MPO according to
(12), we have

[A(p1) = A@2)l3 > Canic o1 = p2i
which ensures distinct measurements (i.e., A(p1) # A(p2)) as long as p; # po.

In compressive sensing of sparse signals and low-rank matrices [5,38—41], uniform stable embeddings of all pos-
sible signals of interest can often be achieved by choosing the measurement operators randomly from a certain dis-
tribution. Thus, random matrices and projections have played a central role in the analysis of the associated inverse
problems [42]. In this section, we will study the embeddings of MPOs from linear measurements where the mea-
surement matrices { A} are generated from certain random distributions. Specifically, we will first study perhaps the
most generic random distribution where all the elements of Ay are independently generated from a Gaussian distri-
bution. We will then study rank-one random POVM measurements of the form A, = ay a,f with each aj randomly
generated from a multivariate normal distribution. Finally, we will study the physically realizable (though inefficient)
measurements acquired using multiple Haar random rank-one POVMs.

Normalized set of MPOs Since .A(-) is a linear map, without loss of generality, we will focus on MPOs p € Xz
with unit Frobenius norm. By the left-canonical form in (10), we have

Ipll = Z Z (X;najn)H”. (Xilvjl) X It X

11,J1 in,Jn

Z Z (Xriln,jn)H,_, (X;z,jz)H Z (Xil,jl)HX?,jl X292 . X insin

12,72 insjn 41,71
I
_ in,Jn H 12,72 12,72 nsJn —
= X0 . ¢ X272 X =
i2,J2 insjn
_ 2 in,J in,J
— Xnn, n Xnn; n7
insJn



= i (Xom 73'")H Xmn = 1. Thus, the set of all the MPOs p € X5
with unit norm, denoted by X7, can also be expressed by

which together with ||p||% = 1 also leads to >

XF _ {p c (Cd"xd" Lp= PH,P(il TR Jn) _ Xil’le;Q’jz . -X:L”’j",Xé‘{’jl c ([‘:7“271><Te7
a o NH (15)
Z (X/’“) X,/ =1,0=1,...,nro=r, =17 = max{m}}.

ie,Je

3.2 Restricted isometry property with generic Gaussian measurements

To provide a baseline for the sample complexity of population measurements, we begin by studying perhaps the most
generic type of random measurements, where each entry of Ay is i.i.d. standard complex Gaussian random variable
X = Z(X) + i (X) with Z(X) and .# (X) being independent and following N(0, 1), the Gaussian distribution
with mean 0 and variance % Such measurements do not form a POVM and thus cannot be physically implemented in
quantum measurement systems. However, as Gaussian measurements provide the “gold standard” for random linear
measurement operators in many compressive sensing and low-rank matrix recovery problems, their sample complexity
for stable embeddings of MPOs provides useful insight.

Gaussian measurements can be shown to satisfy a strong type of stable embedding guarantee known as the restricted
isometry property (RIP).

Definition 2 (Restricted isometry property (RIP)). A linear operator A : C*"*%" — CK is said to satisfy the 6
restricted isometry property (0=-RIP) if

1
(1= m)lpllE < ZI1AWPIE < (1+ 67)llpl% (16)

holds for any density operator p € C*" " which has the MPO format with MPO ranks v = (r1,...,7p_1),7; <T.
The following result establishes the RIP for Gaussian measurements.

Theorem 2. Suppose that each entry of Ay, in the linear map A : C*"*4" — CK defined in (13) is an i.i.d. standard
complex Gaussian random variable. Then, with probability at least 1 — €, A satisfies the é=RIP as in (16) for MPOs

given that

K>C- é -max {nd’7* (log n7), log(1/€) } , an

where C' is a universal constant.

In Appendix A, we extended this result to generic subgaussian measurements. We note that a similar result for
TT-format tensors in the real domain was given in [71], and we share similar techniques for proving the RIP by using
tools involving the e-net and covering arguments [91,92] and deviation bounds for the supremum of a chaos process
[93,94]. While MPOs are equivalent in form to TT-format tensors as discussed in Section 2.3, we provide the proof
in Appendix A for the sake of completeness and because here we consider the complex domain. Also, the sampling
complexity in [71] is K 2 5% -max {((n — 1)7® + nd®7)(log n¥), log(1/€) }, which is slightly different from (17).
Considering a qubit system with d = 2, the main order n72 in (17) is slightly better than the order (n — 1)7 from [71]
when the bond dimension 7 is large.

Although the Gaussian measurements are not POVMs and cannot be directly used for quantum measurements, The-
orem 2 indicates that it is possible to estimate an MPO state with (nd?7?) linear measurements. In comparison, for a
state with low (matrix) rank structure, say rank r, ﬁ(d"r) measurements are needed even with Gaussian measurements

[6].

3.3 Stable embeddings with rank-one POVM measurements

We now study the population measurements arising from structured rank-one measurement ensembles with PSD ma-
trices A, = 1/11:1!’;? as introduced in Section 2.2. We first consider the case where we omit the constraint (1) that the
matrices Ay sum to the identity matrix. Rather, we simply generate the ¢, = a, independently and randomly from a
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certain distribution, specifically, ar ~ N(0, I;»). The independence among {ay } will simplify the analysis and help
derive a tight bound for stable embedding. We call such measurements rank-one independent POVM measurements.
We then consider the practical case (¥, = ¢;) where {¢y} are generated from a Haar-distributed random unitary
matrix, which results in Haar random rank-one POVM measurements.

Rank-one Gaussian measurements It is known that rank-one measurements do not obey the RIP condition for low-
rank matrices [19,46]. Since we expect this to also be true for MPOs, we instead aim to establish a lower bound on the
isometry of the form (14). Towards that goal, we will use Mendelson’s small ball method [42,47,48] for establishing a
lower bound on a nonnegative empirical process.

Lemma 1. ([42,47,48]) Fix a set E C CP. Let b be a random vector on CP and let by, ..., b be independent
copies of b. Introduce the marginal tail function

He(B;b) = inf B{|(b,u)| > &}, for& > 0. (18)
Letey, k= 1,..., K, be independent Rademacher random variables, independent from everything else. Define the
mean empirical width of the set E as
K
Wk (E;b) = E sup (h,u), where h = ! Z exbi (19)
K ) - 9 ) - T = .
uck vﬁ?k—l

Then, for any £ > 0 and t > 0, with probability at least 1 — e’é we have
L 3
inf <Z |(by, u>|2> > eVKHe(F;b) — 2W(E; b) — t€. (20)
uck ]

This result delivers an effective lower bound for a nonnegative empirical process defined in the left-hand side of
(20). This result is also utilized for studying stable embeddings for low-rank matrices [19,95]. Noting the similar
forms between (20) and (14), we apply Lemma 1 for our case where the set £/ becomes X and b becomes a random
measurement matrix of form A = aa with a ~ N(0, I;.). We then need to analyze the following marginal tail
function and mean empirical width

He(Xs; A) = inf P{(4,p)] 2 £},

K
1
—E sup <€kAk,p>
\/E pGX?;

As in [19,42], we can use the Payley-Zygmund inequality to obtain a lower bound for the marginal tail function
H¢ (X7 A). In terms of the mean empirical width Wi (X5; A), the work [19,42] uses an inequality that directly
upper bounds the supremum of (A, p) over rank-r matrices p by 21/7|| A||. Unfortunately, it is difficult to extend this
approach to our case. Instead, we use an e-netargument to provide a uniform upper bound for (A, p). With the detailed
analysis in Appendix B, we establish the following result.

VVK(X%LA)ii

Theorem 3. Let {ay,...,ax} be selected independently and randomly from the multivariate standard normal distri-
bution Izn. Given

K > nd*7logn, (21)
then the induced linear map A with measurement operators { Ay, = akaf } satisfies
IA(p) 2 2 VE, Vp € %r (22)
with probability at least 1 — e~ K where o is a positive constant.

Under the same setup, one requires K 2 d"r measurement operators for the induced linear map A to obey the
stable embedding property for rank-r matrices [19]. Fortunately, due to the extremely low-dimensional structure of the
MPO format, the number of measurement operators only needs to scale linearly in terms of the number of qudits n (if
we ignore the logarithmic term).
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Haar random rank-one POVM measurements We now study practical measurements consisting of an ensemble
of Haar random rank-one POVMs as described in Section 2.2. Let [¢i,1 e ¢i,dn] ,i=1,...,Q be @ randomly
generated Haar-distributed unitary matrices. According to Section 2.2, each unitary matrix induces a linear operator
A; 1 C4" 4" _ RE that generates population measurements for a quantum state p as

(Ai1,p) <¢i,1¢ﬁlv p)
Ai(p) = : = : ; (23)
(Aix,p) (bi.k Dk P)
where in practice we will use K = d", but for generality we can choose any K < d". We note that for each ¢, even
though [¢hi1 -+ ¢ian] is unitary and s ¢ird!, = L A; is not an identity mapping in C*" 4" even with
K = d"; this is because A; collects at most d’* measurements of an object p that contains d?™ entries. We now stack
all the population measurements together as

Ai(p)
A®(p) = : , (24)
Aq(p)
where A9 : C4"*4" — REQ denotes the linear operator corresponding to the Q POVMs.

For any i, since ¢; 1, and ¢; ;- may not be independent for any k& # k', we cannot directly apply Lemma 1 to study
stable embeddings via A®. To address this issue, we modify Mendelson’s small ball method as follows.

