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Abstract

Riemannian optimization has drawn a lot of attention due to its wide applications in prac-
tice. Riemannian stochastic first-order algorithms have been studied in the literature to
solve large-scale machine learning problems over Riemannian manifolds. However, most of
the existing Riemannian stochastic algorithms require the objective function to be differen-
tiable, and they do not apply to the case where the objective function is nonsmooth. In this
paper, we present two Riemannian stochastic proximal gradient methods for minimizing
nonsmooth function over the Stiefel manifold. The two methods, named R-ProxSGD and
R-ProxSPB, are generalizations of proximal SGD and proximal SpiderBoost in Euclidean
setting to the Riemannian setting. Analysis on the incremental first-order oracle (IFO)
complexity of the proposed algorithms is provided. Specifically, the R-ProxSPB algorithm
finds an ε-stationary point with O(ε−3) IFOs in the online case, and O(n +

√
nε−2) IFOs

in the finite-sum case with n being the number of summands in the objective. Experi-
mental results on online sparse PCA and robust low-rank matrix completion show that
our proposed methods significantly outperform the existing methods that use Riemannian
subgradient information.

Keywords: Riemannian Optimization, Stochastic Gradient Descent, SPIDER, Manifold
Proximal Gradient Method, Online Sparse PCA

1. Introduction

We consider the following composite optimization problem over the Stiefel manifold M :=
St(d, r) = {X ∈ Rd×r | X>X = Ir}:

min
X∈M

F (X) := f(X) + h(X), (1)
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where f(X) takes one of the following two forms:

• Online case:

f(X) := Eπ[f(X;π)], (2)

where Eπ is the expectation with respect to the random variable π.

• Finite-sum case:

f(X) :=
1

n

n∑
i=1

fi(X), (3)

where n denotes the number of data and is assumed to be extremely large.

Throughout this paper, we assume that f(·;π), fi(·) and thus f(·) are all smooth, h is
convex and possibly nonsmooth. Here the smoothness and convexity are interpreted when
the function in question is considered as a function in the ambient Euclidean space. Note
that since (2) involves an expectation, and (3) involves extremely large n, we assume that
the full gradient information of f is not available and only stochastic estimators to the
gradient of f can be obtained.

Problem (1) with f being (2) and (3) appears frequently in machine learning applica-
tions. In the online case (2), f(X;π) denotes the loss function corresponding to data π; and
in the finite-sum case (3), fi(X) denotes the loss function corresponding to the i-th sample
data. Function h is usually a regularizer that can promote certain desired structure of the
solution. For example, letting h(X) = ‖X‖1 :=

∑
ij |Xij | serves the purpose of promoting

the sparsity of solution X.

One important application of (1) in the online case is the online sparse PCA, which can
be cast as

min
X

EZ∈D[‖Z −XX>Z‖22] + µ‖X‖1, s.t., X ∈M, (4)

where µ > 0 is a weighting parameter, D denotes the distribution of the random online
data Z, and the `1 norm is used to promote the sparsity of the eigenvectors. In this case,
r is the desired number of principal components. For PCA, each principal component
is a linear combination of all variables, and it is usually difficult to interpret the derived
principal components, especially when the dimension is high. Simple thresholding is an
ad hoc way to estimate sparse loadings for better interpretability, but it may result in
misleading results in various respects (Cadima and Jolliffe, 1995). By solving a manifold
optimization problem, sparse PCA estimates sparse loadings to achieve a good balance
between dimension reduction and interpretability. Sparse PCA has been widely used in
many research fields such as medical imaging, ecology, and neuroscience. In the landmark-
based shape analysis of the CC brain structure, Sjostrand et al. (2007) found that sparse
PCA is useful to derive localized and interpretable patterns of variability while PCA did not
provide much interpretational value. Gravuer et al. (2008) applied sparse PCA to perform
the dimension reduction before fitting the aggregated boosted trees model, and the sparsity
helps the interpretability of their model. Recently, Baden et al. (2016) used sparse PCA to
study the functional diversity of mouse retinal ganglion cells through a clustering framework
and found that SPCA leads to better cluster quality than PCA. Although PCA and sparse
PCA have been studied extensively in the literature, studies for online sparse PCA, i.e.,
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sparse PCA with streaming data, seem to be very limited (Yang and Xu, 2015; Wang and
Lu, 2016). In this paper, we propose efficient stochastic Riemannian algorithms for solving
this important application.

1.1 Related Works

Riemannian optimization has been an active research area in the last decade, due to its wide
applications in machine learning, signal processing, statistics and so on. The monograph by
Absil et al. (2009) studied optimization algorithms on matrix manifolds in depth. Recently,
Riemannian optimization with nonsmooth objective has attracted a lot of attention due to
its applications in sparse PCA (Jolliffe et al., 2003), compressed modes in physics (OzoliņVs
et al., 2013), unsupervised feature selection (Yang et al., 2011; Tang and Liu, 2012), sparse
blind deconvolution (Zhang et al., 2017), to name just a few. Many deterministic algorithms
for solving Riemannian optimization with nonsmooth objective have been studied recently,
including Riemannian subgradient method (Li et al., 2019), manifold proximal gradient
method (ManPG) (Chen et al., 2020b), Riemannian proximal gradient method (Huang and
Wei, 2019), manifold proximal point algorithm (Chen et al., 2020a), manifold proximal linear
algorithm (Wang et al., 2021) and so on. When the loss function f takes the expectation
or finite-sum form as in (2) and (3), stochastic algorithms are usually in demand because
we have only access to noisy stochastic gradients of f instead of the full gradient. When
the nonsmooth regularizer h vanishes, that is, when (1) reduces to a smooth problem with
f given by (2) or (3), there exist stochastic algorithms for solving it. In particular, R-
SGD (Bonnabel, 2013), R-SVRG (Zhang and Sra, 2016), R-SRG (Kasai et al., 2018) and
R-SPIDER (Zhou et al., 2019; Zhang et al., 2018) can all be used to solve it. Among these
algorithms, R-SVRG, R-SRG and R-SPIDER all utilize the variance reduction techniques
(Johnson and Zhang, 2013; Defazio et al., 2014) to improve the convergence rate of R-SGD.
On the other hand, when the nonsmooth regularizer h presents but the manifold constraint
vanishes in (1), i.e., whenM is the Euclidean space, there exist stochastic proximal gradient
algorithms for solving these unconstrained problems in Euclidean space. Popular methods
include ProxSGD (Rosasco et al., 2014), ProxSVRG (Xiao and Zhang, 2014), ProxSARAH
(Pham et al., 2019) and ProxSpiderBoost (Wang et al., 2019). However, to the best of our
knowledge, when both nonsmooth regularizer h and manifold constraint X ∈M present as
in (1), there is no stochastic algorithm that can solve them. In this paper, we close this gap
by proposing two stochastic algorithms, namely R-ProxSGD and R-ProxSPB, for solving
(1) with f being (2) or (3), i.e., Riemannian optimization with nonsmooth objectives. Our
algorithms are inspired by the ManPG algorithm that is recently proposed by Chen et al.
(2020b) for solving the nonsmooth Riemannian optimization problem (1). ManPG assumes
that the full gradient of f can be obtained, and thus it is a deterministic algorithm, while
our R-ProxSGD and R-ProxSPB are the first stochastic algorithms for solving (1) without
using subgradient information. Recently, Li et al. (2019) showed that when the objective
function is weakly convex, Riemannian stochastic subgradient Method (R-Subgrad) has
O(ε−4) iteration complexity for obtaining an ε-stationary point.

1.2 Our Contributions

The contributions of this paper lie in several folds.
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Objective Euclidean Riemannian

Smooth

SGD (Nemirovski et al., 2009) R-SGD (Bonnabel, 2013)
SVRG (Johnson and Zhang, 2013) R-SVRG (Zhang and Sra, 2016)

SARAH (Nguyen et al., 2017) R-SRG (Kasai et al., 2018)
SPIDER (Fang et al., 2018) R-SPIDER (Zhou et al., 2019; Zhang et al., 2018)

SpiderBoost (Wang et al., 2019) R-SpiderBoost (ours)

ProxSGD (Rosasco et al., 2014) R-ProxSGD (ours)
Non- ProxSVRG (Xiao and Zhang, 2014) N/A

smooth ProxSARAH (Pham et al., 2019) N/A
ProxSpiderBoost (Wang et al., 2019) R-ProxSPB (ours)

Table 1: Summary of existing methods and our methods in Euclidean and Riemannian
settings.

Algorithms Step size Finite-sum Online

ManPG (Chen et al., 2020b) constant O(nε−2) N/A
R-ProxSGD constant N/A O(ε−4)
R-ProxSPB constant O(n+

√
nε−2) O(ε−3)

Table 2: Comparison of IFO complexity for nonsmooth Riemannian optimization methods
over the Stiefel manifold.

(i) First, we propose two stochastic algorithms for solving (1). These two algorithms,
named R-ProxSGD and R-ProxSPB, are Riemannian generalizations of their coun-
terparts in the Euclidean setting: ManPG (Chen et al., 2020b) and ProxSpiderBoost
(Wang et al., 2019). On the other hand, they can also be viewed as generaliza-
tions of their smooth counterparts, R-SGD and R-SpiderBoost, to the nonsmooth
case. However, we emphasize here that although the design of these algorithms are
straightforward, proving their convergence is more involved, due to the presence of
stochastic gradients information. In Table 1 we give a summary of existing methods
and our proposed methods in different cases: the objective is smooth or nonsmooth
and the constraint is Riemannian manifold or Euclidean space. Note that when the
nonsmooth function h vanishes, our R-ProxSPB reduces to a Riemannian Spider-
Boost algorithm (R-SpiderBoost) that solves Riemannian optimization with smooth
objective. It seems that R-SpiderBoost is also new in the literature.

