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—— Abstract

Recently [18] identified and initiated work on a new problem, namely understanding structural
relationships between the lattices of solutions of two “nearby” instances of stable matching. They
also gave an application of their work to finding a robust stable matching. However, the types of
changes they allowed in going from instance A to B were very restricted, namely any one agent
executes an upward shift.

In this paper, we allow any one agent to permute its preference list arbitrarily. Let M4 and Mp
be the sets of stable matchings of the resulting pair of instances A and B, and let L4 and Lp be
the corresponding lattices of stable matchings. We prove that the matchings in M4 N Mp form a
sublattice of both £4 and L£p and those in M4 \ Mp form a join semi-sublattice. These properties
enable us to obtain a polynomial time algorithm for not only finding a stable matching in M4 N Mp,
but also for obtaining the partial order, as promised by Birkhoff’s Representation Theorem [7]. As a
result, we can generate all matchings in this sublattice.

Our algorithm also helps solve a version of the robust stable matching problem. We discuss another
potential application, namely obtaining new insights into the incentive compatibility properties of
the Gale-Shapley Deferred Acceptance Algorithm.
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1 Introduction

The seminal 1962 paper of Gale and Shapley [14] introduced the stable matching problem
and gave the Deferred Acceptance (DA) Algorithm for it. In the process, they initiated the
field of matching-based market design. Over the years, numerous researchers unearthed the
remarkably deep and pristine structural properties of this problem — this led to polynomial
time algorithms for numerous problems, in particular those addressing various operations
related to the lattice of stable matchings, see details below as well as in the books [17, 15,
20, 22, 12].
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A Study of Stable Matching Lattices of '"Nearby" Instance

Recently [18] identified and initiated work on a new problem which appears to be funda-
mental and deserving of an in-depth study, namely understanding structural relationships
between the lattices of solutions of two “nearby” instances. [18] had given an application
of their work to finding a robust stable matching as described below. Let us say that two
instance A and B of stable matching are nearby instances if B is obtained from A when
one agent changes their preference list. Such pairs of instances arise naturally in an even
more important context: the study of incentive compatibility of the DA Algorithm: one
of the agents manipulates its preference list in order to get a better match. The types of
manipulations allowed in [18] were very restricted, namely any one agent executes an upward
shift, see definition below. They left the open problem of tackling more general changes.

[21] showed that finding a stable matching across k (> 2) arbitrary instances is NP-Hard.
In this paper, we allow any one agent to permute its preference list arbitrarily. Let A and B
be the resulting pair of instances, let M4 and Mp be the sets of their stable matchings and
L4 and Lp be the corresponding lattices of stable matchings. We prove that the matchings
in Ma N Mp form a sublattice of both £4 and £ and those in M4 \ Mp form a join
semi-sublattice, see definitions in Section 1.1. This enables us to obtain a polynomial time
algorithm for not only finding a stable matching in M4 N Mp, but also to obtain the partial
order, promised by Birkhoff’s Representation Theorem [7], which helps generate all matchings
in this sublattice. We also apply our algorithm to a more general setting for robust stable
matching than the one given in [18].

The setting defined in [18] was the following: Let A be an instance of stable matching on
n workers and n firms. A domain of errors, D, is defined via an operation called upward shift:
For a firm f, assume its preference list in instance A is {...,wy,wa,...,wg,w,...}. Move
up the position of worker w so f’s list becomes {..., w,wy,wa,...,wk,...}. An analogous
operation is defined on a worker w’s list; again some firm f on its list is moved up. For each
firm and each worker, consider all possible shifts to get the domain D; clearly, |D| = (21" ) (Z) =
O(n?). Assume that one error is chosen from D via a given discrete probability distribution
over D to obtain instance B. A robust stable matching is a matching that is stable for A and
maximizes the probability of being stable for B. A polynomial time algorithm was given for
finding such a matching.

Since we allow an arbitrary permutation to be applied to any one worker or any one
firm’s preference list, our domain of errors, say T, has size 2n(n!). Let S C T and define a
fully robust stable matching w.r.t. S to be a matching that is stable for A and for each of the
|S] instances obtained by introducing one error from S. We give an O(|S|p(n)) algorithm to
determine if such a matching exists and if so to find one, where p is a polynomial function.
In particular, if S is polynomial sized, then our algorithm runs in polynomial time. Clearly,
this notion is weaker than the previous one, since we cannot extend it to the probabilistic
setting; we leave that as an open problem, see Section 8.

In case all errors in S are on one side only, say the firms, it turns out that Algorithm D,
which is a simple modification of the Deferred Acceptance Algorithm, works; this algorithm
is given in Appendix D. However, extending this algorithm to the case that errors occur on
both sides, workers and firms, results in an algorithm (Algorithm D) that has exponential
runtime. Our polynomial time algorithm follows from a study of the sublattices of the lattice
of stable matchings.

Conway, see [17], proved that the set of stable matchings of an instance forms a finite
distributive lattice; see definitions in Section 2.2. Knuth [17] asked if every finite distributive
lattice is isomorphic to the lattice arising from an instance of stable matching. A positive
answer was provided by Blair [8]; for a much better proof, see [15]. A key fact about such
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lattices is Birkhoff’s Representation Theorem [7], which has also been called the fundamental
theorem for finite distributive lattices, e.g., see [23]. It states that corresponding to such a
lattice, £, there is a partial order, say II, such that £ is isomorphic to L(II), the lattice of
closed sets of II (see Section 2.2 for details). We will say that II generates L.

The following important question arose in the design of our algorithm: For a specified
sublattice £ of £, obtain partial order IT" from II such that IT" generates £’. Our answer to
this question requires a study of Birkhoff’s Theorem from this angle; we are not aware of any
previous application of Birkhoff’s Theorem in this manner. We define a set of operations
called compressions; when a compression is applied to a partial order II, it yields a partial
order IT' on (weakly) fewer elements. The following implication of Birkhoff’s Theorem is
useful for our purposes:

» Theorem 1. There is a one-to-one correspondence between the compressions of 11 and the
sublattices of L(I1) such that if sublattice L of L(I1) corresponds to compression 11, then L'
is generated by II'.

A proof of Theorem 1, using stable matching lattices, is given in Section B for completeness.
In the case of stable matchings, IT can be defined using the notion of rotations; see Section
2.2 for a formal definition. Since the total number of rotations of a stable matching instance
is at most O(n?), I has a succinct description even though £ may be exponentially large.
Our main algorithmic result is:

» Theorem 2. There is an algorithm for checking if there is a fully robust stable matching
w.r.t. any set S C T in time O(|S|p(n)), where p is a polynomial function. Moreover, if the
answer is yes, the set of all such matchings forms a sublattice of L and our algorithm finds a
partial order that generates it.

