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Abstract5

Motivated by recent insights into the online bipartite matching problem (OBM), our goal was to extend6

the optimal algorithm for it, namely Ranking, all the way to the special case of adwords problem,7

called Small, in which bids are small compared to budgets; the latter has been of considerable8

practical significance in ad auctions [20]. The attractive feature of our approach was that it would9

yield a budget-oblivious algorithm, i.e., the algorithm would not need to know budgets of advertisers10

and therefore could be used in autobidding platforms.11

We were successful in obtaining an optimal, budget-oblivious algorithm for Single-Valued, under12

which each advertiser can make bids of one value only. However, our next extension, to Small, failed13

because of a fundamental reason, namely failure of the No-Surpassing Property. Since the probabilistic14

ideas underlying our algorithm are quite substantial, we have stated them formally, after assuming15

the No-Surpassing Property, and we leave the open problem of removing this assumption.16

With the help of two undergrads, we conducted extensive experiments on our algorithm on randomly17

generated instances. Our findings are that the No-Surpassing Property fails less than 2% of the time18

and that the performance of our algorithms for Single-Valued and Small are comparable to that of19

[20]. If further experiments confirm this, our algorithm may be useful as such in practice, especially20

because of its budget-obliviousness.21
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1 Introduction27

The adwords problem, called Adwords
1 in this paper, involves matching keyword queries,28

as they arrive online, to advertisers; the latter have daily budget limits and they make bids29

for the queries. Its special case when bids are small compared to budgets, called Small in30

this paper, captures a key computational issue that arises in the context of ad auctions, for31

instance in Google’s AdWords marketplace. An optimal algorithm for Small, achieving32

a competitive ratio of
(

1− 1
e

)
, was first given in [20]; for the impact of this result in the33

marketplace, see Section 1.2. In this paper, we give a new budget-oblivious online algorithm for34

Small.35

A budget-oblivious online algorithm does not know the daily budgets of advertisers; however,36

in a run, it knows when the budget of an advertiser is exhausted. Yet its revenue is37

compared to the optimal revenue generated by an offline algorithm with full knowledge of38

the budget. The importance of a budget-oblivious algorithm lies in its use in autobidding39

platforms [1, 6], which manage the ad campaigns of large advertisers; they dynamically40

adjust bids and budgets over multiple search engines to improve performance. In Open41

Problem Number 20, Mehta [19] asks for such an algorithm for Small.42

Recent insights on the online bipartite matching problem (OBM) encouraged us to seek43

such an algorithm. A simple optimal algorithm, called Ranking, achieving a competitive44

ratio of
(

1− 1
e

)
, was given in [17] for OBM. However, the analysis of Ranking given in [17]45

was difficult to comprehend. A sequence of papers has finally led to a simple and elegant46

analysis, see Section 1.1. The simplicity of Ranking is particularly attractive; moreover, it47

has become the paradigm-setting algorithmic idea in the area of online and matching-based48

market design [8].49

Ideas underlying the new proof of OBM enabled us to generalize Ranking all the way to50

an algorithm for Small, while retaining the simplicity of the Ranking. As a result of this51

simplicity, our algorithm has better properties than [20]; in particular, it is budget-oblivious.52

A detailed discussion of its running time is given below. A budget-oblivious algorithm for53

Small, having a competitive ratio of 0.5222 was recently obtained by Udwani [21], using54

the idea of an LP-free analysis, which involves writing appropriate linear inequalities to55

compare the online algorithm with the offline optimal algorithm.56

At the outset of this work, extending Ranking directly to Small seemed an uphill task.57

Therefore we attempted an intermediate problem first, namely Single-Valued, in which58

each advertiser can make bids of one value only, although the value may be different for59

different advertisers. We note that [2] had already obtained an optimal online algorithm60

for Single-Valued by reducing it to the vertex weighted online matching problem, see61

Section 1.1 for details. As explained in Section 1.3, in order to develop tools for attacking62

Small, we needed to solve Single-Valued directly, and not resort to this reduction.63

Our algorithm for Single-Valued is optimal, and it is also budget-oblivious. Furthermore,64

our algorithm uses fewer random bits than the approach of [2]; see Section 1.1 for a detailed65

comparison. We note that in contemporary3 and independent work, Albers and Schubert66

1 For formal statements of problems studied in this paper, see Section 2
2 Note that the greedy algorithm, which is clearly budget-oblivious, achieves a competitive ratio of 0.5.
3 Our paper was first posted on arXiv on July 22, 2021 [22].
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[3] obtained an identical result for Single-Valued; their technique is different and involves67

formulating a configuration LP and conducting a primal-dual analysis. Our technical ideas68

are described in Section 1.3.69

Our analysis of Single-Valued involved new ideas from two domains, namely probability70

theory and combinatorics, with the former playing a dominant role and the latter yielding71

a proof of a condition called the No-Surpassing Property, see Property 11. Equipped with72

these ideas, we next attempted an extension from Ranking to Small. Although we met73

with success in extending the more difficult, probabilistic part, of the argument, we found74

a counter-example to the combinatorial part, showing that the No-Surpassing Property75

does not hold for Small.76

In order to make the no-surpassing property fail, we had to intricately “doctored up” the77

instance of Small. This raised the question of experimentally determining how often this78

property fails in typical instances and how it affects the performance of our algorithm;79

for the latter, we compared it to [20]. As can be seen in the four Tables in Section A.5,80

the property fails rarely, for less than 2% of the edges (i, j), and the performance of our81

algorithms for Single-Valued and Small are comparable with that of the MSVV Algorithm.82

For this reason, and because of its budget-obliviousness, the algorithm may be useful as83

such in practice. Clearly, it will be good to obtain further experimental confirm on varied84

types of instances.85

Since the ideas underlying our algorithm for Small, and the probabilistic part of its proof,86

are quite substantial, we have stated them formally, after assuming the No-Surpassing87

Property, see Section A.2. Under this assumption, we prove a competitive ratio of
(

1− 1
e

)
88

for our algorithm. The problem of obtaining a tight unconditional competitive ratio of our89

algorithm is an important one and has received much attention over the last two years,90

ever since the appearance of this paper on arXiv. Critical insights into this open problem91

are provided by the following results: first, Udwani [21] gave an example to show that the92

unconditional competitive ratio of our algorithm is strictly less than (1− 1/e). Next, Liang93

et al. [18] showed that the unconditional competitive ratio is less than 0.624; in contrast,94

(1− 1/e) ≈ 0.632.95

I Remark 1. The objective of all problems studied in this paper is to maximize the total96

revenue accrued by the online algorithm. In economics, such a solution is referred to as97

efficient, since the amount bid by an advertiser is indicative of how useful the query is to it,98

and hence to the economy.99

1.1 Related Works100

OBM occupies a central place not only in online algorithms but also in matching-based101

market design, see details in Section 1.2. The analysis of Ranking given in [17] was con-102

sidered “difficult” and it also had an error. Over the years, several researchers contributed103

valuable ideas to simplifying its proof. The first simplifications, in [11, 4], got the ball104

rolling, setting the stage for the substantial simplification given in [7], using a randomized105

primal-dual approach. [7] introduced the idea of splitting the contribution of each matched106

edge into primal and dual contributions and lower-bounding each part separately. Their107

method for defining prices pj of goods, using randomization, was used by subsequent108
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papers, including this one4.109

Interestingly enough, the next simplification involved removing the scaffolding of LP-110

duality and casting the proof in purely probabilistic terms5, using notions from economics111

to split the contribution of each matched edge into the contributions of the buyer and the112

seller. This elegant analysis was given by [9]. We note that when we move to generalizations113

of OBM, even this economic interpretation needs to be dropped, see Remark 4. Building114

on these works, and incorporating a further simplification relating to the No-Surpassing115

Property for OBM, a “textbook quality” proof was recently given in [23].116

An important generalization of OBM is online b-matching. This problem is a special case117

of Adwords in which the budget of each advertiser is $b and the bids are 0/1. [16] gave a118

simple optimal online algorithm, called BALANCE, for this problem. BALANCE awards119

the next query to the interested bidder who has been matched least number of times so far.120

[16] showed that as b tends to infinity, the competitive ratio of BALANCE tends to
(