Lemma 2. Consider a fixed set E C CP. Let {by,..., by} represent a collection of random columns in CP,
which may not be mutually independent. Additionally, let {b;1,...,b; K}?:1 denote a set of independent copies
of {b1,...,bx}. Introduce the marginal tail function
K
H¢(E;b) = inf iZPﬂ(b w)| > ¢}, for&>0 (25)
5 ’ weE K — ks - bl .
Lete;,i = 1,...,Q be independent Rademacher random variables, independent from everything else, and define the

mean empirical width of the set:

Q K
1
Wok (E;b) =E sup(h,u), where h = — €b; k. (26)
ok (E;b) u€E< ) o 1:1; i
Then, forany € > 0andt >0
Q K 1
inf, (Z <bi,k,u>2> > £V QK He (B b) — 2Worc (B3 b) - t6VK, @7
u
i=1 k=1

with probability at least 1 — e™ 7.

The proof has been provided in Appendix C. Note that when K = 1, Lemma 2 reduces to Lemma 1 (by setting
@ = K in Lemma 2). In other words, ) plays the same role as K in Lemma 1. To effectively apply the modified
method, we need to generalize the linear map in (13). With Lemma 2, we now establish the stable embedding of (24)
in the following theorem.

Theorem 4 (Stable embedding of multiple Haar random rank-one POVMs). Let A9 : C4"*4" — REQ pe the linear
mapping defined in (24) that is induced by @) random unitary matrices. For any K > 1, assuming

Q > nd*7logn, 7= max 1y, (28)

1=1,..n—1
then with probability at least 1 — e~“2@ (where o is a positive constant.), A9 obeys

VQE

4ol 2 L2

(29)

for any p € Xz.
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The proof is given in Appendix D. First note that in Theorem 4, the requirement on () in (28) and the failure
probability e~*3% are similar to those in Theorem 3 on K. This is because, as we explained before, () in Lemma 2
plays the same role as K in Lemma 1, and likewise () in Theorem 4 is equivalent to /& in (21). Thus, Theorem 4
holds for any K > 1. On the other hand, without exploiting the randomness between different columns within a
random unitary matrix, the number of POVMs () is required to be relatively large as stated in (28). Considering
that the local correlations between the columns in the unitary matrix are very weak because the orthogonality is a
global property [96], we conjecture that the requirement on () can be significantly reduced, even to @@ = 1. Indeed,
according to [97, Theorem 3], when n — oo, in an “in probability” sense, all elements (scaled by \/CT”) of o(nldc: lg )
columns in a Haar-distributed random unitary matrix can be approximated by entries generated independently from a
standard normal distribution. As o(#;d) independent columns from a multivariate normal distribution are sufficient
for Theorem 3, this suggests that it is highly possible to ensure stable embedding (29) with a single POVM @ = 1.
While we leave a formal analysis as future work, we conduct a numerical experiment to support this conjecture. Set
d=2,Q=1,K=d"r = -+ =r,_1 = 2. Then for each n, we randomly generate a unitary matrix (i.e., Q = 1),
randomly sample many MPOs p with ||p||z = 1, and compute the minimum of ||.A%(p)||2 among all the generated

MPOs. In Fig. 2, we compare the minimum of || A9 (p)||2 (averaged over 50 Monte Carlo trails) with \/27. We observe

that ||.A%(p)||2 is of the same order as \/%. Furthermore, as the number of qudits increases, ||.A%(p)||> approaches
\/%. This is consistent with (29), where the right hand side becomes \/% when K =d",Q =1
0.2

~-min [[A%(p)[]
-.—\/7

0.15¢

0.1r

Magnitude

0.05¢

Figure 2: Numerical computation of min , % A9 (p) |2 with Q = 1 and K = d".

4 Stable recovery with empirical measurements

The results of Section 3.3 ensure a distinct set of population measurements A (p) for any ground-truth MPO p* under
multiple Haar random rank-one POVM measurements. Based on these results, in this section, we study the stable
recovery of p from empirical measurements obtained by multiple Haar random rank-one POVMs. With @) randomly
generated Haar-distributed unitary matrices [¢’i,1 d)i,dn] ;i = 1,...,Q), according to (24), we can generate
Qd" population measurements through the linear measurement operator A9 : C?"*4" — RQ" (set K = d"™ in (24))
as

D1 Ai(p*)
pU=A%p)= || =] | G0
PQ Aq(p”)

where A, is as defined in (23) with K = d" and with A, , = ¢i7k¢f,€. Denote by p; i the k-th element in p;.
For each POVM, suppose we repeat the measurement process M times and take the average of the outcomes to
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generate empirical probabilities

;Bi,k:ﬁ}[k,izl,...,Q,k:L...,d”, (31)

where f; ;. denotes the number of times the k-th output is observed when using the i-th POVM M times. Denote by

Di = [ﬁi,l e ﬁi,dn] T the empirical measurements obtained by the i-th POVM and stack all the total empirical

. T . . . .
measurements together as p@ = [plT XX pg] , which are unbiased estimators of the population measurements
p?. We denote by 7 the measurement error as

~Q

n=p 17, (32)

,pQ :f)Q *AQ(p*) _ [77?"' 77—,5
where 7; 1, is the k-th element in 771

With empirical measurements p<, for simplicity, we consider minimizing the following constrained least squares
objective:

p = arg min | A9(p) — I3, (33)
pEXF
where A® is the induced linear map as defined in (30). Supposing one can find a global solution of (33), our goal is
to study how the recovery error ||p — p*||r scales with the size of the MPO (particularly with respect to the number
of qudits n) and the total number of measurements QM. To enable a stable estimate of the state by measuring it
only a polynomial number of times in terms of n, we desire the recovery error to grow only polynomially rather than
exponentially in n.

4.1 Challenge: Abundant but extremely noisy measurements

Before presenting the main result, we first discuss the challenge and hope of obtaining a recovery error that only grows

polynomially in terms of the number of qudits. Recall that (f; 1,. .., fi ¢») in (31) follows a multinomial distribution

Multinomial(M, p;) with parameters M and p;. Thus, p; — p; has mean zero and covariance matrix X;, where ¥;
pii(1—pi1) —

has elements given by X[, j] = s %i 7 J With this observation, we have
e S Y
an an » p 0
E 2 _ E i, k i k < X 34
TP AR 9) L 3

Note that LA/?”“) could be as small as 0 which can be achieved, although rarely, when p; , € {0,1} (i.e., when
{pirx,k = 1,...,d"} has a spiky distribution). However, the above bound on the order of % is tight when the
distribution of {p; 1,k = 1,...,d"} is not spiky (e.g., when each pl % 1s on the order of dn) To see this, denote the
eigenvalue decomposition of p* as p* = ZZ L Aiuull) where ZZ 1 A+ = 1. Now for any ¢ and k, we can compute
E[p?,k] as

ar dn

> MM ElehuPlofu)

j=11=1

= D NN(E[ik[1] +ZAl [lpi.[1]]4]

I#j

AN A2
- L “Zm
dam dr )\/\l dn
1 dr —

= +m||ﬂ 1%,

El[(pix i p7)I’]

(35)
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where ¢; ;[1] is the first element of ¢; 1, the second line utilizes the rotation invariance of the unitary matrix in

Lemma &, and the third line uses Lemma 9.

Noting that [|p*||% < (32, \i)2 = 1, we further have

1 2 . mn
dﬁgE[pf)k}gdZ—n,VISZSQandVlgkgd‘. (36)
In other words, if [¢i,1 (z)i,dn:l is a randomly generated unitary matrix, then each p; ; has the same second
moment of order 1/d?". This suggests that the distribution of {p; x, k = 1,...,d"} is more uniform than spiky.

In addition, (36) also gives the energy of the clean measurements or population measurements as

Q L& 2 L& H *\ 2 QQ
RV HITIVAEE S @)
=1 k=1 i=1 k=1

To summarize, the above discussion gives the following comparison between the energy of the clean measurements
and the noise in the measurements:

Clean measurements: [E HpQH% =0 <§L> ;
Q

Statistical error: E||n||3 = O (M) )

which indicates that the statistical error or measurement noise is exponentially larger than the clean measurements.
This seems to suggest that M has to be on the order of d” to obtain measurements with suitable signal-to-noise ratio
for stable recovery.

Fortunately, though each measurement could be extremely noisy, we have an exponentially large number of such
measurements {p; 1, .. ., Di.a» }4, from Q POVMs. This setting is slightly different from some common inverse prob-
lems [42,98,99], where the number of measurements matches the number of degrees of freedom behind the underlying
signal but the measurements are not overwhelmed by noise. In addition, conditioned on the selected POVM, the mea-
surement noise 7 is random and behaves close to a multivariate Gaussian distribution [100-102]. By exploiting these
observations together with the stable embeddings established in the last section, we anticipate stable recovery even
when M is only polynomially large in n.