The importance of the stable matching problem lies not only in its efficient computability
but also its good incentive compatibility properties. In particular, Dubins and Freedman
[11] proved that the DA Algorithm is dominant-strategqy incentive compatible (DSIC) for the
proposing side. This opened up the use of this algorithm in a host of highly consequential
applications, e.g., matching students to public schools in big cities, such as NYC and Boston,
see [3, 1, 2]. In this application, the proposing side is taken to be the students; clearly, their
best strategy is to report preference lists truthfully and not waste time and effort on “gaming”
the system. In Section 8 we give a hypothetical situation regarding incentive compatibility
in which Theorem 2 plays a role.

1.1 Overview of structural and algorithmic ideas

We start by giving a short overview of the structural facts proven in [18]. Let A and B be
two instances of stable matching over n workers and n firms, with sets of stable matchings
M4 and Mp, and lattices L4 and Lp, respectively. Let II be the poset on rotations such
that L(II) = L4; in particular, for a closed set S, let M(S) denote the stable matching
corresponding to S. It is easy to see that if B is obtained from A by changing (upshifts
only) the lists of only one side, either workers or firms, but not both, then the matchings in
M4 N Mg form a sublattice of each of the two lattices (Proposition 6). Furthermore, if B
is obtained by applying a shift operation, then M 4\ g = M\ Mp is also a sublattice of L.
Additionally, there is at most one rotation, piy, that leads from M4 N Mp to M4\ p and at
most one rotation, pout, that leads from M4\ p to M4 N M p; moreover, these rotations can
be found in polynomial time. Finally, for a closed set S of I, M(.S) is stable for instance B
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iff Pin € S = Pout € S.

With a view to extending the results of [18], we consider the following abstract question.
Suppose instance B is such that M4 N Mp and M 4\ g are both sublattices of L4, i.e., M4
is partitioned into two sublattices. Then, is there a polynomial time algorithm for finding a
matching in M4 N Mp? Our answer to this question is built on the following structural fact:
There exists a sequence of rotations rg,r1, ..., 7ok, rok+1 such that a closed set of II generates
a matching in M4 N Mp iff it contains r9; but not 74,41 for some 0 < i < k (Proposition
19). Furthermore, this sequence of rotations can be found in polynomial time (see Section
4). Our generalization of Birkhoff’s Theorem described in the Introduction is an important
ingredient in this algorithm. At this point, we do not know of any concrete error pattern,
beyond shift, for which this abstract setting applies.

Next, we address the case that M4\ p is not a sublattice of £4. We start by proving that
if B is obtained by permuting the preference list of any one worker, then M 4\ p must be a
join semi-sublattice of £4 (Lemma 31); an analogous statement holds if the preference list of
any one firm is permuted. Hence we study a second abstract question, namely lattice £,4 is
partitioned into a sublattice and a join semi-sublattice (see Section 5). These two abstract
questions are called Setting I and Setting II, respectively, in this paper.

For Setting II, we characterize a compression that yields a partial order II’, such that
IT' generates the sublattice consisting of matchings in M4 N Mp (Theorem 20). We also
characterize closed sets of II such that the corresponding matchings lie in this sublattice;
however, the characterization is too elaborate to summarize succinctly (see Proposition 25).
Edges forming the required compression can be found in polynomial time (Theorem 29),
hence leading to an efficient algorithm for finding a matching in M4 N Mp.

Finally, consider the setting given in the Introduction, with T" being the super-exponential
set of all possible errors that can be introduced in instance A and S C T. We show that
the set of all matchings that are stable for A and for each of the instances obtained by
introducing one error from S forms a sublattice of £ and we obtain a compression of II that
generates this sublattice (Section 7.2). Each matching in this sublattice is a fully robust
stable matching. Furthermore, given a weight function on all worker-firm pairs, we can
obtain, using the algorithm of [19], a maximum (or minimum) weight fully robust stable
matching.

2 Preliminaries

2.1 The stable matching problem and the lattice of stable matchings

The stable matching problem takes as input a set of workers W = {wy,ws,...,w,} and a
set of firms F = {f1, fa,..., fn}; each agent has a complete preference ranking over the set
of opposite side. A matching M is a one-to-one correspondence between W and F. For
each pair wf € M, w is called the partner of f in M (or M-partner) and vice versa. For a
matching M, a pair wf & M is said to be blocking if they prefer each other to their partners.
A matching M is stable if there is no blocking pair for M.

Let M and M’ be two stable matchings. We say that M dominates M’, denoted by
M =< M, if every worker weakly prefers his partner in M to M’. Define the relation
predecessor as the transitive closure of dominates. The set of stable matchings forms a finite
distributive lattice under the above definition of predecessor. The lattice contains a matching,
My, that dominates all others and a matching M, that is dominated by all others. M) is
called the worker-optimal matching, since in it, each worker is matched to his most favorite
firm among all stable matchings. Similarly, M, is firm-optimal matching.
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2.2 Birkhoff’s Theorem and rotations

It is easy to see that the family of closed sets (also called lower sets, Definition 5) of a partial
order, say II, is closed under union and intersection and forms a distributive lattice, with
join and meet being these two operations, respectively; let us denote it by L(II). Birkhoff’s
theorem [7], states that corresponding to any finite distributed lattice, £, there is a partial
order, say II, whose lattice of closed sets L(II) is isomorphic to £, i.e., £ = L(IT). We will
say that II generates L.

One way to define the partial orders generating stable matching lattices is using the
concept of rotation. For a worker w let sps(w) denote the first firm f on w’s list such that f
strictly prefers w to her M-partner. Let nextys(w) denote the partner in M of firm sy (w).
A rotation p exposed in M is an ordered list of pairs {wg fo, w1 f1,...,wy—1fr—1} such that
for each ¢, 0 < i <r — 1, w41 is nexty (w;), where i + 1 is taken modulo r. M/p is defined
to be a matching in which each worker not in a pair of p stays matched to the same firm
and each worker w; in p is matched to f; 11 = spr(w;). It can be proven that M/p is also a
stable matching. The transformation from M to M/p is called the elimination of p from M.

Let p = {wo fo, w1 f1,...,wr—1fr—1} be a rotation. For 0 <14 < r—1, we say that p moves
w; from f; to fi11, and moves f; from w; to w;_1. If f is either f; or is strictly between f;
and f;41 in w;’s list, then we say that p moves w; below f. Similarly, p moves f; above w if
w is w; or between w; and w;_1 in f;’s list.

