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New Characterizations of Core Imputations of
Matching and b-Matching Games
(Extended Abstract)
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—— Abstract

We give new characterizations of core imputations for the following games:

The assignment game.
Concurrent games, i.e., general graph matching games having non-empty core.
The unconstrained bipartite b-matching game (edges can be matched multiple times).

i

The constrained bipartite b-matching game (edges can be matched at most once).

The classic paper of Shapley and Shubik [11] showed that core imputations of the assignment
game are precisely optimal solutions to the dual of the LP-relaxation of the game. Building on
this, Deng et al. [5] gave a general framework which yields analogous characterizations for several
fundamental combinatorial games. Interestingly enough, their framework does not apply to the
last two games stated above. In turn, we show that some of the core imputations of these games
correspond to optimal dual solutions and others do not. This leads to the tantalizing question of
understanding the origins of the latter.

We also present new characterizations of the profits accrued by agents and teams in core
imputations of the first two games. Our characterization for the first game is stronger than that for
the second; the underlying reason is that the characterization of vertices of the Birkhoff polytope is
stronger than that of the Balinski polytope.

2012 ACM Subject Classification Theory of computation — Algorithmic game theory

Keywords and phrases LP-duality theory, cooperative game theory, core of a game, assignment
game, general graph matching game, bipartite b-matching game

Digital Object Identifier 10.4230/LIPIcs...13

Funding Vijay V. Vazirani: Supported in part by NSF grants CCF-1815901 and CCF-2230414.

© Vijay V. Vazirani;
37 licensed under Creative Commons License CC-BY 4.0

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:vazirani@ics.uci.edu
https://doi.org/10.4230/LIPIcs...13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

New Characterizations of Core Imputations

1 Introduction

The matching game forms one of the cornerstones of cooperative game theory and the core
is a quintessential solution concept in this theory; the latter captures all possible ways of
distributing the total worth of a game among individual agents in such a way that the grand
coalition remains intact, i.e., a sub-coalition will not be able to generate more profits by itself
and therefore has no incentive to secede from the grand coalition. The matching game can
also be viewed as a matching market in which utilities of the agents are stated in monetary
terms and side payments are allowed, i.e., it is a transferable utility (TU) market. For an
extensive coverage of these notions, see the book by Moulin [9]. Due to space restrictions,
we have not presented proofs in this version of the paper; for that, see the full version [12].

The classic paper of Shapley and Shubik [11] showed that the set of core imputations of
the assignment game as the set of optimal solutions to the dual of the LP-relaxation of the
maximum weight matching problem in the underlying graph. Among their other insights
was a characterization of the two “antipodal” points — imputations which maximally favor
one side of the bipartition! — in the core of this game. This in-depth understanding makes
the assignment game a paradigmatic setting for studying the core; in turn, insights gained
provide valuable guidance on profit-sharing in real-life situations.

Deng et al. [5] distilled the ideas underlying the Shapley-Shubik Theorem to obtain a
general framework (see Section 4.1.1) which helps characterize the core of several games that
are based on fundamental combinatorial optimization problems, including maximum flow
in unit capacity networks both directed and undirected, maximum number of edge-disjoint
s-t paths, maximum number of vertex-disjoint s-t paths, maximum number of disjoint
arborescences rooted at a vertex r, and concurrent games (defined below).

In this paper, we study the core of the assignment game and some of its generalizations,
including two versions of the bipartite b-matching game (Section 4); in the first version
(Section 4.2) edges can be matched multiple number of times and in the second, edges can be
matched at most once (Section 5). The intriguing aspect of the latter two games is that they
don’t fall in framework of Deng et al.; see Section 4.1.1 for the reason. In turn, we show that
some of the core imputations of these games correspond to optimal dual solutions and some
not. This leads to a tantalizing question: is there a “mathematical structure” that produces
the latter?