4.2 Stable recovery with empirical measurements

We now provide a formal analysis of the recovery error ||p — p*||F, where p is a global solution of (33). Using (33)
and the fact that p* € X, we have

0 < [A4%p") -3 — A% (p) — P°I3
= | A®(p*) — A®(p*) — m|3 — |IA®(p) — A°(p*) — mll3
= 2(A%p") +n, A% (P — p")) + A% (p")5 - 1A% (D)3
= 2(n,A%p—p") — 1A% (P — p")|3. (38)

which further implies that
1495 = p")II5 < 2(n, A%(p - p")). (39)

The left-hand side of the above equation can be further lower bounded by order of % lp — p*||% according to The-
orem 4. The challenging part is to deal with the right-hand side of (39). A simple Cauchy—Schwarz inequality
(n, A%(p—p*)) < |Inllz- A9 (p— p*)|2 is insufficient to provide a tight result since ||7||2 scales as ﬁ as discussed
after (34). Instead, we exploit the randomness of 77 and use the following concentration bound for multinomial random
variables, which is proved in Lemma 14 of Appendix F and is derived based on [103].
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Lemma 3. Suppose {(fik,-.., fix)}, i =1,...,Q are mutually independent and follow the multinomial distribution
Multinomial(M, p;) where Zle firx = M and p; = [pia, - ,pik) Letaia,...,a; i be fixed. Then, for any
t >0,

Q K Mt e {1 amaxt } M2
% Tomax SIS TSR TL T, s
P <Z Zai’k(]}f _pi,k) > t) <e 21 Xkm1 95 kPiLk te 8511 The1 97 pPisk ’ (40)
i=1 k=1

where Gmax = max; j |a; k|-

One may not be able to directly apply the above result for (n, A®(p — p*)) since p depends on 1. We address this
issue by using the covering argument to bound (n, A9 (p — p*)) for all possible p. We refer to Appendix E for the
detailed analysis. We now summarize the main result as follows.

Theorem 5. Given an MPO state p* € C% %" of the form (1) with MPO ranks r, independently generate Q
Haar-distributed random unitary matrices [‘ﬁi,l ¢i,d"] ,i = 1,...,Q. Use each induced rank-one POVM
{¢i,k¢gk}zl1 to measure the state M times and get the empirical measurements p;. For any ¢ > 0, suppose
Q 2 nd*7?(logn) and

QM z

d2721 1 logd 2
nd’r ogn(oegQQ—i-n og d) . T= _max 7. 41)

Then any global solution p of (33) satisfies
lp—p"llF<e (42)

. . . _ _ _ 252 .
with probability at least min{1 — e~ 2@ 1 — ¢ as(logQtnlogd) _ o—asnd’r loenY where a3 and oy are positive
constants, aiy corresponds to constants of the probability in Theorem 4.

Theorem 5 ensures a stable recovery of the ground-truth state when the total number of state copies QM only
grows polynomially (n?) in terms of the number of qudits n, as the order specified in (41). If we ignore the log @
term, which exists due a to proof artifact and which we conjecture can be removed, then (41) only requires QM to
be sufficiently large, without any requirement on the number of measuring times M for each POVM. In other words,
Theorem 5 provides theoretical support for the practical use of single-shot measurements (i.e., M = 1 where each
POVM is measured only once) that are used in [32,43]. Note that the orders of the polynomial in (41), particularly
in terms of n, are fairly large compared to the number O (nd?7?) of degrees of freedom of the MPO and may not be
optimal. For this reason, we conjecture that the bound in (41) could be further improved, such as by removing the term
(log @ + nlog d)? that extends the bound beyond the number O (nd>?72) of degrees of freedom of the MPO. We refer
to Section 6 for additional detailed discussion.

The requirement Q > nd?7% logn and failure probability e~*>? are inherited from Theorem 4 for a stable em-
bedding via the Q POVMs {¢i7k¢fk}' As discussed right after Theorem 4, we conjecture that Theorem 4 holds with
Q = 1 by setting K = d". If this is the case, then the requirement () > nd>72 log n can also be dropped, and Theo-
rem 5 would also hold for Q = 1. In the next section, we will use experiments to demonstrate that a single POVM is
sufficient to stably recover p*.

5 Numerical Experiments

In this section, we perform numerical experiments on quantum state tomography for MPOs to illustrate our theoretical
results. Due to computational constraints, we conduct experiments on real matrix product states (MPSs, which are pure
states) of the form p* = u*u*’, where u* € R?"*! satisfies |[u* ||y = 1 and its (i; - - - i,, )-element can be represented
in a matrix product form similar to the MPO form in (7):

ut(iy - in) = U™ - U™
Here, each matrix U, [” has size r x r, except for Ufil and U;i” that have dimension of 1 x r and r x 1, respec-
tively. We generate each MPS u* by first generating a random Gaussian vector of length d™ and then applying the
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sequential SVD [27] to truncate it to an MPS, which we finally normalize to have unit length. As a consequence, entry
p*(i1 -+ in,j1 - jn) can be expressed as

P (v i, i gn) = U™ UUM - UM
U Uy @ U Up
= (UM eU) - (U UM,

X it Xinoin

where ® denotes the Kronecker product. Thus, p* = w*u*T is also an MPO with MPO ranks L= =rp_1 =12

To illustrate that Theorem 5 might hold even with () = 1, we only use a single Haar random rank-one POVM in the
experiments. We generate a real Haar-distributed random unitary matrix [Qﬁl e d)dn} € R¥"*4" Each population
measurement (2) can then be rewritten as

2
pr = trace(¢roy p*) = |dfu’| "

This is our reason for considering a pure state p* as it reduces the complexity for computing trace(q&kq&gp*) from
O(d*) to O(d™).

We use the induced POVM to measure the state p* M times to get the empirical measurements p. With the obtained
measurements, as in (33), we attempt to recover the MPS u* (and hence p*) by minimizing the following constrained
mean squared error loss

g
~ 1 _
u=argmin - > (ol ul? —p;)?,

uel, 2 ; (43)

U, = {u eRY tu(iy i) = U - U, UM e R U e RV UM e R < < n}

which has the same form as (33).
As in [49], we solve (43) by the following iterative hard thresholding (IHT, i.e., projected gradient descent):

o
uty1 = Pu, (Ut — Y (1] wi* - @-)cbicbfut) ; (44)
i—1

where 1 is the step size and Py, denotes the projection onto the MPS set U,., which can be approximately computed
via a sequential SVD algorithm [27]. We adopt this approach for computing an approximate projection in the following
experiments.

Since our goal is to verify how the global solution & behaves, to ensure the convergence to a global solution, we
use a good initialization uy = H;ﬂ;% where v is randomly generated from the unit sphere of R%". In all the
experiments, we set A = (.7 so that the initialization uy is still not very close to the ground truth w*. Since the gradient
becomes exponentially small in n, which can be observed by using the same argument in (37) for ¢7 u,, we set the
step size 4 = 0.01 x d™. The solution @ is obtained by running the IHT algorithm (44) until convergence. Since the
factorization p* = w*u*” is not unique as p* = (—u*)(—u*)7 also holds, we measure the quality of the recovered
u by the following distance

dist (@, u*) = min {||@ — u*|3, 1@ + w*||3} . (45)

For each experiment, we conduct 10 Monte Carlo trials and take the average recovery distance over the 10 trials.

Experimental results We first set M = 1000, r = 2, and d = 2 and examine the convergence of the IHT algorithm
defined in (44). Figure 3(a) shows the convergence of the algorithm in minimizing the loss function defined in (43);
it can be observed that the IHT algorithm converges relatively fast. Figure 3(b) plots the learning curves in terms
of the recovery error for the ground-truth u* as defined in (45). We first note that the initialization uq is not close
to the ground truth w*, which is consistent with our choice of initialization described above. After convergence, the
algorithm produces a much better recovery of u* and the recovery error increases steadily as n increases. It is also of

17



102 : ‘ : ‘ 0.5 ‘
—n==6 —n =06

—_n=7 —n="T7
—n=23 —n =238
g —_—n=09 —n=29
B n=10 n=101
c
-] 3 —n = 11| | —n =11
"'(;)10 —n=12 —n=12]]
[%2]
t E
104 : : : : : : : :
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of Iterations Number of Iterations

(a) (b)

Figure 3: Illustration of convergence of IHT in (44) in terms of (a) loss function defined in (43), and (b) recovery error
defined in (45) for different n with M = 1000, » = 2, and d = 2.

interest to note that when n increases while M remains the same, the recovery error curve exhibits a “U-shape” that
first decreases, followed by an increasing trend. In other words, if the algorithm stops appropriately at the initial phase,
it produces an iterate much closer to the ground truth than the final one. This is sometimes called algorithmic bias
and can be exploited to produce a better solution [104-106]. But we highlight that we do not use this early-stopping
approach here, and instead run the algorithm until convergence and use the final iterate since our goal is to verify the
properties of the global minimizer.

Next, in Figure 4, we plot the recovery error as a function of n for various values of M and r. As expected, the
recovery error increases when M decreases or r increases, but the IHT algorithm produces stable performance in all
cases. We also observe that the recovery error increases only polynomially rather than exponentially with n, which is
consistent with Theorem 5.

=M = 1000, = 1
0.03 H-e M = 1000, 7 = 2
- M = 2000,r = 1
0.025 [|..@- M = 2000,7 = 2
=M = 3000,7 = 1
0.02 | .. M = 3000, 7 = 2|

Figure 4: THT recovery error as the number of qudits n increases with several choices of M and r.

6 Discussion and Conclusion
In this paper, we have studied sampling bounds for recovering structured quantum states that can be represented as

matrix product operators (MPOs). We first established a non-asymptotic lower bound on the number of requisite mea-
surements to ensure a stable embedding of MPOs under several choices of random measurement ensembles, including
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generic subgaussian measurements, rank-one Gaussian measurement ensembles, and Haar random rank-one POVMs.
We then established theoretical bounds on the accuracy of a constrained least-squares estimator for recovering an MPO
by using its empirical measurements obtained from multiple Haar random rank-one POVMs. Our research shows that
a stable recovery guarantee requires only polynomial growth in the total number of state copies relative to the number
of qudits. Thus, these results support the growing evidence for using MPOs for quantum state tomography and may
have implications for the advancement of more efficient quantum state tomography methods in the future. Our findings
suggest interesting directions for enhancing the current results or expanding our research to a more practical context.
We elaborate on these possibilities below.