2.3 The rotation poset

A rotation p’ is said to precede another rotation p, denoted by p’ < p, if p’ is eliminated in
every sequence of eliminations from Mj to a stable matching in which p is exposed. Thus,
the set of rotations forms a partial order via this precedence relationship. The partial order
on rotations is called rotation poset and denoted by II.

» Lemma 3 ([15], Lemma 3.2.1). For any worker w and firm f, there is at most one rotation
that moves w to f, w below f, or f above w. Moreover, if p1 moves w to f and py moves w
from f then p1 < pa.

» Lemma 4 ([15], Lemma 3.3.2). II contains at most O(n?) rotations and can be computed
in polynomial time.

» Definition 5. A closed set of a poset is a set S of elements of the poset such that if an
element is in S then all of its predecessors are also in S.

There is a one-to-one relationship between the stable matchings and the closed subsets of II.
Given a closed set S, the corresponding matching M is found by eliminating the rotations
starting from My according to the topological ordering of the elements in the set S. We say
that S generates M.

Let S be a subset of the elements of a poset, and let v be an element in .S. We say that v
is a minimal element in S if there are no predecessors of v in S. Similarly, v is a mazimal
element in S if it has no successors in S. The Hasse diagram of a poset is a directed graph
with a vertex for each element in the poset, and an edge from x to y if x < y and there is no
z such that © < z < y. In other words, all precedences implied by transitivity are suppressed.
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2.4 Sublattice and semi-sublattice

A sublattice L' of a distributive lattice £ is subset of £ such that for any two elements
z,y€ L, xVy € L and z Ay € L' whenever z,y € L', where V and A are the join and
meet operations of lattice L. A join semi-sublattice L' of a distributive lattice £ is subset of
L such that for any two elements z,y € L, x Vy € L whenever z,y € £'. Similarly, meet
semi-sublattice L' of a distributive lattice £ is subset of £ such that for any two elements
xz,y € L, x ANy € L whenever z,y € L'. Note that £ is a sublattice of £ iff £’ is both join
and meet semi-sublattice of L.

» Proposition 6. Let A be an instance of stable matching and let B be another instance
obtained from A by changing the lists of only one side, either workers or firms, but not both.
Then the matchings in My N Mp form a sublattice in each of the two lattices.

» Corollary 7. Let A be an instance of stable matching and let By, ..., By be other instances
obtained from A each by changing the lists of only one side, either workers or firms, but not
both. Then the matchings in Ma N Mp, N...NMp, form a sublattice in M 4.

This corollary gives another justification for Algorithm D, motivated by [21]. This
modified Deferred Algorithm works when errors are only on one side. Algorithm D extends
this to errors on both sides however it has exponential runtime.

This motivates us to characterize sublattices in the lattice of stable matchings. In
Section 7.1, we show that for any instance B obtained by permuting the preference list of
one worker or one firm, M 4\ g forms a semi-sublattice of L4 (Lemma 31). In particular, if
the list of a worker is permuted, M 4\ p forms a join semi-sublattice of £, and if the list of
a firm is permuted, M4\ p forms a meet semi-sublattice of L. In both cases, M4 N Mp is
a sublattice of L4 and of L as shown in Proposition 6.

3 Birkhoff’s Theorem on Sublattices

Let II be a finite poset. For simplicity of notation, in this paper we will assume that II must
have two dummy elements s and t; the remaining elements will be called proper elements and
the term element will refer to proper as well as dummy elements. The element s precedes all
other elements and ¢ succeeds all other elements in II. A proper closed set of II is any closed
set that contains s and does not contain t. It is easy to see that the set of all proper closed
sets of IT form a distributive lattice under the operations of set intersection and union. We
will denote this lattice by L(II). The following has also been called the fundamental theorem
for finite distributive lattices.

» Theorem 8. (Birkhoff [7]) Every finite distributive lattice L is isomorphic to L(II), for
some finite poset II.

Our application of Birkhoff’s Theorem deals with the sublattices of a finite distributive
lattice. First, in Definition 9 we state the critical operation of compression of a poset.

» Definition 9. Given a finite poset 11, first partition its elements; each subset will be called
a meta-element. Define the following precedence relations among the meta-elements: if x,y
are elements of Il such that x is in meta-element X, y is in meta-element Y and x precedes
y, then X precedes Y. Assume that these precedence relations yield a partial order, say @Q,
on the meta-elements (if not, this particular partition is not useful for our purpose). Let
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{s, 1} {3}

{2 {3}

{4, t} {2}

¢ {t}

J

Figure 1 Two examples of compressions. Lattice £ = L(P). P, and P, are compressions of P,
and they generate the sublattices in £, of red and blue elements, respectively. The black edges are
directed from top to bottom so higher elements are predecessors of lower elements.

II' be any partial order on the meta-elements such that the precedence relations of Q are a
subset of the precedence relations of II'. Then II' will be called a compression of I1. Let A,
and A; denote the meta-elements of II' containing s and t, respectively.

For examples of compressions see Figure 1. Clearly, Ag precedes all other meta-elements
in IT" and A; succeeds all other meta-elements in II'. Once again, by a proper closed set of
II’ we mean a closed set of I’ that contains A, and does not contain A;. Then the lattice
formed by the set of all proper closed sets of II' will be denoted by L(IT").

3.1 An alternative view of compression

In this section we give an alternative definition of compression of a poset; this will be used
in the rest of the paper. The advantage of this definition is that it is much easier to work
with for the applications presented later. Its drawback is that several different sets of edges
may yield the same compression. Therefore, this definition is not suitable for stating a
one-to-one correspondence between sublattices of £ and compressions of II. Finally we show
that any compression II' obtained using the first definition can also be obtained via the
second definition and vice versa (Proposition 10), hence showing that the two definitions are
equivalent for our purposes. See Appendix C for more details.

We are given a poset II for a stable matching instance; let £ be the lattice it generates.
Let H(II) denote the Hasse diagram of II. Consider the following operations to derive a
new poset II': Choose a set E of directed edges to add to H(II) and let Hg be the resulting
graph. Let H' be the graph obtained by shrinking the strongly connected components of
Hg; each strongly connected component will be called a meta-rotation of II' as defined
in Definition 9. The edges which are not shrunk will define a DAG, H’, on the strongly
connected components. These edges give precedence relations among meta-rotation for poset
IT'.

