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Towards a Practical, Budget-Oblivious Algorithm
for the Adwords Problem under Small Bids

Vijay V. Vazirani &
University of California, Irvine, Irvine, CA, USA

—— Abstract

Motivated by recent insights into the online bipartite matching problem (OBM), our goal was to extend
the optimal algorithm for it, namely RANKING, all the way to the special case of adwords problem,
called SMALL, in which bids are small compared to budgets; the latter has been of considerable
practical significance in ad auctions [20]. The attractive feature of our approach was that it would
yield a budget-oblivious algorithm, i.e., the algorithm would not need to know budgets of advertisers
and therefore could be used in autobidding platforms.

We were successful in obtaining an optimal, budget-oblivious algorithm for SINGLE-VALUED, under
which each advertiser can make bids of one value only. However, our next extension, to SMALL, failed
because of a fundamental reason, namely failure of the No-Surpassing Property. Since the probabilistic
ideas underlying our algorithm are quite substantial, we have stated them formally, after assuming
the No-Surpassing Property, and we leave the open problem of removing this assumption.

With the help of two undergrads, we conducted extensive experiments on our algorithm on randomly
generated instances. Our findings are that the No-Surpassing Property fails less than 2% of the time
and that the performance of our algorithms for SINGLE-VALUED and SMALL are comparable to that of
[20]. If further experiments confirm this, our algorithm may be useful as such in practice, especially
because of its budget-obliviousness.
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| Introduction

% The adwords problem, called ADworps! in this paper, involves matching keyword queries,
» as they arrive online, to advertisers; the latter have daily budget limits and they make bids
w0 for the queries. Its special case when bids are small compared to budgets, called SMALL in
a this paper, captures a key computational issue that arises in the context of ad auctions, for
» instance in Google’s AdWords marketplace. An optimal algorithm for SMALL, achieving

13 a competitive ratio of (1 - %) , was first given in [20]; for the impact of this result in the

s marketplace, see Section 1.2. In this paper, we give a new budget-oblivious online algorithm for
55 SMALL.

ss A budget-oblivious online algorithm does not know the daily budgets of advertisers; however,
s in a run, it knows when the budget of an advertiser is exhausted. Yet its revenue is
;s compared to the optimal revenue generated by an offline algorithm with full knowledge of
» the budget. The importance of a budget-oblivious algorithm lies in its use in autobidding
w platforms [1, 6], which manage the ad campaigns of large advertisers; they dynamically
a adjust bids and budgets over multiple search engines to improve performance. In Open
22 Problem Number 20, Mehta [19] asks for such an algorithm for SMALL.

s Recent insights on the online bipartite matching problem (OBM) encouraged us to seek
s such an algorithm. A simple optimal algorithm, called RANKING, achieving a competitive
s ratio of (1 — %) , was given in [17] for OBM. However, the analysis of RANKING given in [17]
s was difficult to comprehend. A sequence of papers has finally led to a simple and elegant
« analysis, see Section 1.1. The simplicity of RANKING is particularly attractive; moreover, it
s has become the paradigm-setting algorithmic idea in the area of online and matching-based
» market design [8].

s Ideas underlying the new proof of OBM enabled us to generalize RANKING all the way to
si an algorithm for SMALL, while retaining the simplicity of the RANKING. As a result of this
2 simplicity, our algorithm has better properties than [20]; in particular, it is budget-oblivious.
53 A detailed discussion of its running time is given below. A budget-oblivious algorithm for
s« SMALL, having a competitive ratio of 0.522? was recently obtained by Udwani [21], using
s the idea of an LP-free analysis, which involves writing appropriate linear inequalities to
ss compare the online algorithm with the offline optimal algorithm.

52 At the outset of this work, extending RANKING directly to SMALL seemed an uphill task.
ss  Therefore we attempted an intermediate problem first, namely SINGLE-VALUED, in which
5o each advertiser can make bids of one value only, although the value may be different for
o different advertisers. We note that [2] had already obtained an optimal online algorithm
s for SINGLE-VALUED by reducing it to the vertex weighted online matching problem, see
e Section 1.1 for details. As explained in Section 1.3, in order to develop tools for attacking
&3 SMALL, we needed to solve SINGLE-VALUED directly, and not resort to this reduction.

e+ Our algorithm for SINGLE-VALUED is optimal, and it is also budget-oblivious. Furthermore,
s our algorithm uses fewer random bits than the approach of [2]; see Section 1.1 for a detailed
s comparison. We note that in contemporary® and independent work, Albers and Schubert

1 For formal statements of problems studied in this paper, see Section 2
2 Note that the greedy algorithm, which is clearly budget-oblivious, achieves a competitive ratio of 0.5.
3 Our paper was first posted on arXiv on July 22, 2021 [22].
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[3] obtained an identical result for SINGLE-VALUED; their technique is different and involves
formulating a configuration LP and conducting a primal-dual analysis. Our technical ideas
are described in Section 1.3.

Our analysis of SINGLE-VALUED involved new ideas from two domains, namely probability
theory and combinatorics, with the former playing a dominant role and the latter yielding
a proof of a condition called the No-Surpassing Property, see Property 11. Equipped with
these ideas, we next attempted an extension from RANKING to SMALL. Although we met
with success in extending the more difficult, probabilistic part, of the argument, we found
a counter-example to the combinatorial part, showing that the No-Surpassing Property
does not hold for SMALL.

In order to make the no-surpassing property fail, we had to intricately “doctored up” the
instance of SMALL. This raised the question of experimentally determining how often this
property fails in typical instances and how it affects the performance of our algorithm;
for the latter, we compared it to [20]. As can be seen in the four Tables in Section A.5,
the property fails rarely, for less than 2% of the edges (i, ), and the performance of our
algorithms for SINGLE-VALUED and SMALL are comparable with that of the MSVV Algorithm.
For this reason, and because of its budget-obliviousness, the algorithm may be useful as
such in practice. Clearly, it will be good to obtain further experimental confirm on varied
types of instances.

Since the ideas underlying our algorithm for SMALL, and the probabilistic part of its proof,
are quite substantial, we have stated them formally, after assuming the No-Surpassing
Property, see Section A.2. Under this assumption, we prove a competitive ratio of (1 — %)
for our algorithm. The problem of obtaining a tight unconditional competitive ratio of our
algorithm is an important one and has received much attention over the last two years,
ever since the appearance of this paper on arXiv. Critical insights into this open problem
are provided by the following results: first, Udwani [21] gave an example to show that the
unconditional competitive ratio of our algorithm is strictly less than (1 — 1/e). Next, Liang
et al. [18] showed that the unconditional competitive ratio is less than 0.624; in contrast,
(1—1/e) ~ 0.632.

» Remark 1. The objective of all problems studied in this paper is to maximize the total
revenue accrued by the online algorithm. In economics, such a solution is referred to as
efficient, since the amount bid by an advertiser is indicative of how useful the query is to it,
and hence to the economy.