For the assignment game (Section 3), we start with the realization is that despite the
in-depth work of Shapely and Shubik, and the passage of half a century, there are still basic
questions about the core which have remained unexplored:

1. Do core imputations spread the profit more-or-less evenly or do they restrict them to
certain well-chosen agents? If the latter, what characterizes these “chosen” agents?

2. By definition, under any core imputation, the sum of profits of two agents ¢ and j is at
least the profit they make by being matched, say w;;. What characterizes pairs (¢, j) for
which this sum strictly exceed w;;?

3. How do core imputations behave in the presence of degeneracy?

An assignment game is said to be degenerate if the optimal assignment is not unique.
Although Shapley and Shubik had mentioned this phenomenon, they brushed it away,
claiming that “in the most common case” the optimal assignment will be unique, and if
not, their suggestion was to perturb the edge weights to make the optimal assignment

1 Much like the top and bottom elements in a lattice of stable matchings.
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unique. However, this is far from satisfactory, since perturbing the weights destroys crucial
information contained in the original instance and the outcome becomes a function of the
vagaries of the randomness imposed on the instance.

The following broad idea helps answer all three questions. A well-known theorem in
matching theory says that the LP-relaxation of the optimal assignment problem always has
an integral optimal solution [8]. Therefore, the worth of the assignment game is given by the
optimal objective function value of this LP. Next, the Shapley-Shubik Theorem says that the
set of core imputations of this game are precisely the optimal solutions to the dual of this
LP. These two facts naturally raise the question of viewing core imputations through the
lens of complementarity; in turn, it leads to a resolution of all three questions.

The following setting, taken from [6] and [2], vividly captures the issues underlying
profit-sharing in an assignment game. Suppose a coed tennis club has sets U and V of
women and men players, respectively, who can participate in an upcoming mixed doubles
tournament. Assume |U| = m and |V| = n, where m,n are arbitrary. Let G = (U,V, E) be a
bipartite graph whose vertices are the women and men players and an edge (4, j) represents
the fact that agents ¢ € U and j € V are eligible to participate as a mixed doubles team
in the tournament. Let w be an edge-weight function for G, where w;; > 0 represents the
expected earnings if ¢ and j do participate as a team in the tournament. The total worth of
the game is the weight of a maximum weight matching in G.

Assume that the club picks such a matching for the tournament. The question is how to
distribute the total profit among the agents — strong players, weak players and unmatched
players — so that no subset of players feel they will be better off seceding and forming their
own tennis club. We will use this setting to discuss the issues involved in the questions raised
above.

Under core imputations, the profit allocated to an agent is a function of the value he/she
brings to the various sub-coalitions he/she belongs to, i.e., it is consistent with his/her
negotiating power. Indeed, it is well known that core imputations provide profound insights
into the negotiating power of individuals and sub-coalitions, see [9]. The first question
provides further insights into this issue. Our answer to this question is that the core rewards
only essential agents, namely those who are matched by every maximum weight matching,
see Theorem 10.

Our answer to the second question is quite counter-intuitive: we show that a pair of
players (i,j) get overpaid by core allocations if and only if they are so incompetent, as a
team, that they don’t participate in any maximum weight matching! Since i and j are
incompetent as a team, w;; is small. On the other hand, a least one of ¢ and j does team up
with other agents in maximum weight matchings — if not, (i, j) would have been matched in
a maximum weight matching. Therefore, the sum of the profits of ¢ and j exceeds w;; in at
least one core imputation; this is shown in Theorem 15.

Our insight into degeneracy is that it treats teams and agents in totally different ways,
see Section 3.4. Section 2 discusses past approaches to degeneracy.

Whereas the core of the assignment game is always non-empty, that of the general graph
matching game can be empty. Deng et al. [5] showed that the core of this game is non-empty
if and only if the weights of maximum weight integral and fractional matchings concur. For
this reason, we have named such games as concurrent games. As stated above, their core
imputations are precisely the set of optimal solutions to the dual LP.

