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Abstract
Automated decision support systems promise to
help human experts solve multiclass classification
tasks more efficiently and accurately. However,
existing systems typically require experts to un-
derstand when to cede agency to the system or
when to exercise their own agency. Otherwise, the
experts may be better off solving the classification
tasks on their own. In this work, we develop an au-
tomated decision support system that, by design,
does not require experts to understand when to
trust the system to improve performance. Rather
than providing (single) label predictions and let-
ting experts decide when to trust these predictions,
our system provides sets of label predictions con-
structed using conformal prediction—prediction
sets—and forcefully asks experts to predict labels
from these sets. By using conformal prediction,
our system can precisely trade-off the probabil-
ity that the true label is not in the prediction set,
which determines how frequently our system will
mislead the experts, and the size of the prediction
set, which determines the difficulty of the classi-
fication task the experts need to solve using our
system. In addition, we develop an efficient and
near-optimal search method to find the conformal
predictor under which the experts benefit the most
from using our system. Simulation experiments
using synthetic and real expert predictions demon-
strate that our system may help experts make more
accurate predictions and is robust to the accuracy
of the classifier the conformal predictor relies on.

1. Introduction
In recent years, there has been an increasing interest in de-
veloping automated decision support systems to help human
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experts solve tasks in a wide range of critical domains, from
medicine (Jiao et al., 2020) and drug discovery (Liu et al.,
2021) to candidate screening (Wang et al., 2022) and crimi-
nal justice (Grgić-Hlača et al., 2019), to name a few. Among
them, one of the main focuses has been multiclass classifica-
tion tasks, where a decision support system uses a classifier
to make label predictions and the experts decide when to
follow the predictions made by the classifier (Bansal et al.,
2019; Lubars & Tan, 2019; Bordt & von Luxburg, 2020).

However, these systems typically require human experts to
understand when to trust a prediction made by the classi-
fier. Otherwise, the experts may be better off solving the
classification tasks on their own (Suresh et al., 2020). This
follows from the fact that, in general, the accuracy of a
classifier differs across data samples (Raghu et al., 2019).
In this context, several recent studies have analyzed how
factors such as model confidence, model explanations and
overall model calibration modulate trust (Papenmeier et al.,
2019; Wang & Yin, 2021; Vodrahalli et al., 2022). Unfortu-
nately, it is not yet clear how to make sure that the experts
do not develop a misplaced trust that decreases their perfor-
mance (Yin et al., 2019; Nourani et al., 2020; Zhang et al.,
2020). In this work, we develop a decision support system
for multiclass classification tasks that, by design, does not
require experts to understand when to trust the system to
improve their performance.

Our contributions. For each data sample, our decision sup-
port system provides a set of label predictions—a prediction
set—and forcefully asks human experts to predict a label
from this set1. We view this type of decision support system
as more natural since, given a set of alternatives, experts
tend to narrow down their options to a subset of them be-
fore making their final decision (Wright & Barbour, 1977;
Beach, 1993; Ben-Akiva & Boccara, 1995). In a way, our
support system helps experts by automatically narrowing
down their options for them, decreasing their cognitive load
and allowing them to focus their attention where it is most
needed. This could be particularly useful when the task is
tedious or requires domain knowledge since it is difficult to
outsource the task, and domain experts are often a scarce

1There are many systems used everyday by experts (e.g., pilots
flying a plane) that, under normal operation, restrict their choices.
This does not mean that, in extreme circumstances, the expert
should not have the ability to essentially switch off the system.
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resource. In the context of clinical text annotation2, a recent
empirical study has concluded that, in terms of the overall
accuracy, it may be more beneficial to recommend a subset
of options than a single option (Levy et al., 2021).

By using the theory of conformal prediction (Vovk et al.,
2005; Angelopoulos & Bates, 2021) to construct the above
prediction set, our system can precisely control the trade-
off between the probability that the true label is not in the
prediction set, which determines how frequently our system
will mislead an expert, and the size of the prediction set,
which determines the difficulty of the classification task the
expert needs to solve using our system. In this context, note
that, if our system would not forcefully ask the expert to
predict a label from the prediction set, it would not be able
to have this level of control and good performance would
depend on the expert developing a good sense on when to
predict a label from the prediction set and when to predict
a label from outside the set, as noted by Levy et al. (2021).
In addition, given an estimator of the expert’s success prob-
ability for any of the possible prediction sets, we develop
an efficient and near-optimal search method to find the con-
formal predictor under which the expert is guaranteed to
achieve the greatest accuracy with high probability. In this
context, we also propose a practical method to obtain such
an estimator using the confusion matrix of the expert predic-
tions in the original classification task and a given discrete
choice model.

Finally, we perform simulation experiments using synthetic
and real expert predictions on several multiclass classifica-
tion tasks. The results demonstrate that our decision support
system is robust to both the accuracy of the classifier and
the estimator of the expert’s success probability it relies
on—the competitive advantage it provides improves with
their accuracy, and the human experts do not decrease their
performance by using the system even if the classifier or the
estimator are very inaccurate. Additionally, the results also
show that, even if the classifiers that our system relies on
have high accuracy, an expert using our system may achieve
significantly higher accuracy than the classifiers on their
own—in our experiments with real data, the relative reduc-
tion in misclassification probability is over 72%. Finally, by
using our system, our results suggest that the expert would
reduce their misclassification probability by ∼80%3.

Further related work. Our work builds upon further related
work on distribution-free uncertainty quantification, reliable
classification and learning under algorithmic triage.

2Clinical text annotation is a task where medical experts aim to
identify clinical concepts in medical notes and map them to labels
in a large ontology.

3An open-source implementation of our system is avai-
lable at https://github.com/Networks-Learning/improve-expert-
predictions-conformal-prediction.

There exist three fundamental notions of distribution-free
uncertainty quantification in the literature: calibration, con-
fidence intervals, and prediction sets (Vovk et al., 2005; Bal-
asubramanian et al., 2014; Gupta et al., 2020; Angelopoulos
& Bates, 2021). Our work is most closely related to the
rapidly increasing literature on prediction sets (Romano
et al., 2019; 2020; Angelopoulos et al., 2021; Podkopaev
& Ramdas, 2021), however, to the best of our knowledge,
prediction sets have not been optimized to serve automated
decision support systems such as ours. In this context, we
acknowledge that Babbar et al. (2022) have also very re-
cently proposed using prediction sets in decision support
systems. However, in contrast to our work, for each data
sample, they allow the expert to predict label values outside
the recommended subset, i.e., to predict any alternative from
the entire universe of alternatives, and do not optimize the
probability that the true label belongs to the subset. As a
result, their method is not directly comparable to ours4.