1.1 Related Works

OBM occupies a central place not only in online algorithms but also in matching-based
market design, see details in Section 1.2. The analysis of RANKING given in [17] was con-
sidered “difficult” and it also had an error. Over the years, several researchers contributed
valuable ideas to simplifying its proof. The first simplifications, in [11, 4], got the ball
rolling, setting the stage for the substantial simplification given in [7], using a randomized
primal-dual approach. [7] introduced the idea of splitting the contribution of each matched
edge into primal and dual contributions and lower-bounding each part separately. Their
method for defining prices p; of goods, using randomization, was used by subsequent
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o papers, including this one?.

uo Interestingly enough, the next simplification involved removing the scaffolding of LP-
u duality and casting the proof in purely probabilistic terms®, using notions from economics
u2  to split the contribution of each matched edge into the contributions of the buyer and the
us  seller. This elegant analysis was given by [9]. We note that when we move to generalizations
us  of OBM, even this economic interpretation needs to be dropped, see Remark 4. Building
us on these works, and incorporating a further simplification relating to the No-Surpassing
us Property for OBM, a “textbook quality” proof was recently given in [23].

w7 An important generalization of OBM is online b-matching. This problem is a special case
us of ADWORDs in which the budget of each advertiser is $b and the bids are 0/1. [16] gave a
us simple optimal online algorithm, called BALANCE, for this problem. BALANCE awards
1o the next query to the interested bidder who has been matched least number of times so far.

1 [16] showed that as b tends to infinity, the competitive ratio of BALANCE tends to (1 - %)

12 Observe that b-matching is a special case of SMALL, if b is large. Indeed, MSVV Algorithm
s was obtained by extending BALANCE? as follows: [20] first gave a simpler proof of the
s competitive ratio of BALANCE using the notion of a factor-revealing LP [15]. Then they gave
s the notion of a tradeoff-revealing LP, which yielded an algorithm achieving a competitive

s ratio of (1 - %) [20] also proved that this is optimal for b-matching, and hence SmALL,

w7 by proving that no randomized algorithm can achieve a better ratio for online b-matching;
s previously, [16] had shown a similar result for deterministic algorithms.

1 The MSVV Algorithm is simple and operates as follows. The effective bid of each bidder j
w  for a query is its bid multiplied by (1 — e%i/Bi), where Bj and L; are the total budget and
1 the leftover budget of bidder j, respectively; the query is matched to the bidder whose
12 effective bid is highest. As a result, the MSVV Algorithm needs to know the total budget
1 of each bidder. Following [20], a second optimal online algorithm for SMALL was given in
1 [5], using a primal-dual approach.

s Another relevant generalization of OBM is online vertex weighted matching, in which the
us  offline vertices have weights and the objective is to maximize the weight of the matched
w vertices. [2] extended RANKING to obtain an optimal online algorithm for this problem.
s Clearly, SINGLE-VALUED is intermediate between ADWORDs and online vertex weighted
1o matching. [2] gave an optimal online algorithm for SINGLE-VALUED by reducing it to online
uo vertex weighted matching. This involved creating k; copies of each advertiser j. As a result,
w1 their algorithm needs to use ):je A k]- random numbers, where A is the set of advertisers.
w2 On the other hand, our algorithm, and that of [3], needs to use only |A| numbers.

s ADWORDS is a notoriously difficult problem, partly due to its inherent structural difficulties,
1 which are described in Section A.1. For ADWORDSs, the greedy algorithm, which matches
us each query to the highest bidder, achieves a competitive ratio of 1/2. Until recently, that
us was the best possible. In [13] a marginally improved algorithm, with a ratio of 0.5016, was

4 For a succinct proof of optimality of the underlying function, e*~!, see Section 2.1.1 in [12].

5 Even though there is no overt use of LP-duality in the proof of [9], it is unclear if this proof could have
been obtained directly, without going the LP-duality-route.

6 Tt is worth recalling that [20] had first attempted extending OBM to SMALL; however, in the absence of
new insights into OBM, this did not go very far.
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given. It is important to point out that this 60-page paper was a tour-de-force, drawing on
a diverse collection of ideas — a testament to the difficulty of this problem.

In the decade following the conference version (FOCS 2005) of [20], search engine companies
generously invested in research on models derived from OBM and adwords. The reason
was two-fold: the substantial impact of [20] and the emergence of a rich collection of digital
ad tools. It will be impossible to do justice to this substantial body of work, involving both
algorithmic and game-theoretic ideas; for a start, see the surveys [19, 12].

1.2 Significance and Practical Impact

Google’s AdWords marketplace generates multi-billion dollar revenues annually and the
current annual worldwide spending on digital advertising is almost half a trillion dollars.
These revenues of Google and other Internet services companies enable them to offer
crucial services, such as search, email, videos, news, apps, maps etc. for free — services that
have virtually transformed our lives.

We note that SMALL is the most relevant case of adwords for the search ads marketplace e.g.,
see [6]. A remarkable feature of Google, and other search engines, is the speed with which
they are able to show search results, often in milliseconds. In order to show ads at the
same speed, together with search results, the solution for SMALL needed to be minimalistic
in its use of computing power, memory and communication.

The MSVV Algorithm satisfied these criteria and therefore had substantial impact in this
marketplace. Furthermore, the idea underlying their algorithm was extracted into a simple
heuristic, called bid scaling, which uses even less computation and is widely used by search
engine companies today. As mentioned above, our Conditional Algorithm for SMALL is
even more elementary and is budget-oblivious.

It will be useful to view the AdWords marketplace in the context of a bigger revolution,
namely the advent of the Internet and mobile computing, and the consequent resurgence
of the area of matching-based market design. The birth of this area goes back to the
seminal 1962 paper of Gale and Shapley on stable matching [10]. Over the decades, this
area became known for its highly successful applications, having economic as well as
sociological impact. These included matching medical interns to hospitals, students to
schools in large cities, and kidney exchange.

The resurgence led to a host of highly innovative and impactful applications. Besides the
AdWords marketplace, which matches queries to advertisers, these include Uber, matching
drivers to riders; Upwork, matching employers to workers; and Tinder, matching people to
each other, see [14, 8] for more details.

A successful launch of such markets calls for economic and game-theoretic insights, together
with algorithmic ideas. The Gale-Shapley Deferred Acceptance Algorithm and its follow-up
works provided the algorithmic backbone for the “first life” of matching-based market
design. The algorithm RANKING has become the paradigm-setting algorithmic idea in
the “second life” of this area [8]. Interestingly enough, this result was obtained in the
pre-Internet days, over thirty years ago.
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s 1.3  Technical ldeas

e Our extension from RANKING to SMALL needs to go via ADwWORDs. It turns out that
s ADWORDS suffers from an inherent structural difficulty, see Section A.1. We temporarily
wo finesse this difficulty by using the idea of “fake” money. The expected revenue of our online
o algorithm for ADWORDS is at least (1 — 1/¢) fraction of the optimal offline revenue; however,
12 this total revenue consists of real as well as fake money. We provide an upper-bound on the
;s fake money in the worst case, and this suffices to show that, asymptotically, the fake money
ws used by SMALL, is negligible. Determining the true competitive ratio of our algorithm for
s ADWORDS is left as an interesting and important open problem, see Section 4.

s As described in Section 1.1, SINGLE-VALUED can be reduced to online vertex weighted
17 matching, by making k]- copies of each advertiser j; however, this reduction does not work
s for ADWORDS. The reason is that the manner in which budget B; of bidder j gets partitioned
e  into bids is not predictable in the latter problem; it depends on the queries, their order of
20 arrival and the randomization executed in a run of the algorithm. Therefore, in order to
21 build techniques to attack AbwoRrps, we will first need to solve SINGLE-VALUED without
22 reducing it to online vertex weighted matching.