Let £’ be the sublattice of £ generated by IT'. We will say that the set of edges E defines
L'. Tt can be seen that each set E uniquely defines a sublattice L(II'); however, there may
be multiple sets that define the same sublattice. See Figure 2 for examples of sets of edges
which define sublattices.

» Proposition 10. The two definitions of compression of a poset are equivalent.

For a (directed) edge e = wv € E, u is called the tail and v is called the head of e. Let T
be a closed set of II. Then we say that: I separates an edge uv € Eifve [ andu & I; I
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By Eg E3

Figure 2 E; (red edges) and E> (blue edges) define the sublattices in Figure 1, of red and blue
elements, respectively. F2 and E3 define the same compression and represent the same sublattice.
All black edges in E1, F> and Ej3 are directed from top to bottom (not shown in the figure).

crosses an edge uv € E if u € [ and v ¢ I. If I does not separate or cross any edge uv € F,
I is called a splitting set w.r.t. E.

» Lemma 11. Let £/ be a sublattice of L and E be a set of edges defining L'. A matching
M is in L' iff the closed subset I generating M does not separate any edge uv € E.

» Remark 12. We may assume w.l.o.g. that the set E defining £ is minimal in the following
sense: There is no edge uv € E such that uv is not separated by any closed set of II. Observe
that if there is such an edge, then E \ {uv} defines the same sublattice £’. Similarly, there is
no edge uv € F such that each closed set separating uv also separates another edge in F.

» Definition 13. W.r.t. an element v in a poset I1, we define four useful subsets of I1:
IL={rell:r<v},Jy={rell:rvt=LU{}L I ={rell:r>=v},J, ={rell:
r = v} =1I) U{v}. Notice that I, J,,JI\ I, II\ J! are all closed sets.

» Lemma 14. Both J, and I1\ J), separate uv for each uv € E.

Proof. Since uv is in E, u cannot be in J,; otherwise, there is no closed subset separating
uwv, contradicting Remark 12. Hence, J, separates uv for all uv in E. Similarly, since wv is
in E, v cannot be in J/. Therefore, IT\ J/, contains v but not u, and thus separates uv. <«

4 Setting |

Under Setting I, the given lattice £ has sublattices £1 and L5 that partition £. The main
structural fact for this setting is:

» Theorem 15. Let L1 and Lo be sublattices of L such that L1 and Lo partition L. Then
there exist sets of edges E1 and Ey defining L1 and Lo such that they form an alternating
path from t to s.

We will prove this theorem in the context of stable matchings. Let E; and Es be any two
sets of edges defining £1 and Lo, respectively. We will show that F; and F5 can be adjusted
so that they form an alternating path from ¢ to s, without changing the corresponding
compressions.

» Lemma 16. There must exist a path from t to s composed of edges in Fy and Fs.
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t
(a) (b)

Figure 3 Examples of: (a) canonical path, and (b) bouquet.

Let @ be a path from ¢ to s according to Lemma 16. Partition @ into subpaths @1, ..., Q
such that each Q; consists of edges in either F; or Fy and E(Q;) N E(Q;4+1) = 0 for all
1 <i < k-—1. Let r; be the rotation at the end of (); except for i = 0 where rqg = t.
Specifically, t =r9g - 71 — ... > 7 = s in ). Lemma 11 can be used to show that each Q;
can be replaced by a direct edge from r;_1 to r;, and furthermore, all edges not in ) can be
removed.

» Lemma 17. Let Q; consist of edges in E,, (o« = 1 or 2). Q; can be replaced by an edge
from r;_1 to r; where r;_1r; € Eq.

» Lemma 18. Edges in Fy U Es but not in Q can be removed.

By Lemma 17 and Lemma 18, rorq,...,7x—27r—1,Tk—17% are all edges in F; and Es and
they alternate between F7 and Fo. Therefore, we have Theorem 15. An illustration of such
a path is given in Figure 3(a).

» Proposition 19. There exists a sequence of rotations rg,r1,...,Tok, Top+1 Such that a
closed subset generates a matching in Ly iff it contains ro; but not ro;y1 for some 0 < i < k.

5 Setting Il

Under Setting II, the given lattice £ can be partitioned into a sublattice £; and a semi-
sublattice Lo. We assume that £, is a join semi-sublattice. Clearly by reversing the order
of L, the case of meet semi-sublattice is also covered. The next theorem, which generalizes
Theorem 15, gives a sufficient characterization of a set of edges E defining £;.

» Theorem 20. There exists a set of edges E defining sublattice L1 such that:

1. The set of tails Ty of edges in E forms a chain in I1.

2. There is no path of length two consisting of edges in E.

3. For each v € Tg, let F,, = {v € Il : rv € E}. Then any two rotations in F, are
incomparable.

4. For any ri,r; € Tp where r; < r;, there exists a splitting set containing all rotations in
F., U{r;} and no rotations in F,, U {r;}.

A set E satisfying Theorem 20 will be called a bouquet. For each r € Tg, let L, =
{rv | v € F.}. Then L, will be called a flower. Observe that the bouquet E is partitioned
into flowers. These notions are illustrated in Figure 3(b). The black path, directed from s
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to t, is the chain mentioned in Theorem 20 and the red edges constitute E. Observe that
the tails of edges FE lie on the chain. For each such tail, the edges of E outgoing from it
constitute a flower.

Let E be an arbitrary set of edges defining £;. We will show that E can be modified
so that the conditions in Theorem 20 are satisfied. Let S be a splitting set of II. In other
words, S is a closed subset such that for all uv € E, either u, v are both in S or u,v are both
in IT\ S. We can now replace paths with single edges as explained below.

» Lemma 21. There is a unique mazimal rotation in Tg N S.

Denote by r the unique maximal rotation in Ty N S. Let R, = {v € I : there is a path
from r to v using edges in E}, B, = {uv € E: u,v € R, },G, = {R,, E,}. Note that r € R,.
For each v € R, there exists a path from r to v and r € S. Since S does not cross any edge
in the path, v must also be in S. Therefore, R, C S.

» Lemma 22. Let u € (T NS)\ R, such that u > x for x € R.. Then we can replace each
uv € B with mv.

Keep replacing edges according to Lemma 22 until there is no u € (Tg N S) \ R, such
that u > z for some x € R,.

» Lemma 23. Let X = {v € S:v =z for somex € R.}. Then: S\ X is a closed subset;
S\ X contains u for eachu € (Te NS)\ Ry; (S\ X)NR, =0; S\ X is a splitting set.

» Lemma 24. E, can be replaced by the following set of edges: El. = {rv:v € R, }.