(ii) Second, we prove the convergence of the proposed two algorithms and analyze their
incremental first-order oracle (IFO) complexity results. Specifically, we analyze the
IFO complexity of R-ProxSGD for the online setting problem, i.e., (1) with f being
(2); and R-ProxSPB for both the online setting problem and the finite-sum setting
problem, i.e., (1) with f being (3). In Table 2 we summarize the IFO complexity
results of our proposed algorithms and the existing ManPG algorithm, as they are
the only algorithms that can solve the nonsmooth Riemannian optimization problem
(1) with known IFO complexity results.
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(iii) Third, we conduct numerical experiments for solving online sparse PCA (4) and robust
low-rank matrix completion problems to demonstrate the advantages of the proposed
methods.

Remark 1 We provide some further remark about the proposed algorithms R-ProxSGD and
R-ProxSPB. Our algorithms incorporated several concepts, including Riemannian algorithm,
proximal algorithm, stochastic algorithm, and variance reduction. We point out that they
are all well motivated and justified. Note that the problem (1) has three items that need
to be taken care of: the manifold constraint, the smooth function f and the nonsmooth
function h. First, to deal with the manifold constraint, a Riemannian algorithm needs to
be adopted. Second, since we do not have access to the full gradient information of the
smooth function f , we need to design a stochastic algorithm that utilizes the noisy gradient
information only. Third, to handle the nonsmooth function h, we need to design a proximal
algorithm. Last, the variance reduction technique is adopted to reduce the variance of the
stochastic gradients, and thus to accelerate the convergence of the algorithm.

Organization. The rest of the paper is organized as follows. Section 2 introduces
the necessary notation and assumptions. Our new algorithms and their convergence and
complexity results are presented in Section 3. The experimental results are reported in
Section 4. Finally, we make some concluding remarks in Section 5. The detailed proofs of
the theorems and lemmas are provided in the appendix.

2. Preliminaries

In this work, we consider the Riemannian submanifold (M, g) whereM is the Stiefel mani-
fold and g is the Riemannian metric onM that is induced from the Euclidean inner product.
That is, for any x ∈ M, ξ ∈ TxM and ζ ∈ TxM, we have 〈ξ, ζ〉x = 〈ξ, ζ〉, where TxM
denotes the tangent space of M at x. For smooth function f , we use gradf(X) to de-
note the full Riemannian gradient of f at X, and ∇f(X) represents the full Euclidean
gradient of f at X. With an abuse of notation, when there is no ambiguity, we use fi to
denote the component function in the online case (2), i.e., fi(X) := f(X;πi), though it
is still used as a component function in the finite-sum case (3). For a mini-batch set S,
∇fS(X) := 1

|S|
∑

i∈S ∇fi(X) denotes the stochastic Euclidean gradient estimated on S. We

use Ft to denote all randomness occurred up to (include) the t-th iteration of any algorithm.
When there is no ambiguity, we use ‖a‖ to denote the Frobenius norm when a is a matrix
and the Euclidean norm when a is a vector.

A classical geometric concept in the study of manifolds is the exponential mapping,
which defines a geodesic curve on the manifold. However, the exponential mapping is
difficult to compute in general. The concept of a retraction (Absil et al., 2009), which
is a first-order approximation of the exponential mapping and can be more amenable to
computation, is given as follows.

Definition 2 (Absil et al., 2009, Definition 4.1.1) A retraction on a differentiable manifold
M is a smooth mapping Retr from the tangent bundle TM onto M satisfying the following
two conditions (here RetrX denotes the restriction of Retr onto TXM):

1. RetrX(0) = X, ∀X ∈M, where 0 denotes the zero element of TXM.
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2. For any X ∈M, it holds that

lim
TXM3ξ→0

‖RetrX(ξ)− (X + ξ)‖
‖ξ‖

= 0.

Remark 3 Here and thereafter, when we talk about the summation X + ξ, we always treat
X and ξ as elements in the ambient Euclidean space so that their sum is well defined. The
second condition in Definition 2 ensures that RetrX(ξ) = X+ξ+O(‖ξ‖2) and DRetrX(0) =
Id, where DRetrX is the differential of RetrX and Id denotes the identity mapping. For more
details about retraction, we refer the reader to Absil et al. (2009); Boumal et al. (2019) and
the references therein.

The retraction onto the Euclidean space is simply the identity mapping; i.e., RetrX(ξ) =
X+ξ. For the Stiefel manifold St(d, r), common retractions include the exponential mapping
(Edelman et al., 1999)

Retrexp
X (ξ) = [X,Q] exp

([
−X>ξ −R>
R 0

])[
Ir
0

]
,

where QR = −(Id −XX>)ξ is the unique QR factorization; the polar decomposition

Retrpolar
X (ξ) = (X + ξ)(Ir + ξ>ξ)−1/2;

the QR decomposition
RetrQR

X (ξ) = qf(X + ξ),

where qf(A) is the Q factor of the QR factorization of A; the Cayley transformation (Wen
and Yin, 2013)

Retrcayley
X (ξ) =

(
Id −

1

2
W (ξ)

)−1(
Id +

1

2
W (ξ)

)
X,

where W (ξ) = (Id − 1
2XX

>)ξX> −Xξ>(Id − 1
2XX

>).
In this paper, we adopt the assumption that the retraction that we use is invertible, the

same as what is assumed in existing works (Kasai et al., 2018; Zhou et al., 2019). We use
ΓYX to denote the vector transport from X to Y satisfying RetrX(ξ) = Y . Vector transport
Γ : TM

⊕
TM → TM, (ξ, ζ) 7→ ΓYX(ζ) is associated with the retraction Retr, where

ξ, ζ ∈ TXM.
The following assumptions regarding the retraction and vector transport are necessary

to our analysis.

Assumption 4 (i) (see Kasai et al. (2018)). All of the iterates {Xt}T+1
t=1 are in a totally

retractive neighborhood U ⊂ M of an optimum X∗: {RetrXt(ξt)} ∈ U with Xt+1 =
RetrXt(ζt), ζt ∈ TXtM.

(ii) (see Kasai et al. (2018)). Suppose that ExpX : TXM→M denotes the exponential
mapping and Exp−1

X : M → TXM is its inverse mapping. There exist cR, cE > 0
such that ‖Exp−1

X (Y )−Retr−1
X (Y )‖ ≤ cR‖Retr−1

X (Y )‖, ∀X,Y ∈ U and ‖Retr−1
X (Y )‖ ≤

cE‖ξ‖ if RetrX(ξ) = Y .
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(iii) (see Boumal et al. (2019)). For all X ∈ M and ξ ∈ TXM, there exist constants
M1 > 0 and M2 > 0 such that the following two inequalities hold:

‖RetrX(ξ)−X‖ ≤M1‖ξ‖ (5)

‖RetrX(ξ)− (X + ξ)‖ ≤M2‖ξ‖2. (6)

(iv) f(·;π), fi(·) and f(·) are all twice continuously differentiable.

Assumption 5 (see Kasai et al. (2018)). The vector transport is isometric on the manifold
M, i.e., ‖ΓYX(ζ)‖ = ‖ζ‖ for X,Y ∈M, ξ, ζ ∈ TXM and RetrX(ξ) = Y .

Besides, we impose some assumptions on f(X) and its first-order oracle, which are also
required in previous work on smooth Riemannian optimization with retraction and vector
transport (Kasai et al., 2018; Zhou et al., 2019).

Assumption 6 (Upper-bounded Hessian of f) Every individual loss fi(X) is twice
continuously differentiable and the individual Hessian of every fi(X) is bounded as ‖∇2fi(X)‖ ≤
LH . f(X) has upper-bounded Hessian in U ∈ M with respect to the retraction RetrX(·) if

there exists LR > 0 such that d2f(RetrX(tξ))
dt2

≤ LR for all X ∈ U , ξ ∈ TXM with ‖ξ‖ = 1
and all t such that RetrX(τξ) ∈ U for all τ ∈ [0, t].

Assumption 7 (Bounded variance) Stochastic gradient oracle of every individual loss
fi(X) is bounded ‖∇fi(X)‖ ≤ G and its variance is also bounded Ei[‖∇fi(X)−∇f(X)‖2] ≤
σ2.

Moreover, we make the following assumption on the regularization term h(X).

Assumption 8 The regularization function h is convex and Lh-Lipschitz continuous, i.e.,
‖h(X)− h(Y )‖ ≤ Lh‖X − Y ‖, ∀X,Y ∈M.

We now give the definition of the stationary point of problem (1), which is standard in
the literature, see (Yang et al., 2014; Chen et al., 2020b).

Definition 9 (Stationary point) X ∈M is a stationary point of (1) if it satisfies:

0 ∈ ∂̂F (X) := gradf(X) + ProjTXM∂h(X), (7)

where gradf(X) is the Riemannian gradient of f at X, and ∂̂F (X) is the generalized Clarke
subdifferential at X (see Definition 17 in Appendix).

The computational costs of the algorithms are evaluated in terms of IFO complexity.