2:  This is done in Algorithm 1. Almost all of our new ideas, on the probabilistic front, needed
24 to attack SMALL were obtained in the process analyzing this algorithm. First, since vertex j
25 is not split into k; copies, we cannot talk about the contribution of edges anymore. Even
25 worse, we don’t have individual vertices for keeping track of the revenue accrued from each
27 match, as per the scheme of [9]. Our algorithm gets around this difficulty by accumulating
2¢  revenue in the same “account” each time bidder j gets matched. The corresponding random
200 Vvariable, r i is called the total revenue of bidder j, for want of a better name, see Remark 4.
20 Lower bounding [E[r;] is much more tricky than lower bounding the revenue of a good in
an - OBM, since it involves “teasing apart” the kj accumulations made into this account; this is
22 done in Lemma 14.

xs  The key fact needed in the analysis of RANKING is that for each edge e = (i,]) in the
xs  underlying graph, its expected contribution to the matching produced is at least (1 —1/e).
as  For this purpose, the random variable, u,, called threshold, is defined in [23].

z6  For analyzing SINGLE-VALUED, a replacement is needed for this lemma. For this purpose,
27 we give the notion of a j-star, denoted X;, which consists of bidder j together with edges to
a5 k; of its neighbors in G, see Definition 10. The contribution of j-star X, is denoted by E[X;],
20 which is also defined in Definition 10. Finally, using the lower bound on E[r;], Lemma 14
20 gives a lower E[X;] for every j-star, X;. This lemma crucially uses a new random variable,
21 called truncated threshold, see Definition 9.

22 Next, we explain the reason for truncation in the definition of this random variable.
23 Consider bidder j and a query i; that is desired by j. Observe that in run R;’, query i
24 can get a bid as large as B- (1 — %), where B = maxge 4 {by }, whereas the largest bid that
»s j can make to ij is b]- -(1- %) ; in general, b]- may be smaller than B. Now, i; contributes
25 revenue to r; only if ; is matched to j in run R, an event which will definitely not happen
21 if ug > by (1— 1). Therefore, whenever u,, € [b;- (1— 1), B-(1-1)], the contribution
25 tor; is zero. By truncating u,, to b; - (1 — %), we have effectively changed the probability

7 Run Rjis defined in Definition 6.
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density function of u,, so that the probability of the event u,, € [b;- (1—1),B-(1—1)]is
now concentrated at the event u,, = b; - (1 - %) From the viewpoint of lower bounding
the revenue accrued in r;, the two probability density functions are equivalent since the
revenue accrued is zero under both these events. On the other hand, the truncated random
variable enables us to apply the law of total expectation, in the proof of Lemma 14, in the

same way as it was done in [23], without introducing more difficulties.

Finally, in order to establish the no-surpassing property for SINGLE-VALUED, we give the
necessary combinatorial facts in Lemma 7 and Corollary 8. These facts are enhanced
versions of the facts needed to prove the no-surpassing property for RANKING in [23].

2 Preliminaries

Online Bipartite Matching (OBM): Let B be a set of n buyers and S a set of n goods. A
bipartite graph G = (B, S, E) is specified on vertex sets B and S, and edge set E, where for
i€ B, jes, (i,j) € E if and only if buyer i likes good j. G is assumed to have a perfect
matching and therefore each buyer can be given a unique good she likes. Graph G is
revealed in the following manner. The n goods are known up-front. On the other hand, the
buyers arrive one at a time, and when buyer 7 arrives, the edges incident at i are revealed.

We are required to design an online algorithm A in the following sense. At the moment
a buyer i arrives, the algorithm needs to match i to one of its unmatched neighbors, if
any; if all of i’s neighbors are matched, i remains unmatched. The difficulty is that the
algorithm does not “know” the edges incident at buyers which will arrive in the future and
yet the size of the matching produced by the algorithm will be compared to the best off-line
matching; the latter of course is a perfect matching. The formal measure for the algorithm
is defined in Section 2.1.

Adwords Problem (ADwWORDS): Let A be a set of m advertisers, also called bidders, and Q
be a set of n queries. A bipartite graph G = (Q, A, E) is specified on vertex sets Q and A,
and edge set E, where fori € Q and j € A, (i,j) € E if and only if bidder j is interested in
query i. Each query i needs to be matched® to at most one bidder who is interested in it.
For each edge (i, ), bidder j knows his bid for i, denoted by bid(i,j) € Z,. Each bidder
also has a budget B; € Z.. which satisfies B; > bid(i, j), for each edge (i, ) incident at j.

Graph G is revealed in the following manner. The m bidders are known up-front and the
queries arrive one at a time. When query i arrives, the edges incident at i are revealed,
together with the bids associated with these edges. If i gets matched to j, then the matched
edge (i,]) is assigned a weight of bid(7, j). The constraint on j is that the total weight of
matched edges incident at it be at most B;. The objective is to maximize the total weight of
all matched edges at all bidders.

Adwords under Single-Valued Bidders (SINGLE-VALUED): SINGLE-VALUED is a special case
of ADwoRDs in which each bidder j will make bids of a single value, b; € Z., for the
queries he is interested in. If i accepts j’s bid, then i will be matched to j and the weight of
this matched edge will be b;. Corresponding to each bidder j, we are also given k; € Z,
the maximum number of times j can be matched to queries. The objective is to maximize

8 Clearly, this is not a matching in the usual sense, since a bidder may be matched to several queries.
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20 the total weight of matched edges. Observe that the matching M found in G is a b-matching
20 with the b-value of each query i being 1 and of advertiser j being k;.

on Adwords under Small Bids (SMALL): SMALL is a special case of ADwORDs in which for
a2 each bidder j, each bid of j is small compared to its budget. Formally, we will capture this
a3 condition by imposing the following constraint. For a valid instance I of SMALL, define

{max(i,j)eE {bld(l,]) — 1} } .

B;

2 u(l) = rjrg‘x

x5 Then we require that

276 lim }l([) = 0,

n(I)—oo

z7 where n(I) denotes the number of queries in instance I.

s 2.1 The competitive ratio of online algorithms

2z We will define the notion of competitive ratio of a randomized online algorithm in the
20 context of OBM.

21 » Definition 2. Let G = (B, S, E) be a bipartite graph as specified above. The competitive ratio of
22 a randomized algorithm A for OBM is defined to be:
263 c(A)= min min w,

G=(B,S,E) p(B) n
2 where E[A(G, p(B))] is the expected size of matching produced by A; the expectation is over the
s random bits used by A. We may assume that the worst case graph and the order of arrival of buyers,
26 given by p(B), are chosen by an adversary who knows the algorithm. It is important to note that the
27 algorithm is provided random bits after the adversary makes its choices.

s P Remark 3. For each problem studied in this paper, we will assume that the offline
20 mMmatching is complete. It is easy to extend the arguments, without changing the competitive
20 ratio, in case the offline matching is not complete.

w3 Algorithm for Single-Valued

22 Algorithm 1, which will be denoted by .A;, is an online algorithm for SINGLE-VALUED.
23 Before execution of Step (1) of Aj, the order of arrival of queries, say p(B), is fixed by the
2¢  adversary. We will define several random variables whose purpose will be quite similar to
»s that in RANKING and they will be given similar names as well; however, their function is
26 not as closely tied to these economics-motivated names as in RANKING, see also Remark 4.
2v Three of these random variables are the price p; and total revenue r; of each bidder j € A,
28 and the utility u; of each query i € Q.