There is an extensive line of work on reliable or cautious
classification (Del Coz et al., 2009; Liu et al., 2014; Yang
et al., 2017; Mortier et al., 2021; Ma & Denoeux, 2021;
Nguyen & Hüllermeier, 2021). Reliable classification aims
to develop models that can provide set-valued predictions to
account for the prediction uncertainty of a classifier. How-
ever, in this line of work, there are no human experts who
make the final predictions given the set-valued predictions,
in contrast with our work. Moreover, the set-valued predic-
tions typically lack distribution-free guarantees.

Learning under algorithmic triage seeks the development
of machine learning models that operate under different
automation levels—models that make decisions for a given
fraction of instances and leave the remaining ones to human
experts (Raghu et al., 2019; Mozannar & Sontag, 2020; De
et al., 2020; 2021; Okati et al., 2021). This line of work has
predominantly focused on supervised learning settings with
a few very recent notable exceptions (Straitouri et al., 2021;
Meresht et al., 2022). However, in this line of work, each
sample is either predicted by the model or by the human
expert. In contrast, in our work, the model helps the human
predict each sample. That being said, it is worth noting that
there may be classifiers, data distributions and conformal
scores under which the optimal conformal predictor and the
optimal triage policy coincide, i.e., the optimal conformal
predictor does recommend a single label or the entire label
set of labels.

4In our simulation experiments, we estimate the performance
achieved by an expert using our system via a model-based esti-
mator of the expert’s success probability. Therefore, to compare
our system with the system by Babbar et al. (2022), we would
need to model the expert’s success probability whenever the expert
can predict any label given a prediction set, a problem for which
discrete choice theory provides little guidance.
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2. Problem Formulation
We consider a multiclass classification task where a human
expert observes a feature vector5 x ∈ X , with x ∼ P (X),
and needs to predict a label y ∈ Y = {1, . . . , n}, with
y ∼ P (Y |X). Then, our goal is to design an automated
decision support system C : X → 2Y that, given a feature
vector x ∈ X , helps the expert by automatically narrowing
down the set of potential labels to a subset of them C(x) ⊆
Y using a trained classifier f̂ : X → [0, 1]|Y| that outputs
scores for each class (e.g., softmax scores)6. The higher the
score f̂y(x), the more the classifier believes the true label
Y = y. Here, we assume that, for each x ∼ P (X), the
expert predicts a label Ŷ among those in the subset C(x)
according to an unknown policy π(x, C(x)). More formally,
Ŷ ∼ π(x, C(x)), where π : X × 2Y → ∆(Y) and ∆(Y)
denotes the probability simplex over the set of labels Y ,
and πy(x, C(x)) = 0 if y /∈ C(x). Refer to Figure 1 for an
illustration of the automated decision support system we
consider.

Ideally, we would like that, by design, the expert can only
benefit from using the automated decision support system
C, i.e.,

P[Ŷ = Y ; C] ≥ P[Ŷ = Y ; Y], (1)

where P[Ŷ = Y ; C] denotes the expert’s success proba-
bility if, for each x ∼ P (X), the human expert predicts
a label Ŷ among those in the subset C(x). However, not
all automated decision support systems fulfilling the above
requirement will be equally useful—some will help experts
increase their success probability more than others. For
example, a system that always recommends C(x) = Y for
all x ∈ X satisfies Eq. 1. However, it is useless to the
experts. Therefore, among those systems satisfying Eq. 1,
we would like to find the system C∗ that helps the experts
achieve the highest success probability7, i.e.,

C∗ = argmax
C

P[Ŷ = Y ; C]. (2)

To address the design of such a system, we will look at the
problem from the perspective of conformal prediction (Vovk
et al., 2005; Angelopoulos & Bates, 2021).

3. Subset Selection using Conformal Prediction

In general, if the trained classifier f̂ we use to build C(X) is
not perfect, the true label Y may or may not be included in

5We denote random variables with capital letters and realiza-
tions of random variables with lower case letters.

6The assumption that f̂(x) ∈ [0, 1]n is without loss of general-
ity.

7Note that maximizing the expert’s success probability P[Ŷ =

Y ; C] is equivalent to minimizing the expected 0-1 loss E[I(Ŷ ̸=
Y ) ; C]. Considering other types of losses is left as an interesting
avenue for future work.

C(X). In what follows, we will construct the subsets C(X)
using the theory of conformal prediction. This will allow
our system to be robust to the accuracy of the classifier f̂
it uses—the probability P[Y ∈ C(X)] that the true label Y
belongs to the subset C(X) = Cα(X) will match almost
exactly a given target probability 1−α with high probability,
without making any distributional assumptions about the
data distribution P (X)P (Y |X) nor the classifier f̂ .

Let Dcal = {(xi, yi)}mi=1 be a calibration set, where
(xi, yi) ∼ P (X)P (Y |X), s(xi, yi) = 1 − f̂yi

(xi) be the
conformal score8 (i.e., if the classifier is catastrophically
wrong, the conformal score will be close to one), and q̂α
be the ⌈(m+1)(1−α)⌉

m empirical quantile of the conformal
scores s(x1, y1), . . . , s(xm, ym). Then, if we construct the
subsets Cα(X) for new data samples as follows:

Cα(X) = {y | s(X, y) ≤ q̂α}, (3)

we have that the probability that the true label Y belongs to
the subset Cα(X) conditionally on the calibration set Dcal is
almost exactly 1−α with high probability as long as the size
m of the calibration set is sufficiently large. Specifically, we
first note that the coverage probability is a random quantity9

whose distribution is given by the following proposition
(refer to Appendix A.5 in Hulsman (2022) for the proof):

Proposition 3.1. For a decision support system Cα that
constructs the subsets Cα(X) using Eq. 3, it holds that

P[Y ∈ Cα(X) | Dcal] ∼ Beta(⌈(m+1)(1−α)⌉, ⌊(m+1)α⌋)
(4)

as long as the conformal scores s(Xi, Yi) for all (Xi, Yi) ∈
Dcal are almost surely distinct.