Definition 10 An IFO takes an index i ∈ {1, . . . , n} and returns (fi(X),∇fi(X)) for the
finite-sum case (3), or (f(X;πi),∇Xf(X;πi)) for the online case (2).

3. Riemannian Stochastic Proximal Gradient Methods

In this section, we introduce our Riemannian stochastic proximal gradient algorithms and
provide their non-asymptotic convergence results. Proofs of the theorems are provided in
the appendix.
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3.1 The Main Framework

The main framework of our Riemnannian stochastic proximal gradient algorithms is inspired
by the ManPG algorithm (Chen et al., 2020b). The ManPG algorithm aims to solve the
nonsmooth Riemannian optimization problem (1) by assuming that the full gradient of f
can be accessed. Therefore, it is a deterministic algorithm. ManPG is a generalization
of the proximal gradient method from Euclidean setting to the Riemannian setting. The
proximal gradient method for solving minX F (X) := f(X) + h(X) in the Euclidean setting
generates the iterates as follows:

Xt+1 := argmin
Y

f(Xt) + 〈∇f(Xt), Y −Xt〉+
1

2γ
‖Y −Xt‖2 + h(Y ). (8)

In other words, one minimizes the quadratic function Y 7→ f(Xt) + 〈∇f(Xt), Y − Xt〉 +
1

2γ ‖Y −Xt‖2 +h(Y ) of F at Xt in the t-th iteration, where γ > 0 is a parameter that can be
regarded as the stepsize. It is known that this quadratic function can bound F from above
when γ ≤ 1/L, where L is the Lipschitz constant of ∇f . The subproblem (8) corresponds to
the proximal mapping of h and the efficiency of the proximal gradient method relies on the
assumption that (8) is easy to solve. For (1), in order to deal with the manifold constraint,
one needs to ensure that the descent direction lies in the tangent space. This motivates the
following subproblem for finding the descent direction ξt in the t-th iteration:

ξt = argminξ := 〈∇f(Xt), ξ〉+ 1
2γ ‖ξ‖

2 + h(Xt + ξ)

s.t. ξ ∈ TXtM,
(9)

and then a retraction step is performed to keep the iterate feasible to the manifold constraint:

Xt+1 := RetrXt(ηtξt). (10)

It is shown that the ManPG algorithm (9)-(10) finds an ε-stationary point of (1) in O(ε−2)
iterations. It was shown in (Chen et al., 2020b) that ManPG performs better than some
existing algorithms for solving the sparse PCA problem. The ManPG algorithm was ex-
tended successfully later to solving problems with two block variables (Chen et al., 2020c)
such as another sparse PCA formulation (Zou et al., 2006) and the sparse CCA problem
(Hardoon and Shawe-Taylor, 2011).

Motivated by the success of the ManPG algorithm, when we only have the access to
stochastic gradient of f , we design a stochastic version of ManPG to solve (1). In particular,
each iteration of our proposed algorithm consists of two steps: (i) finding the descent
direction, and (ii) performing retraction. The basic framework of our proposed algorithm
is to simply replace the full gradient in ManPG by a stochastic estimator to the gradient.
This leads to the following updating scheme of the proposed framework:

ζt = argminζ φt(ζ) :=〈Vt, ζ〉+ 1
2γ ‖ζ‖

2 + h(Xt + ζ)

s.t. ζ ∈ TXtM,
(11)

and

Xt+1 := RetrXt(ηtζt), (12)
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where γ > 0 and ηt > 0 are step sizes, and Vt denotes a stochastic estimation of the Euclidean
gradient ∇f(Xt). Specific choices of Vt will be discussed in Sections 3.2 and 3.3. Note that
for the Stiefel manifold M, the tangent space is given by TXM = {ζ | ζ>X + X>ζ = 0}.
Therefore, the constraint in (11) is a linear equality constraint. Since we assume that h is
a convex function, it follows that the subproblem (11) is a convex problem. This convex
problem can be efficiently solved using the semi-smooth Newton method (Xiao et al., 2018).
We refer the readers to Xiao et al. (2018) and Chen et al. (2020b) for more details on how
to solve (11) efficiently.

To prepare for the analysis of IFO complexity, we need to define the ε-stationary solution
and the ε-stochastic stationary point.

Definition 11 (ε-stationary point and ε-stochastic stationary point) Define

G(X,∇f(X), γ) = (X − RetrX(ξ))/γ, (13)

where

ξ := argmin
ξ∈TXM

{〈∇f(X), ξ〉+
1

2γ
‖ξ‖2 + h(X + ξ)}. (14)

X is called an ε-stationary point of (1) if ‖G(X,∇f(X), γ)‖ ≤ ε. When the sequence
{Xt} is generated by a stochastic algorithm (stochastic process), we call Xt an ε-stochastic
stationary point if E[‖G(Xt,∇f(Xt), γ)‖] ≤ ε, where the expectation E is taken for all
randomness before Xt is generated.

Remark 12 Note that ξ defined in (14) is the solution to (11) with full gradient Vt =
∇f(Xt). In the Euclidean space, RetrXt(γξt) reduces to Xt + γξt and ξt = proxγh(Xt −
γ∇f(X))−X. Thus, G(Xt,∇f(Xt), γ) defined in (13) is analogous to the proximal gradient
in the Euclidean space.

3.2 R-ProxSGD: Riemannian Stochastic Proximal Gradient Descent
Algorithm

In this section, we design the basic Riemannian proximal stochastic gradient descent method
(R-ProxSGD) by choosing Vt as the mini-batch stochastically sampled gradients. More
specifically, in the t-th iteration of R-ProxSGD, we randomly sample a mini-batch set St,
and define Vt = 1

|St|
∑

it∈St ∇fit(Xt), which is an unbiased gradient estimator with bounded

variance. That is, E[Vt] = ∇f(Xt) and E[‖Vt − ∇f(Xt)‖2] ≤ σ2

|St| . Our R-ProxSGD is
described in Algorithm 1.

We have the following iteration and IFO complexity results for R-ProxSGD for solving
the online case problem (1) with f being (2). The proof is given in the appendix.

Theorem 13 In R-ProxSGD, we set the batch size |St| := s = O(ε−2) for all t, and γ
is chosen as in (15). Under this parameter setting, the number of iterations needed by R-
ProxSGD for obtaining an ε-stochastic stationary point of the online case problem (1) with
f being (2), is T = O(ε−2). Moreover, the IFO complexity of the R-ProxSGD algorithm
for obtaining an ε-stochastic stationary point in the online setting (1) with f being (2) is
O(ε−4).

Remark 14 In Theorem 13, since we require the batch size to be O(ε−2), the results only
hold for the online case problem, and do not hold for the finite-sum case problem.
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Algorithm 1 R-ProxSGD

1: Input: initial point X0 ∈M, parameters η ∈ (0, 1),

γ =
2η

2L̃η2 + η + 1
, where L̃ = LR/2 + LhM2. (15)

2: for t = 0, 1, ..., T − 1 do
3: Compute the stochastic gradient by randomly sampling a mini-batch set St and cal-

culating the unbiased stochastic gradient estimator:

Vt = ∇fSt(Xt) :=
1

|St|
∑
it∈St

∇fit(Xt)

4: Proximal step: obtain ζt by solving the subproblem (11).
5: Retraction step: Xt+1 = RetrXt(ηtζt), with ηt := η.
6: end for
7: Output: Xν , where ν is uniformly sampled from {1, ..., T}.

3.3 R-ProxSPB: Riemannian Proximal SpiderBoost Algorithm

Note that the convergence and complexity results of R-ProxSGD do not apply to the finite-
sum case problem. In this section, we propose a Riemannian proximal SpiderBoost algo-
rithm (R-ProxSPB) that can solve both the online case problem and the finite-sum case
problem. More importantly, we can show that R-ProxSPB has an improved IFO complex-
ity comparing with R-ProxSGD for the online case problem. For smooth problems in the
Euclidean setting, there exist many works that use the variance reduction technique to
improve the convergence speed of SGD, such as SVRG (Johnson and Zhang, 2013), SAGA
(Defazio et al., 2014), SARAH (Nguyen et al., 2017), SPIDER (Fang et al., 2018) and Spi-
derBoost (Wang et al., 2019). In particular, the SpiderBoost algorithm proposed by Wang
et al. (2019) achieves the same complexity bound as SPIDER, but in practice SpiderBoost
can converge faster because it allows a constant step size, while SPIDER requires an ε-
dependent step size that can be too conservative in practice. Some of these algorithms
have been extended to the Riemannian optimization with smooth objective functions, such
as R-SVRG (Zhang and Sra, 2016), R-SRG (Kasai et al., 2018) and R-SPIDER (Zhang
et al., 2018; Zhou et al., 2019). It was found that R-SRG and R-SPIDER equipped with
the biased R-SARAH estimator consistently outperform the R-SVRG algorithm. Inspired
by the SpiderBoost algorithm, we propose a Riemannian proximal SpiderBoost algorithm,
named R-ProxSPB, which is a generalization of SpiderBoost to nonsmooth Riemannian
optimization. When the nonsmooth function h vanishes, our R-ProxSPB algorithm reduces
to a Riemannian SpiderBoost algorithm (R-SpiderBoost) for Riemannian optimization with
smooth objective function, which seems to be new in the literature as well.