1− 1
e

)
.121

Observe that b-matching is a special case of Small, if b is large. Indeed, MSVV Algorithm122

was obtained by extending BALANCE6 as follows: [20] first gave a simpler proof of the123

competitive ratio of BALANCE using the notion of a factor-revealing LP [15]. Then they gave124

the notion of a tradeoff-revealing LP, which yielded an algorithm achieving a competitive125

ratio of
(

1− 1
e

)
. [20] also proved that this is optimal for b-matching, and hence Small,126

by proving that no randomized algorithm can achieve a better ratio for online b-matching;127

previously, [16] had shown a similar result for deterministic algorithms.128

The MSVV Algorithm is simple and operates as follows. The effective bid of each bidder j129

for a query is its bid multiplied by (1− eLj/Bj), where Bj and Lj are the total budget and130

the leftover budget of bidder j, respectively; the query is matched to the bidder whose131

effective bid is highest. As a result, the MSVV Algorithm needs to know the total budget132

of each bidder. Following [20], a second optimal online algorithm for Small was given in133

[5], using a primal-dual approach.134

Another relevant generalization of OBM is online vertex weighted matching, in which the135

offline vertices have weights and the objective is to maximize the weight of the matched136

vertices. [2] extended Ranking to obtain an optimal online algorithm for this problem.137

Clearly, Single-Valued is intermediate between Adwords and online vertex weighted138

matching. [2] gave an optimal online algorithm for Single-Valued by reducing it to online139

vertex weighted matching. This involved creating k j copies of each advertiser j. As a result,140

their algorithm needs to use ∑j∈A k j random numbers, where A is the set of advertisers.141

On the other hand, our algorithm, and that of [3], needs to use only |A| numbers.142

Adwords is a notoriously difficult problem, partly due to its inherent structural difficulties,143

which are described in Section A.1. For Adwords, the greedy algorithm, which matches144

each query to the highest bidder, achieves a competitive ratio of 1/2. Until recently, that145

was the best possible. In [13] a marginally improved algorithm, with a ratio of 0.5016, was146

4 For a succinct proof of optimality of the underlying function, ex−1, see Section 2.1.1 in [12].
5 Even though there is no overt use of LP-duality in the proof of [9], it is unclear if this proof could have

been obtained directly, without going the LP-duality-route.
6 It is worth recalling that [20] had first attempted extending OBM to Small; however, in the absence of

new insights into OBM, this did not go very far.
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given. It is important to point out that this 60-page paper was a tour-de-force, drawing on147

a diverse collection of ideas — a testament to the difficulty of this problem.148

In the decade following the conference version (FOCS 2005) of [20], search engine companies149

generously invested in research on models derived from OBM and adwords. The reason150

was two-fold: the substantial impact of [20] and the emergence of a rich collection of digital151

ad tools. It will be impossible to do justice to this substantial body of work, involving both152

algorithmic and game-theoretic ideas; for a start, see the surveys [19, 12].153

1.2 Significance and Practical Impact154

Google’s AdWords marketplace generates multi-billion dollar revenues annually and the155

current annual worldwide spending on digital advertising is almost half a trillion dollars.156

These revenues of Google and other Internet services companies enable them to offer157

crucial services, such as search, email, videos, news, apps, maps etc. for free – services that158

have virtually transformed our lives.159

We note that Small is the most relevant case of adwords for the search ads marketplace e.g.,160

see [6]. A remarkable feature of Google, and other search engines, is the speed with which161

they are able to show search results, often in milliseconds. In order to show ads at the162

same speed, together with search results, the solution for Small needed to be minimalistic163

in its use of computing power, memory and communication.164

The MSVV Algorithm satisfied these criteria and therefore had substantial impact in this165

marketplace. Furthermore, the idea underlying their algorithm was extracted into a simple166

heuristic, called bid scaling, which uses even less computation and is widely used by search167

engine companies today. As mentioned above, our Conditional Algorithm for Small is168

even more elementary and is budget-oblivious.169

It will be useful to view the AdWords marketplace in the context of a bigger revolution,170

namely the advent of the Internet and mobile computing, and the consequent resurgence171

of the area of matching-based market design. The birth of this area goes back to the172

seminal 1962 paper of Gale and Shapley on stable matching [10]. Over the decades, this173

area became known for its highly successful applications, having economic as well as174

sociological impact. These included matching medical interns to hospitals, students to175

schools in large cities, and kidney exchange.176

The resurgence led to a host of highly innovative and impactful applications. Besides the177

AdWords marketplace, which matches queries to advertisers, these include Uber, matching178

drivers to riders; Upwork, matching employers to workers; and Tinder, matching people to179

each other, see [14, 8] for more details.180

A successful launch of such markets calls for economic and game-theoretic insights, together181

with algorithmic ideas. The Gale-Shapley Deferred Acceptance Algorithm and its follow-up182

works provided the algorithmic backbone for the “first life” of matching-based market183

design. The algorithm Ranking has become the paradigm-setting algorithmic idea in184

the “second life” of this area [8]. Interestingly enough, this result was obtained in the185

pre-Internet days, over thirty years ago.186
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1.3 Technical Ideas187

Our extension from Ranking to Small needs to go via Adwords. It turns out that188

Adwords suffers from an inherent structural difficulty, see Section A.1. We temporarily189

finesse this difficulty by using the idea of “fake” money. The expected revenue of our online190

algorithm for Adwords is at least (1− 1/e) fraction of the optimal offline revenue; however,191

this total revenue consists of real as well as fake money. We provide an upper-bound on the192

fake money in the worst case, and this suffices to show that, asymptotically, the fake money193

used by Small, is negligible. Determining the true competitive ratio of our algorithm for194

Adwords is left as an interesting and important open problem, see Section 4.195

As described in Section 1.1, Single-Valued can be reduced to online vertex weighted196

matching, by making k j copies of each advertiser j; however, this reduction does not work197

for Adwords. The reason is that the manner in which budget Bj of bidder j gets partitioned198

into bids is not predictable in the latter problem; it depends on the queries, their order of199

arrival and the randomization executed in a run of the algorithm. Therefore, in order to200

build techniques to attack Adwords, we will first need to solve Single-Valued without201

reducing it to online vertex weighted matching.202

This is done in Algorithm 1. Almost all of our new ideas, on the probabilistic front, needed203

to attack Small were obtained in the process analyzing this algorithm. First, since vertex j204

is not split into k j copies, we cannot talk about the contribution of edges anymore. Even205

worse, we don’t have individual vertices for keeping track of the revenue accrued from each206

match, as per the scheme of [9]. Our algorithm gets around this difficulty by accumulating207

revenue in the same “account” each time bidder j gets matched. The corresponding random208

variable, rj, is called the total revenue of bidder j, for want of a better name, see Remark 4.209

Lower bounding E[rj] is much more tricky than lower bounding the revenue of a good in210

OBM, since it involves “teasing apart” the k j accumulations made into this account; this is211

done in Lemma 14.212

The key fact needed in the analysis of Ranking is that for each edge e = (i, j) in the213

underlying graph, its expected contribution to the matching produced is at least (1− 1/e).214

For this purpose, the random variable, ue, called threshold, is defined in [23].215

For analyzing Single-Valued, a replacement is needed for this lemma. For this purpose,216

we give the notion of a j-star, denoted Xj, which consists of bidder j together with edges to217

k j of its neighbors in G, see Definition 10. The contribution of j-star Xj, is denoted by E[Xj],218

which is also defined in Definition 10. Finally, using the lower bound on E[rj], Lemma 14219

gives a lower E[Xj] for every j-star, Xj. This lemma crucially uses a new random variable,220

called truncated threshold, see Definition 9.221

Next, we explain the reason for truncation in the definition of this random variable.222

Consider bidder j and a query il that is desired by j. Observe that in run Rj
7, query il223

can get a bid as large as B · (1− 1
e ), where B = maxk∈A{bk}, whereas the largest bid that224

j can make to il is bj · (1− 1
e ); in general, bj may be smaller than B. Now, il contributes225

revenue to rj only if il is matched to j in run R, an event which will definitely not happen226

if uel > bj · (1− 1
e ). Therefore, whenever uel ∈ [bj · (1− 1

e ), B · (1− 1
e )], the contribution227

to rj is zero. By truncating uel to bj · (1− 1
e ), we have effectively changed the probability228