In the full paper [12], we study the three questions, raised above, for concurrent games as
well.

13:3
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2 Related Works

An imputation in the core has to ensure that each of the exponentially many sub-coalitions
is “happy” — clearly, that is a lot of constraints. As a result, the core is non-empty only for
a handful of games, some of which are mentioned in the Introduction. A different kind of
game, in which preferences are cardinal, is based on the stable matching problem defined by
Gale and Shapley [7]. The only coalitions that matter in this game are ones formed by one
agent from each side of the bipartition. A stable matching ensures that no such coalition has
the incentive to secede and the set of such matchings constitute the core of this game.

Over the years, researchers have approached the phenomenon of degeneracy in the
assignment game from directions that are different from ours. Nunez and Rafels [10], studied
relationships between degeneracy and the dimension of the core. They defined an agent
to be active if her profit is not constant across the various imputations in the core, and
non-active otherwise. Clearly, this notion has much to do with the dimension of the core,
e.g., it is easy to see that if all agents are non-active, the core must be zero-dimensional.
They prove that if all agents are active, then the core is full dimensional if and only if the
game is non-degenerate. Furthermore, if there are exactly two optimal matchings, then the
core can have any dimension between 1 and m — 1, where m is the smaller of |U| and |V|;
clearly, m is an upper bound on the dimension.

In another work, Chambers and Echenique [3] study the following question: Given the
entire set of optimal matchings of a game on m = |U|, n = |V| agents, is there an m x n
surplus matrix which has this set of optimal matchings. They give necessary and sufficient
conditions for the existence of such a matrix.

3 The Core of the Assignment Game

In this section, we provide answers to the three questions, for assignment games, which were
raised in the Introduction.

3.1 Definitions and Preliminary Facts

The assignment game, G = (U,V, E), w: E — R4, has been defined in the Introduction.
We start by giving definitions needed to state the Shapley-Shubik Theorem.

» Definition 1. The set of all players, U UV, is called the grand coalition. A subset of the
players, (S, US,), with S, CU and S, CV, is called a coalition or a sub-coalition.

» Definition 2. The worth of a coalition (S, U S,) is defined to be the mazimum profit that
can be generated by teams within (S, US,) and is denoted by p(S,US,). Formally, p(S,US,)
is the weight of a maximum weight matching in the graph G restricted to vertices in (S, U S,)
only. p(UUV) is called the worth of the game. The characteristic function of the game is
defined to be p: 2VYV — R .

» Definition 3. An imputation? gives a way of dividing the worth of the game, p(U UV),
among the agents. It consists of two functions u : U — Ry and v : V — Ry such that

ZieU u(i) + Z]‘ev v(j) =p(UUV).

2 Some authors prefer to call this a pre-imputation, while using the term imputation when individual
rationality is also satisfied.
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» Definition 4. An imputation (u,v) is said to be in the core of the assignment game if for
any coalition (S, U S,), the total worth allocated to agents in the coalition is at least as large
as the worth that they can generate by themselves, i.e., 37, (i) + 3 ;cq v(F) = p(S).

We next describe the characterization of the core of the assignment game given by Shapley
and Shubik [11]3.

As stated in Definition 2, the worth of the game, G = (U,V,E), w : E — R4, is the
weight of a maximum weight matching in G. Linear program (1) gives the LP-relaxation of
the problem of finding such a matching. In this program, variable z;; indicates the extent to
which edge (4, j) is picked in the solution. Matching theory tells us that this LP always has
an integral optimal solution [8]; the latter is a maximum weight matching in G.

max E Wi X4

(i.j)eE
s.t. Z Tij < 1 Vie U,
(i,))EE (1)
Y w;<1 VeV,
(4,5)EE

Tij >0 V(Z,j) ek

Taking u; and v; to be the dual variables for the first and second constraints of (1), we
obtain the dual LP:

min Zuz + Z vj
ieU jev
st uw +v; >wy Y(,j) €E, (2)
u; >0 Vi e U,
v; >0 VieV

» Theorem 5. (Shapley and Shubik [11]) The imputation (u,v) is in the core of the assignment
game if and only if it is an optimal solution to the dual LP, (2).