20 We now describe how values are assigned to these random variables in a run of Algorithm
w0 1. In Step (1), for each bidder j, A; picks a price p; € [%, 1] via the specified randomized
s process. Furthermore, the revenue r; and degree d; of bidder j are both initialized to zero,
w2 the latter represents the number of times j has been matched. During the run of 4;, j will
»3 get matched to at most k; queries; each match will add b; to the total revenue generated
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by the algorithm. b; is broken into a revenue and a utility component, with the former
being added to r; and the latter forming u;. At the end of A;, r; will contain all the revenue
accrued by j.

In Step (2), on the arrival of query i, we will say that bidder j is available if (i,j) € E and
dj < k;. At this point, for each available bidder j, the effective bid of j for i is defined to
be ebid(j) = b; - (1 — p;); clearly, ebid(j) € [0,b; - (1 - %)] Query i accepts the bidder
whose effective bid is the largest. If there are no bids, matching M remains unchanged.
If i accepts j’s bid, then edge (i, ) is added to matching M and the weight of this edge is
set to b]-. Furthermore, the utility of i, u;, is defined to be ebid(j) and the revenue ri of jis
incremented by b; - p;. Once all queries are processed, matching M and its weight W are
output.

» Remark 4. [9] had given the economics-based names of random variables for their proof
of RANKING. Although we have used the same names for similar random variables in
Sections 3 and A.2, for SINGLE-VALUED and ADWORDS, the reader should not attribute an

economic interpretation to these the names’.

3.1 Analysis of Algorithm 1

For the analysis of Algorithm .4;, we will use the random variables W, pitj and u; defined
above; their values are fixed during the execution of Aj;. In addition, corresponding to each
edge e = (i,j) € E, in Definition 9, we will introduce a new random variable, 1., which
will play a central role.

» Lemma 5.

Proof. For each edge (i,j) € M, its contribution to W is b;. Furthermore, the sum of u;
and the contribution of (i, j) to r; is also b;. This gives the first equality below. The second
equality follows from linearity of expectation.

n m

Y ui + i"j] :i]E[ui] + ZIE[V]']/

i=1 j=1 i j

E[W] =E

» Definition 6. We will define several runs of Algorithm 1. In these runs, we will assume Step
(1) is executed once. We next define several ways of executing Step (2). Let R denote the run of
Step (2) on the entire graph G. Corresponding to each bidder j € A, let G; denote graph G with
bidder j removed. Define R; to be the run of Step (2) on graph G;.

9 We failed to come up with more meaningful names for these random variables and therefore have stuck
to the old names.
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» Algorithm 1. (A;: Algorithm for Single-Valued)

1. Initialization: M « @.
Vj € A, do:
a. Pick w; uniformly from [0,1] and set price p; < eVt

2. Query arrival: When query i arrives, do:
a. Vje Ast. (i,j) € Eand d; < k; do:
ii. Offer effective bid of ebid(j) to i.
b. Query i accepts the bidder whose effective bid is the largest.
(If there are no bids, matching M remains unchanged.)
If i accepts j’s bid, then do:
i. Set utility: u; < bj- (1—p;).
ii. Update revenue: rj <—rj+b;-p;.
iii. Update degree: d; < d;+ 1.
iv. Update matching: M < MU (i,]). Define the weight of (i, j) to be b;.
c. Output: Output matching M and its total weight W.

¢ Lemma 7 and Corollary 8 given below establish a relationship between the available bidders
»s for a query i in the two runs R and R;. Note that bidders are available in multiplicity and
;s therefore we will have to use the notion of a multiset rather than a set, as was done in [23].

a7 A multiset contains elements with multiplicity. Let A and B be two multisets over n elements
s {1,2,...n}, and let a; > 0 and b; > 0 denote the multiplicities of element i in A and B,
a0 respectively. We will say that A C B if for each i, a; < b;, and A = B if for each i, a; = b;.
a0 We will say that i € A if a; > 1. We will define A N B to be the multiset containing each
s element i exactly min{a;, b;} times, and A — B to be the multiset containing each element i
s exactly max{a; — b;,0} times.

s As before, let us renumber the queries so their order of arrival under p(B) is1,2,...n. Let
u  T(i) and T;(i) denote the multisets of available bidders at the time of arrival of query i (i.e.,
us  just before the query i gets matched) in runs R and R;, respectively. In particular, T(1)
us  will contain k; copies of I for each bidder I and Tj(1) will contain k; copies of I for each
% bidder [, other than j. Similarly, let S(i) and S;(i) denote the projections of T(i) and T;(i)
us on the neighbors of i in G and G;j, respectively.

a0 We have assumed that Step (1) of Algorithm 1 has already been executed and a price py has
10 been assigned to each bidder k. The effective bid of bidder k is ebid (k) = by - (1 — pi). With
s probability 1, the effective bids of all bidders are distinct. Let F; be the multiset containing
s k; copies of I for each | € A such that b; - (1 —p;) > b;j- (1 — p;). Similarly, let F, be the
% multiset containing k; copies of | for each | € A such that and b; - (1 — p;) < b;- (1 — pj).
s« Observe that j is not contained in either multiset.

s B Lemma 7. Foreachi, 1 <i < n, the following hold:
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Proof. 1). Clearly, in both runs, R and R, any query having an available bidder in F; will
match to the most profitable one of these, without even considering the rest of the bidders.
Since j ¢ Fy, the two runs behave in an identical manner on the set Fj, thereby proving the
first statement.

2). The proof is by induction on i. The base case is trivially true because (T;(1) N F) =
(T(1) N E,), since j ¢ F,. Assume that the statement is true for i = k and let us prove it
for i = k+ 1. By the first statement, we need to consider only the case that there are no
available bidders for the k' query in F; in the runs R and R;. Assume that in run R, this
query gets matched to bidder /; if it remains unmatched, we will take I to be null. Clearly,
is the most profitable bidder it is incident to in T]-(k). Therefore, the most profitable bidder
it is incident to in run R is the best of I, the most profitable bidder in T(k) — Tj(k), and j,
in case it is available. In each of these cases, the induction step holds. |

In the corollary below, the first two statements follow from Lemma 7 and the third statement
follows from the first two statements.

» Corollary 8. Foreachi, 1 <i < n, the following hold:
1. (S;(i))NF) = (S(i) N Fy).

2. (5;()) NE) C (S() N )

3. Sj(i) € S(i).

Next we define a new random variable, u,, for each edge e = (i,j) € E. This is called the
truncated threshold for edge e and is given in Definition 9. It is critically used in the proofs
of Lemmas 13 and 14.

» Definition 9. Let e = (i,]) € E be an arbitrary edge in G. Define random variable, u,, called
the truncated threshold for edge e, to be u, = min{ut;, b; - (1 - %) }, where ut; is the utility of
query i in run R;.