7 Run Rj is defined in Definition 6.
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density function of uel so that the probability of the event uel ∈ [bj · (1− 1
e ), B · (1− 1

e )] is229

now concentrated at the event uel = bj · (1− 1
e ). From the viewpoint of lower bounding230

the revenue accrued in rj, the two probability density functions are equivalent since the231

revenue accrued is zero under both these events. On the other hand, the truncated random232

variable enables us to apply the law of total expectation, in the proof of Lemma 14, in the233

same way as it was done in [23], without introducing more difficulties.234

Finally, in order to establish the no-surpassing property for Single-Valued, we give the235

necessary combinatorial facts in Lemma 7 and Corollary 8. These facts are enhanced236

versions of the facts needed to prove the no-surpassing property for Ranking in [23].237

2 Preliminaries238

Online Bipartite Matching (OBM): Let B be a set of n buyers and S a set of n goods. A239

bipartite graph G = (B, S, E) is specified on vertex sets B and S, and edge set E, where for240

i ∈ B, j ∈ S, (i, j) ∈ E if and only if buyer i likes good j. G is assumed to have a perfect241

matching and therefore each buyer can be given a unique good she likes. Graph G is242

revealed in the following manner. The n goods are known up-front. On the other hand, the243

buyers arrive one at a time, and when buyer i arrives, the edges incident at i are revealed.244

We are required to design an online algorithm A in the following sense. At the moment245

a buyer i arrives, the algorithm needs to match i to one of its unmatched neighbors, if246

any; if all of i’s neighbors are matched, i remains unmatched. The difficulty is that the247

algorithm does not “know” the edges incident at buyers which will arrive in the future and248

yet the size of the matching produced by the algorithm will be compared to the best off-line249

matching; the latter of course is a perfect matching. The formal measure for the algorithm250

is defined in Section 2.1.251

Adwords Problem (Adwords): Let A be a set of m advertisers, also called bidders, and Q252

be a set of n queries. A bipartite graph G = (Q, A, E) is specified on vertex sets Q and A,253

and edge set E, where for i ∈ Q and j ∈ A, (i, j) ∈ E if and only if bidder j is interested in254

query i. Each query i needs to be matched8 to at most one bidder who is interested in it.255

For each edge (i, j), bidder j knows his bid for i, denoted by bid(i, j) ∈ Z+. Each bidder256

also has a budget Bj ∈ Z+ which satisfies Bj ≥ bid(i, j), for each edge (i, j) incident at j.257

Graph G is revealed in the following manner. The m bidders are known up-front and the258

queries arrive one at a time. When query i arrives, the edges incident at i are revealed,259

together with the bids associated with these edges. If i gets matched to j, then the matched260

edge (i, j) is assigned a weight of bid(i, j). The constraint on j is that the total weight of261

matched edges incident at it be at most Bj. The objective is to maximize the total weight of262

all matched edges at all bidders.263

Adwords under Single-Valued Bidders (Single-Valued): Single-Valued is a special case264

of Adwords in which each bidder j will make bids of a single value, bj ∈ Z+, for the265

queries he is interested in. If i accepts j’s bid, then i will be matched to j and the weight of266

this matched edge will be bj. Corresponding to each bidder j, we are also given k j ∈ Z+,267

the maximum number of times j can be matched to queries. The objective is to maximize268

8 Clearly, this is not a matching in the usual sense, since a bidder may be matched to several queries.
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the total weight of matched edges. Observe that the matching M found in G is a b-matching269

with the b-value of each query i being 1 and of advertiser j being k j.270

Adwords under Small Bids (Small): Small is a special case of Adwords in which for271

each bidder j, each bid of j is small compared to its budget. Formally, we will capture this272

condition by imposing the following constraint. For a valid instance I of Small, define273

µ(I) = max
j∈A

{
max(i,j)∈E {bid(i, j)− 1}

Bj

}
.274

Then we require that275

lim
n(I)→∞

µ(I) = 0,276

where n(I) denotes the number of queries in instance I.277

2.1 The competitive ratio of online algorithms278

We will define the notion of competitive ratio of a randomized online algorithm in the279

context of OBM.280

I Definition 2. Let G = (B, S, E) be a bipartite graph as specified above. The competitive ratio of281

a randomized algorithm A for OBM is defined to be:282

c(A) = min
G=(B,S,E)

min
ρ(B)

E[A(G, ρ(B))]
n

,283

where E[A(G, ρ(B))] is the expected size of matching produced by A; the expectation is over the284

random bits used by A. We may assume that the worst case graph and the order of arrival of buyers,285

given by ρ(B), are chosen by an adversary who knows the algorithm. It is important to note that the286

algorithm is provided random bits after the adversary makes its choices.287

I Remark 3. For each problem studied in this paper, we will assume that the offline288

matching is complete. It is easy to extend the arguments, without changing the competitive289

ratio, in case the offline matching is not complete.290

3 Algorithm for Single-Valued291

Algorithm 1, which will be denoted by A1, is an online algorithm for Single-Valued.292

Before execution of Step (1) of A1, the order of arrival of queries, say ρ(B), is fixed by the293

adversary. We will define several random variables whose purpose will be quite similar to294

that in Ranking and they will be given similar names as well; however, their function is295

not as closely tied to these economics-motivated names as in Ranking, see also Remark 4.296

Three of these random variables are the price pj and total revenue rj of each bidder j ∈ A,297

and the utility ui of each query i ∈ Q.298

We now describe how values are assigned to these random variables in a run of Algorithm299

1. In Step (1), for each bidder j, A1 picks a price pj ∈ [ 1
e , 1] via the specified randomized300

process. Furthermore, the revenue rj and degree dj of bidder j are both initialized to zero,301

the latter represents the number of times j has been matched. During the run of A1, j will302

get matched to at most k j queries; each match will add bj to the total revenue generated303



V.V. Vazirani XX:9

by the algorithm. bj is broken into a revenue and a utility component, with the former304

being added to rj and the latter forming ui. At the end of A1, rj will contain all the revenue305

accrued by j.306

In Step (2), on the arrival of query i, we will say that bidder j is available if (i, j) ∈ E and307

dj < k j. At this point, for each available bidder j, the effective bid of j for i is defined to308

be ebid(j) = bj · (1− pj); clearly, ebid(j) ∈ [0, bj ·
(

1− 1
e

)
]. Query i accepts the bidder309

whose effective bid is the largest. If there are no bids, matching M remains unchanged.310

If i accepts j’s bid, then edge (i, j) is added to matching M and the weight of this edge is311

set to bj. Furthermore, the utility of i, ui, is defined to be ebid(j) and the revenue rj of j is312

incremented by bj · pj. Once all queries are processed, matching M and its weight W are313

output.314

I Remark 4. [9] had given the economics-based names of random variables for their proof315

of Ranking. Although we have used the same names for similar random variables in316

Sections 3 and A.2, for Single-Valued and Adwords, the reader should not attribute an317

economic interpretation to these the names9.318

3.1 Analysis of Algorithm 1319

For the analysis of Algorithm A1, we will use the random variables W, pj, rj and ui defined320

above; their values are fixed during the execution of A2. In addition, corresponding to each321

edge e = (i, j) ∈ E, in Definition 9, we will introduce a new random variable, ue, which322

will play a central role.323

I Lemma 5.