By Theorem 5, the core of the assignment game is a convex polyhedron. Shapley and
Shubik shed further light on the structure of the core by showing that it has two special
imputations which are furtherest apart and so can be thought of as antipodal imputations.
In the tennis club setup, one of these imputations maximizes the earnings of women players
and the other maximizes the earnings of men players.

Finally, we state a fundamental fact about LP (1); its corollary will be used in a crucial
way in Theorems 10 and 15.

» Theorem 6. (Birkhoff [1]) The vertices of the polytope defined by the constraints of LP
(1) are 0/1 vectors, i.e., they are matchings in G.

3 Shapley and Shubik had described this game in the context of the housing market in which agents are
of two types, buyers and sellers. They had shown that each imputation in the core of this game gives
rise to unique prices for all the houses. In this paper we will present the assignment game in a variant of
the tennis setting given in the Introduction; this will obviate the need to define “prices”, hence leading
to simplicity.

13:5
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» Corollary 7. Any fractional matching in a bipartite graph is a convex combination of
integral matchings.

3.2 The first question: Allocations made to agents by core imputations

» Definition 8. A generic player in U UV will be denoted by q. We will say that q is:

1. essential if ¢ is matched in every mazimum weight matching in G.

2. viable if there is a mazimum weight matching M such that q is matched in M and another,
M’ such that q is not matched in M’.

3. subpar if for every maximum weight matching M in G, q is not matched in M.

» Definition 9. Let y be an imputation in the core. We will say that q gets paid in y if
Yq > 0 and does not get paid otherwise. Furthermore, q is paid sometimes if there is at least
one tmputation in the core under which q gets paid, and it is never paid if it is not paid
under every imputation.

» Theorem 10. For every player g € (UUV):
q is paid sometimes <= q is essential
Theorem 10 is equivalent to the following. For every player ¢ € (U U V):
q is never paid <= ¢ is not essential

Thus core imputations pay only essential players and each of them is paid in some core
imputation. Since we have assumed that the weight of each edge is positive, so is the worth
of the game, and all of it goes to essential players. Hence we get:

» Corollary 11. In the assignment game, the set of essential players is non-empty and in
every core imputation, the entire worth of the game is distributed among essential players;
moreover, each of them is paid in some core imputation.

» Remark 12. Theorem 5 and Corollary 11 are of much consequence.

1. Corollary 11 reveals the following surprising fact: the set of players who are allocated
profits in a core imputation is independent of the set of teams that play.

2. The identification of these players, and the exact manner in which the total profit is
divided among them, follows the negotiating process. In turn, this process identifies
agents who play in all possible maximum weight matchings.

3. Perhaps the most remarkable aspect of Theorem 5 is that each possible outcome of this
very real process is captured by an inanimate object, namely an optimal solution to the
dual, LP (2).

By Corollary 11, core imputations reward only essential players. This raises the following
question: Can’t a non-essential player, say ¢, team up with another player, say p, and secede,
by promising p almost all of the resulting profit? The answer is “No”, because the dual (2)
has the constraint y, + y, > wqp. Therefore, if y, = 0, y, > wgyp, ie., p will not gain by
seceding together with q.

3.3 The second question: Allocations made to teams by core
imputations

» Definition 13. By a mixed doubles team we mean an edge in G; a generic one will be
denoted as e = (u,v). We will say that e is:
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1. essential if e is matched in every mazimum weight matching in G.

2. viable if there is a mazimum weight matching M such that e € M, and another, M’ such
that e ¢ M.

3. subpar if for every mazimum weight matching M in G, e ¢ M.

» Definition 14. Let y be an imputation in the core of the game. We will say that e is fairly
paid in y if yu + yo = we and it is overpaid if y, + Yo > we*. Finally, we will say that e is
always paid fairly if it is fairly paid in every imputation in the core.