» Definition 10. Let j € A. Henceforth, we will denote k; by k in order to avoid triple subscripts.
Let iy, ..., i be queries such that for 1 <1<k, (i}, j) € E. Then (j; iy, ...,i) is called a j-star.
Let X; denote this j-star. The contribution of X; to E[W] is E[rj] + Y5_; E[u;), and it will be
denote by E[X;].

Corresponding to j-star X; = (j; iy,...,i), denote by ¢; the edge (i;,j) € E, for 1 <1 <'k.
Furthermore, let u,, denote the truncated threshold random variable corresponding to e;.

» Property 11. (No-Surpassing for Single-Valued) Assume that Step 1 of Algorithm 1 has
been executed and a price py has been assigned to each advertiser k. Suppose that the effective bid
which query i gets in run R is less than b; - (1 — p;); the latter is clearly the effective bid which j
makes to i in run R. Then, in run R, no bid to i will surpass ebid(j) = b; - (1 - p;).

XX:11
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sz Lemma 12. The No-Surpassing Property holds for SINGLE-VALUED.

»  Proof. Suppose the bid of j, namely b; - (1 — p;), is better than the best bid that buyer i
0 gets in run R;. If so, i gets no bid from F; in Rj; observe that they are all higher than
0 bj- (1 — pj). Now, by the first part of Corollary 8, i gets no bid from F; in run R as well,
w6 1., in run R, no bid to i will surpass bj (1= p]-). <

w  » Lemma 13. Corresponding to j-star X; = (j; i1,...,ix), the following hold.

398 For 1 < l < k, ”il > uel.

s Proof. By the third statement of Corollary 8, i; has more options in run R as compared
w0 to run R;. Furthermore, the truncation of the random variable only aids the inequality
w1 needed and therefore Uj, 2> Ug. <

w2 Our next goal is to lower bound the contribution of an arbitrary j-star, [E[X;], which in turn
w3 involves lower bounding IE[r;]. The latter crucially uses the fact that p; is independent of
w0+ U This follows from the fact that u,, is determined by run R; on graph G;, which does
ws not contain vertex j.

ws  » Lemma 14. Letj € Aand let X; = (j; i1,...,i;) be a j-star. Then
E[X] > k-b-(1-2
407 il 2 j R

ws  Proof. We will first lower bound E[r;]. Let fu(b; - z1,...b; - z;) be the joint probability
ws  density function of (ue,,...u,,); clearly, fu(b]- “z1,...bj zx) can be non-zero only if z; €
o [0,1— %], for 1 < < k. By the law of total expectation,

411 ]E[T’]] = A )IE[TJ |uel :b]"Zl,...,ugk:bj'Zk}'fu(bj'zl,...b]"zk) le...de,
SN2 s2k

a2 where the integral is over z; € [0, (1 — %)}, for1 <I <k

a3 For lower-bounding the conditional expectation in this integral, let w; € [0,1] be s.t.
as el =1—z,for1 <<k Forx € [0,1], define the set S(x) = {I | 1 <1 < kand x < w;}.

as > Claim 15. Conditioned on (ue, = bj-z1,... Uy =bj- zy), if pj = e*~1, then the degree
s of j at the end of Algorithm A is at least [S(x)], i.e., the contribution to 7; in this run was
417 ijpj|S(X)|

w5 Proof. Suppose | € S(x), then x < w;. In run R;, the maximum effective bid that i
a0 received has value b; - z;. In run R, if at the arrival of query i, j is already fully matched,
20 the contribution to r; in this run was k- b; - p; and the claim is obviously true. If not,
o1 then since x < wy, bj- (1 — pj) > b; - z;. The crux of the matter is that by Lemma 12, the
22 No-Surpassing Property holds. Therefore, query i; will receive its largest effective bid from
23 ], i will get matched to it, and r; will be incremented by b; - p;. The claim follows. <
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For 1 <1 < k, define indicator functions [; : [0,1] — {0,1} as follows.

1 ifx<w,
L(x) = .
0 otherwise.

Clearly, |S(x)| = Y5, I;(x). By Claim 15,

1
Elr; | ey = bj-z1,...,Ue, = bj- 2] > b]'-/o 1S(x)|-e* ! dx

L x—1 d ! x—1 4 oI x—1
:b]~/OI;Il(x)~e dx:bj.lZ:/o I(x)-e dx:bj-Z/O e dx

=1 1=1

. w;—1 1 1
:b]lzzl e _E :b]z 1_E_Zl .

=1

Since I;(x) = 0 for x € [wy, 1], we get that fol I(x)-e1dx = [["e*"! dx; this fact has
been used above. Therefore,

Elrj] = /( )IE[VJ | ey =bj-z1,... e, = bj-z] - fulbj-z1,...bj - z¢) dz1 ... dzg
Z1se-+/2k
k 1
2b]/ Z(l_—Zl>-fu(b]‘-zl,...l’]]‘~zk)le...de
(Z],...,Zk) e

= k-b;- <1_1> —lélE[ue,],

where both integrals are over z; € [0, (1 — %)], for1 <[l <k.

By Lemma 13, E[u; ] > E[u,,], for 1 <1 < k. Hence we get

» Lemma 16.

XX:13
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s Proof. By definition of the random variables,

m

iui + ilT]] :i]E[ui} + ZIE[T]],
1= 1= 1

441 ]E[W] - IE

]

w2 where the first equality follows from the fact that if (i,j) € M then W is incremented by b;
«3 and u; +r; = b;. The second equality follows from linearity of expectation. <

«s  » Theorem 17. The competitive ratio of Algorithm A, is at least 1 — 1. Furthermore, it is

e
ws  budget-oblivious.

ws  Proof. Let P denote a maximum weight b-matching in G, computed in an offline manner.
w7 By the assumption made in Remark 3, its weight is

m
448 ZU(P) = Zk] . b]
j=1

«s  Let T; denote the j-star, under P, corresponding to each j € A. The expected weight of
s matching produced by Aj is

m m

n m 1 1
EW] = ) E[u] + ) E[r] = ) E[Tj] > ];bj.kj (1—6) = (1_e> -w(P),

i=1 j=1 j=1

sz where the first equality uses Lemma 16, the second follows from linearity of expectation
»s3  and the inequality follows from Lemma 14.

s« Finally, Algorithm A; is budget-oblivious because it does not need to know k; for bidders
s J; it only needs to know during a run whether the k; bids available to bidder j have been
s exhausted. The theorem follows. <

w4 Discussion

sz The open question mentioned in the Introduction, of removing the assumption of no-
0 surpassing property from our proof of Algorithm 2 for SMALL, deserves special attention
w0 because of its potential impact in the ad auctions marketplace. Another question is to place
w1 an upper bound on the expected fake money used, E {Wf] , in Algorithm 2 and strengthen
w2 Lemma 25 to obtain a good bound on the competitive ratio of this algorithm for ADwoRrDSs.
w3 This seems a promising avenue for improving the bound for Abworps from 0.5016, given
wa 1IN [13]
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= A Algorithm for Small, After Assuming the No-Surpassing Property

s2 Two new difficulties arise for the problem Apworps The first is the inherent structural
ss  difficulty described in Section A.1. Second, since bidders can have different bids for
s« different queries, the no-surpassing property does not hold anymore, see Example 18.

s » Example 18. Assume that in the given instance for ADWORDS, j, j’ are two of the bidders,
s and 1,...,k are k of the queries, where k is a large number. Assume bid(l,j) =afor1 <[ <
s kand bid(l,j') = a — 1 for 1 <1 < k — 1. Further, assume that bid(k,j’) = (« — 1) - (k —1).
s Let the budgets be Bj = a-kand By = (« —1) - (k — 1).