Stable embedding for MPOs with a single Haar random rank-one POVM As discussed right after Theorem 4,
we conjecture that a single Haar random rank-one POVM is sufficient to establish stable embeddings for MPOs. This
is supported by our numerical experiments with measurements from a single POVM to recover the MPO state. One
possible approach is to exploit the fact that the local correlations between the columns in the unitary matrix are very
weak because orthogonality is a global property [96]. Incorporating this property into Mendelson’s small ball method
presents a challenge, however. Another approach is to exploit the connection between the unitary matrix and the
Gaussian distribution, as used in [95] for studying rank-one tight frame measurements.

Improving sampling complexity for the number of state copies In Theorem 5, we established a recovery guarantee
for MPOs from Haar random rank-one POVM measurements. The result requires a total number of state copies
QM = Q ("Sfﬁ) This sampling complexity is probably not optimal; one may compare it to O(nd?7?), the number
of degrees of freedom in the MPOs. Below we consider rank-one Gaussian measurements and use an alternative
approach to establish a recovery guarantee.

Consider the rank-one Gaussian measurement ensembles {akakH }le. The Chernoff bound [107] implies that
for sufficiently large K, &+ S, agafl ~ I;n. Hence, we may view { +aiaf’ } | as being similar to a POVM,
though the rank-one measurement matrices do not exactly sum to the identity. Then, we may define the population
measurements as py = (%akakH ,Pp*),k = 1,..., K, and denote by A the associated linear measurement operator
such that A(p*) = {pi}. Also, the empirical measurements obtained by measuring the states M times are denoted
by pr = fx/M, where f1,..., fi follow the multinomial distribution Multinomial(M, p) with parameters M and

T . . ~
p=[p1 -+ pk| .Denote by n the measurement errors with entries n, = p, — pr, k= 1,..., K.

Suppose we solve the same problem (33) (with A% replaced by .A) and denote its global solution as p. It follows
that

IA(p) = A(p") = mll2 < [ A(p") — A(p") — nll2 = IInll2-
On the other hand, || A(p) — A(p*) —nll2 > [ A(p) — A(p*)|l2 — ||n]|2, which together with the above equation gives

IA(p) — A(p")l2 < 2[|nll2- (46)

According to Theorem 3, the left-hand side can be further lower bounded by || A(p) — A(p*)|l2 = |p—p*||r/VK.
Note that the scaling is different from (22), which is due to the scaling difference between the measurement operator
A and the one defined in Theorem 3. On the other hand, since En = 0 and E 013 = 1 S p, Mpr(1 —pi) < 27,
we can use a concentration inequality such as Chebyshev’s inequality to obtain |||z < ﬁ with high probability.
Plugging these equations into (46) gives

K

15— pllr /57 @)

The above derivation is commonly used in studying recovery accuracy for inverse problems. On one hand, since
Theorem 3 only requires K = Q(nd?7?), by taking K = Q(nd*7? logn) in (47), we observe that M = Q(nd*7?/e?)
is sufficient to ensure ||p — p*||r < €. As demonstrated in this context, this approach often leads to an optimal, or
nearly optimal, recovery bound when using a minimal yet sufficient number of measurements. As another example,
the work [23] employs this approach to establish a recovery bound for low-rank states. But on the other hand, recall
that the above derivation is based on the assumption that % Zszl arall ~ I, which holds only when K > d". If
we plug this into (47), then M > d™/e? is required to ensure e-accuracy. This also illustrates the challenge described
in Section 4.1. Nevertheless, the discussion above suggests that it may still be possible to improve upon our current
bound for the total number of state copies.
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Convergence of IHT and other efficient optimization algorithms The algorithmic aspect is not the focus of this
work. In our experiments, we employ an IHT algorithm, but we do not provide a formal guarantee for that algorithm. It
will be of interest to develop a convergence guarantee for this algorithm. As discussed in [49], one potential challenge
is to find a good initialization that allows IHT to converge quickly to the target solution. On the other hand, the
IHT algorithm requires performing a sequential SVD algorithm in each iteration, which could be computationally
expensive, especially for large quantum systems. Consequently, exploring alternative optimization algorithms that
offer computational efficiency without the need for a projection step and can effectively handle an increasing number
of qudits has become an area of great interest.

Extension to local measurements In this paper, we primarily focus on rank-one POVMs with Haar-distributed uni-
tary matrices. Such measurements are known as global measurements since the unitary matrix will rotate the entire
system of qudits simultaneously. This poses challenges in performing these measurements with practical quantum
circuits. Therefore, an important future direction we will pursue is to study other measurement settings, such as the
unitary t-design [37,108] or even local measurements [15,109] that can be conducted efficiently on current quantum
computers. Such measurement settings may also reduce the cost for computing the gradient of the least squares loss
(33). It is also interesting to design measurement operators that can improve efficiency in both performing experi-
mental measurements and post-processing for estimating the state, which is often achieved by using certain iterative
algorithms.
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Appendices

To simplify the notations, universal constants in each proof may share the same symbols (e.g., cp), but they could
represent different values.

A Proof of Theorem 2

A.1 Generic subgaussian measurements

We first extend the statement of Theorem 2 to generic subgaussian measurements and then prove this more general
result.

Definition 3 (Subgaussian measurement ensembles [110]). A complex random variable X is called L-subgaussian if
there exists a constant L > 0 such that E eZ(tX) < ¢L*[t/2 holds for all t € C. We say that A : C¢"*4" — CK
is an L-subgaussian measurement ensemble if all the elements of A,k = 1,..., K are independent L-subgaussian
random variables with mean zero and variance one.

Note that a complex-valued random variable X is subgaussian if and only if its both real part (X ) and imaginary
part .# (X)) are real subgaussian random variables. We define the subgaussian norm of X as

| 2
1X g = inf{t >0,Ee < 2} . (48)

Here are some classical examples of subgaussian distributions.
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* (Gaussian) A standard complex Gaussian random variable X = #(X) 4 i.#(X) with Z(X) and .# (X) being
independent and following A/(0, 1), is a subgaussian random variable with || X ||, < C, where C'is an absolute
constant.

* (Bernoulli) A Bernoulli random variable X that takes values —1 and 1 with equal probability is a subgaussian

random variable with || X ||, = \/ﬁ

The following result establishes the RIP for an L-subgaussian measurement ensemble.

Theorem 6. Suppose the linear map A : C*" *4" — CK is an L-subgaussian measurement ensemble defined in
Definition 3. Then, with probability at least 1 — €, A satisfies the 6=RIP as in (16) for MPOs given that

K>C- 6% - max {ndQFQ(log nF),log(1/€)} , (49)

where C'is a universal constant depending only on L.

A.2 Covering number for MPOs

To study the RIP or similar properties for MPOs, we need to first compute the covering number for the set of unit-
norm MPOs. Since a unit-norm MPO can always be written in the canonical form, we consider the set X+ de-
fined in (15). Note that the definition of (15) is different from (11) since in (15), we assume ||p||r = 1 such that
D in i Xvi{“j"HXfL"’j" =L

We say X is an e-net of Xr if for any p € Xr, there exists p € Xy such that llp — Pl < e. Here we use the
Frobenius norm to quantify the distance, but one may use other metrics depending on the application. We now provide
the covering number of Xz.

Lemma 4. There exists an e-net XF for X in (11) under the Frobenius norm obeying

~ 3Inr nd’7?
\XF < () , (50)

€

where |X5| denotes the number of elements in the set Xz.

Proof. Denote by
X,
L(Xe) = | : | €C¥ e whichsatisfies L(X0) " L(X,) = 3 X" X0 = 1,,. (51)
X?d ie,je

For covering OQg2,, , 1,

- {L(Xg) € CPreixre [(X,)HL(X,) = Iw}, which contains matrices with unit-
norm and orthogonal column vectors, it is beneficial to use the [|-||; , norm which counts the largest energy of each

column, ie., [|All, , = max; [|A(:,i)[|,. By relaxing Ogz,,_, ,, to the set of matrices with unit-norm vectors, the

standard result on the covering number of unit ball implies that there exists an e;-net O 2. o 1.rp T0r Qg2,, | ., Obeying
. dz’rz,l’r'g 4?72
Q21| < (i) < (i) . Then we define the set
X,
Xri={p:plir-in i jn) =L X" LX) = | 1 | €0y, Y0 E ]}, (52)
X"

which obeys

%

3 d2F2
<]I (q) - (53)
£
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We now verify that X is an e-net for Xz by appropriately selecting €,. Forany p € X5 with p(iy . ..