» Theorem 15. For every team e € E:

e is always paid fairly <= e is viable or essential

Negating both sides of the implication proved in Theorem 15, we get the following
implication. For every team e € E:

e is subpar <= e is sometimes overpaid

Clearly, this statement is equivalent to the statement proved Theorem 15 and hence
contains no new information. However, it provides a new viewpoint. These two equivalent
statements yield the following assertion, which at first sight seems incongruous with what we
desire from the notion of the core and the just manner in which it allocates profits:

Whereas viable and essential teams are always paid fairly, subpar teams are sometimes
overpaid.

How can the core favor subpar teams over viable and essential teams? An explanation
is provided in the Introduction, namely a subpar team (i, j) gets overpaid because i and j
create worth by playing in competent teams with other players.

Finally, we observe that contrary to Corollary 11, which says that the set of essential
players is non-empty, the set of essential teams may be empty.

3.4 The third question: Degeneracy

Next we use Theorems 10 and 15 to get insights into degeneracy. Clearly, if an assignment
game is non-degenerate, then every team and every player is either always matched or always
unmatched in the set of maximum weight matchings in G, i.e., there are no viable teams
or players. Since viable teams and players arise due to degeneracy, in order to understand
the phenomenon of degeneracy, we need to understand how viable teams and players behave
with respect to core imputations; this is done in the next corollary.

» Corollary 16. In the presence of degeneracy, imputations in the core of an assignment
game treat:

viable players in the same way as subpar players, namely they are never paid.

viable teams in the same way as essential teams, namely they are always fairly paid.

4 The Core of Bipartite b-Matching Games

In this section, we will define two versions of the bipartite b-matching game and we will study
their core imputations; both versions generalize the assignment game.

4 Observe that by the first constraint of the dual LP (2), these are the only possibilities.
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4.1 Definitions and Preliminary Facts

As in the assignment game, let G = (U,V, E), w : E — R4 be the underlying bipartite graph
and edge-weight function. Let function b: UUV — Z give a bound on the number of times
a vertex can be matched. Under the unconstrained bipartite b-matching game, each edge
can be matched multiple number of times and under the constrained bipartite b-matching
game, each edge can be matched at most once. Observe that even in the first version, limits
imposed by b on vertices will impose limits on edges — thus edge (4,j) can be matched at
most min{b;,b;} times.

The worth of a coalition (S, U S,), with S, C U, S, C V, is the weight of a maximum
weight b-matching in the graph G restricted to vertices in (S, US,) only; we will denote this
by p(Sy US,). Whether an edge can be matched at most once or more than once depends
on the version of the problem we are dealing with. p(U U V) is called the worth of the game.
The characteristic function of the game is defined to be p : 2VYY — R, . Definitions 3 and 4,
defining an imputation and the core, carry over unchanged from the assignment game.

The tennis setting, given in the Introduction, provides a vivid description of these two
variants of the b-matching game as well. Let K denote the maximum b-value of a vertex and
assume that the tennis club needs to enter mixed doubles teams into K tennis tournaments.
In the first variant, a team can play in multiple tournaments and in the second version, a
team can play in at most one tournament. In both cases, a player ¢ can play in at most b;
tournaments. The goal of the tennis club is to maximize its profit over all the tournaments
and hence picks a maximum weight b-matching in G. An imputation in the core gives a way
of distributing the profit in such a way that no sub-coalition has an incentive to secede.