Our R-ProxSPB algorithm is described in Algorithm 2. R-ProxSPB specifies a constant
integer q. When the iteration number t is a multiple of q, mini-batch S1

t is sampled and
unbiased stochastic gradient estimator is used; while for other iterations, mini-batch S2

t is

10
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Algorithm 2 R-ProxSPB

1: Input: initial point X0 ∈M, parameters η > 0, γ > 0, integers q, T .
2: for t = 0, ..., T − 1 do
3: if mod(t, q) = 0 then
4: Randomly sample a mini-batch S1

t and calculate Vt = ∇fS1t (X) satisfying:

E[‖Vt −∇f(Xt)‖2] ≤ σ2

|S1
t |

5: else
6: Randomly sample a mini-batch S2

t and calculate Vt by the R-SARAH estimator:

Vt = ∇fS2t (Xt)− ΓXt
Xt−1

(
∇fS2t (Xt−1)− Vt−1

)
(16)

7: end if
8: Proximal step: obtain ζt by solving the subproblem (11).
9: Retraction step: Xt+1 = RetrXt(ηζt).

10: end for
11: Output: Xν , ν is uniformly sampled from {1, ..., T}.

sampled and R-SARAH estimator (16) is used. Comparing with R-ProxSGD (Algorithm
1), a significant difference of R-ProxSPB is that it allows a constant step size η instead of a
diminishing step size. That the constant step size is allowed is due to the biased stochastic
gradient estimator R-SARAH, which leads to variance reduction of the stochastic gradients,
and thus improves the convergence rate. This has been justified in several variance reduced
stochastic algorithms such as SVRG, SAGA, SPIDER and SpiderBoost and so on. A
constant step size usually leads to a faster algorithm both theoretically and practically. In
fact, we can prove the following convergence rate and IFO complexity results of R-ProxSPB,
which indeed improve the results of R-ProxSGD.

Theorem 15 In R-ProxSPB (Algorithm 2), we set η = min
(

1
2(LR/2+LhM2) ,

1√
2cEΘ2

)
, γ =

2
5 , and |S2

t | = q for all t, where Θ is a constant that will be specified in the proof. Under
this parameter setting, we have the following convergence rate and IFO complexity results
of R-ProxSPB.

(i). For the finite-sum case problem, i.e., problem (1) with f being (3), we set q =
√
n,

|S1
t | = n, for all t. R-ProxSPB returns an ε-stochastic stationary point of (1) after

T = O(ε−2) iterations. Moreover, the IFO complexity of R-ProxSPB for obtaining an
ε-stochastic stationary point of (1) is O(

√
nε−2 + n).

(ii). For the online case problem, i.e., problem (1) with f being (2), we set q = O(ε−1),
|S1
t | = O(ε−2), for all t. R-ProxSPB returns an ε-stochastic stationary point of (1) af-

ter T = O(ε−2) iterations. Moreover, the IFO complexity of R-ProxSPB for obtaining
an ε-stochastic stationary point of (1) is O(ε−3).

11
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Remark 16 Here we summarize some comparisons of the two proposed algorithms. For
the online case problem, R-ProxSPB has a better IFO complexity than R-ProxSGD. R-
ProxSPB allows constant step size η, but R-ProxSGD needs a diminishing step size ηt. The
convergence results of R-ProxSPB in Theorem 15 covers the finite-sum case problem, which
is still lacking for the R-ProxSGD algorithm. We also need to point out that, though R-
ProxSPB is faster than R-ProxSGD in theory, it involves more tuning parameters and the
R-SARAH estimator might be difficult to compute for certain manifolds. Therefore, for
certain applications, R-ProxSGD could be more favorable in practice.

4. Numerical Experiments

We compare our proposed algorithms R-ProxSGD and R-ProxSPB with several baselines on
the online sparse PCA problem (4). The experiments are performed on two real datasets:
coil100 (Nene et al., 1996) and mnist (LeCun, 1998). The coil100 dataset contains
n = 7, 200 RGB images of 100 objects taken from different angles with d = 1024. The
mnist dataset has n = 80, 000 grayscale digit images of size d = 28× 28 = 784.

4.1 Online Sparse PCA Problem

4.1.1 Comparison with Riemannian stochastic subgradient method

First, we compare our proposed algorithms R-ProxSGD and R-ProxSPB with the Rieman-
nian stochastic subgradient method (R-Subgrad). R-Subgrad for solving (4) iterates as
follows:

ξt := −ProjXt
(−2ZitZ

>
it
Xt + µ sign(Xt)),

Xt+1 := RetrXt(ηtξt),

where Zit is a randomly sampled data. Here the projection operation is defined as: ProjX(Y ) =
Y −X sym(X>Y ) and sym(X) = 1

2(X +X>).

For R-Subgrad and R-ProxSGD, we use the diminishing step size ηt = η0√
t+1

. For R-

ProxSPB, we use the constant step size η as suggested in our theory. Because some of the
problem-dependent constants cannot be directly estimated from the datasets, we perform
grid search to tune η0 and η for all algorithms from {5 × 10−5, 10−4, 5 × 10−4, ..., 1}. The
best η0 and η on different datasets are reported in the appendix. For R-ProxSGD, we set
|St| = 100. For R-ProxSPB, we set |S1

t | = n and |S2
t | = q = 100.

All algorithms are implemented in Matlab and we use the Manopt (Boumal et al., 2014)
package to compute vector transport, retraction and Riemannian gradient. Since all of
R-ProxSGD, R-ProxSPB, and R-Subgrad aim to solve the same problem (4), we evaluate
the performance of those algorithms based on the objective function value EZ∈D[‖Z −
XX>Z‖22] + µ‖X‖1 (“loss value” in Figures 1 and 2). The experimental results are shown
in Figures 1 and 2. In particular, Figures 1 and 2 give results for r = 10. More specifically,
in Figure 1 we report the results on the mnist dataset, and in Figure 2 we report the results
on the coil100 dataset, both with two choices of µ: µ = 0.2 and µ = 0.4. Note that µ is
the parameter in (4) controlling the sparsity of the solution. In the first column of Figures 1
and 2, we report the loss value in (4) versus the number of IFO divided by n. In the second
column of Figures 1 and 2, we report the loss value versus the CPU time (in seconds). In
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the third column of Figures 1 and 2, we report the variance of gradient estimation versus
the number of iterations, which is adopted in Defazio and Bottou (2019).
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Figure 1: Experimental results on the mnist dataset with µ = 0.2 and 0.4.
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Figure 2: Experimental results on the coil100 dataset with µ = 0.2 and 0.4.

All the results in Figures 1 and 2 indicate that both R-ProxSGD and R-ProxSPB consis-
tently outperform R-Subgrad in terms of CPU time and the number of IFO calls. Moreover,
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these figures show that R-Subgrad is not able to reduce the loss value to a desired accu-
racy, comparing with R-ProxSGD and R-ProxSPB. Furthermore, these results also show
that R-ProxSPB usually performs better than R-ProxSGD, which is consistent with our
theoretical results on the complexity bounds. Figures 1 and 2 also imply that R-ProxSPB
is effective to reduce the variance of the stochastic gradient on both datasets. We perform
grid search to tune η0 (used in R-Subgrad and R-ProxSGD) and η (used in R-ProxSPB)
from {5× 10−5, 10−4, 5× 10−4, ..., 1}. The best η0 and η on different data sets are reported
in Table 3.

Figure 3 gives more results on the case r = 15 and µ = 0.2, 0.4, 0.8, and here we only
present the loss value versus the CPU time. These results further justify the advantages of
our proposed R-ProxSGD and R-ProxSPB algorithms.

mnist data set coil data set

µ R-Subgrad R-ProxSGD R-ProxSPB µ R-Subgrad R-ProxSGD R-ProxSPB

0.2 0.01 0.005 0.005 0.2 0.005 0.01 0.005
0.4 0.01 0.01 0.005 0.4 0.01 0.01 0.005

Table 3: Chosen η0 (for R-Subgrad and R-ProxSGD) and η (for R-ProxSPB) for the reported
results on mnist and coil data sets.
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Figure 3: Loss value versus runtime on two datasets with r = 15 and µ = 0.2, 0.4, 0.8.

4.1.2 Comparison with ManPG and SPAMS

To justify the necessity of introducing the stochasticity, we compare our R-ProxSGD and
R-ProxSPB with the deterministic algorithm ManPG (Chen et al., 2020b), which also solves
the same problem in (4) but assumes that the full gradient information for the smooth part
is available. As shown in Figures 1 and 2, ManPG leads to larger loss values than our
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R-ProxSGD and R-ProxSPB given the same budget of gradient oracles or running time.
We also point out that if the problem is online, then ManPG is not applicable.

Moreover, we also compare our R-ProxSPB algorithm with the SPAMS algorithm (Mairal
et al., 2010) for the online sparse PCA problem. We run R-ProxSPB for 1000 iterations
with batch size 100. For fair comparison, we run SPAMS using the same batch size and
the same number of gradient oracles. Since the problem formulation of online sparse PCA
in SPAMS is different from (4), we cannot directly compare the objective function value.
Instead, we consider the explained variance and sparsity metrics as suggested in Yang and

Xu (2015). The explained variance is defined as tr(X>AA>X)
tr(XX>)

, where A ∈ Rd×n is the data

matrix and X ∈ Rd×r is the model parameter. The sparsity is defined as the number of
elements in X whose absolute value is larger than the threshold 0.001. As shown in Table 4,
our R-ProxSPB leads to better sparsity while achieving comparable explained variance.

coil100 Data Set mnist Data Set

Algorithms Explained Variance Sparsity Algorithms Explained Variance Sparsity

SPAMS 0.0132 240 SPAMS 0.0179 185
R-ProxSPB 0.0120 22 R-ProxSPB 0.0190 18

Table 4: Comparison of R-ProxSPB and SPAMS (Mairal et al., 2010).