Proof of Theorem 20. To begin, let S; = II and let r; be the unique maximal rotation
according to Lemma 21. Then we can replace edges according to Lemma 22 and Lemma 24.
After replacing, r; is the only tail vertex in G,,. By Lemma 23, there exists a set X such
that S; \ X does not contain any vertex in R,, and contains all other tail vertices in Tg
except r1. Moreover, Sp \ X is a splitting set. Hence, we can set So = S; \ X and repeat.

Let r1,..., 7 be the rotations found in the above process. Since r; is the unique maximal
rotation in Tg N S; forall 1 <i < kand Sy DSy D ... D Sk, wehaver; =19 = ... > rg. By
Lemma 24, for each 1 < i < k, E,, consists of edges r;v for v € R,.,. Therefore, there is no
path of length two composed of edges in E and condition 2 is satisfied. Moreover, r1,...,7k
are exactly the tail vertices in T, which gives condition 1.

Let 7 be a rotation in Tg and consider u,v € F,.. Moreover, assume that u < v. A closed
subset I separating rv contains v but not r. Since I is a closed subset and u < v, I contains
u. Therefore, I also separates ru, contradicting the assumption in Remark 12. The same
argument applies when v < u. Therefore, u and v are incomparable as stated in condition 3.

Finally, let r;,7; € T where r; < r;. By the construction given above, S; D S;_1 D
.D 8, R, C©S; \ S;j_1 and R,, C S;. Therefore, S; contains all rotations in R,, but none
of the rotations in R, , giving condition 4 which can be restated as Proposition 25. <

» Proposition 25. There ezists a sequence of rotations m < ... <1 and a set F,, for each
1 <4 <k such that a closed subset generates a matching in L1 if and only if whenever it
contains a rotation in F,, it must also contain r;.
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FINDBOUQUET(II):

Input: A poset II.

Output: A set F of edges defining L;.

Initialize: Let S =11, E = {).

If M, is in L1: go to Step 3. Else: r =t, go to Step 5.
r = FINDNEXTTAIL(IL, S).

If 7 is not NULL: Go to Step 5. Else: Go to Step 7.
F, = FINDFLOWER(IL, S, r).

Update:

a. For each u € F,.: E + EU{ru}.

b. S+ S\ UueFTU{T} J!.

c. Go to Step 3.

7. Return E.

R wbH

Figure 4 Algorithm for finding a bouquet.

6 Algorithm for Finding a Bouquet

In this section, we give an algorithm for finding a bouquet. Let £ be a distributive lattice
that can be partitioned into a sublattice £ and a semi-sublattice £5. Then given a poset
IT of £ and a membership oracle, which determines if a matching of £ is in £1 or not, the
algorithm returns a bouquet defining £;.

By Theorem 20, the set of tails T forms a chain C in II. The idea of our algorihm, given
in Figure 4, is to find the flowers according to their order in C. Specifically, a splitting set S
is maintained such that at any point, all flowers outside of S are found. At the beginning, S
is set to II and becomes smaller as the algorithm proceeds. Step 2 checks if M, is a matching
in £y or not. If M, & L1, the closed subset II\ {¢t} separates an edge in E according to
Lemma 11. Hence, the first tail on C' must be ¢. Otherwise, the algorithm jumps to Step
3 to find the first tail. Each time a tail r is found, Step 5 immediately finds the flower L,
corresponding to r. The splitting set S is then updated so that S no longer contains L, but
still contains the flowers that have not been found yet. Next, our algorithm continues to
look for the next tail inside the updated S. If no tail is found, it terminates.

» Lemma 26. Let v be a rotation in II. Let S C II such that both S and S U {v} are closed
subsets. If S generates a matching in L1 and S U {v} generates a matching in Lo, v is the
head of an edge in E. If S generates a matching in Lo and S U {v} generates a matching in
L1, v is the tail of an edge in E.

Proof. Suppose that S generates a matching in £ and S U {v} generates a matching in L.
By Lemma 11, S does not separate any edge in E, and S U {v} separates an edge e € E.

This can only happen if u is the head of e.
A similar argument can be given for the second case. |

» Lemma 27. Given a splitting set S, FINDNEXTTAIL(II, S) (Figure 5) returns the mazimal
tail vertex in S, or NULL if there is no tail vertex in S.
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FINDNEXTTAIL(IL, S):
Input: A poset II, a splitting set S.
Output: The maximal tail vertex in S, or NULL if there is no tail vertex in S.
1. Compute the set V of rotations v in S such that:

IT\ I] generates a matching in £;.

IT\ J, generates a matching in L.
2. If V # 0 and there is a unique maximal element v in V: Return v.

Else: Return NULL.

Figure 5 Subroutine for finding the next tail.

FINDFLOWER(II, S, 7):
Input: A poset II, a tail vertex r and a splitting set S containing r.
Output: The set F,. = {v €Il:rv € E}.
1. Compute X = {v € I, : J, generates a matching in £;}.
2. Let Y = U,ex Jo-
3. Y =0 and My € Ly: Return {s}.
4. Compute the set V of rotations v in S such that:
Y U I, generates a matching in L.
Y U J, generates a matching in L.
5. Return V.

Figure 6 Subroutine for finding a flower.

» Lemma 28. Given a tail vertex v and a splitting set S containing r, FINDFLOWER(IL, S, 1)
(Figure 6) correctly returns F,.

» Theorem 29 (h). FINDBoUQUET(II), given in Figure 4, returns a set of edges defining
L.

Proof. From Lemmas 27 and 28, it suffices to show that S is udpated correctly in Step 6(b).
To be precise, we need that

s\ Uy 7

u€F,U{r}

must still be a splitting set, and contains all flowers that have not been found. This follows
from Lemma 23 by noticing that

U J! ={vell:v = ufor someu € R,}.
uwEF,U{r}

<

Clearly, a sublattice of £ must also be a semi-sublattice. Therefore, FINDBOUQUET can
be used to find a canonical path described in Section 4. The same algorithm can be used to
check if M4 N Mg = (). Let E be the edge set given by the FINDBOUQUET algorithm and
Hp be the corresponding graph obtained by adding E to the Hasse diagram of the original
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1|/b a ¢ d 1jc a b d all 2 3 4
2|la b ¢ d 2|la b ¢ d b2 1 3 4
3|d ¢ a b 3|d ¢ a b c|3 1 4 2
41c d a b 4|lc d a b d|{4 3 1 2
firms’ preferences in A firms’ preferences in B workers’ preferences in both
instances

Figure 7 An example in which M4\ g is not a sublattice of La.

rotation poset II of L4. If Hg has a single strongly connected component, the compression
IT" has a single meta-element and represents the empty lattice.