Linear program (3) gives the LP-relaxation of the problem of finding a maximum weight
b-matching for the unconstrained version. In this program, variable z;; indicates the extent
to which edge (¢, 7) is picked in the solution; observe that there is no upper bound on the
variables x;; since an edge can be matched any number of times.

max E WijTgj

(i,J)EE
s.t. Z Tij S bz Vi € U,
(i,5)€E (3)
Z Tij S bj V] € V,
(i,5)eE

Tij 2 0 V(Z,]) ek

Taking u; and v; to be the dual variables for the first and second constraints of (3), we
obtain the dual LP:

min Z byu; + Z bjv;

ieU jev
st. u; +v; >wy; Y(i,j) € E, (4)
u; >0 Vi e U,
v; >0 VjieV

Linear program (5) gives the LP-relaxation of the problem of finding a maximum weight
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b-matching for the constrained version. Observe that in this program, variables x;; are upper
bounded by 1, since an edge can be matched at most once.

max E WijT55

(i,9)€E
s.t. Z Tij <b Vie U,
(i,9)€E
: (5)
Z .’Eijgbj VjeV,
(i,9)€E

mljgl V(Za])EEv

zij 20 V(i,j) € E
» Remark 17. In both in LPs (3) and (5), the matrices of coefficients of the constraints are
totally unimodular [8], and therefore both LPs always have integral optimal solutions.

Taking u;, v; and z;; to be the dual variables for the first, second and third constraints
of (5), we obtain the dual LP:

min Z byu; + Z bjUj + Z Zij

i€U JEV (i.5)€E

st. u +vj 4z >wi; V(i,j) € E,
u; >0 Vi e U,
v;>0 VeV,

zij >0 V(i,j)€FE

4.1.1 The Framework of Deng et al. [5]

In this section, we present the framework of Deng et al. [5], which was mentioned in the

Introduction, and point out why it does not apply to the two versions of the b-matching game.

Let T'={1,--- ,n} be the set of n agents of the game. Let w € R7" be an m-dimensional
non-negative real vector specifying the weights of certain objects; in the assignment game,
the objects are edges of the underlying graph. Let A be an n X m matrix with 0/1 entries

th

whose """ row corresponds to agent ¢ € T. Let x be an m-dimensional vector of variables

and K be the n-dimensional vector of all 1s. Assume that the worth of the game is given by
the objective function value of following integer program.

max w-x
st. Az <MW, (7)
x € {0,1}

Moreover, for a sub-coalition, 77 C T assume that its worth is given by the integer
program obtained by replacing A by A’ in (7), where A’ picks the set of rows corresponding
to agents in 7’. The LP-relaxation of (7) is:

max w-x

st. Az <MW, (8)
x>0

13:9
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312 Deng et al. proved that if LP (8) always has an integral optimal solution, then the set of
a3 core imputations of this game is exactly the set of optimal solutions to the dual of LP (8).

514 As stated in Remark 17, the matrices of coefficients of both LPs (3) and (5) are totally
a5 unimodular and therefore these LPs always have integral optimal solutions. However, they
ais  still don’t fall in the above-stated framework because their right-hand-sides are b values of
a7 the vertices and not ¥.

25 4.2 The Core of the Unconstrained Bipartite b-Matching Game

sw  Let I denote an instance of this game and let C'(I) denote its set of core imputations. We
20 will show in Theorem 18 that corresponding to every optimal solution to the dual LP (4),
s1 there is an imputation in C'(I). Let D(I) denote the set of all such core imputations. Since
22 D(I) # (), we get Corollary 19 stating that the core of this game is non-empty. Next, we
»  will give an instance I such that D(I) C C(I), i.e., unlike the assignment game, I has core
3¢ imputations that don’t correspond to optimal solutions to the dual LP.

325 The correspondence between optimal solutions to the dual LP (4) and core imputations
»s in D(I) is as follows. Given an optimal solution (u,v), define the profit allocation to i € U
sz to be a; = b; - u; and that to j € V to be 8; =b; - v;.

s B Theorem 18. The profit-sharing method (o, 8), which corresponds to an optimal solution
29 (u,v) to the dual LP (}), is an imputation in the core of the unconstrained bipartite b-matching
330 game.

sn B Corollary 19. The core of the unconstrained bipartite b-matching game is always non-empty.

s B Remark 20. Observe that the mapping given from optimal solutions to the dual LP (4) to
s core imputations in D(I) is a bijection.