As an immediate consequence of Proposition 3.1, using the
definition of the beta distribution, we have that

1− α ≤ E [P[Y ∈ Cα(X) | Dcal]] = 1− ⌊(m+ 1)α⌋
m+ 1

≤ 1− α+
1

m+ 1
.

Moreover, given a target probability 1 − α and tolerance
values δ, ϵ ∈ (0, 1), we can compute the minimum size m
of the calibration set Dcal such that Cα enjoys Probably Ap-
proximately Correct (PAC) coverage guarantees, i.e., with
probability 1−δ, it holds that (Angelopoulos & Bates, 2021)

1− α− ϵ ≤ P[Y ∈ Cα(X) | Dcal] ≤ 1− α+ ϵ.

While the above coverage guarantee is valid for any choice
of α value, we would like to emphasize that there may be

8In general, the conformal score s(x, y) can be any function of
x and y measuring the similarity between samples.

9The randomness comes from the randomness of the calibration
set sampling.
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Figure 1. Our automated decision support system C. Given a sample with a feature vector x, our system C narrows down the set of
potential labels y ∈ Y to a subset of them C(x) using the scores f̂y(x) provided by a classifier f̂ for each class y. The human expert
receives the recommended subset C(x), together with the sample, and predicts a label ŷ from C(x) according to a policy π(x, C(x)).

some α values that will lead to larger gains in terms of suc-
cess probability P[Ŷ = Y ; Cα] than others. Therefore, in
what follows, our goal is to find the optimal α∗ that max-
imizes the expert’s success probability given a calibration
set Dcal.

Remark. Most of the literature on conformal prediction
focuses on the following conformal calibration guarantee
(refer to Appendix D in Angelopoulos & Bates (2021) for
the proof):

Theorem 3.2. For an automated decision support system
Cα that constructs the subsets Cα(X) using Eq. 3, it holds
that

1− α ≤ P[Y ∈ Cα(X)] ≤ 1− α+
1

m+ 1
,

where the probability is over the randomness in the sample
it helps predicting and the calibration set used to compute
the empirical quantile q̂α.

However, to afford the above marginal guarantee in our
work, we would be unable to optimize the α value to maxi-
mize the expert’ s success probability given a calibration set
Dcal. This is because the guarantee requires that α and Dcal
are independent. That being said, in our experiments, we
have empirically found that the optimal α∗ does not vary sig-
nificantly across calibration sets, as shown in Appendix E.

4. Optimizing Across Conformal Predictors
We start by realizing that, given a calibration set Dcal =
{(xi, yi)}mi=1, there only exist m different conformal pre-
dictors. This is because the empirical quantile q̂α, which

the subsets Cα(xi) depend on, can only take m different
values. As a result, to find the optimal conformal predictor
that maximizes the expert’s success probability, we need to
solve the following maximization problem:

α∗ = argmax
α∈A

P[Ŷ = Y ; Cα], (5)

where A = {αi}i∈[m], with αi = 1 − i/(m + 1), and the
probability is only over the randomness in the samples the
system helps predicting.

However, to find a near optimal solution α̂ to the above
problem, we need to estimate the expert’s success probabi-
lity P[Ŷ = Y ; Cα]. Assume for now that, for each α ∈ A,
we have access to an estimator µ̂α of the expert’s success
probability such that, for any δ ∈ (0, 1), with probability at
least 1−δ, it holds that |µ̂α−P[Ŷ = Y ; Cα]| ≤ ϵα,δ . Then,
we can use the following proposition to find a near-optimal
solution α̂ to Eq. 5 with high probability:
Proposition 4.1. For any δ ∈ (0, 1), consider an automated
decision support system Cα̂ with

α̂ = argmax
α∈A

µ̂α − ϵα,δ/m. (6)

With probability at least 1−δ, it holds that P[Ŷ = Y ; Cα̂] ≥
P[Ŷ = Y ; Cα]− 2ϵα,δ/m ∀α ∈ A simultaneously.

More specifically, the above result directly implies that for
any δ ∈ (0, 1), with probability at least 1− δ, it holds that:

P[Ŷ = Y ; Cα∗ ]− P[Ŷ = Y ; Cα̂] ≤ 2ϵα∗,δ/m. (7)

Here, note that the above guarantees do not make use of the
PAC coverage guarantees afforded by conformal prediction—
they hold for any parameterized set-value predictor.
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Algorithm 1 Finding a near-optimal α̂

1: Input: f̂ , Dest, Dcal, δ, m
2: Initialize: A = {}, α̂← 0, t← 0

3: for i ∈ 1, ..,m do
4: α← 1− i

m+1
5: A ← A∪ {α}
6: end for
7: for α ∈ A do
8: µ̂α, ϵα,δ/m ← ESTIMATE(α, δ,Dest,Dcal, f̂)
9: if t ≤ µ̂α − ϵα,δ/m then

10: t← µ̂α − ϵα,δ/m
11: α̂← α
12: end if
13: end for
14: return α̂

In what follows, we propose a practical method to estimate
the expert’s success probability P[Ŷ = Y ; Cα] that builds
upon the multinomial logit model (MNL), one of the most
popular models in the vast literature on discrete choice mod-
els (Heiss, 2016). More specifically, given a sample (x, y),
we assume that the expert’s conditional success probability
for the subset Cα(x) is given by

P[Ŷ = y ; Cα | y ∈ Cα(x)] =
euyy∑

y′∈Cα(x) e
uyy′ , (8)

where uyy′ denotes the expert’s preference for label value
y′ ∈ Y whenever the true label is y. In the language of dis-
crete choice models, one can view the true label y as the con-
text in which the expert chooses among alternatives (Tversky
& Simonson, 1993). In Appendix I, we consider and experi-
ment with a more expressive context that, in addition to the
true label, distinguishes between different levels of difficulty
across data samples.

Further, to estimate the parameters uyy′ , we assume we have
access to (an estimation of) the confusion matrix C for the
expert predictions in the (original) multiclass classification
task, similarly as in Kerrigan et al. (2021), i.e.,

C = [Cyy′ ]y,y′∈Y , whereCyy′ = P[Ŷ = y′ ; Y |Y = y],

and naturally set uyy′ = logCyy′ . Then, we can compute
a Monte-Carlo estimator µ̂α of the expert’s success proba-
bility P[Ŷ = Y ; Cα] using the above conditional success
probability P[Ŷ = y ; Cα | y ∈ Cα(x)] and an estimation set
Dest = {(xi, yi)}i∈[m]

10, i.e.,

µ̂α =
1

m

∑
i∈[m] | yi∈Cα(xi)

P[Ŷ = yi ; Cα | yi ∈ Cα(xi)].