va]l]n) =

0. ey —y- .. . ~Ftesde
I}, X, we construct p with p(iy . . .in, j1...jn) = II}_; X, where || L(X,) — Xg)HL2 < €. Then we
have
12
r — Hp_ﬁ‘li“ _ Z Xithé’z,h e X odn )(211”1)(12 2 X
n n
i17"-ainaj17'“7jn
n o 2
11,31 72571"7271 i0,] iq ~~t1,J1 ~-teJe G041,J04+1 G q
= X Xwde . X ndn X XX ,_,ijn)
l— 4 n 1 +1 n
ilwn;in;jlvu':jn 1
n o 2
~1,J1 ~le—1,Je—1 ig,j0 in,g ~~t1,J1 ~-tesJe G041,J04+1 in,J
< nE § XX X0t X XX X cee X
£=1 11,000,015 500
ry
n
< n E 7“@6%, (54)
/=1
where the last line uses the inequalities I',, < €2 and I'y < r¢eZ,¢ = 1,...,n — 1 which can be proved by
2
~<i1,01 ~in—1:Jdn-1 xri, . j ~i1.d1 ~Fin—1:Jn—1=tn.Jn
Fn = E Xl "'anl Xn"/]"_Xl "'anl Xn
U150 in,J150 000
o ~t1.J1 ~in—1:Jn—1 iy dn ~inodn
- E ’Xl 'anl (XnL L_Xn )
T15ein,J15e 00
o Xinsin lejn HXlnflvjn 1H Xll ]1Hyi1,j1 Yinflvjnfl Xinidn Yinvjn
- E : ( n - n ) E ( 1 ) n—1 ( n - n )
12, 0n,02,- 500 11,71
=I,,
o Xingjn Yln]n Hfinflvjn—lH XiQ,jQHXiQ,jQ inflvjn—l Xln,.]n Ylnm]n
- ( - n ) n—1 ) 2 T An—1 ( - n )
125000580 ,J2 0
= = (X S X E (X X = || LX) — LX) < & (55)
- n n - n n/llg = *no
inyJn
and similarly
2
~~i1.J1 ~Fte— 1 Je—1 xrig,g i 71’1;‘71 ~Fle—1,de—1Fte, 00 i ]
r, = > ’Xl X X X WK R X
i1seein,J1sedn
2
~~i1.J1 ~Fte—1,J0-1 i0,j ~FtesJe i
= E ’Xl X (X7 = X,) - Xgmdn
i15eein,J15e0n
i ~7tede 1,01 T =151 0] ~Ftesde i s
=Y xR R (=X X
Ulseesln,J1s50n 11,J1
:11,1
§ : i g H ie,j Ze Je ie.] 0:J¢ -
_ _ insn . te,je ) te,Je Iy  xrindn
10y ins gy dn
~ (|2 inin iz+1,je+1H To41,Je+1 insin 2
< L(Xg) —L(Xg) s X, -)(eJrl )(ZJrl e X < re€g
L 1seestnsJog1s--5dn
=1

€

for all /£ < n — 1. Therefore, we can choose ¢, =

in (53) to ensure Xy as an e-net for X (as ||p — p|%
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n "), ree? < €%) and such X obeys

22

—_\ nd°T
< (?)ma> . (56)

2
€

This completes the proof of Lemma 4. 0

A.3 Proof of Theorem 6

Using the covering number established in Lemma 4, we can now follow the arguments in [71] to establish the RIP for
MPOs p under subgaussian measurements. Because of the linearity of the measurement operator A, we note that there
exists a complex-valued matrix A of size K x d*" such that

A(p) = Avec(p), (57)

where vec(p) € C%" denotes the vectorization (in any predetermined order) of the MPO format p. Note that our goal
is to study the quantity [|.A(p)||3 = H\/%A(p)ﬂg Equivalently, there exists a vector £ € CK@™"
row-wise vectorization of A) such that

(containing the

= Alp) = Vi (58)
where V,, is an K x Kd*" matrix given by
vee(p)" i
v, \/% vec(p) (59)
vee(p)"!

Now we begin to prove Theorem 6.

Proof. For any p € Xrin (11), we recall (16). Because £ is a random vector, V,€ is also a random vector. We can
compute the expectation of the energy of this random vector:
E|[Vo£ll3 = E(€"V,'V,8) = Etrace(€"V,TV,€) = Etrace(V, V,£¢")
= trace(V,'V, E(¢££")) = trace(V'V,I) = ||p|%. (60)
Here we used the fact that Ef{H = I since, by assumption, all elements of £ are independent mean-zero, variance
one, L-subgaussian variables. Using (58), and (60), we note that proving that A satisfies the d7-RIP is equivalent to
proving

sup || V,€lI3 — E | V,€]I3] < - o
pEXF

We can view |[|V,£||3 — E||V,£||3| as a random process indexed by the variable p, and our goal is to bound the
supremum of this random process over the set Xz [71, Theorem 3] gives a mechanism to bound this supremum.
Specifically, let B := {V,, : p € X7} and note that

sup [[|BE[3 — E || BE|3| = sup [|[V,£]3 — E[V,£3] (62)
BeB pPEXF

[71, Theorem 3] states that there exist constants c1, co (depending on L) such that for ¢ > 0,

. ¢2 ¢
P (sup 1€ - BIBEE| > o +1) < 27> {F 0 (©3)
BeB
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where E, U, and V' are quantities defined as
E =B, ll2-2) (2(B,] - [l252) + dr(B)) + drp(B)d2—2(B),
V = d3(B), (64)
U :=d5 5(B),

and dr(B), da—2(B), d3(B), and v2(B, || - ||2—2) are quantities that we define and bound in the next paragraph.

In this paragraph, we bound the quantities F, U, and V appearing in (63). To do this, we define and bound dr(B),
do_.2(B), d3(B), and 72(B, || - ||2—.2) which appear in the definitions of F, U, and V in (64). First,

dp(B) := sup IB||% = sup [lpll7 =1, (65)
pEX

since every MPO format p € X+ has unit norm. Second,

1 1
d B) := sup ||B = su 2 = =, 66
2—>2( ) Be p H ||2—>2 pe£7 \/I?”p”F \/E (66)
due to the block diagonal structure of V,, (see (59)) and the normalization of all p € X Third,
d4(B) := sup (trace(BHB)2)1/4 = K~V (67)
BeB
see [71, Eqn. (65) ] for an analogous derivation. Fourth,
dQAZ(B)
B Jan) <€ [ Vg N o) du
0
1
hvod
= C’/ VIeg N (B, | - [la2, u) du, (68)
0
where the covering number N'(B, || - ||2—2,u) denotes the minimum cardinality of a u-net for B with respect to the
norm || - ||2—2. As suggested by (66), the || - ||2—2 distance on B is equivalent to \/—% times the squared Frobenius
distance on X5. Therefore,
1 _
N(B, || - ) =N, ——=1 - 1%, u) = NXe, || - |7, KY4V0). 69
(B, ]| - [l2—2,u) = N( \/fll 7> w) = N(Xw || - [l 7 Vu) (69)

Changing variables by letting e = K'/4,/u, (68) becomes

1 ! —
72(57||~||2ﬁ2)é20\/7/0 6\/10gN(XF,H-IIF, de<C—/ \/log/\f (Xe || - 17 €) de, (70)

where the factor of 2 has been absorbed into the universal constant C'. Now, by directly applying Lemma 4, we have

that
= 3n7\"
N o) < (2F)

4?72
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Therefore,

I -
2B lam2) < O [ log N e |- 1.0 de

1 ! 37\ "

< (C—— 1 — d

= \/?/ o ( ¢ ) ‘
1/t T

< C’\/—E/O \/nd21"2 log (37;“0> de
[nd27? 1 3nr

<C / 1 — | d

o K Jo o8 < € ) ‘

d272 1 T
<y %, 1)
where the last line follows from the fact that

1 _
/ \/log <3nr> de < C + +/log(3nT) < C+/log nF,
0 €

and each appearance of C' denotes an unspecified universal constant that may change from instance to instance. Putting
together the above quantities, we have the following three numbers which appear in (63):

E:=5(B,[ - [l2s2) (2B, || - [l2-2) + dr(B)) + dr(B)da—2(B)

1
=B, |- l2m2) +72(B, || - l22) + Wira
1
V:=d*B) = —, 72
1
U:= d%%Q(B) = K

Plugging (62) and (72) into (63), we have

1 —c2 min 2
P <sup [IVo€1l2 —EVR€ll3| > ci (B (B, [ - l252) +72(B, || - l252) + —=) +t> < gecamin{KEL KL} (73
pEXF K

Our goal is to find a value of K such that (61) holds with probability at least 1 — €.
Let t = §/2 and recall that 6 < 1, so min {Kt* Kt} = K§%/4. If we choose K > C§~?log(1/€) for an

appropriately chosen constant C, we have 2¢™ min{Kt* Kt} < & Next, using the bound on 73 (B, || - ||2—2) from (71),
we see that by choosing

d*7?(log n7
K>C. % (74)
for an appropriately chosen constant C, then we guarantee that
10381 as2) + 228 o) + =) < 3 as)
1725, 2—2) T 72(0, 22 JE =2

Putting all of the pieces together, we conclude that when (17) is satisfied, we have

P (sup [IVoEl3 — El[VRéll3| = 5) <e (76)
pEXs

We have thus proved that (61) holds with probability at least 1 — €. This completes the proof of Theorem 6. O
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B Proof of Theorem 3

Proof. In this section, we will apply Mendelson’s small ball method to derive Theorem 3. According to Lemma 1, and
supposing that {a,...,ax} are selected independently from the standard normal distribution @ ~ AN(0, I ), we
need to bound

He(X7) = inf P{|(aa, p)| > ¢} (77)
pPEXF
and
1 K
W(Xs) =E sup ——= axayl, p), (78)
R

where {¢; } is a Rademacher sequence independent from everything else.

* Lower bound of H¢(X7): To bound H¢ (Xr), we use the Paley-Zygmund inequality (Lemma 5). Specifically, we
can get

He(%r) = inf P((aa |>o
= fP 2
pléle (| § )

Y

inf P (|(a >1meﬂmm)
pEX 2

. (E[[{aa™, p)|’])? 1
= plé%l: AE[[(aa®, p)|1]’ V€ < /5 Ell{aa’, p)I?], (79)

where the first inequality follows because P (|{(aa’?, p)|> > £€2) is a decreasing function with respect to &, and
the second inequality uses Lemma 5.