= Now consider a run in which p; = py = p. Assume that in run R]'w, the best effective
s bidtol,...,k—1 comes from j/, and in run Rj, the best effective bid to 1,...,k — 1 comes
=1 from j. In run R, the budget of ;' is exhausted when k arrives and assume that k does
s»  not get any bids, making u, = 0 for e = (k,j). Now in run R, ebid(k,j) = a(1 — p) and
s ebid(k,j') = (a—1) - (k—1) - (1 — p). Thus, even though ebid(k, j) > u,, k will be matched
s to j' and not j. Clearly, this phenomenon will hold for all runs in which pj is not too much
s larger than p;.

s For the rest of this section, we will make this assumption:

s7 - Assumption of No-Surpassing for Adwords: The following holds:

sz Assume that Step 1 of Algorithm 2 has been executed and a price p; has been assigned to
s» each advertiser k. Suppose that the effective bid which query i gets in run R is less than
o bid(i, j) - (1 — p;); the latter is clearly the effective bid which j makes to query i in run R.
1 Then, in run R, no bid to i will surpass ebid(i, j) = bid(i,j) - (1 — p;).

s Section A.2 presents an algorithm for ADwoRDs, using fake money; the above-stated
s3  assumption is used in its analysis, in particular in the proof of Claim 24. Section A.4
s« shows that by upper bounding the fake money used in the worst case, we get an optimal
ss algorithm for SMALL, again based on the above-stated assumption.

s« A.1 Structural Difficulties in Adwords

sevTo describe the structural difficulties in ADwoORDs, we provide three instances in Example
s« 19. In order to obtain a completely unconditional result, we would need to adopt the

10Run R, is defined in Definition 6.
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» Algorithm 2. (A;: Algorithm for Adwords)

1. Initialization: M + @, W < 0 and Wf 0
Vj € A, do:
a. Pick w; uniformly from [0,1] and set price p; < e"i

-1

2. Query arrival: When query i arrives, do:
a. Vj€ Ast. (i,j) € Eand L; > 0 do:
i. ebid(i,j) < bid(i,j) - (1 - p;).
ii. Offer effective bid of ebid (i, j) to i.
b. Query i accepts the bidder whose effective bid is the largest.
(If there are no bids, matching M remains unchanged.)
If i accepts j’s bid, then do:
i. Set utility: u; < bid(i,) - (1 - p)).
ii. Update revenue: r; < rj +bid(i,j) - p;.
iii. Update matching: M <— MU (i, j).
iv. Update weight: W < W + min{Lj,bid(i,j)} and
Wy < Wr +max{0, bid(i, /) — L;}.
v. Update Lj: Lj < L; —min{L;, bld(z i}
3. Output: Output matchmg M, real money spent W, and fake money spent Wy.

following convention: assume bidder j has L; money leftover and impression i just arrived.
Assume that j’s bid for i is bid(i, j). If bid(i, j) > L;, then j should not be allowed to bid for
i, since j has insufficient money.

Under this convention, it is easy to see that even a randomized algorithm will accrue only
$W expected revenue on at least one of the instances given in Example 19, provided it is
greedy, i.e., if a match is possible, it does not rescind this possibility; the latter condition is
a simple way of ensuring that the algorithm is “fine tuned” for a particular type of example.
Note that the optimal for each instance is $2W.

» Example 19. Let W € Z be a large number. We define three instances of ADWORDS,
each having two bidders, b; and by, with budgets of $W each. Instances I; and I, have
W + 1 queries, where for the first W queries, both bidders bid $1 each. For the last query,
under [, by bids $W and b, is not interested. Under I, b, bids $W and b; is not interested.
Instance I3 has 2W queries and both bidders bid $1 for each of them.

Therefore, to obtain a non-trivial competitive ratio, bidder j must be allowed to bid for i
even if L; < bid(i, j). This amounts to the use of free disposal, since j will be allowed to
obtain query i for less money than its value for i. Next, let’s consider a second convention:
if L; < bid(i,j), then j will bid L; for i. As stated in Remark 26, this convention is not
supported by our proof technique, since Claim 24 fails to hold, breaking the proof of
Lemma 23 and hence Lemma 25.

This led us to a third convention: if L; < bid(i,j), then j will bid L; real money and
bid(7,j) — L; “fake” money for i. As a result, the total revenue of the algorithm consists
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so  of real money as well as fake money; in Algorithm 2, these are denoted by W and W,
sn respectively. The problem now is that Lemma 25, which compares the total revenue of the
s2  algorithm, namely W + Wy, with the optimal offline revenue, does not yield the competitive
ss ratio of Algorithm 2. Remark 26 explains why our proof technique does not allow us to
s dispense with the use of fake money.

s5 We note that when Algorithm 2 is run on instances of OBM, it reduces to RANKING.
s, Therefore, it is indeed a (simple) extension of RANKING to ADWORDSs.

s+ A.2 Algorithm for Adwords

sw  Algorithm 2, which will be denoted by A5, is an attempt at online algorithm for ADWORDs.
so  As stated in Section A.1, because of the use of fake money, we will not be able to give a
s0 competitive ratio for it, instead, in Lemma 25, we will compare the sum of real and fake
s money spent by the algorithm with the real money spent by an optimal offline algorithm.

s In algorithm A, L; € Z will denote bidder j’s leftover budget; it is initialized to B;. At the
s arrival of query i, bidder j will bid for i if (i,j) € E and L; > 0. In general, i will receive
s« a number of bids. The exact procedure used by 7 to accept one of these bids is given in
ses  algorithm Ay; its steps are self-explanatory. If i accepts j’s bid then i is matched to j, the
s edge (i,]) is assigned a weight of bid (i, j) and L; is decremented by min{L;, bid(i, /) }.

v Note that we do not require that there is sufficient left-over money, i.e., L; > bid(i, j), for
s j to bid for i. In case L; < bid(7,j) and i accepts j’s bid, then bid(i, j) — L; of the money
s paid by j for i is fake money; this will be accounted for by incrementing Wy by bid(i, j) — L;.
=0 The rest, namely L;, is real money and is added to W. If bid(i,j) > L; and i accepts j's
sa. bid, then L; becomes zero and j does not bid for any future queries. At the end of the
s algorithm, random variable W denotes the total real money spent and Wy denotes the total
ss fake money spent.

s« The offline optimal solution to this problem is defined to be a matching of queries to
ss advertisers that maximizes the weight of the matching; this is done with full knowledge of
s graph G. As stated in Remark 3, we will assume that under such a matching, P, the budget
s B; of each bidder j is fully spent, i.e., w(P) = Y7 B;.

s A.3 Analysis of Algorithm 2

» Lemma 20.

n m

599 ]E[W+Wf] :ZIE[MI'] + Z]E[?’]]

i j

w0 Proof. For each edge (i,j) € M, its contribution to W + Wy is bid (i, j). Furthermore, the
1 sum of u; and the contribution of (i, j) to r; is also bid (i, j). This gives the first equality
w2 below. The second equality follows from linearity of expectation.

n m m

Y ui + 2”]’] :i]E[“i] + Y _Elrl,

i=1 =1 ]

603 ]E[W + Wf] =E

604 <
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Recall that for SINGLE-VALUED, we gave Lemma 7 and Corollary 8, which established a
relationship between the available bidders for a query i in the two runs R and R;. These
facts dealt with multisets and in Section 3, we have defined operations on multisets.