(9)
10The number of samples in Dcal and Dest can differ. For sim-

plicity, we assume both sets contain m samples.

Finally, for each α ∈ A, using Hoeffding’s inequality11,12,
we can conclude that, with probability at least 1− δ, it holds
that (refer to Appendix A.2):

|µ̂α − P[Ŷ = Y ; Cα]| ≤

√
log 1

δ

2m
:= ϵα,δ. (10)

As a consequence, as m→∞, ϵα,δ converges to zero. This
directly implies that the near-optimal α̂ converges to the
true optimal α∗ and that, with probability at least 1− δ, our
system Cα∗ satisfies Eq. 1 asymptotically with respect to the
number of samples m in the estimation set.

Algorithm 1 summarizes the overall search method, where
the function ESTIMATE(·) uses Eqs. 9 and 10. The algo-
rithm first builds A and then finds the near-optimal α̂ in A.
To build A, it needs O(m) steps. To find the near-optimal
α̂, for each value α ∈ A and each sample (xi, yi) ∈ Dest, it
needs to compute a subset Cα(x). This is achieved by sorting
the conformal scores and reusing computations across α val-
ues, which takes O(m logm+mn log n) steps. Therefore,
the overall time complexity is O(m logm+mn log n).

Remarks. By using the MNL, we implicitly assume the
independence of irrelevant alternatives (IIA) (Luce, 1959),
an axiom that states that the expert’s relative preference
between two alternatives remains the same over all possible
subsets containing these alternatives. While IIA is one of the
most widely used axioms in the literature on discrete choice
models, there is also a large body of experimental literature
claiming to document real-world settings where IIA fails to
hold (Tversky, 1972; Huber et al., 1982; Simonson, 1989).
Fortunately, we have empirically found that experts may
benefit from using our system even under strong violations
of the IIA assumption in the estimator of the expert’s success
probability (i.e., when the estimator of the expert’s success
probability is not accurate), as shown in Figures 3 and 4.

Conformal prediction is one of many possible ways to con-
struct set-valued predictors (Chzhen et al., 2021), i.e., pre-
dictors that, for each sample x ∈ X , output a set of label
candidates C(x). In our work, we favor conformal predictors
over alternatives because they provably output trustworthy
sets Cα(x) without making any assumption about the data
distribution nor the classifier they rely upon. In fact, we
can use conformal predictors with any off-the-shelf classi-
fier. However, we would like to emphasize that our efficient

11By using Hoeffding’s inequality, we derive a fairly conser-
vative constant error bound for all α values, however, we have
experimentally found that, even with a relatively small amount
of estimation and calibration data, our algorithm identifies near-
optimal α̂ values, as shown in Figure 2. That being said, one could
use tighter concentration inequalities such as Hoeffding–Bentkus
and Waudby-Smith–Ramdas (Bates et al., 2021).

12We are applying Hoeffding’s inequality only on the random-
ness of the samples (Xi, Yi), which are independent and identi-
cally distributed.
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Table 1. Empirical success probability achieved by four different
experts using our system during test, each with a different success
probability P[Ŷ = Y ; Y], on four prediction tasks where the
classifier achieves a different success probability P[Y ′ = Y ].
Each column corresponds to a prediction task, and each row to an
expert. In each task, the number of label values n = 10 and the
size of the calibration and estimation sets is m = 1,200. Each cell
shows only the average since all standard errors are below 10−2.

P[Ŷ = Y ; Y] P[Y ′ = Y ]
0.3 0.5 0.7 0.9

0.3 0.41 0.58 0.75 0.91
0.5 0.55 0.68 0.80 0.93
0.7 0.72 0.79 0.87 0.95
0.9 0.90 0.91 0.95 0.98

search method (Algorithm 1) is rather generic and, together
with an estimator of the expert’s success probability with
provable guarantees, may be used to find a near-optimal
set-valued predictor within a discrete set of set-valued pre-
dictors that maximizes the expert’s success probability. This
is because our near-optimal guarantees in Proposition 4.1
do not make use of the PAC guarantees afforded by confor-
mal prediction, as discussed previously. In Appendix D, we
discuss an alternative set-valued predictor with PAC cover-
age guarantees, which may provide improved performance
in scenarios where the classifier underpinning our system
has not particularly high average accuracy. We hope our
work will encourage others to develop set-valued predictors
specifically designed to serve decision support systems.

5. Experiments on Synthetic Data
In this section, we evaluate our system against the accuracy
of the expert and the classifier, the size of the calibration
and estimation sets, as well as the number of label values.
Moreover, we analyze the robustness of our system to viola-
tions of the IIA assumption in the estimator of the expert’s
success probability13.

Experimental setup. We create a variety of synthetic pre-
diction tasks, each with 20 features per sample and a varying
number of label values n and difficulty. Refer to Appendix B
for more details about the prediction tasks. For each predic-
tion task, we generate 10,000 samples, pick 20% of these
samples at random as test set, which we use to estimate
the performance of our system, and also randomly split
the remaining 80% into three disjoint subsets for training,
calibration, and estimation, whose sizes we vary across ex-
periments. In each experiment, we specify the number of

13All algorithms ran on a Debian machine equipped with Intel
Xeon E5-2667 v4 @ 3.2 GHz, 32GB memory and two M40 Nvidia
Tesla GPU cards. See Appendix B for further details.

samples in the calibration and estimation sets—the remain-
ing samples are used for training.

For each prediction task, we train a logistic regression
model Pθ(Y

′ |X), which depending on the difficulty of
the prediction task, achieves different success probability
values P[Y ′ = Y ]. Moreover, we sample the expert’s
predictions Ŷ from the multinomial logit model defined
by Eq. 8, with Cyy = π

n ± γϵc and Cyy′ =
1−Cyy

n ± β,
where π is a parameter that controls the expert’s success
probability P[Ŷ = Y ; Y], ϵc ∼ U(0,min(1 − π

n ,
π
n )),

β ∼ N(0, ((1 − Cyy)/(6n))
2) for all y ̸= y′, and γ is a

normalization term. Finally, we repeat each experiment ten
times and, each time, we sample different train, estimation,
calibration, and test sets following the above procedure.