7 Finding a Fully Robust Stable Matching

Consider the setting given in the Introduction, with S being the domain of errors, one of
which is introduced in instance A. We show how to use the algorithm in Section 6 to find
the poset generating all fully robust matchings w.r.t. S. We then show how this poset can
yield a fully robust matching that maximizes, or minimizes, a given weight function.

7.1 Studying semi-sublattices is necessary and sufficient

Let A be a stable matching instance, and B be an instance obtained by permuting the
preference list of one worker or one firm. Lemma 30 gives an example of a permutation so
that M 4\ p is not a sublattice of £4, hence showing that the case studied in Section 4 does
not suffice to solve the problem at hand. On the other hand, for all such instances B, Lemma
31 shows that M4\ p forms a semi-sublattice of £4 and hence the case studied in Section 5
does suffice.

The next lemma pertains to the example given in Figure 7, in which the set of workers is
B ={a,b,c,d} and the set of firms is G = {1,2,3,4}. Instance B is obtained from instance
A by permuting firm 1’s list.

» Lemma 30. There exist stable matching instances A and B differing by one agent’s
preference list such that M\ p is not a sublattice of L.

» Lemma 31. For any instance B obtained by permuting the preference list of one worker
or one firm, M\ p forms a semi-sublattice of La.

» Proposition 32. A set of edges defining the sublattice L', consisting of matchings in
Ma N Mgp, can be computed in polynomial time.

7.2 Proof of Theorem 2

In this section, we will prove Theorem 2 as well as a slight extension; the latter uses ideas
from [18]. Let By,..., By be polynomially many instances in the domain D C T, as defined
in the Introduction. Let E; be the set of edges defining M4 N Mp, for all 1 <i < k. By
Corollary 7, L' = MsNMp, N...N Mp, is a sublattice of L4.
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» Lemma 33. E =, E; defines L'.

Proof. By Lemma 11, it suffices to show that for any closed subset I, I does not separate
an edge in F iff I generates a matching in £'.

I does not separate an edge in F iff I does not separate any edge in F; for all 1 <i¢ < k
iff the matching generated by [ is in M4 N Mp, for all 1 <4 < k by Lemma 11. <

By Lemma 33, a compression II’ generating £’ can be constructed from E as described in
Section 3.1. By Proposition 32, we can compute each E;, and hence, I’ in polynomial time.
Clearly, I’ can be used to check if a fully robust stable matching exists. To be precise, a
fully robust stable matching exists iff there exists a proper closed subset of II’. This happens
iff s and t belong to different meta-rotations in II’, an easy to check condition. Hence, we
have Theorem 2.

7.3 Finding maximum weight fully robust stable matchings

We can use I’ to obtain a fully robust stable matching M maximizing >, feM Wws by
applying the algorithm of [19]. Specifically, let H(II') be the Hasse diagram of II'. Then each
pair wf for w € W and f € F can be associated with two vertices u, s and v, in H(II') as
follows:
If there is a rotation » moving w to f, u, ¢ is the meta-rotation containing r. Otherwise,
Uy ¢ is the meta-rotation containing s.
If there is a rotation r moving w from f, v, is the meta-rotation containing r. Otherwise,
vy is the meta-rotation containing ¢.

By Lemma 3 and the definition of compression, u,; < vwy. Hence, there is a path
from w, s to v,y in H(II"). We can then add weights to edges in H(II), as stated in [19].
Specifically, we start with weight 0 on all edges and increase weights of edges in a path from
Uy f 10 Uy ¢ Dy Wiy f for all pairs wf. A fully robust stable matching maximizing >, rem Wows
can be obtained by finding a maximum weight ideal cut in the constructed graph. An efficient
algorithm for the latter problem is given in [19].

8 Discussion

The primary focus of this paper is the study of "nearby" stable matching instances where
a single agent permutes their preference list. A number of new questions arise: give a
polynomial time algorithm for the problem mentioned in the Introduction, of finding a robust
stable matching as defined in [19] — given a probability distribution on the domain of errors
— even when the error is an arbitrary permutation; and extend to the stable roommate
problem and incomplete preference lists [15, 20], as well as popular matchings [10, 16].

Next, we give a hypothetical setting to show potential application of our work to the
issue of incentive compatibility. Let A be an instance of stable matching over n workers
and n firms. Assume that all 2n agents have a means of making their preference lists public
simultaneously and a dominant firm, say f, is given the task of computing and announcing
a stable matching. Once the matching is announced, all agents can verify that it is indeed
stable. It turns out that firm f can cheat and improve its match as follows: f changes
its preference list to obtain instance B which is identical to A for all other agents, and
computes a matching that is stable for A as well as B using Theorem 2. The other agents
will be satisfied that this matching is indeed stable for instance A and f’s cheating may go
undetected.



498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

R. R. Gangam, T. Mai, N. Raju and V. V. Vazirani

Finally, considering the number of new and interesting matching markets being defined

on the Internet, e.g., see [13], it will not be surprising if new, deeper structural facts about
stable matching lattices find suitable applications. For this reason, the problem initiated
in [18], which appears to be a fundamental one, deserves further work. In particular, we

leave the question of extending our work to the case when the two instances A and B are not

nearby but arbitrary, i.e., when multiple agents simultaneously change their preference lists.
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A Related Work

A.1 Related work

The two topics, of stable matching and the design of algorithms that produce solutions that
are robust to errors, have been studied extensively for decades and there are today several
books on each of them, e.g., see [17, 15, 20] and [9, 6]. Yet, there is a paucity of results at
the intersection of these two topics. Indeed, before the publication of [18], we are aware of
only two previous works [5, 4]. We remark that the notion of robustness studied in [18] was
quite different from that of the previous two works as detailed below.

Aziz et al. [5] considered the problem of finding stable matching under uncertain linear
preferences. They proposed three different uncertainty models:

1. Lottery Model: Each agent has a probability distribution over strict preference lists,
independent of other agents.

2. Compact Indifference Model: Each agent has a single weak preference list in which ties
may exist. All linear order extensions of this weak order have equal probability.

3. Joint Probability Model: A probability distribution over preference profiles is specified.

They showed that finding the matching with highest probability of being stable is NP-hard

for the Compact Indifference Model and the Joint Probability Model. For the very special

case that preference lists of one side are certain and the number of uncertain agents of the

other side are bounded by a constant, they gave a polynomial time algorithm that works for

all three models.

The joint probability model is the most powerful and closest to our setting. The main
difference is that in their model, there is no base instance, which is called A in our model.
The opportunity of finding new structural results arises from our model precisely because we
need to consider two “nearby” instances, namely A and B as described above.