E[W] =
n

∑
i

E [ui] +
m

∑
j

E[rj].324

Proof. For each edge (i, j) ∈ M, its contribution to W is bj. Furthermore, the sum of ui325

and the contribution of (i, j) to rj is also bj. This gives the first equality below. The second326

equality follows from linearity of expectation.327

E[W] = E

[
n

∑
i=1

ui +
m

∑
j=1

rj

]
=

n

∑
i

E [ui] +
m

∑
j

E[rj],328

J329

I Definition 6. We will define several runs of Algorithm 1. In these runs, we will assume Step330

(1) is executed once. We next define several ways of executing Step (2). Let R denote the run of331

Step (2) on the entire graph G. Corresponding to each bidder j ∈ A, let Gj denote graph G with332

bidder j removed. Define Rj to be the run of Step (2) on graph Gj.333

9 We failed to come up with more meaningful names for these random variables and therefore have stuck
to the old names.
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I Algorithm 1. (A1: Algorithm for Single-Valued)

1. Initialization: M← ∅.
∀j ∈ A, do:
a. Pick wj uniformly from [0, 1] and set price pj ← ewj−1.
b. rj ← 0.
c. dj ← 0.

2. Query arrival: When query i arrives, do:
a. ∀j ∈ A s.t. (i, j) ∈ E and dj < k j do:

i. ebid(j)← bj · (1− pj).
ii. Offer effective bid of ebid(j) to i.

b. Query i accepts the bidder whose effective bid is the largest.
(If there are no bids, matching M remains unchanged.)
If i accepts j’s bid, then do:
i. Set utility: ui ← bj · (1− pj).
ii. Update revenue: rj ← rj + bj · pj.
iii. Update degree: dj ← dj + 1.
iv. Update matching: M← M ∪ (i, j). Define the weight of (i, j) to be bj.

c. Output: Output matching M and its total weight W.

Lemma 7 and Corollary 8 given below establish a relationship between the available bidders334

for a query i in the two runs R and Rj. Note that bidders are available in multiplicity and335

therefore we will have to use the notion of a multiset rather than a set, as was done in [23].336

A multiset contains elements with multiplicity. Let A and B be two multisets over n elements337

{1, 2, . . . n}, and let ai ≥ 0 and bi ≥ 0 denote the multiplicities of element i in A and B,338

respectively. We will say that A ⊆ B if for each i, ai ≤ bi, and A = B if for each i, ai = bi.339

We will say that i ∈ A if ai ≥ 1. We will define A ∩ B to be the multiset containing each340

element i exactly min{ai, bi} times, and A− B to be the multiset containing each element i341

exactly max{ai − bi, 0} times.342

As before, let us renumber the queries so their order of arrival under ρ(B) is 1, 2, . . . n. Let343

T(i) and Tj(i) denote the multisets of available bidders at the time of arrival of query i (i.e.,344

just before the query i gets matched) in runs R and Rj, respectively. In particular, T(1)345

will contain kl copies of l for each bidder l and Tj(1) will contain kl copies of l for each346

bidder l, other than j. Similarly, let S(i) and Sj(i) denote the projections of T(i) and Tj(i)347

on the neighbors of i in G and Gj, respectively.348

We have assumed that Step (1) of Algorithm 1 has already been executed and a price pk has349

been assigned to each bidder k. The effective bid of bidder k is ebid(k) = bk · (1− pk). With350

probability 1, the effective bids of all bidders are distinct. Let F1 be the multiset containing351

kl copies of l for each l ∈ A such that bl · (1− pl) > bj · (1− pj). Similarly, let F2 be the352

multiset containing kl copies of l for each l ∈ A such that and bl · (1− pl) < bj · (1− pj).353

Observe that j is not contained in either multiset.354

I Lemma 7. For each i, 1 ≤ i ≤ n, the following hold:355
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1. (Tj(i) ∩ F1) = (T(i) ∩ F1).356

2. (Tj(i) ∩ F2) ⊆ (T(i) ∩ F2).357

Proof. 1). Clearly, in both runs, R and Rj, any query having an available bidder in F1 will358

match to the most profitable one of these, without even considering the rest of the bidders.359

Since j /∈ F1, the two runs behave in an identical manner on the set F1, thereby proving the360

first statement.361

2). The proof is by induction on i. The base case is trivially true because (Tj(1) ∩ F2) =362

(T(1) ∩ F2), since j /∈ F2. Assume that the statement is true for i = k and let us prove it363

for i = k + 1. By the first statement, we need to consider only the case that there are no364

available bidders for the kth query in F1 in the runs R and Rj. Assume that in run Rj, this365

query gets matched to bidder l; if it remains unmatched, we will take l to be null. Clearly, l366

is the most profitable bidder it is incident to in Tj(k). Therefore, the most profitable bidder367

it is incident to in run R is the best of l, the most profitable bidder in T(k)− Tj(k), and j,368

in case it is available. In each of these cases, the induction step holds. J369

In the corollary below, the first two statements follow from Lemma 7 and the third statement370

follows from the first two statements.371

I Corollary 8. For each i, 1 ≤ i ≤ n, the following hold:372

1. (Sj(i) ∩ F1) = (S(i) ∩ F1).373

2. (Sj(i) ∩ F2) ⊆ (S(i) ∩ F2).374

3. Sj(i) ⊆ S(i).375

Next we define a new random variable, ue, for each edge e = (i, j) ∈ E. This is called the376

truncated threshold for edge e and is given in Definition 9. It is critically used in the proofs377

of Lemmas 13 and 14.378

I Definition 9. Let e = (i, j) ∈ E be an arbitrary edge in G. Define random variable, ue, called379

the truncated threshold for edge e, to be ue = min{uti, bj ·
(

1− 1
e

)
}, where uti is the utility of380

query i in run Rj.381

I Definition 10. Let j ∈ A. Henceforth, we will denote k j by k in order to avoid triple subscripts.382

Let i1, . . . , ik be queries such that for 1 ≤ l ≤ k, (il , j) ∈ E. Then (j; i1, . . . , ik) is called a j-star.383

Let Xj denote this j-star. The contribution of Xj to E[W] is E[rj] + ∑k
l=1 E[uil ], and it will be384

denote by E[Xj].385

Corresponding to j-star Xj = (j; i1, . . . , ik), denote by el the edge (il , j) ∈ E, for 1 ≤ l ≤ k.386

Furthermore, let uel denote the truncated threshold random variable corresponding to el .387

I Property 11. (No-Surpassing for Single-Valued) Assume that Step 1 of Algorithm 1 has388

been executed and a price pk has been assigned to each advertiser k. Suppose that the effective bid389

which query i gets in run Rj is less than bj · (1− pj); the latter is clearly the effective bid which j390

makes to i in run R. Then, in run R, no bid to i will surpass ebid(j) = bj · (1− pj).391
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I Lemma 12. The No-Surpassing Property holds for Single-Valued.392

Proof. Suppose the bid of j, namely bj · (1− pj), is better than the best bid that buyer i393

gets in run Rj. If so, i gets no bid from F1 in Rj; observe that they are all higher than394

bj · (1− pj). Now, by the first part of Corollary 8, i gets no bid from F1 in run R as well,395

i.e., in run R, no bid to i will surpass bj · (1− pj). J396

I Lemma 13. Corresponding to j-star Xj = (j; i1, . . . , ik), the following hold.397

For 1 ≤ l ≤ k, uil ≥ uel .398

Proof. By the third statement of Corollary 8, il has more options in run R as compared399

to run Rj. Furthermore, the truncation of the random variable only aids the inequality400

needed and therefore uil ≥ uel . J401

Our next goal is to lower bound the contribution of an arbitrary j-star, E[Xj], which in turn402

involves lower bounding E[rj]. The latter crucially uses the fact that pj is independent of403

uel . This follows from the fact that uel is determined by run Rj on graph Gj, which does404

not contain vertex j.405

I Lemma 14. Let j ∈ A and let Xj = (j; i1, . . . , ik) be a j-star. Then406

E[Xj] ≥ k · bj ·
(

1− 1
e

)
.407

Proof. We will first lower bound E[rj]. Let fU(bj · z1, . . . bj · zk) be the joint probability408

density function of (ue1 , . . . uek ); clearly, fU(bj · z1, . . . bj · zk) can be non-zero only if zl ∈409

[0, 1− 1
e ], for 1 ≤ l ≤ k. By the law of total expectation,410

E[rj] =
∫
(z1,...,zk)

E[rj | ue1 = bj · z1, . . . , uek = bj · zk] · fU(bj · z1, . . . bj · zk) dz1 . . . dzk,411

where the integral is over zl ∈ [0,
(

1− 1
e

)
], for 1 ≤ l ≤ k.412

For lower-bounding the conditional expectation in this integral, let wl ∈ [0, 1] be s.t.413

ewl−1 = 1− zl , for 1 ≤ l ≤ k. For x ∈ [0, 1], define the set S(x) = {l | 1 ≤ l ≤ k and x < wl}.414