Experts always benefit from our system even if the classi-
fier has low accuracy. We estimate the success probability
P[Ŷ = Y ; Cα̂] achieved by four different experts, each
with a different success probability P[Ŷ = Y ; Y], on four
prediction tasks where the classifier achieves a different suc-
cess probability P[Y ′ = Y ]. Table 1 summarizes the results,
where each column corresponds to a different prediction
task and each row corresponds to a different expert. We find
that, using our system, the expert solves the prediction task
significantly more accurately than the expert or the classi-
fier on their own. Moreover, it is rather remarkable that,
even if the classifier has low accuracy, the expert always
benefits from using our system—in other words, our system
is robust to the performance of the classifier it relies on.
In Appendix C, we show qualitatively similar results for
prediction tasks with other values of n and m.

The performance of our system under α̂ found by Algo-
rithm 1 and under α∗ is very similar. Given three predic-
tion tasks where the expert and the classifier achieve diffe-
rent success probabilities P[Ŷ = Y ; Y] and P[Y ′ = Y ],
we compare the performance of our system under the near-
optimal α̂ found by Algorithm 1 and under all other possible
α ∈ A values. Figure 2 summarizes the results, which sug-
gest that: (i) the performance under α̂ is very close to that
under α∗, as suggested by Proposition 4.1; and, (ii) as long
as α ≤ α∗, the performance of our system increases mono-
tonically with respect to α, however, once α > α∗, the
performance deteriorates as we increase α. (iii) the higher
the expert’s success probability P[Ŷ = Y ; Y], the smaller
the near optimal α̂ and thus the greater the average size
of the subsets Cα̂(X). In Appendix G, we also show that,
the smaller the near optimal α̂, the greater the spread of
the empirical distribution of the size of the subsets Cα̂(X).
We found qualitatively similar results using other expert-
classifier pairs with different success probabilities.

Our system needs a relatively small amount of calibra-
tion and estimation data. We vary the amount of cali-
bration and estimation data m we feed into Algorithm 1
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Figure 2. Empirical success probability achieved by two different experts using our system, each with a different success probability
P[Ŷ = Y ; Y], and average size of the recommended sets during test for each α ∈ A on two synthetic prediction tasks where the classifier
achieves a different success probability P[Y ′ = Y ]. Here, note that the empirical average set size only depends on the classifier’s success
probability P[Y ′ = Y ], not the expert, and thus we only need two lines. In all experiments, the number of label values n = 10 and the
size of the calibration and estimation sets is m = 1,200. Each marker corresponds to a different α value, and the darker points correspond
to α̂. The coloring of the darker points for each prediction task is the same in both panels.

and, each time, estimate the expert’s success probability
P[Ŷ = Y ; Cα̂]. Across prediction tasks, we consistently
find that our system needs a relatively small amount of
calibration and estimation data to perform well. For exam-
ple, for all prediction tasks with n = 10 label values and
varying level of difficulty, the relative gain in empirical
success probability achieved by an expert using our sys-
tem with respect to an expert on their own, averaged across
experts with P[Ŷ = Y ; Y] ∈ {0.3, 0.5, 0.7, 0.9}, goes
from 47.56 ± 4.51% for m = 160 to 48.66 ± 4.54% for
m = 1,200.

The greater the number of label values, the more an
expert benefits from using our system. We consider pre-
diction tasks with a varying number of label values, from
n = 10 to n = 100, and estimate the expert’s success pro-
bability P[Ŷ = Y ; Cα̂] for each task. Our results suggest
that the relative gain in success probability, averaged across
experts with P[Ŷ = Y ; Y] ∈ {0.3, 0.5, 0.7, 0.9}, increases
with the number of label values. For example, for m = 400,
it goes from 48.36 ± 4.50% for n = 10 to 69.44 ± 5.20%
for n = 100. For other m values, we found a similar trend.

Our system is robust to strong violations of the IIA as-
sumption in the estimator of the expert’s success proba-
bility. To study the robustness of our system to violations of
the IIA assumption in the estimator of the expert’s success
probability, we allow the expert’s preference uyy′ for each
label value y′ ̸= y in Eq. 8 to depend on the corresponding
prediction set Cα̂(x) at test time. More specifically, we set

uyy′ = log

Cyy′ + p
I[y′ ̸= y]

|Cα̂(x)\{y}|
∑

y′′ /∈Cα̂(x)

Cyy′′

 ,

where p ∈ [0, 1] is a parameter that controls the severity
of the violation of the IIA assumption at test time. Here,
note that if p = 1, the expert does not benefit from using
our system as long as the prediction set Cα(x) ̸= {y},
i.e., the expert’s conditional success probability is given
by P[Ŷ = y ; Cα | y ∈ Cα(x)] = P[Ŷ = y ; Y]. Figure 3
summarizes the results, which show that our system is robust
to (strong) violations of the IIA assumption in the estimator
of the expert’s success probability.

6. Experiments on Real Data
In this section, we experiment with a dataset with real expert
predictions on a multiclass classification task over natural
images and several popular and highly accurate deep neural
network classifiers. In doing so, we benchmark the perfor-
mance of our system against a competitive top-k set-valued
predictor baseline, which always returns the k label values
with the highest scores, and analyze its robustness to viola-
tions of the IIA assumption in the estimator of the expert’s
success probability. Here, we would like to explicitly note
that we rely on the confusion matrix estimated using real
expert predictions on the (original) multiclass classification
task and the multinomial logit model defined by Eq. 8 to
estimate the performance of our system and the competitive
top-k set-valued predictor baseline—no real experts actually
used our decision support system.