4.2 Robust Low-Rank Matrix Completion

Robust low-rank matrix completion is closely related to the robust PCA problem. The
robust PCA aims to decompose a given matrix M ∈ Rm×n into the superposition of a
low-rank matrix L and a sparse matrix S. Robust low-rank matrix completion is the same
as robust PCA, except that only a subset of the entries of M is observed. The convex
formulations of them are studied extensively in the literature and we refer the reader to
the recent survey (Ma and Aybat, 2018). A typical convex formulation of robust low-rank
matrix completion is given as follows:

min
L,S
‖L‖∗ + γ‖S‖1, s.t., PΩ(L+ S) = PΩ(M), (17)

where ‖L‖∗ denotes the nuclear norm of L and it sums the singular values of L, Ω is a
subset of the index set {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, and the projection operator PΩ

is defined as: [PΩ(Z)]ij = Zij , if (i, j) ∈ Ω, and [PΩ(Z)]ij = 0 otherwise. Due to the
presence of the nuclear norm in (17), algorithms for solving (17) usually require computing
the SVD of an m× n matrix in every iteration, which can be time consuming when m and
n are large. Recently, some nonconvex formulations of robust low-rank matrix completion
were proposed because they allow more efficient and scalable algorithms. In Huang et al.
(2020), the authors proposed the following nonconvex formulation of robust low-rank matrix
completion:

min
U∈Gr(m,r),V ∈Rr×n,S∈Rm×n

1

2
‖PΩ(UV −M + S)‖2F +

λ

2
‖PΩ̄(UV )‖2F + γ‖PΩ(S)‖1, (18)
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where Gr(m, r) denotes the Grassmann manifold, which is the set of r-dimensional vector
subspaces of Rm, and we use U ∈ Rm×r to denote a basis of the subspace U ∈ Gr(m, r).
In (18), the low-rank matrix L is replaced by UV with U ∈ Rm×r, V ∈ Rr×n, and r is the
estimation of the rank of L; the term λ

2‖PΩ̄(UV )‖2F is added as a regularizer and λ > 0 is
sufficiently small indicating that we have a small confidence of the components of UV on Ω̄
being zeros; the constraint U ∈ Gr(m, r) is added to remove the scaling ambiguity of U and
V . The nonconvex formulation (18) was motivated by some recent works on Riemannian
optimization (Boumal and Absil, 2011; Cambier and Absil, 2016). Note that, for fixed U
and S, the variable V in (18) can be uniquely determined. By denoting

f̄(U, V, S) =
1

2
‖PΩ(UV −M + S)‖2F +

λ

2
‖PΩ̄(UV )‖2F , (19)

and

VU,S := argmin
V

f̄(U, V, S), and f(U, S) = f̄(U, VU,S , S), (20)

we can rewrite (18) as

min
U∈Gr(m,r),S∈Rm×n

f(U, S) + γ‖PΩ(S)‖1, (21)

which is a Riemannian optimization problem with nonsmooth objective. Note that although
the manifold is the Grassmann manifold instead of the Stiefel manifold, our algorithms
discussed in Section 3 can be directly applied to (21). To see this, first note that as
suggested in (Boumal and Absil, 2011), without loss of generality, we can restrict matrix U
as an orthonormal basis of U. Therefore, we have

‖PΩ̄(UV )‖2F = ‖UV ‖2F − ‖PΩ‖2F = ‖V ‖2F − ‖PΩ‖2F ,

and thus we can rewrite f̄(U, V, S) and f(U, S) as

f̄(U, V, S) =
1

2
‖PΩ(UV −M + S)‖2F +

λ

2
‖V ‖2F −

λ

2
‖PΩ(UV )‖2F . (22)

f(U, S) =
1

2
‖PΩ(UVU,S −M + S)‖2F +

λ

2
‖VU,S‖2F −

λ

2
‖PΩ(UVU,S)‖2F . (23)

From (20) we know that ∇V f̄(U, VU,S , S) = 0. Therefore,

∇Uf(U, S) = ∇U f̄(U, VU,S , S) = ∇1f̂(U, VU,S , S),

where

f̂(U, VU,S , S) :=
1

2
‖PΩ(UVU,S −M +S)‖2F −

λ

2
‖PΩ(UVU,S)‖2F =

∑
(i,j)∈Ω

f̂ij(U, VU,S , S), (24)

and

f̂ij(U, VU,S , S) =
1

2
(UVU,S −M + S)2

ij −
λ

2
(UVU,S)2

ij .
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That is, f̂ in (24) has a natural finite-sum structure, and a stochastic gradient approximation
to ∇Uf(U, S) is given by ∇1f̂ij(U, VU,S , S) with randomly sampled index pair (i, j) ∈ Ω. It
is easy to verify that

∇1f̂ij(U, VU,S , S) = (u>i vj −Mij + Sij − λu>i vj)V̄ >j ,

where u>i denotes the i-th row of U , and vj denotes the j-th column of VU,S , and

V̄j =
[
0 0 · · · vj · · · 0

]
.

That is, V̄j ∈ Rr×m is a matrix whose j-th column is vj and all other columns are zeros.
Clearly, when computing ∇Ufij(U, S), we only need to access u>i and vj and we do not need
to access the whole matrix U and VU,S and compute the matrix multiplication UVU,S , and
this is very useful when m and n are large.

We applied our R-ProxSGD and R-ProxSPB algorithms to solve the robust low-rank
matrix completion problem (21) on some real data for video background estimation (Li
et al., 2004) and we again compared their performance with R-Subgrad. We consider two
surveillance video datasets: “Hall of a business building” and “Airport elevator”. The data
matrix X∗ is obtained by vectorizing each grayscale frame of the video. We then randomly
sample 50% of the indices to obtain Ω, and then sample the entries of X∗ from Ω to get M .
A sparse matrix S∗ was then added to M . In R-ProxSGD and R-Subgrad, we randomly
sample 10% of the known entries as a batch in each iteration. In R-ProxSPB, we set
|S1
t | = |Ω| and q = 5. The initial step sizes η0 are tuned from {10−j/|Ω|, i = 0, 1, . . . , 4}.

In Figure 4, we present the experimental results on the problem with those two real
datasets. For fair comparison, we report the results of all algorithms using the same budget
of stochastic gradients, which is 4|Ω|. The results in Figure 4 clearly show the advantage of
our R-ProxSPB and R-ProxSGD algorithms over R-Subgrad algorithm.

5. Conclusion

In this paper, we considered the nonsmooth Riemannian optimization problems with nons-
mooth regularizer in the objective. We designed Riemannian stochastic algorithms that do
not need subgradiet information for solving this class of problems. Specifically, we proposed
two Riemannian stochastic proximal gradient algorithms: R-ProxSGD and R-ProxSPB to
solve this problem. The two proposed algorithms are generalizations of their counterparts in
Euclidean space to Riemannian manifold setting. We analyzed the iteration complexity and
IFO complexity of the proposed algorithms for obtaining an ε-stationary point. Numerical
results on solving online sparse PCA and robust low-rank matrix completion are conducted
which demonstrate that our proposed algorithms outperform significantly the Riemannian
stochastic subgradient method. Future work includes extending the current results to more
general Riemannian manifolds.
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(a) Original Image (b) R-ProxSPB
time=2.58

(c) R-ProxSGD
time=5.76

(d) R-Subgrad
time=2.26

(e) Original Image (f) R-ProxSPB
time=3.11

(g) R-ProxSGD
time=6.99

(h) R-Subgrad
time=2.45

Figure 4: First row: background estimation from partial observations on the “Hall of a
business building” data set; Second row: background estimation from partial observations
on the “Airport elevator” data set.
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Appendix A. Auxiliary Definitions and Lemmas

In this section we give a few lemmas and definitions that are necessary to our analysis.
These lemmas are proved in existing works, so we do not include the proof here.

Definition 17 (Generalized Clarke subdifferential, see Hosseini and Pouryayevali (2011))
For a locally Lipschitz function F on the manifold M, the Riemannian generalized direc-
tional derivative F ◦(X, ζ) at X ∈M in the direction ζ is defined by

lim sup
Y→X,t↓0

F ◦ φ−1(φ(Y ) + tDφ(X)[ζ])− f ◦ φ−1(φ(Y ))

t
.

Here (φ,U) is a coordinate chart at X. The Clarke subdifferential ∂̂F (X) at X ∈M is:

∂̂F (X) = {ξ ∈ TXM : 〈ξ, V 〉 ≤ F ◦(X, ζ), ∀ζ ∈ TXM}.

Lemma 18 Suppose gi is the unbiased and variance-bounded stochastic estimator of g on
randomly sampled instance i, i.e. Ei[gi] = g and Ei[‖gi − g‖2] ≤ σ2. Then we can con-
clude that the estimator gS := 1

|S|
∑

i∈S gi based on randomly sampled mini-batch S is also
unbiased and variance-bounded:

ES [gS ] = g, ES [‖gS − g‖2] ≤ σ2

|S|
. (25)

The following lemmas from previous works (Absil et al., 2009; Kasai et al., 2018; Zhou
et al., 2019) under Assumptions 4-8 regarding retraction and vector transport are very
useful.