B Claim 15. Conditioned on (ue1 = bj · z1, . . . , uek = bj · zk), if pj = ex−1, then the degree415

of j at the end of Algorithm A2 is at least |S(x)|, i.e., the contribution to rj in this run was416

≥ bj · pj · |S(x)|.417

Proof. Suppose l ∈ S(x), then x < wl . In run Rj, the maximum effective bid that il418

received has value bj · zl . In run R, if at the arrival of query il , j is already fully matched,419

the contribution to rj in this run was k · bj · pj and the claim is obviously true. If not,420

then since x < wl , bj · (1− pj) > bj · zl . The crux of the matter is that by Lemma 12, the421

No-Surpassing Property holds. Therefore, query il will receive its largest effective bid from422

j, il will get matched to it, and rj will be incremented by bj · pj. The claim follows. J423
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For 1 ≤ l ≤ k, define indicator functions Il : [0, 1]→ {0, 1} as follows.424

Il(x) =

{
1 if x < wl ,

0 otherwise.
425

Clearly, |S(x)| = ∑k
l=1 Ij(x). By Claim 15,426

E[rj | ue1 = bj · z1, . . . , uek = bj · zk] ≥ bj ·
∫ 1

0
|S(x)| · ex−1 dx427

= bj ·
∫ 1

0

k

∑
l=1

Il(x) · ex−1 dx = bj ·
k

∑
l=1

∫ 1

0
Il(x) · ex−1 dx = bj ·

k

∑
l=1

∫ wl

0
ex−1 dx428

= bj ·
k

∑
l=1

(
ewl−1 − 1

e

)
= bj ·

k

∑
l=1

(
1− 1

e
− zl

)
.429

Since Il(x) = 0 for x ∈ [wl , 1], we get that
∫ 1

0 Il(x) · ex−1 dx =
∫ wl

0 ex−1 dx; this fact has430

been used above. Therefore,431

E[rj] =
∫
(z1,...,zk)

E[rj | ue1 = bj · z1, . . . , uek = bj · zk] · fU(bj · z1, . . . bj · zk) dz1 . . . dzk432

≥ bj ·
∫
(z1,...,zk)

k

∑
l=1

(
1− 1

e
− zl

)
· fU(bj · z1, . . . bj · zk) dz1 . . . dzk433

= k · bj ·
(

1− 1
e

)
−

k

∑
l=1

E[uel ],434

where both integrals are over zl ∈ [0,
(

1− 1
e

)
], for 1 ≤ l ≤ k.435

By Lemma 13, E[uil ] ≥ E[uel ], for 1 ≤ l ≤ k. Hence we get436

E[Xj] = E[rj] +
k

∑
l=1

E[uil ] ≥ k · bj ·
(

1− 1
e

)
,437

J438

I Lemma 16.

E[W] =
n

∑
i

E [ui] +
m

∑
j

E[rj].439
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Proof. By definition of the random variables,440

E[W] = E

[
n

∑
i=1

ui +
m

∑
j=1

rj

]
=

n

∑
i

E [ui] +
m

∑
j

E[rj],441

where the first equality follows from the fact that if (i, j) ∈ M then W is incremented by bj442

and ui + rj = bj. The second equality follows from linearity of expectation. J443

I Theorem 17. The competitive ratio of Algorithm A2 is at least 1− 1
e . Furthermore, it is444

budget-oblivious.445

Proof. Let P denote a maximum weight b-matching in G, computed in an offline manner.446

By the assumption made in Remark 3, its weight is447

w(P) =
m

∑
j=1

k j · bj.448

Let Tj denote the j-star, under P, corresponding to each j ∈ A. The expected weight of449

matching produced by A2 is450

E [W] =
n

∑
i=1

E [ui] +
m

∑
j=1

E[rj] =
m

∑
j=1

E[Tj] ≥
m

∑
j=1

bj · k j

(
1− 1

e

)
=

(
1− 1

e

)
· w(P),451

where the first equality uses Lemma 16, the second follows from linearity of expectation452

and the inequality follows from Lemma 14.453

Finally, Algorithm A2 is budget-oblivious because it does not need to know k j for bidders454

j; it only needs to know during a run whether the k j bids available to bidder j have been455

exhausted. The theorem follows. J456

4 Discussion457

The open question mentioned in the Introduction, of removing the assumption of no-458

surpassing property from our proof of Algorithm 2 for Small, deserves special attention459

because of its potential impact in the ad auctions marketplace. Another question is to place460

an upper bound on the expected fake money used, E
[
W f

]
, in Algorithm 2 and strengthen461

Lemma 25 to obtain a good bound on the competitive ratio of this algorithm for Adwords.462

This seems a promising avenue for improving the bound for Adwords from 0.5016, given463

in [13].464

References465

1 Gagan Aggarwal, Ashwinkumar Badanidiyuru, and Aranyak Mehta. Autobidding with466

constraints. In International Conference on Web and Internet Economics, pages 17–30. Springer,467

2019.468

2 Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-weighted469

bipartite matching and single-bid budgeted allocations. In Proceedings of the twenty-second470

annual ACM-SIAM symposium on Discrete Algorithms, pages 1253–1264, 2011.471



V.V. Vazirani XX:15

3 Susanne Albers and Sebastian Schubert. Optimal algorithms for online b-matching with472

variable vertex capacities. In Approximation, Randomization, and Combinatorial Optimization.473

Algorithms and Techniques (APPROX/RANDOM 2021). Schloss Dagstuhl-Leibniz-Zentrum für474

Informatik, 2021.475

4 Benjamin Birnbaum and Claire Mathieu. On-line bipartite matching made simple. ACM Sigact476

News, 39(1):80–87, 2008.477

5 Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. Online primal-dual algorithms for478

maximizing ad-auctions revenue. In European Symposium on Algorithms, pages 253–264, 2007.479

6 Nikhil Devanur and Aranyak Mehta. Online matching in advertisement auctions. In Federico480

Echenique, Nicole Immorlica, and Vijay V. Vazirani, editors, Online and Matching-Based Market481

Design. Cambridge University Press, 2022. [To appear] https://www.ics.uci.edu/~vazirani/482

AdAuctions.pdf.483

7 Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. Randomized primal-dual analysis of484

ranking for online bipartite matching. In Proceedings of the twenty-fourth annual ACM-SIAM485

symposium on Discrete algorithms, pages 101–107. SIAM, 2013.486

8 Federico Echenique, Nicole Immorlica, and Vijay V. Vazirani, editors. Online and Matching-Based487

Market Design. Cambridge University Press, 2023.488

9 Alon Eden, Michal Feldman, Amos Fiat, and Kineret Segal. An economic-based analysis of489

ranking for online bipartite matching. In SIAM Symposium on Simplicity in Algorithms, 2021.490

10 David Gale and Lloyd S Shapley. College admissions and the stability of marriage. The American491

Mathematical Monthly, 69(1):9–15, 1962.492

11 Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with493

applications to adwords. In SODA, volume 8, pages 982–991, 2008.494

12 Zhiyi Huang and Thorben Trobst. Online matching. In Federico Echenique, Nicole Immorlica,495

and Vijay V. Vazirani, editors, Online and Matching-Based Market Design. Cambridge University496

Press, 2022. [To appear] https://www.ics.uci.edu/~vazirani/Ch4.pdf.497

13 Zhiyi Huang, Qiankun Zhang, and Yuhao Zhang. Adwords in a panorama. In 2020 IEEE 61st498

Annual Symposium on Foundations of Computer Science (FOCS), pages 1416–1426. IEEE, 2020.499

14 Simons Institute. Online and matching-based market design, 2019. https://simons.berkeley.500

edu/programs/market2019.501

15 Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V Vazirani.502

Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. Journal503

of the ACM (JACM), 50(6):795–824, 2003.504

16 Bala Kalyanasundaram and Kirk R Pruhs. An optimal deterministic algorithm for online505

b-matching. Theoretical Computer Science, 233(1-2):319–325, 2000.506

17 Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for on-line507

bipartite matching. In Proceedings of the twenty-second annual ACM symposium on Theory of508

computing, pages 352–358, 1990.509

18 Jingxun Liang, Zhihao Gavin Tang, Yixuan Xu, Yuhao Zhang, and Renfei Zhou. On the510

perturbation function of ranking and balance for weighted online bipartite matching. arXiv511

preprint arXiv:2210.10370, 2022.512

19 Aranyak Mehta. Online matching and ad allocation, volume 8. Now Publishers, Inc., 2013.513

https://www.ics.uci.edu/~vazirani/AdAuctions.pdf
https://www.ics.uci.edu/~vazirani/AdAuctions.pdf
https://www.ics.uci.edu/~vazirani/AdAuctions.pdf
https://www.ics.uci.edu/~vazirani/Ch4.pdf
https://simons.berkeley.edu/programs/market2019
https://simons.berkeley.edu/programs/market2019
https://simons.berkeley.edu/programs/market2019