Data description. We experiment with the dataset CIFAR-
10H (Peterson et al., 2019), which contains 10,000 natu-
ral images taken from the test set of the standard CIFAR-
10 (Krizhevsky et al., 2009). Each of these images belongs
to one of n = 10 classes and contains approximately 50
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P[Ŷ = Y ; Y] = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
p

0.7

0.8

0.9

E
m

p
ir

ic
al

S
u

cc
es

s
P

ro
b

ab
ili

ty
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Figure 3. Empirical success probability achieved by three different experts using our system during test, each with a different success
probability P[Ŷ = Y ; Y], against severity p of the violation of the IIA assumption on three prediction tasks where the classifier achieves
a different success probability P[Y ′ = Y ]. In each panel, the horizontal line shows the empirical success probability achieved by the
expert at solving the (original) multiclass task during test. The number of labels is n = 10 and the size of the calibration and estimation
sets is m = 1,200. Shaded regions correspond to 95% confidence intervals.

expert predictions Ŷ 14. Here, we randomly split the dataset
into three disjoint subsets for calibration, estimation and
test, whose sizes we vary across experiments. In each ex-
periment, we use the test set to estimate the performance
of our system and we specify the number of samples in the
calibration and estimation sets—the remaining samples are
used for testing.

Experimental setup. Rather than training a classifier, we
use three popular and highly accurate deep neural net-
work classifiers trained on CIFAR-10, namely ResNet-
110 (He et al., 2016a), PreResNet-110 (He et al., 2016b)
and DenseNet (Huang et al., 2017). Moreover, we use the
human predictions Ŷ to estimate the confusion matrix C for
the expert predictions in the (original) multiclass classifica-
tion task (Kerrigan et al., 2021) and then sample the expert’s
prediction Ŷ from the multinomial logit model defined by
Eq. 8 to both estimate the expert’s conditional success prob-
abilities in Eq. 9 in Algorithm 1 and estimate the expert’s
success probability during testing. In what follows, even
though the expert’s performance during testing is estimated
using the multinomial logit model, rather than using real
predictions from experts using our system, we refer to (the
performance of) such a simulated expert as an expert.

Performance evaluation. We start by estimating the suc-
cess probability P[Ŷ = Y ; Cα̂] achieved by an expert using
our system (Cα̂) and the best top-k set-valued predictor (Ck),
which returns the k label values with the highest scores15.

14The dataset CIFAR-10H is among the only publicly available
datasets (released under Creative Commons BY-NC-SA 4.0 li-
cense) that we found containing multiple expert predictions per
sample, necessary to estimate C, a relatively large number of sam-
ples, and more than two classes. However, since our methodology
is rather general, our system may be useful in other applications.

15Appendix F shows the success probability achieved by an
expert using the top-k set-valued predictor for different k values
both for synthetic and real data.

Table 2. Empirical success probabilities achieved by three popular
deep neural network classifiers and by an expert using our sys-
tem (Cα̂) and the best top-k set-valued predictor (Ck) with these
classifiers during test on the CIFAR-10H dataset. The size of the
calibration and estimation sets is m = 1,500 and the expert’s
empirical success probability at solving the (original) multiclass
task is P[Ŷ = Y ; Y] ≈ 0.947. Each cell shows only the average
since the standard errors are all below 10−2.

CLASSIFIER Cα̂ Ck
RESNET-110 0.928 0.987 0.967
PRERESNET-110 0.944 0.989 0.972
DENSENET 0.964 0.990 0.980

Table 2 summarizes the results, where we also report the
(empirical) success probability achieved by an expert solv-
ing the (original) multiclass task in their own. We find that,
by allowing for recommended subsets of varying size, our
system is consistently superior to the top-k set-valued pre-
dictor. Moreover, we also find it very encouraging that,
although the classifiers are highly accurate, our results sug-
gest that an expert using our system can solve the prediction
task significantly more accurately than the classifiers. More
specifically, the relative reduction in misclassification proba-
bility goes from 72.2% (DenseNet) to 81.9% (ResNet-110).
Finally, by using our system, our results suggest that the
(average) expert would reduce their misclassification proba-
bility by ∼80%.

Robustness to violations of the IIA assumption in the
estimator of the expert’s success probability. To study
the robustness of our system to violations of the IIA as-
sumption in the estimator of the expert’s success probability,
we use the same experimental setting as in the synthetic
experiments, where the parameter p controls the severity of
the violation of the IIA assumption at test time. Figure 4
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Figure 4. Empirical success probability achieved by an expert us-
ing our system with three different classifiers during test against
severity p of the violation of the IIA assumption on the CIFAR-
10H dataset. The empirical success probability achieved by the
expert at solving the (original) multiclass task during test is
P[Ŷ = Y ; Y] ≈ 0.947. The size of the calibration and esti-
mation sets is m = 1,500. Shaded regions correspond to 95%
confidence intervals.

summarizes the results for different p values. It is remark-
able that, even for highly accurate classifiers like the ones
used for our experiments, the expert benefits from using
our system even when p = 1. This is because, for accurate
classifiers, many prediction sets are singletons containing
the true label, as shown in Appendix H.

7. Conclusions
We have initiated the development of automated decision
support systems that, by design, do not require human ex-
perts to understand when each of their recommendations is
accurate to improve their performance with high probability.
We have focused on multiclass classification and designed a
system that, for each data sample, recommends a subset of
labels to the experts using a classifier. Moreover, we have
shown that our system can help experts make predictions
more accurately and is robust to the accuracy of the classifier
and the estimator of the expert’s success probability.

Our work opens up many interesting avenues for future work.
For example, we have considered a simple, well-known con-
formal score function from the literature. However, it would
be valuable to develop score functions especially designed
for decision support systems. Moreover, it would be interest-
ing to perform online estimation of the expert’s conditional
success probability. Further, it would be important to investi-
gate the ethical impact of our system, including human trust
and bias, understand the robustness of our system to mali-
cious attacks, and consider alternative performance metrics
such as expert prediction time. Finally, it would be im-
portant to deploy and evaluate our system on a real-world
application with human experts.
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Nguyen, V.-L. and Hüllermeier, E. Multilabel classification
with partial abstention: Bayes-optimal prediction under
label independence. Journal of Artificial Intelligence
Research, 72:613–665, 2021.

Nourani, M., King, J. T., and Ragan, E. D. The role of do-
main expertise in user trust and the impact of first impres-
sions with intelligent systems. ArXiv, abs/2008.09100,
2020.

10



Improving Expert Predictions with Conformal Prediction

Okati, N., De, A., and Gomez-Rodriguez, M. Differentiable
learning under triage. In Advances in Neural Information
Processing Systems, 2021.

Papenmeier, A., Englebienne, G., and Seifert, C. How
model accuracy and explanation fidelity influence user
trust. arXiv preprint arXiv:1907.12652, 2019.