Lemma 19 (Retraction LR smoothness, Lemma 3.5 in Kasai et al. (2018)) If f(X)
has an upper-bounded Hessian, there exists a neighborhood U of any X ∈M and a constant
LR > 0 such that ∀X,Y ∈ U ,RetrX(ξ) = Y, ξ ∈ TXM:

f(Y ) ≤ f(X) + 〈∇f(X), ξ〉+
LR
2
‖ξ‖2. (26)

Lemma 20 (Lemma 3.7 in Kasai et al. (2018)) Under Assumption 4(ii), there exists
a constant θ > 0, such that the following inequalities hold for any X,Y ∈ U :

‖Γηξ − Pηξ‖ ≤ θ‖ξ‖X‖η‖X , ‖Γ−1
η ξ − P−1

η ξ‖ ≤ θ‖χ‖X‖η‖X ,

where ξ, η ∈ TXM, χ ∈ TYM, RetrX(η) = Y .

Lemma 21 (Lemma 4 in Zhou et al. (2019)) Given X̂ ∈ M that does not depend on
the update sequence {Xt}, the following inequality about the retraction and vector transport
holds:

Ei[‖ΓX̂Xt
(∇fi(Xt))− ΓX̂Xt−1

∇fi(Xt−1)‖2] ≤ 2Θ2‖Retr−1
Xt−1

(Xt)‖2, (27)

where Θ2 = θ2G2 + 2(1 + cR)L2
H and θ is defined in Lemma 20.
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Lemma 22 (Lemma 1 in Zhou et al. (2019)) Let nt = dt/qe, (nt − 1)q ≤ t ≤ ntq,
t0 = (nt − 1)q, where dae denotes the smallest integer that is larger than a. Mini-batches
S1
t , S2

t are selected as described in Algorithm 2. Under the Assumptions 4-8, the estimation
error between the R-SARAH estimator Vt generated by Algorithm 2 and full gradient ∇f(Xt)
is bounded by:

E[‖Vt −∇f(Xt)‖2] ≤ I{|S1
t | < n} · σ

2

|S1
t |

+
t−1∑
i=t0

Θ2

|S2
t |
E[‖Retr−1

Xi
(Xi+1)‖2],

where I{·} denotes an indicator function.

For the ease of presentation, we adopt the following notation, which is consistent with
the ones used in (9) and (11).

ζt := argmin
ζ∈TXtM

{φt(ζ) := 〈Vt, ζ〉+
1

2γ
‖ζ‖2 + h(Xt + ζ)}, (28)

ξt := argmin
ξ∈TXtM

{〈∇f(Xt), ξ〉+
1

2γ
‖ξ‖2 + h(Xt + ξ)}. (29)

Moreover, note that according to the definition of Ft, when we take conditional expectation
E[· | Ft−1], Xt in both R-ProxSGD and R-ProxSPB has been realized.

Appendix B. Necessary Lemmas for Proving Theorem 13

Lemma 23 The solution ζt defined in (28) satisfies:

E[φt(ηtζt)|Ft−1]− φt(0) ≤ (ηt − 2)ηt
2γ

E[‖ζt‖2|Ft−1]. (30)

Proof Note that φt(ζ) is (1/γ)-strongly convex with respect to ζ. For ζ1, ζ2 ∈ TXtM, we
have:

φt(ζ2) ≥ φt(ζ1) + 〈∂̂φt(ζ1), ζ2 − ζ1〉+
1

2γ
‖ζ2 − ζ1‖2. (31)

Note that the optimality conditions of (28) are given by 0 ∈ ProjTXtM
∂φt(ζt). Therefore,

〈∂̂φt(ζ1), ζ2 − ζ1〉 = 〈ProjTXtM
∂φt(ζ1), ζ2 − ζ1〉 = 0, ∀ζ1, ζ2 ∈ TXtM. (32)

Letting ζ1 = ζt and ζ2 = 0 in (31), and combining with (32), we have

φt(0) ≥ φt(ζt) +
1

2γ
‖ζt‖2,

which is equivalent to:

h(Xt + ζt)− h(Xt) ≤ 〈−Vt, ζt〉 −
1

γ
‖ζt‖2. (33)
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According to the definition of φt, φt(ηtζt)− φt(0) can be written as:

φt(ηtζt)− φt(0) = ηt〈Vt, ζt〉+
η2
t

2γ
‖ζt‖2 + h(Xt + ηtζt)− h(Xt). (34)

From (33) and the convexity of h: h(Xt + ηtζt) ≤ ηth(Xt + ζt) + (1− ηt)h(Xt), ηt ∈ (0, 1],
we have

h(Xt + ηtζt)− h(Xt) ≤ −ηt〈Vt, ζt〉 −
ηt
γ
‖ζt‖2. (35)

Combine (34) and (35) and take expectation conditioned on Ft−1 on both sides, we get the
desired result.

The following lemma justifies why G(X,∇f(X), γ) is valid for defining the ε-stationary
solution.

Lemma 24 If G(X,∇f(X), γ) = 0, and the retraction is given by the Polar decomposition:

RetrX(ξ) = (X + ξ)(I + ξ>ξ)−
1
2 , then X is a stationary point of problems (1), i.e., 0 ∈

∇f(X) + ProjTXM∂h(X).

To prove Lemma 24, we first need to show the following Lemma.

Lemma 25 Consider X ∈M, M is the Stiefel manifold and ξ ∈ TXM. If X = RetrX(ξ),

where the retraction is given by the Polar decomposition: RetrX(ξ) = (X + ξ)(I + ξ>ξ)−
1
2 ,

then ξ = 0X .

Proof If X = RetrX(ξ) = (X + ξ)(I + ξ>ξ)−
1
2 , then we have

X + ξ = X(I + ξ>ξ)
1
2 . (36)

Since X>X = I, (36) leads to

X>X + ξ>X = (I + ξ>ξ)
1
2 (37)

and
X>X +X>ξ = (I + ξ>ξ)

1
2 . (38)

Since ξ ∈ TXM, we have ξ>X + X>ξ = 0. Adding (37) and (38) gives 2I = 2(I + ξ>ξ)
1
2 ,

which implies ξ = 0X .

Now we are ready to give the proof of Lemma 24.
Proof If G(Xt,∇f(Xt), γ) = 0, we have ξt = 0Xt because of Lemma 25. According to Yang
et al. (2014), the optimality conditions of (29) are given by

0 ∈ ∇f(Xt) +
1

γ
ξt + ProjTXtM

∂h(Xt + ξt).

Thus, G(Xt,∇f(Xt), γ) = 0 leads to that 0 ∈ ∇f(Xt) + ProjTXtM
∂h(Xt), which means Xt

is a stationary point of problem (1).

The following lemma shows the progress of the algorithm in one iteration in terms of
objective function value.
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Lemma 26 Denote X+
t := Xt + ηtζt. The following inequality holds:

F (Xt+1)−F (Xt)≤
(LRγ − 1)η2

t

2γ
‖ζt‖2+h(Xt+1)−h(X+

t )+φt(ηtζt)−φt(0)+ηt〈∇f(Xt)−Vt, ζt〉.

Proof Consider the update Xt+1 = RetrXt(ηtζt). By applying Lemma 19 with X = Xt, Y =
Xt+1 and ξ = ηtζt, we get

f(Xt+1)− f(Xt) ≤ ηt〈∇f(Xt), ζt〉+
LRη

2
t

2
‖ζt‖2,

which leads to:

F (Xt+1)− F (Xt) ≤
LRη

2
t

2
‖ζt‖2 + ηt〈∇f(Xt), ζt〉+ h(Xt+1)− h(Xt). (39)

Denote X+
t := Xt + ηtζt. The definition of φt indicates:

ηt〈Vt, ζt〉 = φt(ηtζt)− φt(0)− η2
t

2γ
‖ζt‖2 − h(X+

t ) + h(Xt). (40)

Combining (39) and (40) gives the desired result.

The following lemma gives an upper bound to the size of G(Xt,∇f(Xt), γ).