XX:16 Towards a Practical, Budget-Oblivious Algorithm for the Adwords Problem under Small Bids

20 Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized514

online matching. Journal of the ACM (JACM), 54(5), 2007.515

21 Rajan Udwani. Adwords with unknown budgets and beyond. arXiv preprint arXiv:2110.00504,516

2021.517

22 Vijay V Vazirani. Online bipartite matching and adwords. arXiv preprint arXiv:2107.10777, 2021.518

23 Vijay V Vazirani. Online bipartite matching and adwords. In 47th International Symposium on519

Mathematical Foundations of Computer Science, 2022.520

A Algorithm for Small, After Assuming the No-Surpassing Property521

Two new difficulties arise for the problem Adwords The first is the inherent structural522

difficulty described in Section A.1. Second, since bidders can have different bids for523

different queries, the no-surpassing property does not hold anymore, see Example 18.524

I Example 18. Assume that in the given instance for Adwords, j, j′ are two of the bidders,525

and 1, . . . , k are k of the queries, where k is a large number. Assume bid(l, j) = α for 1 ≤ l ≤526

k and bid(l, j′) = α− 1 for 1 ≤ l ≤ k− 1. Further, assume that bid(k, j′) = (α− 1) · (k− 1).527

Let the budgets be Bj = α · k and Bj′ = (α− 1) · (k− 1).528

Now consider a run in which pj = pj′ = p. Assume that in run Rj
10, the best effective529

bid to 1, . . . , k− 1 comes from j′, and in run Rj, the best effective bid to 1, . . . , k− 1 comes530

from j. In run Rj, the budget of j′ is exhausted when k arrives and assume that k does531

not get any bids, making ue = 0 for e = (k, j). Now in run R, ebid(k, j) = α(1− p) and532

ebid(k, j′) = (α− 1) · (k− 1) · (1− p). Thus, even though ebid(k, j) > ue, k will be matched533

to j′ and not j. Clearly, this phenomenon will hold for all runs in which pj′ is not too much534

larger than pj.535

For the rest of this section, we will make this assumption:536

Assumption of No-Surpassing for Adwords: The following holds:537

Assume that Step 1 of Algorithm 2 has been executed and a price pk has been assigned to538

each advertiser k. Suppose that the effective bid which query i gets in run Rj is less than539

bid(i, j) · (1− pj); the latter is clearly the effective bid which j makes to query i in run R.540

Then, in run R, no bid to i will surpass ebid(i, j) = bid(i, j) · (1− pj).541

Section A.2 presents an algorithm for Adwords, using fake money; the above-stated542

assumption is used in its analysis, in particular in the proof of Claim 24. Section A.4543

shows that by upper bounding the fake money used in the worst case, we get an optimal544

algorithm for Small, again based on the above-stated assumption.545

A.1 Structural Difficulties in Adwords546

To describe the structural difficulties in Adwords, we provide three instances in Example547

19. In order to obtain a completely unconditional result, we would need to adopt the548

10 Run Rj is defined in Definition 6.
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I Algorithm 2. (A2: Algorithm for Adwords)

1. Initialization: M← ∅, W ← 0 and W f ← 0
∀j ∈ A, do:
a. Pick wj uniformly from [0, 1] and set price pj ← ewj−1.
b. rj ← 0.
c. Lj ← Bj.

2. Query arrival: When query i arrives, do:
a. ∀j ∈ A s.t. (i, j) ∈ E and Lj > 0 do:

i. ebid(i, j)← bid(i, j) · (1− pj).
ii. Offer effective bid of ebid(i, j) to i.

b. Query i accepts the bidder whose effective bid is the largest.
(If there are no bids, matching M remains unchanged.)
If i accepts j’s bid, then do:
i. Set utility: ui ← bid(i, j) · (1− pj).
ii. Update revenue: rj ← rj + bid(i, j) · pj.
iii. Update matching: M← M ∪ (i, j).
iv. Update weight: W ←W + min{Lj, bid(i, j)} and

W f ←W f + max{0, bid(i, j)− Lj}.
v. Update Lj: Lj ← Lj −min{Lj, bid(i, j)}.

3. Output: Output matching M, real money spent W, and fake money spent W f .

following convention: assume bidder j has Lj money leftover and impression i just arrived.549

Assume that j’s bid for i is bid(i, j). If bid(i, j) > Lj, then j should not be allowed to bid for550

i, since j has insufficient money.551

Under this convention, it is easy to see that even a randomized algorithm will accrue only552

$W expected revenue on at least one of the instances given in Example 19, provided it is553

greedy, i.e., if a match is possible, it does not rescind this possibility; the latter condition is554

a simple way of ensuring that the algorithm is “fine tuned” for a particular type of example.555

Note that the optimal for each instance is $2W.556

I Example 19. Let W ∈ Z+ be a large number. We define three instances of Adwords,557

each having two bidders, b1 and b2, with budgets of $W each. Instances I1 and I2 have558

W + 1 queries, where for the first W queries, both bidders bid $1 each. For the last query,559

under I1, b1 bids $W and b2 is not interested. Under I2, b2 bids $W and b1 is not interested.560

Instance I3 has 2W queries and both bidders bid $1 for each of them.561

Therefore, to obtain a non-trivial competitive ratio, bidder j must be allowed to bid for i562

even if Lj < bid(i, j). This amounts to the use of free disposal, since j will be allowed to563

obtain query i for less money than its value for i. Next, let’s consider a second convention:564

if Lj < bid(i, j), then j will bid Lj for i. As stated in Remark 26, this convention is not565

supported by our proof technique, since Claim 24 fails to hold, breaking the proof of566

Lemma 23 and hence Lemma 25.567

This led us to a third convention: if Lj < bid(i, j), then j will bid Lj real money and568

bid(i, j)− Lj “fake” money for i. As a result, the total revenue of the algorithm consists569
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of real money as well as fake money; in Algorithm 2, these are denoted by W and W f ,570

respectively. The problem now is that Lemma 25, which compares the total revenue of the571

algorithm, namely W +W f , with the optimal offline revenue, does not yield the competitive572

ratio of Algorithm 2. Remark 26 explains why our proof technique does not allow us to573

dispense with the use of fake money.574

We note that when Algorithm 2 is run on instances of OBM, it reduces to Ranking.575

Therefore, it is indeed a (simple) extension of Ranking to Adwords.576

A.2 Algorithm for Adwords577

Algorithm 2, which will be denoted by A2, is an attempt at online algorithm for Adwords.578

As stated in Section A.1, because of the use of fake money, we will not be able to give a579

competitive ratio for it, instead, in Lemma 25, we will compare the sum of real and fake580

money spent by the algorithm with the real money spent by an optimal offline algorithm.581

In algorithm A2, Lj ∈ Z+ will denote bidder j’s leftover budget; it is initialized to Bj. At the582

arrival of query i, bidder j will bid for i if (i, j) ∈ E and Lj > 0. In general, i will receive583

a number of bids. The exact procedure used by i to accept one of these bids is given in584

algorithm A2; its steps are self-explanatory. If i accepts j’s bid then i is matched to j, the585

edge (i, j) is assigned a weight of bid(i, j) and Lj is decremented by min{Lj, bid(i, j)}.586

Note that we do not require that there is sufficient left-over money, i.e., Lj ≥ bid(i, j), for587

j to bid for i. In case Lj < bid(i, j) and i accepts j’s bid, then bid(i, j)− Lj of the money588

paid by j for i is fake money; this will be accounted for by incrementing W f by bid(i, j)− Lj.589

The rest, namely Lj, is real money and is added to W. If bid(i, j) ≥ Lj and i accepts j’s590

bid, then Lj becomes zero and j does not bid for any future queries. At the end of the591

algorithm, random variable W denotes the total real money spent and W f denotes the total592

fake money spent.593

The offline optimal solution to this problem is defined to be a matching of queries to594

advertisers that maximizes the weight of the matching; this is done with full knowledge of595

graph G. As stated in Remark 3, we will assume that under such a matching, P, the budget596

Bj of each bidder j is fully spent, i.e., w(P) = ∑m
j=1 Bj.597

A.3 Analysis of Algorithm 2598

I Lemma 20.