Peterson, J. C., Battleday, R. M., Griffiths, T. L., and Rus-
sakovsky, O. Human uncertainty makes classification
more robust. arXiv preprint arXiv:1908.07086, 2019.

Podkopaev, A. and Ramdas, A. Distribution-free uncer-
tainty quantification for classification under label shift.
In Proceedings of the 37th Conference on Uncertainty in
Artificial Intelligence, 2021.

Raghu, M., Blumer, K., Corrado, G., Kleinberg, J., Ober-
meyer, Z., and Mullainathan, S. The algorithmic automa-
tion problem: Prediction, triage, and human effort. arXiv
preprint arXiv:1903.12220, 2019.

Romano, Y., Patterson, E., and Candes, E. Conformalized
quantile regression. Advances in Neural Information
Processing Systems, 32:3543–3553, 2019.

Romano, Y., Sesia, M., and Candes, E. Classification with
valid and adaptive coverage. Advances in Neural Infor-
mation Processing Systems, 33:3581–3591, 2020.

Simonson, I. Choice based on reasons: The case of at-
traction and compromise effects. Journal of consumer
research, 16(2):158–174, 1989.

Straitouri, E., Singla, A., Meresht, V. B., and Gomez-
Rodriguez, M. Reinforcement learning under algorithmic
triage. arXiv preprint arXiv:2109.11328, 2021.

Suresh, H., Lao, N., and Liccardi, I. Misplaced trust: Mea-
suring the interference of machine learning in human
decision-making. In 12th ACM Conference on Web Sci-
ence, pp. 315–324, 2020.

Tversky, A. Elimination by aspects: A theory of choice.
Psychological review, 79(4):281, 1972.

Tversky, A. and Simonson, I. Context-dependent pref-
erences. Management Science, 39(10):1179–1189,
1993. ISSN 00251909, 15265501. URL http://www.
jstor.org/stable/2632953.

Vodrahalli, K., Gerstenberg, T., and Zou, J. Uncalibrated
models can improve human-ai collaboration. In Advances
in Neural Information Processing Systems, 2022.

Vovk, V., Gammerman, A., and Shafer, G. Algorithmic
Learning in a Random World. Springer-Verlag, Berlin,
Heidelberg, 2005. ISBN 0387001522.

Wang, L., Joachims, T., and Gomez-Rodriguez, M. Improv-
ing screening processes via calibrated subset selection.
In Proceedings of the 39th International Conference on
Machine Learning, 2022.

Wang, X. and Yin, M. Are explanations helpful? a com-
parative study of the effects of explanations in ai-assisted
decision-making. In 26th International Conference on
Intelligent User Interfaces, pp. 318–328, 2021.

Wright, P. and Barbour, F. Phased decision strategies: Se-
quels to an initial screening. Graduate School of Business,
Stanford University, 1977.

Yang, G., Destercke, S., and Masson, M.-H. Cautious clas-
sification with nested dichotomies and imprecise proba-
bilities. Soft Computing, 21(24):7447–7462, 2017.

Yin, M., Wortman Vaughan, J., and Wallach, H. Understand-
ing the effect of accuracy on trust in machine learning
models. In Proceedings of the 2019 chi conference on
human factors in computing systems, pp. 1–12, 2019.

Zhang, Y., Liao, Q. V., and Bellamy, R. K. Effect of confi-
dence and explanation on accuracy and trust calibration
in ai-assisted decision making. In Proceedings of the
2020 Conference on Fairness, Accountability, and Trans-
parency, pp. 295–305, 2020.

11

http://www.jstor.org/stable/2632953
http://www.jstor.org/stable/2632953


Improving Expert Predictions with Conformal Prediction

A. Proofs
A.1. Proof of Proposition 4.1

Given the estimators µ̂α of P[Ŷ = Y ; Cα], we have that, for each α ∈ A, it holds that∣∣∣µ̂α − P[Ŷ = Y ; Cα]
∣∣∣ ≤ ϵα,δ/m (11)

with probability at least 1− δ/m. By applying the union bound, we know that the above events hold simultaneously for all
α ∈ A with probability at least 1− δ. Moreover, by rearranging, the above expression can be rewritten as

µ̂α − ϵα,δ/m ≤ P[Ŷ = Y ; Cα] ≤ µ̂α + ϵα,δ/m. (12)

Let α̂ = argmaxα∈A{(µ̂α − ϵα,δ/m)}. For α̂, with probability 1− δ, it holds that for all α ∈ A,

P[Ŷ = Y ; Cα̂] ≥ µ̂α̂ − ϵα̂,δ/m ≥ µ̂α − ϵα,δ/m = µ̂α − ϵα,δ/m + 2ϵα,δ/m − 2ϵα,δ/m

= µ̂α + ϵα,δ/m − 2ϵα,δ/m,

≥ P
[
Ŷ = Y ; Cα

]
− 2ϵα,δ/m,

where the last inequality follows from Eq. 12.

A.2. Derivation of Error Expression for Hoeffding’s Inequality

From Hoeffding’s inequality we have that:

Theorem A.1. Let Z1, ..., Zk be i.i.d., with Zi ∈ [a, b], i = 1, ..., k, a < b and µ̂ be the empirical estimate µ̂ =
∑k

i=1 Zi

k of
E[Z] = E[Zi]. Then:

P [µ̂− E[Z] ≥ ϵ] ≤ exp

(
− 2kϵ2

(b− a)2

)
(13)

and

P [µ̂− E[Z] ≤ −ϵ] ≤ exp

(
− 2kϵ2

(b− a)2

)
(14)

hold for all ϵ ≥ 0.

In our case we have k = m and Zi = I {Yi ∈ Cα(Xi)}P
[
Ŷ = Yi; Cα |Yi ∈ Cα(Xi)

]
∈ (0, 1). Moreover, note that the

expectation of Zi is given by:

E[Zi] = E
[
I {Yi ∈ Cα(Xi)}P

[
Ŷ = Yi; Cα |Yi ∈ Cα(Xi)

]]
= E

[
I {Yi ∈ Cα(Xi)}P

[
Ŷ = Yi; Cα |Yi ∈ Cα(Xi)

]
+ I {Yi /∈ Cα(Xi)}P

[
Ŷ = Yi; Cα |Yi /∈ Cα(Xi)

]]
= E

[
P
[
Ŷ = Yi; Cα

]]
= P

[
Ŷ = Yi; Cα

]
,

where the expectations are over the joint distribution of prediction sets Cα(X) and true labels Y .