N Ell(aa” p))? oy ) - .
ext we start to analyze TE[[{aa p)i] By the fact that (aa™, p) is a second-order polynomial in the entries
of Gaussian random vector a, we can obtain |[(aa”, p)||,, < c||a||i2 llpllr < O(1) [111] for some constant
c; thus, <aaH , p) is a subexponential random variable. Hence, there exists « such that E el(aa™.p)| s finite. It
follows from Lemma 6 that there exists a constant Cy such that

E|(aa”, p)[*] < Co (E[|(aa®, p)[?))”. (80)

We need obtain ¢ to finish the analysis. To that end, we bound the expectation E[|(aa’l, p)|%]. Since p is

Hermitian, it has the eigenvalue decomposition p = ZZ 1w H Using the same argument as in [19], we can
obtain that

E[|(aa’, p)|*] > 1. (81)

Thus, we can set £ = % There exists a universal constant ¢y such that

1 - —
P (|<aaH,,o>|2 > 2) >y, VpeXs =  HeXz) > co. (82)

« Upper bound of W (Xr): As discussed above, (exaraf’, p),k =1,..., K are independent subexponential ran-
dom variables since |[(exara;’, p)lly, < cillpllrllax|l?, < ca [111] where ¢y, ¢, are some universal constants

and the second inequality follows from ||p||r = 1 and ||a||, < O(1). In addition, we have E{e,arall, p) = 0
because of the Rademacher random variables ¢,.
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By the analysis in the covering argument of Appendix B.1, when K = Q(nd?7? logn), we have

K

- 1
W(X7) =E sup — Z (erarall, p) < czdiy/nlogn, (83)
peis VE k=1

where c3 is a positive constant.

* Contraction: Combining (82) and (83), we set t = @ and K > Ww in (20), then get
0

K %
in (Z<aka£,p>|2) > eVEH() - 2W(%) — e

>
PEXT \ k21
K
> CO\QF — 2c3dry/nlogn — 5 > cO\ﬁ (84)
with probability 1 — e~ %
This completes the proof of Theorem 3. O

B.1 Proof of the upper bound for W (X;) in (83)

Proof. In this section, we apply a covering argument to prove (83). For an MPO p of the form (7), for simplicity, we
denote it by p = [X1,..., X,] € X5 Also denote A, = exaiaj!. For each set of matrices {L(X/) € REre-1x7e
IL(X,)|| <1} (ro = 1), according to [112], we can construct an e-net {L(X,El)), cee L(XéNe))} with the covering
number N, < (%)‘F”’*l” such that

e min || L(X,) - LX) <, (85)
L(X¢):||L(Xe)||<1 PesNe

forall £ = 1,...,n — 1. Also, we can construct an e-net {L(X,(f)), ce L(X,(LN“))} for {L(X,) € R¥mm-1x1 .
IIL(X,) |7 < 1} such that

sup min ||L(X,) — L(XP))|[r <, (86)
L(Xn )| (X) || <1 P =Nn
with the covering number N,, < (%)d2 "—1. Note that different from Lemma 4 that uses the || - |12 norm, here we
use the spectral norm || - || and Frobenius norm || - || 7 to define the covering numbers.

For simplicity, we use Z to denote the index set [N1] X - - - x [N,,]. Denote by

K
1
[X7,..., X} := arg max —Z A, [ X, X)), (87)
L(X,) c rl?re—1x7g \/szl
||XeH<1£*1 ..... n—1
IXnlp <1
1 X
T:=— AL [ X7, ..., XN (88)
\/[?kz_:ﬂ< k [ 1 N]>
According to the construction of the e-nets, there exists p = (p1,...,pn) € Z such that
IL(X7) — LX) <e £=1,...,n—1 and |L(X}) — LXP))|r < e (89)
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Now taking € = ﬁ gives

(90)

K K
1 (p1) 1 (p1)
T = —— (A, [xXPV . xPo]) 4+ — <A XX - (XY, x )
7 2 e (] D+ 7 20 (A X X - ] |
L5 (#1) RS -~ (x0) () 5 (Par)
= e Z<Ak’[X1pl ""’XT(Lpn)D + 1/z:<14k’ Z [lel L Xa I’X e X; 7X¢: +17""X;]>
K4 K= ar=1 o ' '
RS (p1)
< — ) (A [XPPY, L, X)) 4oneT
< e 2 twix] )
L 5 (p1)
= A, [ XV, X))y ¢ =
\/Kkz:;< k[ 1 n ]>
where we write [ X7, ..., X}] — [Xl(pl), ce X,(Lp")] in the second line as the sum of n terms according to Lemma 10.
Notice that for any {L(X/)}e<n—1 and L(X,,), where ||[L(X,)|| < 1 and ||[L(X,,)||r < 1, we have ||p||r =
1[X1,-..,Xn]|lr < 1. As in the discussion in Appendix B, (A, p) = (exarall, p) is a centered subexponential

random variable with subexponential norm of order O(1), so we can use Lemma 7 to get

2 t\/?}

K
1 (p1) 1—ci min{i;, 2K
P —E:A,X’“,...,X(f’") ‘>t <e 32 ) 91
('\/Ek_1<k[l n ]>— = ()

where ¢; and ¢y are constants.
Combining (90) and (91) together yields

K
t
P(T>t) < ]P’<max ZAk, ~~~7X7(1p")]>’>>
P1;--Pn k: 2

n 1—c1 min ﬁ tVE
(H N@) 1 { co }
i=1

d2 7_171 d2 1T d2 .
<4+6> A, doricaritd e 1fclm1n{t2 tr}

il

IN

€

1—c1 min{ 2—2 s % }H+Cnd®*7 logn
e 2

f— )

_ . . . 4+ L
where T = max;—1,.. n—17i, C is a universal constant, and the last line uses 46 € = —22 = 8n + 1 based on the

2n
assumption € = ﬁ in (90). Now choosing K = c3nd?72 logn with a positive constant c3 and plugging this into the

above equation, we can find constants c4 and c5 such that

P(T > t) < e~ catVndmlogn gy > o [nd?72 logn,

which further implies that

W(Xr) =
< e5\/nd?7? logn+/ P(T >t)dt
nd272 log n
< c5\/nd?7 logn + / e~ caty/nd?r?logn gy
nd2 2 log n
< c¢gdry/nlogn, 92)
where cg is a positive constant. O
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C Proof of Lemma 2

Proof. First, we introduce a directional version of the marginal tail function:
ZIP’{| by, u)| > ¢}, foru € Eand € > 0. (93)

Lyapunov’s inequality and Markov’s inequality give the following bounds

Q K
(QKZZI ik U ) _QKZZI ik U %ZZ bk, u)| > &), (94)

=1 k=1 i=1 k=1 i=1 k=1

where we write I(A) for the 0 — 1 random variable that indicates whether the event A takes place. Add and subtract
Hy¢(E; b) inside the sum, and then take the infimum over u € E to reach the inequality

K
1161%( ZZ| e U 2) > ¢ inf Hy(E: b)—ésupZ[HggEb 121 big,u)| > )| (95)
u uekE =1

Observe that each summand over index 7 at the RHS is independent and bounded in magnitude by 1. Therefore, based
on [113, Section 6.1], we have

Q 1 K
Ztellgz Hae(E;b) — E;WK ik W) >§)]
<EsggZ[Hzg(E;b>—KZm<|< |>s} +1V/Q. %)

i=1 k=1

2

with probability at least 1 — e T,
Next, we simplify the expected supremum. Introduce a soft indicator function:

0, ls| <&,
¢e : R — [0,1] where ¢¢(s) = < ([s| — £)/&, € < |s| < 2¢,
1, 28 < |s].

According to [42], we can derive

“€E¢=1 k=1
Q K
- Ry B0 2 26) - 1((buss )] 2 ©)
Q K K
< KEsupZ[Ez¢g(<bk>u>)—z¢§(<bzka >)}
ueli—1 b k=1 k=1
Q K
< EEEZ%;ei;gbg((bqkaU))
2 CAE
< f—KESIé%;;Q<bi,k7u>a 7

where in the first equation, we write the marginal tail function as an expectation, and then we bound the two indicators
using the soft indicator function. In the second inequality, where ¢;,7 = 1, ..., ) are independent Rademacher random
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variables that are independent from everything else, we use the Giné—Zinn symmetrization [114, Lemma 2.3.1] due to
the independence of 22{:1 ¢ ((big,u)) fori =1,...,Q. In the last line, due to the contraction of {¢¢, we apply the
Rademacher comparison principle [115, Eqn.(4.20)].

Hence, we have

1

| QXK 1 ¢ Q K
inf (QKZZ@M,u)?) >§JngH2§(E;b)—Q{EsupZZQ ik u) +1/Q (98)

uer i=1 k=1 R
Letting h = ﬁ Z?Zl Zszl €;b; -, we can finally obtain
K 1
’ig%(ZkZJ ik U 2) > &/QK jnf £ Hae(E; b)—QEZg%m u) — tEVK. (99)
This completes the proof of Lemma 2. 0

D Proof of Theorem 4

Proof. We prove Theorem 4 using the modified Mendelson’s small ball method. Let {¢1, ..., ¢k} be the first K
columns of a randomly generated Haar distributed unitary matrix, and let {¢; 1, ..., ¢;, K}inl be independent copies
of {¢1,...,¢Px}. According to Lemma 2, we need to bound

K
_ ) 1
He(Xp) = inf — > P{{(dra], p)| > &} (100)
pEXF k=1
and
1 &
W) = s 2SS euadlhn ) (1on
1:1 k=1
where €;,7 = 1, ..., Q are indepdent Rademacher random variables. Below we study the two quantities separately.