E[W + W f ] =
n

∑
i

E [ui] +
m

∑
j

E[rj].599

Proof. For each edge (i, j) ∈ M, its contribution to W + W f is bid(i, j). Furthermore, the600

sum of ui and the contribution of (i, j) to rj is also bid(i, j). This gives the first equality601

below. The second equality follows from linearity of expectation.602

E[W + W f ] = E

[
n

∑
i=1

ui +
m

∑
j=1

rj

]
=

n

∑
i

E [ui] +
m

∑
j

E[rj],603

J604
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Recall that for Single-Valued, we gave Lemma 7 and Corollary 8, which established a605

relationship between the available bidders for a query i in the two runs R and Rj. These606

facts dealt with multisets and in Section 3, we have defined operations on multisets.607

We will need Lemma 7 and Corollary 8 for analyzing Algorithm 2 as well, though the608

definitions of the multisets will be guided by the following: If bidder k ∈ A has leftover609

money of Lk, as determined by Algorithm 2, then we will say that i has Lk copies of k610

available to it. Furthermore, if k’s bid for i is bid(i, k) and this bid is successful, then Lk will611

be decremented by min{Lk, bid(i, k)}, as stated in Step 2(b)(v) of the algorithm, and the612

available copies of k for the next bidder will decrease accordingly.613

As before, let us renumber the queries so their order of arrival under ρ(B) is 1, 2, . . . n.614

Let T(i) and Tj(i) denote the multisets of available copies of each bidder at the time of615

arrival of query i (i.e., just before the query i gets matched), in runs R and Rj, respectively.616

Similarly, let S(i) and Sj(i) denote the multisets obtained by restricting T(i) and Tj(i) to617

the bidders that have edges to query i in graphs G and Gj, respectively.618

We have assumed that Step (1) of Algorithm 2 has already been executed and a price pk619

has been assigned to each good k. With probability 1, the prices are all distinct. Let F1 be620

the multiset containing Bl copies of l for each l ∈ A such that pl < pj. Similarly, let F2 be621

the multiset containing Bl copies of l for each l ∈ A such that and pl > pj.622

Under the definitions and operations stated above, it is easy to check that Lemma 7 and623

Corollary 8 hold for Algorithm 2 as well. Therefore, Lemma 13 also carries over. Definition624

9 needs to be modified to the following.625

I Definition 21. Let e = (i, j) ∈ E be an arbitrary edge in G. Define random variable, ue, called626

the truncated threshold for edge e, to be ue = min{ui, bid(i, j) ·
(

1− 1
e

)
}, where ui is the627

utility of query i in run Rj.628

Definition 10 needs to be changed to the following.629

I Definition 22. Let j ∈ A. Let i1, . . . , ik be queries such that for 1 ≤ l ≤ k, (il , j) ∈ E and630

∑k
l=1 bid(il , j) = Bi. Then (j; i1, . . . , ik) is called a Bj-star. Let Xj denote this Bj-star. The631

contribution of Xj to E[W] is E[rj] + ∑k
l=1 E[uil ], and it will be denote by E[Xj].632

Corresponding to Bj-star Xj = (j; i1, . . . , ik), denote by el the edge (il , j) ∈ E, for 1 ≤ l ≤ k.633

Furthermore, let uel denote the truncated threshold random variable corresponding to el .634

The next lemma crucially uses the fact that pj is independent of uel ; the reason for this fact635

is the same as in Single-Valued.636

I Lemma 23. Let j ∈ A and let Xj = (j; i1, . . . , ik) be a Bj-star. Then637

E[Xj] ≥ Bj ·
(

1− 1
e

)
.638

Proof. We will first lower bound E[rj]. Let fU(bid(i1, j) · z1, . . . , bid(ik, j) · zk) be the joint639

probability density function of (ue1 , . . . uek ); clearly, fU(bid(i1, j) · z1, . . . , bid(ik, j) · zk) can640

be non-zero only if zl ∈ [0, 1− 1
e ], for 1 ≤ l ≤ k.641
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By the law of total expectation, E[rj] =642 ∫
(z1,...,zk)

E[rj | ue1 = bid(i1, j) · z1, . . . , uek = bid(ik, j) · zk] · fU(bid(i1, j) · z1, . . . bid(ik, j) · zk) dz1 . . . dzk,643

where the integral is over zl ∈ [0,
(

1− 1
e

)
], for 1 ≤ l ≤ k.644

For lower-bounding the conditional expectation in this integral, let wl ∈ [0, 1] be s.t.645

ewl−1 = 1− zl , for 1 ≤ l ≤ k. Let x ∈ [0, 1]. For 1 ≤ l ≤ k, define indicator functions646

Il : [0, 1]→ {0, 1} as follows.647

Il(x) =

{
1 if x < wl ,

0 otherwise.
648

Furthermore, define649

V(x) =
k

∑
l=1

Il(x) · bid(il , j).650

B Claim 24. Conditioned on (ue1 = bid(i1, j) · z1, . . . , uek = bid(ik, j) · zk), if pj = ex−1,651

where x ∈ [0, 1], then the contribution to rj in this run of algorithm A2 was ≥ pj ·V(x).652

Proof. Suppose Il(x) = 1, then x < wl . In run Rj, the maximum effective bid that il653

received has value bid(il , j) · zl . In run R, if on the arrival of query il , Lj = 0, i.e., j is654

already fully matched, then the contribution to rj in this run was Bj · pj and the claim is655

obviously true. If Lj > 0, then since x < wl , 1− pj > zl . Therefore, by Corollary 8, query il656

will receive its largest effective bid from j. Hence, il will get matched to j and rj will be657

incremented by bid(il , j) · pj. The claim follows. J658

By Claim 24,659

E[rj | ue1 = bid(i1, j) · z1, . . . , uek = bid(ik, j) · zk] ≥
∫ 1

0
V(x) · ex−1 dx660

=
k

∑
l=1

bid(il , j) ·
∫ 1

0
Il(x) · ex−1 dx =

k

∑
l=1

bid(il , j) ·
∫ wl

0
ex−1 dx661

= Bj ·
k

∑
l=1

(
ewl−1 − 1

e

)
= Bj ·

k

∑
l=1

(
1− 1

e
− zl

)
.662

Therefore, E[rj] =663 ∫
(z1,...,zk)

E[rj | ue1 = bid(i1, j) · z1, . . . , uek = bid(ik, j) · zk] · fU(bid(i1, j) · z1, . . . bid(ik, j) · zk) dz1 . . . dzk,664

≥ Bj ·
∫
(z1,...,zk)

k

∑
l=1

(
1− 1

e
− zl

)
· fU(bid(i1, j) · z1, . . . bid(ik, j) · zk) dz1 . . . dzk665
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= Bj ·
(

1− 1
e

)
−

k

∑
l=1

E[uel ].666

By Lemma 13, E[uil ] ≥ E[uel ], for 1 ≤ l ≤ k. Hence we get667

E[Xj] = E[rj] +
k

∑
l=1

E[uil ] ≥ = Bj ·
(

1− 1
e

)
,668

J669

I Lemma 25. Algorithm A2 satisfies670

E
[
W + W f

]
≥
(

1− 1
e

)
· w(P).671

Furthermore, it is budget-oblivious.672

Proof. Let P denote a maximum weight b-matching in G. By the assumption made in673

Remark 3, its weight is674

w(P) =
m

∑
j=1

Bj.675

Let Tj denote the j-star, under P, corresponding to each j ∈ A. The expected weight of676

matching produced by A2 is677

E
[
W + W f

]
=

n

∑
i=1

E [ui] +
m

∑
j=1

E[rj] =
m

∑
j=1

E[Tj] ≥
m

∑
j=1

Bj ·
(

1− 1
e

)
=

(
1− 1

e

)
·w(P),678

where the first equality uses Lemma 16, the second follows from linearity of expectation679

and the inequality follows by using Lemma 23.680

Finally, Algorithm A3 is budget-oblivious because it does not need to know the budgets681