We will need Lemma 7 and Corollary 8 for analyzing Algorithm 2 as well, though the
definitions of the multisets will be guided by the following: If bidder k € A has leftover
money of Ly, as determined by Algorithm 2, then we will say that i has Ly copies of k
available to it. Furthermore, if k’s bid for i is bid(i, k) and this bid is successful, then L; will
be decremented by min{Ly, bid(i, k)}, as stated in Step 2(b)(v) of the algorithm, and the
available copies of k for the next bidder will decrease accordingly.

As before, let us renumber the queries so their order of arrival under p(B) is 1,2,...n.
Let T(i) and Tj(i) denote the multisets of available copies of each bidder at the time of
arrival of query i (i.e., just before the query i gets matched), in runs R and R;, respectively.
Similarly, let S(i) and S;(i) denote the multisets obtained by restricting T(i) and T;(i) to
the bidders that have edges to query i in graphs G and G;j, respectively.

We have assumed that Step (1) of Algorithm 2 has already been executed and a price py
has been assigned to each good k. With probability 1, the prices are all distinct. Let F; be
the multiset containing B, copies of [ for each | € A such that p; < p;. Similarly, let F, be
the multiset containing B; copies of I for each I € A such that and p; > p;.

Under the definitions and operations stated above, it is easy to check that Lemma 7 and
Corollary 8 hold for Algorithm 2 as well. Therefore, Lemma 13 also carries over. Definition
9 needs to be modified to the following.

» Definition 21. Let e = (i,]) € E be an arbitrary edge in G. Define random variable, u,, called
the truncated threshold for edge e, to be u, = min{u;, bid(i,j) - (1 — %)}, where u; is the
utility of query i in run R;.

Definition 10 needs to be changed to the following.

» Definition 22. Let j € A. Let iy,..., i be queries such that for 1 <1 <k, (i;,j) € E and
YX  bid(if,j) = B;. Then (j; i, ..., i) is called a Bj-star. Let X; denote this Bj-star. The
contribution of X; to E[W] is E[r;] + Y51 E[uj), and it will be denote by E[X;].

Corresponding to Bj-star X; = (j; 11,...,ix), denote by e; the edge (i;,j) € E, for1 <1 <k.
Furthermore, let u,, denote the truncated threshold random variable corresponding to e;.
The next lemma crucially uses the fact that p j is independent of u,,; the reason for this fact
is the same as in SINGLE-VALUED.

> Lemma 23. Let j € Aand let X; = (j; i1,...,0x) bea Bj-star. Then

1
E[X,] > B;- (1—e>.
Proof. We will first lower bound E[r;]. Let fy(bid(iy,j) - z1, ... ,bid(ik, j) - zx) be the joint
probability density function of (u,, ... ue,); clearly, fi;(bid(iy,f) - z1, ... ,bid (i, f) - zx) can
be non-zero only if z; € [0,1 — %], for1 <l <k
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s2 By the law of total expectation, ]E[r]'] =
/( Ly | ey = bid(iy, )21, thg, = bid (i ) - 2] - fu(bid (i, ) 21, bid i f) - ) dn ..z,
Z1 -2k

s Where the integral is over z; € [0, (1 — %)}, for1 <<k

«s For lower-bounding the conditional expectation in this integral, let w; € [0,1] be s.t.
o eVl =1—z,for1 <<k Letx € [0,1]. For 1 <[ < k, define indicator functions
e I} :[0,1] — {0,1} as follows.

{1 if x < wy,

II(x) =
o 1) 0 otherwise.

a0 Furthermore, define

k
650 V(X) = Z Il(x) -bid(il,j).
=1

x> Claim 24.  Conditioned on (i, = bid(i1,j) - z1,...,ue, = bid(if, j) - z), if pj = €71,
s> where x € [0,1], then the contribution to r; in this run of algorithm A, was > p; - V(x).
s Proof. Suppose [;(x) = 1, then x < w;. In run R;, the maximum effective bid that i
e received has value bid(ij, ) - z;. In run R, if on the arrival of query i, L =0, ie,jis
o5 already fully matched, then the contribution to 7; in this run was B; - p; and the claim is
sso  Obviously true. If L; > 0, then since x < w;, 1 — p; > z;. Therefore, by Corollary 8, query i,
o7 will receive its largest effective bid from j. Hence, i) will get matched to j and r; will be
s incremented by bid (i}, j) - p;. The claim follows. <

659 By Claim 24,

1
w  E[r | 1y = bid(ir,j) 21, .., e, = bid(ig,j) 2] > / V(x) -1 dx
0

£ w;—1 1 1
w =B} (e -2 ) =B} (1-2-z).
ss Therefore, E[rj] =

664 /(Z ) )IE[T’] | Mel :bld(ll,]) .zl,...,ugk :bld(lk,]) 'Zk] fu(bld(ll,]) Z],bld(lk,]) -Zk) le...de,
1reer%k

1 Sy Cag s
065 > B, / ) (1 - == zl) - fu(bid(iy, ) - z1,...bid(ix, j) - z) dzq ... dzy
(z1,2) =] e
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- B (1 - 1) —l_fluz[uel].

By Lemma 13, ]E[ul-]} > E[ug,], for 1 <1 < k. Hence we get
k 1
]E[X]] = IE[Tj] + ZIE[MI'[] > = Bj . (1 — ) ,
1=1

» Lemma 25. Algorithm Aj; satisfies
E [W+W] > (1-1) w(p).
fl = e
Furthermore, it is budget-oblivious.

Proof. Let P denote a maximum weight b-matching in G. By the assumption made in
Remark 3, its weight is

w(P) = B;

e

M

1

]

Let T; denote the j-star, under P, corresponding to each j € A. The expected weight of
matching produced by Aj; is

Elu] + Y Elr] = Y E[T] > iBjo(ll) - (11>.w(p),

=1 j=1 j=1

M-

I
—

E[w+wf} -

where the first equality uses Lemma 16, the second follows from linearity of expectation
and the inequality follows by using Lemma 23.

Finally, Algorithm A3 is budget-oblivious because it does not need to know the budgets
B; for bidders j; it only needs to know during a run whether B; has been exhausted. The
lemma follows. <

» Remark 26. Let us consider the following two avenues for dispensing with the use of
fake money altogether; we will show places where our proof technique breaks down for
each one. Assume L; < bid (i, j).