Lemma 27 With ζt and ξt defined in (28) and (29), for G(Xt,∇f(Xt), γ) = 1
γ (Xt −

RetrXt(ξt)), it holds that

‖G(Xt,∇f(Xt), γ)‖2≤2M2
1 (7‖ζt‖2+4γ‖Vt−∇f(Xt)‖2). (41)

Proof Let G(Xt, Vt, γ) = 1
γ (Xt−RetrXt(γζt)). We first have the following trivial inequality:

‖G(Xt,∇f(Xt), γ)‖2 ≤ 2‖G(Xt, Vt, γ)‖2 + 2‖G(Xt, Vt, γ)−G(Xt,∇f(Xt), γ)‖2. (42)

The first term on the right hand side of (42) can be bounded based on the property of
retraction in Assumption 4 (iii):

‖G(Xt, Vt, γ)‖2 =
1

γ2
‖Xt − RetrXt(γζt)‖2 ≤M2

1 ‖ζt‖2. (43)

The second term on the right hand side of (42) can be bounded as:

‖G(Xt, Vt, γ)−G(Xt,∇f(Xt), γ)‖2 ≤ 2‖Xt − RetrXt(γζt)‖2

γ2
+

2

γ2
‖Xt − RetrXt(γξt)‖2,(44)

which further implies

‖G(Xt, Vt, γ)−G(Xt,∇f(Xt), γ)‖2 ≤ 2M2
1 (‖ζt‖2 + ‖ξt‖2) ≤ 2M2

1 (3‖ζt‖2 + 2‖ξt − ζt‖2).(45)
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The optimality conditions of (28) and (29) are given by (see Yang et al. (2014)):

0 ∈ Vt +
1

γ
ζt + ProjTXtM

∂h(Xt + ζt), (46)

0 ∈ ∇f(Xt) +
1

γ
ξt + ProjTXtM

∂h(Xt + ξt). (47)

Let X†t = Xt + ξt and X+
t = Xt + ζt. (46) and (47) indicate that for any u ∈ TXtM, there

exist p+ ∈ ∂h(X+
t ) and p† ∈ ∂h(X†t ) such that

〈 1
γ ζt + Vt + ProjTXtM

p+,u−X+
t 〉 ≥ 0, (48)

〈 1
γ ξt +∇f(Xt) + ProjTXtM

p†,u−X†t 〉 ≥ 0. (49)

Let u = X†t in (48) and u = X+
t in (49). Since X†t −X

+
t and X+

t −X
†
t both lie in TXtM, we

have 〈ProjTXtM
p+, X+

t −X
†
t 〉 = 〈p+, X+

t −X
†
t 〉 and 〈ProjTXtM

p†, X†t−X
+
t 〉 = 〈p†, X†t−X

+
t 〉.

Therefore, (48) and (49) reduce to:

〈 1
γ ζt + Vt + p+, X†t −X

+
t 〉 ≥ 0, (50)

〈 1
γ ξt +∇f(Xt) + p†, X+

t −X
†
t 〉 ≥ 0. (51)

By using the convexity of h(X), we have 〈p+, X+
t −X

†
t 〉 ≥ h(X+

t ) − h(X†t ), and 〈p†, X†t −
X+
t 〉 ≥ h(X†t )− h(X+

t ). Therefore, (50) and (51) reduce to:

〈Vt, X†t −X
+
t 〉 ≥ 1

γ 〈ζt, X
+
t −X

†
t 〉+ h(X+

t )− h(X†t ), (52)

〈∇f(Xt), X
+
t −X

†
t 〉 ≥ 1

γ 〈ξt, X
†
t −X

+
t 〉+ h(X†t )− h(X+

t ). (53)

Summing up (52) and (53) gives: (note that X†t −X
+
t = ξt − ζt):

‖Vt −∇f(Xt)‖‖X+
t −X

†
t ‖ ≥ 〈Vt −∇f(Xt), X

†
t −X

+
t 〉 ≥

1

γ
〈ξt − ζt, X†t −X

+
t 〉 =

1

γ
‖X†t −X

+
t ‖2,(54)

which further implies ‖ξt − ζt‖ = ‖X†t −X
+
t ‖ ≤ γ‖Vt −∇f(Xt)‖. We hence have:

‖G(Xt, Vt, γ)−G(Xt,∇f(Xt), γ)‖2 ≤ 2M2
1 (3‖ζt‖2+2‖ξt−ζt‖2) ≤ 6M2

1 ‖ζt‖2+4M2
1γ‖Vt−∇f(Xt)‖2,

which combining with (42) and (43) completes the proof.

The following lemma shows the progress of R-ProxSGD in one iteration in terms of
objective function value.

Lemma 28 The sequences {Xt}T+1
t=1 and {ζt}Tt=1 generated by R-ProxSGD (Algorithm 1)

satisfy the following inequality:

E[F (Xt+1)−F (Xt)]≤
(
L̃η2

t −
1

γ
ηt +

1

2

)
E[‖ζt‖2]+

η2
t σ

2

2|St|
, (55)

where L̃ = (LR/2 + LhM2).
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Proof Denote X+
t = Xt + ηtζt. Assumptions 4(iii) and 8 yield the following inequalities:

h(Xt+1)− h(X+
t ) ≤ Lh‖Xt+1 −X+

t ‖ ≤ LhM2η
2
t ‖ζt‖2,

which together with Lemma 26 and Young’s inequality gives

F (Xt+1)− F (Xt) ≤
(
LRη

2
t

2
− η2

t

2γ
+ LhM2η

2
t +

1

2

)
‖ζt‖2 +

η2
t

2
‖∇f(Xt)− Vt‖2 + φt(ηtζt)− φt(0).(56)

Taking expectation conditioned on Ft−1 to both side of (56), we get:

E[F (Xt+1) | Ft−1]− F (Xt) ≤
(
L̄η2

t +
1

2

)
E[‖ζt‖2 | Ft−1] +

η2
t

2
E[‖∇f(Xt)− Vt‖2 | Ft−1]

(57)

+ E[φt(ηtζt) | Ft−1]− φt(0),

where L̄ := LR
2 −

1
2γ + LhM2. Using Lemma 23 and taking the whole expectation on both

sides of (57) completes the proof.

Appendix C. Proof of Theorem 13

We can re-arrange terms in (55) as follows for 0 < ηt ≤ 1 (note |St| = s for all t):(
1

γ
ηt − L̃η2

t −
1

2

)
E[‖ζt‖2] ≤ E[F (Xt)]− E[F (Xt+1)] +

η2
t σ

2

2s
. (58)

If we choose γ small enough such that γ ≤ 2ηt
2L̃η2t +ηt+1

for all t = 0, . . . , T − 1, then

1

γ
ηt − L̃η2

t −
1

2
≥ ηt

2
, t = 0, . . . , T − 1. (59)

Combining (58) and (59) yields:

1

2
E[‖ζt‖2] ≤ E[F (Xt)]− E[F (Xt+1)]

ηt
+
ηtσ

2

2s
. (60)

We choose ηt as a constant ηt = η ∈ (0, 1). Denote ∆0 := F (X0) − F (X∗), where X∗ is
a global optimal solution to the problem (1). Summing up (60) for t = 0, . . . , T − 1 and
dividing both sides by T , we get:

1

T

T−1∑
t=0

E[‖ζt‖2] ≤ 2∆0

Tη
+
σ2η

s
, (61)

where we used the fact that E[F (X0)]− E[F (XT )] ≤ ∆0. Moreover, (25) indicates that

1

T

T−1∑
t=0

E[‖Vt −∇f(Xt)‖2 ≤
σ2

s
. (62)
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Combining (41), (61) and (62) yields:

1

T

T−1∑
t=0

E[‖G(Xt,∇f(Xt), γ)‖2] ≤ 14M2
1

(2∆0

Tη
+
σ2η

s

)
+ 8M2

1γσ
2/s,

which together with Jensen’s inequality and the convexity of ‖ · ‖2 implies that:(
E

[
1

T

T−1∑
t=0

‖G(Xt,∇f(Xt), γ)‖

])2

(63)

≤E

( 1

T

T−1∑
t=0

‖G(Xt,∇f(Xt), γ)‖

)2


≤ 1

T

T−1∑
t=0

E[‖G(Xt,∇f(Xt), γ)‖2]

≤14M2
1

(2∆0

Tη
+
σ2η

s

)
+ 8M2

1γσ
2/s.

By setting s = (M2
1σ

2(28η + 16γ))ε−2, we know that as long as

T ≥ 56M2
1 ∆0

ηε2
, (64)

the right hand side of (63) is upper bounded by ε2, that is:(
E

[
1

T

T−1∑
t=0

‖G(Xt,∇f(Xt), γ)‖

])
≤ ε. (65)

Therefore, for an index ν that is uniformly sampled from {0, . . . , T − 1}, we have

E[‖G(Xν ,∇f(Xν), γ)‖] ≤ ε,

i.e., Xν is an ε-stochastic stationary point of problem (1). Condition (64) shows that the
number of iterations needed by R-ProxSGD for obtaining an ε-stochastic stationary point
is T = O(ε−2), which immediately implies that the total IFO complexity is O(ε−4). This
completes the proof of Theorem 13.

Appendix D. Necessary Lemma for Proving Theorem 15

Similar to Lemma 28, the following lemma gives the progress of R-ProxSPB in one iteration
in terms of the objective function value.

Lemma 29 The sequences {Xt}T+1
t=1 and {ζt}Tt=1 generated by R-ProxSPB (Algorithm 2)

satisfy the following inequality:

E[F (Xt+1)− F (Xt)] ≤ η
(
L̃η − 1

γ̃

)
E[‖ζt‖2] + I{|S1

t | < n} ησ
2

2|S1
t |

+
t∑

i=(nt−1)q

Θ2η3cE
2|S2

t |
E[‖ζi‖2],

(66)
where L̃ = LR/2 + LhM2 and γ̃ = 2γ

2−γ .
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Proof Similar to the proof of Lemma 28, by using Lemma 26, Assumptions 4(iii) and 8,
and Young’s inequality, we have:

F (Xt+1)− F (Xt) (67)

≤(
LRη

2

2
− η2

2γ
+ LhM2η

2 +
η

2
)‖ζt‖2 +

η

2
‖Vt −∇f(Xt)‖2 + φt(ηζt)− φt(0).