* Lower bound of H¢(X7): As in Appendix B, we also use the Paley-Zygmund inequality (Lemma 5) to bound
H¢(X7). Specifically,

He(X7) = Hlffzﬂj’ (Pedr, p)| > €)

pGXf

M—ZP¢MmM5)

pex, K
> inf KZP( (sl oI = JElnof o))
K
1 el P
= pexf;K;_: AE[(prol, py[i] = v5<\/ El|(profl, o), (102)

where the first inequality follows because P (| (¢, @i, p)|? > &) is a decreasing function with respect to &,
the second inequality uses the Paley-Zygmund inequality (Lemma 5) for [{¢1¢I, p)|?, and the last inequality
uses Lemma 6. Below we show that ’(q&kq&kH , p>’ is a subexponential random variable and hence satisfies the
requirements for both Lemma 5 and Lemma 6. According to the process of Gram-Schmidt orthogonalization
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for obtaining a Haar-distributed unitary matrix, ¢»; can be obtained by normalizing a standard normal random
vector from the distribution N'(0, Iy~ ). Using ||[vVd" 1]y, < O(1) [116], we have

1
Wd%leQHpHF =0(-) (103)

[t o)l < =

=T
and hence |(¢1 o p ‘ is a subexponential random variable. Finally according to [117], because all the entries
in a Haar-distributed unitary matrix have the same distribution due to the translation invariance of Lemma 8, we
conclude that each |<¢k. qka , p>| is a subexponential random variable forall k = 1,...,d".

To complete the proof of this part, we now study E[|(¢r @i, p)|?], controlling the upper bound of £ in (102).
Towards that goal, for any p € Xz, we denote its elgenvalue decomposition by p = ZZ 1 it ull, where {u;}
are unitary vectors and {)\; } are the eigenvalues with Z ie1 A? = 1. Now, following (35), we have

anoan an
Aj )\l
Bl ) = S5 AN I
j=11=1
o Cw)? d" — 2
ar -1
> 104
- d2n(dn + 1) ( )
This together with (102) further implies that
He(Xr) > co, ¥ < o0 (105)

for some positive constant c;.

* Upper bound of W (Xr): Since each (¢;, k(f’l &> P) 1s a subexponetial random variable with || (¢;, kqbl s P ||y =
O(ﬁ) according to (103), elgbl, P®i 1 is a centered subexponential random variable with the subexponential

norm ||e; 2, = O(d%). On the other hand, for any ¢, the random vectors ¢; 5, and ¢; s are not
dependent to each other for k # k’. Thus, we use Lemma 11 to obtain its concentration inequality as

Q K
( ZZ €z¢z k¢z kvp )

T

T1+ZEL=21 d*ri_yritdir, o a2ny?
< > 67%, tS (:4\d/T;QK
< d?r +Z" d?r;_1ri+d>r
1 1—1T4 n—1 n
_e3/Qd"t
< ) e 2k, t>c4dvf?K
ﬂ—kc’nd% logn t< caVQK
< - an
= ca/Qd™t 2
o 3 = +Cnd?72 logn’ t> c4\d/nQK
. c2d2"t cg,fd t d2721
< e min{ 25—, }+Cnd*7* log 717 (106)
where € = ﬁ is chosen, T = max;—1,..n—17s, and ca, c3, c4, C are universal constants. Following the same
analysis of (92), when Q = Q(nd?7% logn), we have
— 1 @ X Kdry/nlogn
W(E) = E sip —2 303 (el p) < o LoV IIOBT, (107)

PEXF i=1 k=1

where c5 is a universal constant.
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* Contraction: Combining (105) and (107), and setting ¢t = 00‘2/@, &= dn, and QQ > w we get

cgel

mf (ZZ| (D1 ud!. p)] ) > &VQKH(X5) — 2W(X5) — VK
=1 k=1
coc1V/Q 9 \fo/nlogn cavVQQK
- dan dn
CoC1 QK
108
> (108)
with probability 1 — e~2(Q),
This completes the proof of Theorem 4. O

E Proof of Theorem 5

Proof. Before deriving Theorem 5, we restate our model. We first randomly generate () Haar distributed unitary
matrices [qbi,l e ¢i,dn] , which induce () POVMs of form {¢i71¢£[1, ces Pign ¢{7{dn },i =1,...,Q. Recalling
(30) and (31), we have population measurements for the unknown quantum state p* and total empirical measurements
given by p@ = A (p*) and p%. We then define the statistical measurement error as

. T
n=p?—p? =p“—A%p*)=[nf,-- nd] . (109)

where 7; 1, is the k-th element in 7;. With P?, we estimate the unknown state p* by solving the following constrained
least-squares problem

p = arg min [ A®(p) — p?|3. (110)
pEXs
Following (38), we have

|A9(5 — p*)|2 < 2(n, A%(p — p*)). (111)

According to Theorem 4, given Q > nd*72(log n), with probability at least 1 —e~'?, we have || A®(p— p*)|% >
% |p — p*||%. Next, we will upper bound (1, A%(p — p*)). Towards that goal, we first rewrite this term as

Q d" Q d»
M, AP —p)) =D nixdlh(p— p)bin < 1P p*|F maXZkacﬁz P k- (112)
1=1 k=1 T =1 k=1

The rest of the proof is to bound max e Zfil > ,;1 i, kgbfk p®; 1., which will be achieved by using a covering
argument. First, when conditioned on {¢; i, Vi, k}, we consider any fixed value of p and apply Lemma 3 to establish a

concentration inequality for the expression 2?:1 22:1 i kP pi k. Denote the event F := {max; ; | ¢ popi x| S

logQtnload } which holds with probability P (F) = 1 — e~¢2(08@+n1o84) (its proof is given in Section E.1). Then
we have

Q dn _ d277/1\4t2
P (Z > ikt pdik > t‘F) < 2¢O QinIE DT (113)

i=1 k=1
where ¢3 and c3 are positive constants. The formal proof of (113) is given in Section E.1.
Following the same analysis as in Appendix B.1, there exists an e-net X5 of X7 such that

Q d" Q d°
max » > 1kl pdik > t’ < max » > 1 kbl Pk > ’
peXr i PEXr 21 ki
e+ APt dP e, g 2 2
4 € i=2 _ d<™ Mt
< ( + e c3Qlog Q+nlog )2 +log2
€
— %Jrc’ndg?Z log n+log 2
< ¢ °c3QogQ+nlogd)? , (114)
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1

where ¢ = 5- is chosen, T = max;=1,.. 17 and C is a universal constant in the last line. By taking ¢ =
/Qnlog ndr(l logd) - . .
cavQnlog 71/%;5 Qinlogd) i the above equation, we further obtain

-
VEnl 1 1 _
(Hé?gXZkam;)m < ev@nioenosQ 4 nioed) ) <1oemenTesn ()
p

=1 k=1

where ¢4 and c5 are constants.
Now plugging in the probability for the event I, we finally get

A

Q 4
cgv/Qnlogndr(log Q + nlogd)
max M, k¢2 pdig <
(s Saet At

Q d" —
¢4/ Qnlog ndr(log Q + nlogd)
> max < ap
> ( 33 e < /I s
Q da" —
04\/Qn log ndr(log Q + nlogd) ’
= max ik Dk PPi ke < F
(07 (13 Sonaet At
> (1 —eC2 log(Qd"))(l _ e—csnd2?2 log n) >1— e—cQ(log Q+nlogd) e—csndz?Z logn. (116)

Hence, for (n, A2 (p—p*)) in (112), the above equation implies that with probability at least 1 —e—¢2(log @Fnlogd) _

_ 2-2
e csnd T logn’

JQnlogndr(log Q + nlogd), .,
(0,425~ p)) < W ERERTERLENOED 5 e a1

Combining this together with || A? (p — p*)||2 > d% |p — p*||%, we finally obtain

15— p*llr < vnlogndr(log @ + nlogd) (118)
~ VMQ '
This completes the proof of Theorem 5. 0

E.1 Proof of (113)
Proof. Conditioning on {¢; , Vi, k}, we use Lemma 14 by setting a; , = ¢fkﬁ¢z‘,k to get

Q d"
P (Z Zm,k¢fk5¢i,k > t‘{d)i,kavL k})

i=1 k=1

Mt min 4 1,— maxy g |95 kPP, k1t _ M2
an 1 oH 5 ; n 5
amax; 1917, 50, 1 4 L 197 Ab kPP k e 85S¢ 1o B k1200

_ M2 _ M2
n ~ n ~
16 Zinl Zﬁzl |¢'f{k9¢i,k‘21’i,k +e 82?:1 Zizl ‘¢ﬁk9¢i,k‘2l"i,k

- ¢ , (119)

max; \¢'fkﬁ¢i,k|t
AN S0 1, P k]2 pi

Notice that for any ¢ and k, d)Z LPPirisa subexponentlal random variable with subexponential norm || qb PDi kel =
O( dn) according to (103). By using the concentratlon equallty for the tail of a subexponential random varlable [118,

where without loss of generality, we assume that < 1 in the last line.