%1

U

Figure 1 The graph for Example 21.

s » Example 21. For the bipartite b-matching game defined by the graph of Figure 1, let the b
a5 values be 2, 1,2, 1 for uy, ug, v1, v9, and let the edge weights be 1, 3, 1 for (u1,v1), (u1,v2), (ug, va).

336 In this section, we will view the game defined in Example 21 as an unconstrained bipartite
s b-matching game and will show that it has a set of core imputations which do not correspond
138 to optimal dual solutions, i.e., they lie in C(I) — D(I). The optimal matching picks edges
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(u1,v1), (u1,v2) once each, for a total profit of 4. The unique optimal dual solution is 1,0, 0, 2
for wy, us,v1,v2, and the corresponding core imputation is 2,0, 0, 2.

Let aq, as, 81, B2 be the profits allocated to wuy,us,v1,vs. The solutions of the system
of linear inequalities (9), for non-negative values of the variables, capture all possible core
imputations, i.e., the set C'(I).

ar+p1 > 2
ap+ B2 >3
ar+ 1+ 52 >4
g+ P2 > 1
a1 +as+ B2 >3

ar +ag+ 1+ P2 =

On solving this system, we find that aq, as, 51, 82 should be 1+a, 0 b, 1+ ¢, where a,b, ¢
are non-negative and satisfy the system (10).

a+b>1
a+c>1 (10)
at+b+c=2

A fourth constraint, b < 1 follows from the last two in this system. The solution
a=1, b=0, ¢ =1 gives the core imputation corresponding to the unique optimal dual
solution; the rest give the remaining core imputations, e.g., the imputation 3,0,0, 1.

For an arbitrary instance I, one can clearly capture all possible core imputations via an
exponential sized system of inequalities of the type >, one corresponding to each coalition
(S, U Sy); its r.h.s. will be p(S, U S,) and its Lh.s. will be the sum of all variables denoting
profits accrued to vertices in this coalition. Note that all the variables of this system will be
constrained to be non-negative and it will have one equality corresponding to the worth of
the grand coalition; the latter is the last equality in system (9).

The following question arises: is there a smaller system which accomplishes this task?
We observe that it suffices to include in the system only those coalitions whose induced
subgraph is connected. This is so because if the induced subgraph for coalition (S, U S,)
has two or more connected components, then the sum of the inequalities for the connected
components yields the inequality for coalition (S, U S,). In particular, if the underlying
graph of instance I is sparse, this may lead to a much smaller system. Observe that the
system (9), for Example 21, follows from this idea.

» Remark 22. Since for the unconstrained bipartite b-matching game, the optimal dual
solutions don’t capture all core imputations, the characterizations established in Theorems
10 and 15 for the assignment game, don’t carry over. However, if one restricts to core
imputations in the set D(I) only, one can see that suitable modifications of these statements
do hold.

5 The Core of the Constrained Bipartite b-Matching Game

Our results for this game are related to, though not identical with, those for the unconstrained
version. In Theorem 23, we will show that corresponding to every optimal solution to the
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dual LP (6), there is a set of core imputations. This theorem yields Corollary 24 stating that
the core of this game is also non-empty. Finally, we will give an instance which has core
imputations that don’t correspond to optimal solutions to the dual LP.

The corresponding to an optimal solution to the dual LP (4), (u,v, z), we define a set
of imputations as follows. For each edge (i,7) define two new variables ¢;; and d;;; both
are constrained to be non-negative. Furthermore, consider all possible ways of splitting z;;
into ¢;; and d;j, ie., z;; = c;j + di;. Observe that is z;; = 0 then z;; = 0 and therefore
cij = dij = 0. Define the profit allocation to 7 € U to be

az:bzuz—i- Z Cij

(i.J)€E

and that to j € V to be
Bj :bj -Uj+dij+ Z d”
(i,j)€E

Taken over all possible ways of splitting all z;;s, this gives a set of imputations.