Taking conditional expectation on both sides of (67) conditioned on Ft−1, we have:

E[F (Xt+1) | Ft−1]− F (Xt) (68)

≤η(L̄η +
1

2
)E[‖ζt‖2 | Ft−1] +

η

2
E[‖Vt −∇f(Xt)‖2 | Ft−1] + E[φt(ηζt) | Ft−1]− φt(0),

where L̄ := LR
2 −

1
2γ + LhM2. Taking the whole expectation on both sides of (68) yields:

E[F (Xt+1)− F (Xt)]

(i)

≤η
(
L̃η − 1

γ̃

)
E[‖ζt‖2] +

η

2
E[‖Vt −∇f(Xt)‖2]

(ii)

≤ η
(
L̃η − 1

γ̃

)
E[‖ζt‖2] + I{|S1

t | < n} ησ
2

2|S1
t |

+

t∑
i=t0

Θ2η

2|S2
t |
E[‖Retr−1

Xi
(Xi+1)‖2]

(iii)

≤ η
(
L̃η − 1

γ̃

)
E[‖ζt‖2] + I{|S1

t | < n} ησ
2

2|S1
t |

+
t∑

i=t0

Θ2η3cE
2|S2

t |
E[‖ζi‖2],

where (i) is from Lemma 23, (ii) is due to Lemma 22, and (iii) is due to the update
Xt+1 = RetrXt(ηζt) and the Assumption 4(ii). This completes the proof.

Appendix E. Proof of Theorem 15

Let nt = dt/qe, t0 = (nt − 1)q. Since the length of recursion of Vt is q in R-ProxSPB, we
calculate the telescoping sum of (66) from t0 = (nt − 1)q to t+ 1 ≤ ntq:

E[F (Xt+1)− F (Xt0)] (69)

≤η
(
L̃η − 1

γ̃

) t∑
i=t0

E[‖ζi‖2] +

t∑
i=t0

I{|S1
t | < n} ησ

2

2|S1
t |

+
Θ2cEη

3

2|S2
t |

t∑
j=t0

j∑
i=t0

E[‖ζi‖2].

By noting
∑t

j=t0

∑j
i=t0

E[‖ζi‖2] ≤ q
∑t

i=t0
E[‖ζi‖2], γ̃ = 2γ/(2 − γ) = 1/2 (since γ = 2/5),

and |S2
t | = q for all t, (69) can be reduced to:

E[F (Xt+1)− F (Xt0)] ≤
t∑

i=t0

I{|S1
t | < n} ησ

2

2|S1
t |

+ η

(
cEΘ2η2

2
+ L̃η − 2

) t∑
i=t0

E[‖ζi‖2]. (70)

Moreover, the choice of η: 0 < η ≤ (−L̃+
√
L̃2 + 2cEΘ2)/(cEΘ2) guarantees that

cEΘ2η2

2
+ L̃η − 2 ≤ −1.
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Therefore, (70) reduces to

η

t∑
i=t0

E[‖ζi‖2] ≤ −E[F (Xt+1)− F (Xt0)] +

t∑
i=t0

I{|S1
t | < n} ησ

2

2|S1
t |
. (71)

E.1 Finite-sum case

In the finite-sum case, we have |S1
t | = n, which implies that I{|S1

t | < n} = 0. Therefore,
(71) reduces to:

t∑
i=t0

E[‖ζi‖2] ≤
E[F (X(nt−1)q)− F (Xt+1)]

η
. (72)

We now calculate the telescoping sum for (72) for all length-q epochs that t+1 = q, 2q, ...,Kq
(K = bTq c) and the telescoping sum from t = Kq + 1 to T − 1. This results in:

1

T

T−1∑
t=0

E[‖ζt‖2] =
1

T

Kq−1∑
t=0

E[‖ζt‖2] +

T−1∑
t=Kq

E[‖ζt‖2]

 ≤ E[F (X0)− F (XT )]

Tη
≤ ∆0

ηT
. (73)

Moreover, Lemma 22 yields that

E[‖Vt −∇f(Xt)‖2] ≤
t−1∑
i=t0

Θ2c2
Eη

2

q
E[‖ζi‖2]. (74)

Summing up (74) over t = 0, . . . , T − 1, we get

1

T

T−1∑
t=0

E[‖Vt −∇f(Xt)‖2] ≤ 1

T

T−1∑
t=1

t−1∑
i=t0

Θ2c2
Eη

2

q
E[‖ζi‖2] ≤ 1

T

T−1∑
t=0

t∑
i=t0

Θ2c2
Eη

2

q
E[‖ζi‖2]. (75)

Note that
∑t

j=t0

∑j
i=t0

E[‖ζi‖2] ≤ q
∑t

i=t0
E[‖ζi‖2]. This together with (75) yields

1

T

T−1∑
t=0

E[‖Vt −∇f(Xt)‖2] ≤
Θ2c2

Eη
2

T

T−1∑
t=0

E[‖ζt‖2]. (76)

Now combining Lemma 27, (73) and (76), we have that:

1

T

T−1∑
t=0

E[‖G(Xt,∇f(Xt), γ)‖2] ≤ 14M2
1

∆0

ηT
+ 8M2

1γΘ2c2
Eη

∆0

T
. (77)
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Again, using Jensen’s inequality and the convexity of ‖ · ‖2, (77) gives:(
E

[
1

T

T−1∑
t=0

‖G(Xt,∇f(Xt), γ)‖

])2

(78)

≤E

( 1

T

T−1∑
t=0

‖G(Xt,∇f(Xt), γ)‖

)2


≤ 1

T

T−1∑
t=0

E[‖G(Xt,∇f(Xt), γ)‖2]

≤14M2
1

∆0

ηT
+ 8M2

1γΘ2c2
Eη

∆0

T
.

Hence, we know that as long as

T ≥
(

14M2
1

∆0

η
+ 8M2

1γΘ2c2
Eη∆0

)
ε−2, (79)

the right hand side of (78) is upper bounded by ε2, which implies that if index ν is uniformly
sampled from {0, . . . , T − 1}, then

E [‖G(Xν ,∇f(Xν), γ)‖] ≤ ε.

That is, Xν is an ε-stochastic stationary point of problem (1). Equation (79) then implies
that the number of iterations needed by R-ProxSPB for obtaining an ε-stochastic stationary
point of problem (1) in the finite-sum case is T = O(ε−2). Furthermore, the IFO complexity
of R-ProxSPB under the finite-sum setting is:

dT/qe · |S1
t |+ T · |S2

t | ≤
T + q

q
n+ T

√
n = O(

√
nε−2 + n), (80)

where the equality is due to q =
√
n.

E.2 Online setting

In the online case, I{|S1
t | < n} = 1. Since |S1

t | is the same for all t, we denote s := |S1
t |. In

this case, (71) reduces to

t∑
i=t0

E[‖ζi‖2] ≤
E[F (X(nt−1)q)− F (Xt+1)]

η
+

1

2

t∑
i=t0

σ2

|S1
t |
. (81)

We calculate the telescoping sum for (81) for all length-q epochs that t+ 1 = q, 2q, . . . ,Kq
(K = bTq c) and the telescoping sum from t = Kq to T − 1. This gives:

1

T

T−1∑
t=0

E[‖ζt‖2] =
1

T

Kq−1∑
t=0

E[‖ζt‖2] +
T−1∑
t=Kq

E[‖ζt‖2]

 ≤ ∆0

ηT
+
σ2

2s
. (82)
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Note that Lemma 22 gives:

E[‖Vt −∇f(Xt)‖2] ≤ σ2

s
+

t−1∑
i=t0

Θ2c2
Eη

2

|S2
t |

E[‖ζi‖2],

which further implies:

1

T

T−1∑
t=0

E[‖Vt −∇f(Xt)‖2] ≤ σ2

s
+

Θ2c2
Eη

2

T

T−1∑
t=0

E[‖ζt‖2]. (83)

Now combining Lemma 27, (82) and (83), we have that:

1

T

T−1∑
t=0

E[‖G(Xt,∇f(Xt), γ)‖2] ≤
(
14M2

1 + 8M2
1γΘ2c2

Eη
2
) ∆0

ηT
+M2

1

59σ2

5s
. (84)

Again, using Jensen’s inequality and the convexity of ‖ · ‖2, (84) gives:(
E

[
1

T

T−1∑
t=0

‖G(Xt,∇f(Xt), γ)‖

])2

(85)

≤E

( 1

T

T−1∑
t=0

‖G(Xt,∇f(Xt), γ)‖

)2


≤ 1

T

T−1∑
t=0

E[‖G(Xt,∇f(Xt), γ)‖2]

≤
(
14M2

1 + 8M2
1γΘ2c2

Eη
2
) ∆0

ηT
+M2

1

59σ2

5s
.

Now, by choosing

T =

(
2(14M2

1 + 8M2
1γΘ2c2

Eη
2)∆0

η

)
ε−2, and s =

118M2
1σ

2

5
ε−2, (86)

we know that the right hand side of (85) is equal to ε2, which implies that if index ν is
uniformly sampled from {0, . . . , T − 1}, then

E [‖G(Xν ,∇f(Xν), γ)‖] ≤ ε.

That is, Xν is an ε-stochastic stationary point of problem (1). Equation (86) then implies
that the number of iterations needed by R-ProxSPB for obtaining an ε-stochastic stationary
point of problem (1) in the finite-sum case is T = O(ε−2), and moreover, this needs to require
the batch size |S1

t | = s = O(ε−2) for all t. Furthermore, the IFO complexity of R-ProxSPB
under the online setting is given by:

dT/qe · |S1
t |+ T · |S2

t | ≤
T + q

q
O(ε−2) + Tq = O(ε−3),

where the equality is due to q = ε−1.
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