Proposition 3], which states that P (| X| > t) < 2e ¥ e for any subexponential random variable X with a universal
constant ¢y, we have

P (|¢fppi i > t) < el 4™, (120)
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where c¢; is a universal constant. It follows that
v (“B%X P/ Pbi k| < ’f) >1—Qdre! ¥ =1 — el merd iHlos(QdT), (121)

co log(Qd™)

o , we obtain

Thus, setting ¢t =

~ e lo d” co(lo +nlogd
x|/ o 4| < 2 108QT) _ allog@ Fnlog ), (122)

with the probability at least 1 — e~ 1°8(Qd") where ¢, and c3 are positive constants. Now under the event F =

- 2 N " o
{max; 1, |¢F, o k| < BB DY we have PORID Py | DDk * ik < max; i [DF) pdi x| DORAD DHE I

-2Q(1 log d)?
—”Q(Ogg?t" °¢d)” and thus

Q d" _ d2m 2
P (Z Y ikt pbik > t’F> < 2¢ TOBQUe QIR (123)
i=1 k=1

F Auxiliary Materials

Lemma 5. ([119, Lemma 7.16] Paley-Zygmund inequality) If a nonnegative random variable Z has finite second
moment, then we have

P(Z>t)> o L 0<t<EZ (124)

Lemma 6. ([115, Lemma 3.7]) Let d be an integer and let Z be a positive random variable. Then the following are
equivalent:

e there is a constant C' such that for any p > 2,

(E[Zp])l/p < opi/? (IE[ZQ])I/2; (125)
* for some o > 0,

Eexp(az??) < cc. (126)
Lemma 7. ([116, Theorem 2.8.2]) Let X1,..., XN be independent, mean zero, subexponential random variables,

and a = (ay,...,ay) € RN, Then, for everyt > 0, we have

N 2 t
P a; X;| >t] <2exp <cmin ( , >> . (127)
(Z ) K2[al3 Kllal

where K = max; || X;[|y, = sup,>; E(|X:]9)Y9/q and c is a positive constant.

Lemma 8. ([117, Lemma 2.2]) A Haar-distributed random unitary matrix U € CP*P can be equivalently gener-
ated by applying the Gram-Schmidt orthogonalization procedure to D independent random vectors z; € CP i =
1,2, ..., D), where the entries z; j are mutually independent standard complex normal random variables.

Lemma 9. ([120, Corollary 1.2]) Let u;; be an element of n x n Haar-distributed random unitary matrix U. We have

d!
nn+1)---(n+d-1)

E[|uij > = (128)
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Lemma 10. Forany A;, A7 € R"-1*" {=1,..., N, we have
AjAy- Ay — ATAL - AN = ZA* CAF (Ai— ANA - An. (129)

Proof. Weexpand A1 Ay --- Ay — ATA3--- A) as
AjAy--- Ay — ATAS - AN
AjAs - Ay — ATAA; - Ay + ATARA; - Ay — ATAS - Ay
= (A1—A*)A2~-~AN+A’{A2A3--~AN—A{A§A3---AN+A’{A§A3-~-AN—A{A§---A’;V

Z Ar (A — ADA - A (130)

Lemma 11. [121], Theorem 3.1] Suppose that X = 2?21 ZkK:l wi X i, where wy, k =1, ..., K are constants, and
each X; 1,1 =1,...,Q,k = 1,..., K is a zero-mean, subexponential random variable with || X; i||,. In addition,
the Q multivariate random variables (X; 1, ..., X; k), = 1,...,Q are mutually independent. However, it is possible
for the variables X; j, and X; s, k' # k within each multivariate random variable to be dependent. Then

t2
e ar?, t<2T2H,
P(X >t) < {e—tf, i (131)
S ekl Xl
where T = Y"1 wk\/ @ ikl Xikl2 and H = (mink : & > (mmz TRah— )with
2= ok iz ikl iy, S /ST el Xl (i)

constants c; , and d .

Below, we extend the concentration bounds presented in [103, Lemmas 2&3] for a single multinomial random
variable to encompass multiple multinomial random variables.
Lemma 12. Suppose that the Q) multivariate random variables (f; ., ..., fix),i = 1,...,Q are mutually indepen-
dent and follow the multinomial distribution Multinomial(M, p;) with Zszl fie = M and p; = [pi1....,pi k)
respectively. Let a; 1, .. .,a; g > 0 be fixed such that Zszl a;xpik #0,0=1,...,Q. Then, foranyt > 0,

Mt B amaxt
T 2amax min {1’ Q HI}dX a2 . }
(ZZM (it ) >t> = e, (132)
=1 k=1

where amax = Max; i, a; k.

Proof. For any v > 0, we have

(o R I G st e i)
(

1=1 k=1

fik
< Plev PIRID DRI L > e”(t+2?:1 Y ai,kpi,k)>

Tik

< e*”(ﬂrz Zk 1 @i,kPi, R)Eevzz 1Zk 1 @ik r

Q K K fik
— e_v(t""zi:l Zkzl @i kPi,k) HEBU Zk:l a’i,k;yij
i=1
2 2

viai g
< e—?}(t+2?=1 DIF ai,kpi,k) v Z?=1 K. ai,kp'i,k+ZiQ=1 S Pt

S
fvt+Z7 L R Pik

Mt amaxt

2amax min{1,2 Q K 42 . }
e Ziz1 Zxm1 4G kPisk , (133)

IA

35



where the second inequality uses Markov’s inequality, the fourth line follows from the independence of multivariate
fi,
random variables (f; k,..., fix),i = 1,...,Q, the third inequality utilizes [103, Lemma 2] for Ee” i ‘”‘kJTk,

K 2
22?:1 k=1 i, kPik M

. . _ Mt M —

and the last line follows by setting v = YT T < p— when ¢t < — andv = p— when
2 Z?:l ZkK=1 a?,kpi,k

t> pr— . O

Lemma 13. Suppose that the () multivariate random variables (fi i, ..., fi x),t = 1,...,Q are mutually indepen-

dent and follow the multinomial distribution Multinomial(M, p;) with ZkK:l fie = Mand p; = [pi1....,pi Kl
respectively. Let a; 1, . ..,a; g > 0 be fixed such that Z,[f:l a;kpik #0,0=1,...,Q. Then, forany t > 0,

P(‘iia' (Lik _p, )>t><eZQEK 130
i=1 k=1 SN TP o ‘
Proof. Following the same approach for proving Lemma 12, for any v < 0, we have
o ik QE Q K
P (_ ; I; aivk(ﬁ — Pik) > t) = P (v ; 2 @ik > v(; 2 Qi kDik — t))

K Fik K
< P (e” Z?:1 ket Gk R > e”(Z?:1 k=1 aiwk‘phkt))
K K Jik
< e‘“(E?:l D et @i kDik—t) Eev Z?=1 k=1 @ik TR
K K Fik
e*”(Z?:l 2=t ai,kphk*t)]_[?_l Ee? ket @ik 5y
2 2
K iKY
< 6Ut+2?=1 2 k=1Pik 337
I Vi R
— ¢ =Ll (135)

where the derivations before the last line are the same as those for proving Lemma 12 and the last line follows by

: tM
setting v = ——=o——7——- O
g Z?:l Z§:1 a?ykpi,k

Lemma 12 and Lemma 13, together leads to the following multinomial concentration bounds.

Lemma 14. Suppose that the (Q multivariate random variables (f; ., ..., fix),i = 1,...,Q are mutually indepen-
dent and follow the multinomial distribution Multinomial(M, p;) with Zszl fie = Mand p; = [pi1....,pik)
respectively. Let a; 1, .. .,a; k be fixed. Then, for anyt > 0,

Q K Mt min{l amdxt} I Ve R

ik damax T4y @ sK 62 p Q K a2 p,

P<ZZai,k(J;§’4 — i) >t> <e s e [ LT e (136)
i=1 k=1

where Gmax = max; j |a; k|-

Proof. Since {a;},i=1,...,Q,k = 1,..., K could be positive or negative, we separate the set into three sets P,
N and Z such that a; ;, > 0 for {i,k} € P, a;, < Ofor {i,k} € N,and a; , = 0 for {i,k} € Z. In addition, when
fik

pik = 0, we have f; , = 0 and further obtain a; i — pik) = 0. Thus, without loss of generality, we assume that
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Di k> 0 for all ¢, k. Now we have

Q K 4
P (Zzai,k( ](/[k —Dik) > t)

=1 k=1

fik i fik 3
< P Z ai,k(lﬁ —Dik) > 5 U Z ai,k(lﬁ —Dik) > 5
{i,k}eP {t,k}eN
fik t Jik 3
< Pl Y ail ]:4 —pik) > 5 | +P > il ]:4 —Dik) > 5
{i,k}epP {i,k}eN
fik Jik i
= P Z ai,k(ﬁ —Pik) + Z 0-( ]:/[ = Pik) > 3
{i,k}epP {1,k}eNUZ
fik fik t
+P | > ai,k(ﬁ —pi)+ Y 0-( ](4 —Pik) > 5
{t,k}eN {1,k}epPuz
Mt ; 1, dmaxt _ M2
< e Aoma mln{ a2, TF a2 ek } de sy, of, af kPik
_ Mt ; 1, amaxt _ M2
< Tamax M1 { 1x?  vK a? ;. Pik } +e sx?  vK | a? . Pik ’ (137)

where the first inequality follows the fact {Z?zl Z,If:l alk(fwk —pig) >t} C {Z{Lk}ep am(ka - Pik) >

, ; ik} € P
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in the second inequality, and in the last line we uses two facts that a = max; k |a; k| <
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