Aziz et al. [4] introduced a pairwise probability model in which each agent gives the
probability of preferring one agent over another for all possible pairs. They showed that the
problem of finding a matching with highest probability of being stable is NP-hard even when
no agent has a cycle in its certain preferences (i.e., the ones that hold with probability 1).

B Proof of Birkhoff’s Theorem using Stable Matching Lattices

Omitted proofs can be found in the Arziv version.

C Other Omitted Proofs

Proof of Lemma 6. It suffices to show that M4 N Mp is a sublattice of £L4. Assume
Mg N Mp|>1and let My and M be two different matchings in M4 N Mp. Let V4 and
Vg be the join operations under A and B respectively. Likewise, let A4 and Apg be the meet
operations under A and B.


https://arxiv.org/pdf/1804.05537.pdf
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589 By definition of join operation in Section 2.1, M7 V 4 M> is the matching obtained by
s0 assigning each worker to its less preferred partner (or equivalently, each firm to its more
sn  preferred partner) from M; and My according to instance A. Without loss of generality,
s2  assume that B is an instance obtained from A by changing the lists of only firms. Since
so3  the list of each worker is identical in A and B, its less preferred partner from M; and Ms is
s also the same in A and B. Therefore, My Va4 My = My Vg Ms. A similar argument can be
s applied to show that M; Ay My = My Ag Ms.

596 Hence, M7 V4 M> and My A s My are both in M4 N Mp as desired. <

sov Proof of Corollary 7. Assume (M4 NMp, N...NMp,| > 1 and let M; and M, be two
ss  different matchings in M4 N Mp, N...N Mp,. Therefore, M; and M, are in M4 N Mp,
s for each 1 <1 < k. By Proposition 6, M4 N Mp, is a sublattice of £4. Hence, M; V4 My
oo and My Ag My are in Mg N Mp, for each 1 <14 < k. The claim then follows. <

s Proof of Proposition 10. Let I’ be a compression of II obtained using the first definition.
s2 Clearly, for each meta-rotation in II', we can add edges to II so the strongly connected
es component created is precisely this meta-rotation. Any additional precedence relations
s« introduced among incomparable meta-rotations can also be introduced by adding appropriate
65 edges.

606 The other direction is even simpler, since each strongly connected component can be
eor defined to be a meta-rotation and extra edges added can also be simulated by introducing
68 new precedence constraints. |

wo Proof of Lemma 11. Let II’ be a compression corresponding to £’. By Theorem 1, the
s matchings in £’ are generated by eliminating rotations in closed subsets of II'.

611 First, assume I separates uv € E. Moreover, assume M € L’ for the sake of contradiction,
sz and let I’ be the closed subset of ITI' corresponding to M. Let U and V' be the meta-rotations
a3 containing u and v respectively. Notice that the sets of rotations in I and I’ are identical.
suu  Therefore, V € I’ and U ¢ I'. Since uv € E, there is an edge from U to V in H'. Hence, I’
ss  1is not a closed subset of IT'.

616 Next, assume that I does not separate any uv € E. We show that the rotations in I can
s7  be partitioned into meta-rotations in a closed subset I’ of II'. If I cannot be partitioned
sis  into meta-rotations, there must exist a meta-rotation A such that A NI is a non-empty
s10  proper subset of A. Since A consists of rotations in a strongly connected component of Hg,
s20 there must be an edge uv from A\ I to ANI in Hg. Hence, I separates uv. Since I is a
e closed subset, uv can not be an edge in H. Therefore, uv € F, which is a contradiction. It
e2 remains to show that the set of meta-rotations partitioning I is a closed subset of II'. Assume
w3 otherwise, there exist meta-rotation U € I’ and V' ¢ I’ such that there exists an edge from U
e2¢ to V in H'. Therefore, there exists v € U, v € V and uv € E, which is a contradiction. <

es Proof of Lemma 16. Let R denote the set of vertices reachable from ¢ by a path of edges
o6 in B and Fy. Assume by contradiction that R does not contain s. Consider the matching
sv M generated by rotations in I\ R. Without loss of generality, assume that M € £;. By
o8 Lemma 11, IT\ R separates an edge uv € Ey. Therefore, u € R and v € I\ R. Since uv € Es,
69 v is also reachable from ¢ by a path of edges in F; and FEs. |

e Proof of Lemma 17. A closed subset separating r;_17; must separate an edge in @);. Moreover,

e any closed subset must separate exactly one of rgry,...,7g_o7rk—_1,7k—17%. Lherefore, the set
22 of closed subsets separating an edge in F; (or Es) remains unchanged. <
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Proof of Lemma 18. Let e be an edge in F; U Es but not in . Suppose that e € E;. Let
I be a closed subset separating e. By Lemma 11, the matching generated by I belongs to
L. Since e is not in ) and @ is a path from ¢ to s, I must separate another edge ¢’ in Q.
By Lemma 11, I can not separate edges in both E; and F5. Therefore, ¢/ must also be in
F4. Hence, the matching generated by I will still be in Lo after removing e from F;. The
argument applies to all closed subsets separating e. <

Proof of Lemma 21. Suppose there are at least two maximal rotations wuy, ua,...ux (k > 2)
in Tg NS. Let vq,...v; be the heads of edges containing uy, us, ... u;. For each 1 <i <k,
let S; = Ju, U J,, where j is any index such that j # i. Since u; and u; are incomparable,
uj & Ju,. Moreover, u; € J,; by Lemma 14. Therefore, u; ¢ S;. It follows that S; contains
u; and separates u;v;. Since S; separates u;v; € I, the matching generated by S; is in Lo
according to Lemma 11.

Since Ule S; contains all maximal rotations in T NS and S does not separate any edge
in F, Ule S; does not separate any edge in E either. Therefore, the matching generated
by Ule S; is in L1, and hence not in L£5. This contradicts the fact that Lo is a join
semi-sublattice. |

Proof of Lemma 22. We will show that the set of closed subsets separating an edge in E
remains unchanged.

Let I be a closed subset separating uv. Then I must also separate rv since r > v.

Now suppose I is a closed subset separating rv. We consider two cases:

If w € I, I must contain z since u > x. Hence, I separates an edge in the path from r to
x.
If u & I, I separates uv.

Proof of Lemma 23. The lemma follows from the claims given below:
> Claim 34. S\ X is a closed subset.