Bj for bidders j; it only needs to know during a run whether Bj has been exhausted. The682

lemma follows. J683

I Remark 26. Let us consider the following two avenues for dispensing with the use of684

fake money altogether; we will show places where our proof technique breaks down for685

each one. Assume Lj < bid(i, j).686

1. Why not modify Step 2 of Algorithm 2 so that j’s bid for i is taken to be Lj instead of687

bid(i, j)?688

2. Why not modify Step 2(b)(i) so it sets ui to Lj · (1− pj) rather than Bj · (1− pj)689

Under the first avenue, we cannot ensure ui ≥ ue, since it may happen that ue > Lj · (1−690

pj) = ui. The condition ui ≥ ue is used for deriving E[ui] ≥ E[ue], which is essential in the691

proof of Lemma 23.692
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To make the second avenue work, the proof of Claim 24 would need to be changed as693

follows: the last case, Lj > 0, will need to be split into the two cases given above. However,694

under Case 2, which applies if Lj < bid(i, j), even though pj < p, the largest effective695

bid that query il receives may not be the one from j, since the effective bid of j has696

value Lj · (1− pj) < bid(il , j) · (1− pj). Therefore, il may not get matched to j, thereby697

invalidating Claim 24.698

A.4 Algorithm for Small699

We will use Lemma 25 to show that Algorithm 2 yields algorithms for Small by upper700

bounding the fake money used in the worst case. Their budget-obliviousness follows from701

that of Algorithm 2.702

I Conditional Theorem 27. Algorithm A2 is an optimal online algorithm for Small; further-703

more, it is budget-oblivious.704

Proof. Let I be an instance of Small.705

W f ≤ ∑
j∈A

max
(i,j)∈E

{bid(i, j)− 1}706

Therefore,707

µ(I) = max
j∈A

{
max(i,j)∈E {bid(i, j)− 1}

Bj

}
≥

∑j∈A max(i,j)∈E {bid(i, j)− 1}
∑j∈A Bj

≥
W f

w(P)
,708

where µ(I) is defined in Section 2. Now, by definition of Small,709

lim
n(I)→∞

µ(I) = 0,710

where n(I) denotes the number of queries in instance I.711

Therefore712

lim
n(I)→∞

W f

w(P)
= 0.713

The theorem follows from Lemma 25. J714

A.5 Experimental Results715

The purpose of the experimental results is two-fold: first, to determine how often is the No-716

Surpassing Property violated on a typical instance and second, to evaluate the performance717

of Algorithm 2. The results are summarized in the four Tables given. The instances were718

generated using the following parameters:719

The number of advertisers and queries was 20 and 2,000, respectively.720

Budgets were picked in the range [100, 2000].721

Bids were picked in the range [1, 20]. In addition, for each advertiser, we ensured that722

the bids were at most 0.02 times the budget, to ensure that bids were small compared723

to budgets.724
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The instances of Small were generated as follows. We picked the edge densities of the725

underlying graph to be 0.05, 0.1, 0.15, 0.2, 0.25, 0.5 and 0.8. For each edge density, 20726

underlying graphs were constructed at random. Then, budgets were assigned randomly to727

each advertiser, in the range specified. Finally, for each advertiser, bids were assigned to728

incident edges randomly, in the range specified. The order of arrival of queries was picked729

at random. This resulted in one instance of Small.730

For generating instances of Single-Valued, the underlying graphs were constructed as731

above. An instance of Single-Valued was obtained from such a graph as follows. For each732

advertiser j, the bid value bj was picked randomly from the integral interval [1, 20]. Then a733

random number nj was picked randomly from the interval [100, 2000] and k j was set to734

b nj
bj
c.735

For each instance of Small, Algorithm 2 was run 40 times, each time randomly setting pj736

for each advertiser j. The average revenue of these runs was computed and was divided737

by the revenue of the MSVV Algorithm run on the same instance. Finally, for each edge738

density, the average of these ratios over all 20 instances was computed and noted in Table739

1. A similar procedure was followed for instances of Single-Valued using Algorithm 1740

and the MSVV Algorithm. These results are reported in Table 2.741

Tables 3 compares, for all edge densities and instances of Small constructed above,742

Algorithm 2 to the greedy algorithm, under which each query is matched to the highest743

bid. Finally, Tables 4 compares the MSVV Algorithm to the greedy algorithm. Observe744

that the performances of Algorithm 2 and the MSVV Algorithm are far superior to that of745

the greedy algorithm, thereby indicating that these instances are difficult enough to not746

succumb to a trivial algorithm and lending more credence to the results reported in Tables747

1 and 2.748

Violations of the No-Surpassing Property were computed as follows. For each instance749

of Small and for each setting of random prices pj for advertisers j, we determined if a750

violation occurred for each edge (i, j) of the underlying graph, where i is a query and j is751

an advertiser, as follows: check if the effective bid made to query i in run Rj is less than752

bid(i, j) · (1− pj); the latter being the effective bid which j makes to query i in run R. If so,753

then if in run R, the effective bid to i surpasses ebid(il , j) = bid(i, j) · (1− pj), then we say754

that a violation of the No-Surpassing property has occurred for edge (i, j). In Table 1, we755

have reported the percentage of edges for which violations happen.756

As shown in Lemma 12, the No-Surpassing Property holds for Single-Valued. As a stress757

test of our code, we repeated the above experiment on instances of Single-Valued as well.758

The results are reported in Table 2; all entries are zero, as expected.759
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Table 1: Ratio of Algorithm 2 to MSVV for SMALL 
 

p_edge Algorithm to MSVV ratio ± SD (%) NSP violation mean ± SD (%) NSP violation range 

0.05 96.52 ± 11.70 0.01 ± 0.01 0.00, 0.03 

0.1 98.45 ± 15.50 0.48 ± 0.04 0.42, 0.58 

0.15 100.99 ± 16.66 0.76 ± 0.05 0.67, 0.90 

0.2 101.32 ± 16.46 0.94 ± 0.04 0.86, 1.03 

0.25 101.38 ± 16.82 1.06 ± 0.04 1.00, 1.13 

0.5 100.89 ± 13.45 1.39 ± 0.06 1.29, 1.51 

0.8 101.17 ± 15.55 1.61 ± 0.03 1.56, 1.67 
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Table 2: Ratio of Algorithm 1 to MSVV for SINGLE-VALUED 
 

p_edge Algorithm to MSVV ratio ± SD (%) NSP violation mean ± SD (%) NSP violation range 

0.05 99.99 ± 2.95 0.00 ± 0.00 0.00, 0.00 

0.1 99.93 ± 0.67 0.00 ± 0.00 0.00, 0.00 

0.15 99.80 ± 0.60  0.00 ± 0.00 0.00, 0.00 

0.2 100.54 ± 1.15  0.00 ± 0.00 0.00, 0.00 

0.25 99.85 ± 0.78 0.00 ± 0.00 0.00, 0.00 

0.5 100.04 ± 1.15 0.00 ± 0.00 0.00, 0.00 

0.8 100.44 ± 1.79 0.00 ± 0.00 0.00, 0.00 
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Table 3: Ratio of Algorithm 2 to Greedy for SMALL 

p_edge Ratio of Algorithm to Greedy mean ± SD (%) 

0.05 95.84 ± 0.53 

0.1 101.32 ± 0.73 

0.15 106.51 ± 1.08 

0.2 110.29 ± 1.69 

0.25 113.85 ± 1.81 

0.5 131.78 ± 4.38 

0.8 152.75 ± 10.59 

 

Table 4: Ratio of MSVV to Greedy for SMALL 

p_edge Ratio of MSVV to Greedy ± SD (%) 

0.05 100.12 ± 0.11 

0.1 105.02 ± 1.32 

0.15 107.46 ± 1.63 

0.2 109.84 ± 1.77 

0.25 114.12 ± 2.09 

0.5 133.92 ± 5.71 

0.8 152.63 ± 9.05 
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