» Theorem 23. All profit-sharing methods («, 3), which correspond to the optimal solution
(u, v, z) to the dual LP (6), are imputations in the core of the constrained bipartite b-matching
game.

» Corollary 24. The core of the constrained bipartite b-matching game is always non-empty.

In this section, we will view the game defined in Example 21 as a constrained bipartite
b-matching game and will again show that it has a set of core imputations which do not
correspond to optimal dual solutions. The optimal matching picks edges (u1,v1), (u1,v2)
once each, for a total profit of 4. Unlike the unconstrained case, this time, the optimal dual
is not unique. The optimal dual solutions are given by 1,0,0,2 — a, for vertices uy, us, v1, v2,
and 0,a,0 for edges (u1,v1), (u1,vs), (uz,v2), where a € [0,1]. The corresponding core
imputations are 3 — b,0,0,1 + b, for the four vertices u;,us,v1, vy, where b € [0, 1].

As in the unconstrained case, let a1, ao, 81, B2 be the profits allocated to uy, us, v1, ve. This
time, the system of linear inequalities whose solutions capture all possible core imputations
is given by system (9) after replacing the first inequality by

oy + 61 > 1.

This is so because edge (u1,v1) can be matched twice under the the unconstrained bipartite
b-matching game, but only once under the constrained version. As before, non-negativity is
imposed on all these variables. On solving this system, we find that aq, as, 81, 82 should be
1, 0 b, 1+ ¢, where a, b, c are non-negative and satisfy the system (11).

a+b>1
a+c>2 (11)
a+b+c=3

Solutions of this system which do not correspond to dual solutions include 1,0, 0,3 and
0,0,1,3. Observe that neither of these is a core imputation for the unconstrained bipartite
b-matching game. The method given in Section 4.2, for finding a smaller system, holds for
this case as well and so does Remark 22.
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» Remark 25. In the assignment game, core imputations were precisely optimal dual solutions.
On the other hand, in both versions of the bipartite b-matching game, core imputations
are obtained from optimal dual solutions via specific operations. As stated in Remark
20, for the unconstrained version, there is a bijection between optimal dual solutions and
core imputations in D(I). In contrast, for the constrained version, the set of imputations
corresponding to optimal dual solutions may not be disjoint.

Let us illustrate the last point of Remark 25 via Example 21. Consider the two optimal
dual solutions obtained by setting a = 0 and a = 1, namely 1,0, 0, 2, for vertices u1, us, vy, v,
and 0,0,0 for edges (u1,v1), (u1,v2), (u2,v2); and 1,0,0,1, for vertices uq, us,v1,ve, and
0,1,0 for edges (u1,v1), (u1,v2), (uz,v2). Both these optimal duals yield the core imputation
assigning profits of 2, 0,0, 2 for uy, ug, vy, vs.

6 Discussion

Our most important open question is to shed light on the origins of core imputations, for
the two bipartite b-matching games, which do not correspond to optimal dual solutions. Is
there a “mathematical structure” that produces them? A related question is to determine
the complexity of the following question for these two games: Given an imputation for a
game, decide if it belongs to the core. We believe this question should be co-NP-complete.
On the other hand, the following question is clearly in P: Given an imputation for a game I,
decide if it lies in D(I).

As stated in Section 3.1, for the assignment game, Shapley and Shubik were able to
characterize “antipodal” points in the core. An analogous understanding of the core of the
general graph matching games having non-empty core will be desirable.

For the assignment game, Demange, Gale and Sotomayor [4] give an auction-based
procedure to obtain a core imputation; it turns out to be optimal for the side that proposes,
as was the case for the deferred acceptance algorithm of Gale and Shapley [7] for stable
matching. Is there an analogous procedure for obtaining an imputation in the core of the
general graph matching games having non-empty core?
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