1. Why not modify Step 2 of Algorithm 2 so that j’s bid for i is taken to be L; instead of
bid(i, j)?
2. Why not modify Step 2(b)(i) so it sets u; to L; - (1 — p;) rather than B; - (1 — p;)

Under the first avenue, we cannot ensure u; > 1., since it may happen that u, > L]- (1=

pj) = u;. The condition u; > u, is used for deriving [E[u;] > E[u,], which is essential in the
proof of Lemma 23.
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0 To make the second avenue work, the proof of Claim 24 would need to be changed as
os follows: the last case, L; >0, will need to be split into the two cases given above. However,
s under Case 2, which applies if L; < bid(i, j), even though p; < p, the largest effective
os bid that query i; receives may not be the one from j, since the effective bid of j has
7 value L; - (1 — p;) < bid(i},j) - (1 — pj). Therefore, i; may not get matched to j, thereby
s invalidating Claim 24.

o A.4 Algorithm for Small

0 We will use Lemma 25 to show that Algorithm 2 yields algorithms for SMALL by upper
71 bounding the fake money used in the worst case. Their budget-obliviousness follows from
n2  that of Algorithm 2.

s » Conditional Theorem 27. Algorithm Aj is an optimal online algorithm for SMALL; further-
e more, it is budget-oblivious.

s Proof. Let I be an instance of SMALL.

706 We < max {bid(i,j) — 1
p< T s (o) -1}

77 Therefore ,

708 u(I) = max

{max(i,]‘)eE {bid (i, j) — 1} } S Yjeamax( ;g {bid(i,j) — 1} i
jeA - -

B; Yjea B w(P)’

w0 where u(I) is defined in Section 2. Now, by definition of SMALL,

710 lim ]/1(1) = 0,

n(I)—o0
m  where n(I) denotes the number of queries in instance I.
n2  Therefore
W
lim L
n(I)—oo w(P)

713
ns  The theorem follows from Lemma 25. <

ns A.D Experimental Results

76 The purpose of the experimental results is two-fold: first, to determine how often is the No-
nr  Surpassing Property violated on a typical instance and second, to evaluate the performance
ns  of Algorithm 2. The results are summarized in the four Tables given. The instances were
no  generated using the following parameters:

720 The number of advertisers and queries was 20 and 2,000, respectively.
71 Budgets were picked in the range [100,2000].

722 Bids were picked in the range [1,20]. In addition, for each advertiser, we ensured that
723 the bids were at most 0.02 times the budget, to ensure that bids were small compared
724 to budgets.
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The instances of SMALL were generated as follows. We picked the edge densities of the
underlying graph to be 0.05, 0.1, 0.15, 0.2, 0.25, 0.5 and 0.8. For each edge density, 20
underlying graphs were constructed at random. Then, budgets were assigned randomly to
each advertiser, in the range specified. Finally, for each advertiser, bids were assigned to
incident edges randomly, in the range specified. The order of arrival of queries was picked
at random. This resulted in one instance of SMALL.

For generating instances of SINGLE-VALUED, the underlying graphs were constructed as
above. An instance of SINGLE-VALUED was obtained from such a graph as follows. For each
advertiser j, the bid value b; was picked randomly from the integral interval [1,20]. Then a
random number 7; was picked randomly from the interval [100,2000] and k; was set to

nj

B
For each instance of SMALL, Algorithm 2 was run 40 times, each time randomly setting p;
for each advertiser j. The average revenue of these runs was computed and was divided
by the revenue of the MSVV Algorithm run on the same instance. Finally, for each edge
density, the average of these ratios over all 20 instances was computed and noted in Table

1. A similar procedure was followed for instances of SINGLE-VALUED using Algorithm 1
and the MSVV Algorithm. These results are reported in Table 2.

Tables 3 compares, for all edge densities and instances of SMALL constructed above,
Algorithm 2 to the greedy algorithm, under which each query is matched to the highest
bid. Finally, Tables 4 compares the MSVV Algorithm to the greedy algorithm. Observe
that the performances of Algorithm 2 and the MSVV Algorithm are far superior to that of
the greedy algorithm, thereby indicating that these instances are difficult enough to not
succumb to a trivial algorithm and lending more credence to the results reported in Tables
1 and 2.

Violations of the No-Surpassing Property were computed as follows. For each instance
of SMALL and for each setting of random prices p; for advertisers j, we determined if a
violation occurred for each edge (i,) of the underlying graph, where i is a query and j is
an advertiser, as follows: check if the effective bid made to query i in run R is less than
bid(i,j) - (1 — p;); the latter being the effective bid which j makes to query 7 in run R. If so,
then if in run R, the effective bid to i surpasses ebid (i}, j) = bid(i,) - (1 — p;), then we say
that a violation of the No-Surpassing property has occurred for edge (i, ). In Table 1, we
have reported the percentage of edges for which violations happen.

As shown in Lemma 12, the No-Surpassing Property holds for SINGLE-VALUED. As a stress
test of our code, we repeated the above experiment on instances of SINGLE-VALUED as well.
The results are reported in Table 2; all entries are zero, as expected.
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Table 1: Ratio of Algorithm 2 to MSVV for SMALL

p_edge|Algorithm to MSVV ratio + SD (%)|NSP violation mean £ SD (%)|[NSP violation range
0.05 96.52 + 11.70 0.01+0.01 0.00, 0.03
0.1 98.45 + 15.50 0.48 + 0.04 0.42,0.58
0.15 100.99 + 16.66 0.76 £ 0.05 0.67,0.90
0.2 101.32 £16.46 0.94 £ 0.04 0.86, 1.03
0.25 101.38 £ 16.82 1.06 £ 0.04 1.00,1.13
0.5 100.89 + 13.45 1.39+0.06 1.29,1.51
0.8 101.17 £ 15.55 1.61 +£0.03 1.56, 1.67
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Table 2: Ratio of Algorithm 1 to MSVV for SINGLE-VALUED

p_edgel|Algorithm to MSVV ratio + SD (%)|NSP violation mean £ SD (%)[NSP violation range
0.05 99.99 +2.95 0.00 = 0.00 0.00, 0.00
0.1 99.93 +0.67 0.00 + 0.00 0.00, 0.00
0.15 99.80 + 0.60 0.00 0.00 0.00, 0.00
0.2 100.54 £1.15 0.00 = 0.00 0.00, 0.00
0.25 99.85+0.78 0.00+ 0.00 0.00, 0.00
0.5 100.04 £ 1.15 0.00 0.00 0.00, 0.00
0.8 100.44 £ 1.79 0.00 = 0.00 0.00, 0.00
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Table 3: Ratio of Algorithm 2 to Greedy for SMALL Table 4. Ratio of MSVV to Greedy for SMALL

p_edge|Ratio of Algorithm to Greedy mean + SD (%)| |p_edge|Ratio of MSVV to Greedy + SD (%)
0.05 95.84 +0.53 0.05 100.12 £0.11
0.1 101.32+0.73 0.1 105.02 £ 1.32
0.15 106.51 +1.08 0.15 107.46£1.63
0.2 110.29 + 1.69 0.2 109.84 £ 1.77
0.25 113.85+1.81 0.25 114.12 £2.09
0.5 131.78 +4.38 0.5 133.92+5.71
0.8 152.75 + 10.59 0.8 152.63 £9.05
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