Proof. Let v be a rotation in S\ X and u be a predecessor of v. Since S is a closed subset,
u € S. Notice that if a rotation is in X, all of its successor must be included. Hence, since
vé¢ X, u¢ X. Therefore, u € S\ X. <

> Claim 35. S\ X contains u for each u € (Tg N S) \ R,.

Proof. After replacing edges according to Lemma 22, for each v € (Tg N S) \ R, we must
have that u does not succeed any x € R,.. Therefore, u ¢ X by the definition of X. <

> Claim 36. (S\ X)NR, =0.
Proof. Since R, C X, (S\ X)NR, =0. <
> Claim 37. S\ X does not separate any edge in F.

Proof. Suppose S\ X separates uv € E. Then u € X and v € S\ X. By Claim 2, u can
not be a tail vertex, which is a contradiction. <

> Claim 38. S\ X does not cross any edge in E.
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Proof. Suppose S\ X crosses uv € E. Then u € S\ X and v € X. Let J be a closed subset
separating uv. Then v € J and u ¢ J.

Since wv € E and u € S, u € Tg N S. Therefore, r = u by Lemma 21. Since J is a closed
subset, r ¢ J.

Since v € X, v > x for x € R,.. Again, as J is a closed subset, x € J.

Therefore, J separates an edge in the path from 7 to z in G,.. Hence, all closed subsets
separating uv must also separate another edge in F,.. This contradicts the assumption made
in Remark 12. |

<

Proof of Lemma 24. We will show that the set of closed subsets separating an edge in FE,
and the set of closed subset separating an edge in E!. are identical.

Consider a closed subset I separating an edge in rv € E!. Since v € R,., I must separate
an edge in F in a path from r to v. By definition, that edge is in E,.

Now let I be a closed subset separating an edge in uwv € F,.. Since wv € E,u € Tg N S.

By Lemma 21, r > u. Thus, I must also separate rv € E. |

Proof of Lemma 27. Let r be the maximal tail vertex in S.

First we show that r € V. By Theorem 20, the set of tails of edges in F forms a chain in
II. Therefore IT\ I]. contains all tails in S. Hence, IT \ I]. does not separate any edge whose
tails are in S. Since S is a splitting set, IT'\ I/ does not separate any edge whose tails are in
IT\ S. Therefore, by Lemma 11, IT \ I/ generates a matching in £,. By Lemma 14, IT\ J/

must separate an edge in E, and hence generates a matching in £, according to Lemma 11.

By Lemma 26, any rotation in V' must be the tail of an edge in E. Hence, they are all
predecessors of r according to Theorem 20. <

Proof of Lemma 28. First we give two crucial properties of the set Y. By Theorem 20, the
set of tails of edges in E forms a chain C' in II.

> Claim 39. Y contains all predecessors of r in C.

Proof. Assume that there is at least one predecessor of r in C, and denote by 7’ the direct
predecessor. It suffices to show that ' € Y. By Theorem 20, there exists a splitting set I
such that R,» C I and R, NI = (. Let v be the maximal element in C N I. Then v is a

successor of all tail vertices in I. It follows that J, does not separate any edges in E inside I.

Therefore, v € X. Since J, C Y, Y contains all predecessors of r in C. <

> Claim 40. Y does not contain any rotation in Fj..

Proof. Since Y is the union of closed subset generating matching in £, Y also generates a
matching in £;. By Lemma 11, Y does not separate any edge in E. Since r € Y, Y must
not contain any rotation in F. <

By Claim 1, if Y = (), r is the last tail found in C. Hence, if My € L5, s must be in F,.
By Theorem 20, the heads in F, are incomparable. Therefore, s is the only rotation in C.

FINDFLOWER correctly returns {s} in Step 3. Suppose such a situation does not happen, we
will show that the returned set is F..

> Claim41. V =F,.
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Proof. Let v be a rotation in V. By Lemma 26, v is a head of some edge e in E. Since Y
contains all predecessors of r in C, the tail of e must be r. Hence, v € F.

Let v be a rotation in F;.. Since Y contains all predecessors of r in C, Y U I,, can not
separate any edge whose tails are predecessors of r. Moreover, by Theorem 20, the heads in
F. are incomparable. Therefore, I,, does not contain any rotation in F,. Since Y does not
contain any rotation in Fj. by the above claim, Y U I,, does not separate any edge in F. It
follows that Y U I,, generates a matching in £;. Finally, Y U J, separates rv clearly, and
hence generates a matching in £4. Therefore, v € V' as desired. |

<

Proof of Lemma 30. M; = {la,2b,3d,4c} and My = {1b,2a,3c,4d} are stable matching
with respect to instance A. Clearly, My A4 My = {1la, 2b, 3¢, 4d} is also a stable matching
under A.

In going from A to B, the positions of workers b and ¢ are swapped in firm 1’s list. Under
B, 1c is a blocking pair for M7 and la is a blocking pair for M. Hence, M7 and M, are
both in M 4\ g. However, My Aa My is a stable matching under B, and therefore is it not in
M\ . Hence, M 4\ p is not closed under the A4 operation. |

Proof of Lemma 31. Assume that the preference list of a firm f is permuted. We will show
that M4\ p is a join semi-sublattice of £4. By switching the role of workers and firms,
permuting the list of a worker will result in M 4\ p being a meet semi-sublattice of L.

Let M; and M be two matchings in M 4\ . Hence, neither of them are in Mp. In other
words, each has a blocking pair under instance B.

Let w be the partner of f in M7 V4 Ms. Then w must also be matched to f in either M;
or My (or both). We may assume that w is matched to f in M.

Let xy be a blocking pair of M; under B. We will show that xy must also be a blocking
pair of M7V 4 Ms under B. To begin, the firm y must be f since other preference lists remain
unchanged. Since xf is a blocking pair of M7 under B, x >}3 w. Similarly, f >, f’ where f’
is the M;-partner of x. Let f” be the partner of x in My V4 Ms. Then f' >, f”. It follows
that f >, f”. Since z >? w and f >, f”, xf must be a blocking pair of M7 V, My under
B. <

Proof of Proposition 32. We have that £ and M 4\ p partition £4, with M4\ g being a
semi-sublattice of L4, by Lemma 31. Therefore, FINDBOUQUET(II) finds a set of edges
defining £’ by Theorem 29.

By Lemma 4, the input II to FINDBOUQUET can be computed in polynomial time. Clearly,
a membership oracle checking if a matching is in £’ or not can also be implemented efficiently.
Since IT has O(n?) vertices (Lemma 4), any step of FINDBOUQUET takes polynomial time. <

D Modified Deferred Acceptance Algorithms

Omitted algorithms and proofs can be found in the Arziv version.
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