Hence, for the empirical estimate µ̂ = µ̂α of P[Ŷ = Y ; Cα] and its error ϵ = ϵα,δ:

P
[
µ̂α − P[Ŷ = Y ; Cα] ≥ ϵα,δ

]
≤ exp

(
−

2mϵ2α,δ
(1− 0)2

)
(15)

12
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and

P
[
µ̂α − P[Ŷ = Y ; Cα] ≤ −ϵα,δ

]
≤ exp

(
−

2mϵ2α,δ
(1− 0)2

)
(16)

hold. Further, if we set

δ = exp
(
−2mϵ2α,δ

)
, (17)

then

1− P
[
µ̂α − P[Ŷ = Y ; Cα] ≤ ϵα,δ

]
≤ δ ⇒ P

[
µ̂α − P[Ŷ = Y ; Cα] ≤ ϵα,δ

]
≥ 1− δ (18)

and

1− P
[
µ̂α − P[Ŷ = Y ; Cα] ≥ −ϵα,δ

]
≤ δ ⇒ P

[
µ̂α − P[Ŷ = Y ; Cα] ≥ −ϵα,δ

]
≥ 1− δ (19)

hold for any ϵα,δ ≥ 0. As follows, based on Eq. 17:

δ = exp
(
−2mϵ2α,δ

)
⇒ log

1

δ
= 2mϵ2α,δ ⇒ ϵ2α,δ =

log 1
δ

2m
⇒ ϵα,δ =

√
log 1

δ

2m
.

A.3. Proof of Proposition D.1

We proceed similarly as in the Appendix A.5 in Hulsman (2022). First, note that, by definition, we have that

q̂α1 = s(⌈(1−α1)(m+1)⌉) and q̂α2 = s(⌈(1−α2)(m+1)⌉),

where s(i) denotes the i-th smallest conformal score in the calibration set Dcal. Then, as long as the conformal scores in the
calibration set are almost surely distinct, it follows directly from Proposition 4 in Hulsman (2022) that

P [q̂α2
< s(X,Y ) ≤ q̂α1

| Dcal] ∼ Beta(l,m− l + 1), (20)

where l = ⌈(m + 1)(1 − α1)⌉ − ⌈(m + 1)(1 − α2)⌉. Moreover, for any (X,Y ) ∼ P (X)P (Y |X), we have that, by
construction, Y ∈ Cα1,α2

(X) if and only if s(X,Y ) ∈ (q̂α2
, q̂α1

). Then, Eq. 22 follows directly from Eq. 20.

13
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B. Implementation Details
To implement our algorithms and run all the experiments on synthetic and real data, we used PyTorch 1.12.1, NumPy 1.20.1
and Scikit-learn 1.0.2 on Python 3.9.2. For reproducibility, we use a fixed random seed in all random procedures. Moreover,
we set δ = 0.1 everywhere.

Synthetic prediction tasks. We create 4 × 3 = 12 different prediction tasks, where we vary the number of labels
n ∈ {10, 50, 100} and the level of difficulty of the task. More specifically, for each value of n, we create four different tasks
of increasing difficulty where the success probability of the logistic regression classifier is P[Y ′ = Y ] = 0.9, 0.7, 0.5 and
0.3, respectively.

To create each task, we use the function make classification of the Scikit-learn library. This function allows the
creation of data for synthetic prediction tasks with very particular user-defined characteristics, through the generation of
clusters of normally distributed points on the vertices of a multidimensional hypercube. The number of the dimensions of
the hypercube indicates the number of informative features of each sample, which in our case we set at 15 for all prediction
tasks. Linear combinations of points, i.e., the informative features, are used to create redundant features, the number of
which we set at 5. The difficulty of the prediction task is controlled through the size of the hypercube, with a multiplicative
factor, namely clas sep, which we tuned accordingly for each value n so that the success probability of the logistic
regression classifier above spans a wide range of values across tasks. All the selected values of this parameter can be found
in the configuration file config.py in the code. Finally, we set the proportion of the samples assigned to each label, i.e.,
the function parameter weights, using a Dirichlet distribution of order n with parameters α1 = ... = αn = 1.

14
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C. Additional Synthetic Prediction Tasks, Number of Labels and Amount of Calibration and
Estimation Data

To complement the results in Table 1 in the main paper, we experiment with additional prediction tasks with different
number of labels n and amount of calibration and estimation data m. For each value of n and m, we estimate the success
probability P[Ŷ = Y ; Cα̂] achieved by four different experts using our system, each with a different success probability
P[Ŷ = Y ; Y], on four prediction tasks where the classifier achieves a different success probability P[Y ′ = Y ]. Figure 5
summarizes the results.

P[Ŷ = Y ; Y] P[Y ′ = Y ]
0.3 0.5 0.7 0.9

0.3 0.56 0.72 0.84 0.94
0.5 0.68 0.80 0.89 0.95
0.7 0.79 0.87 0.93 0.97
0.9 0.92 0.95 0.97 0.99

(a) n = 50, m = 1,200

P[Ŷ = Y ; Y] P[Y ′ = Y ]
0.3 0.5 0.7 0.9

0.3 0.62 0.76 0.87 0.95
0.5 0.72 0.83 0.91 0.96
0.7 0.83 0.90 0.95 0.98
0.9 0.93 0.96 0.98 0.99

(b) n = 100, m = 1,200

P[Ŷ = Y ; Y] P[Y ′ = Y ]
0.3 0.5 0.7 0.9

0.3 0.42 0.58 0.75 0.91
0.5 0.55 0.66 0.80 0.93
0.7 0.72 0.79 0.87 0.96
0.9 0.90 0.92 0.94 0.98

(c) n = 10, m = 400

P[Ŷ = Y ; Y] P[Y ′ = Y ]
0.3 0.5 0.7 0.9

0.3 0.56 0.73 0.84 0.94
0.5 0.67 0.80 0.88 0.96
0.7 0.79 0.88 0.93 0.98
0.9 0.92 0.94 0.97 0.99

(d) n = 50, m = 400

P[Ŷ = Y ; Y] P[Y ′ = Y ]
0.3 0.5 0.7 0.9

0.3 0.62 0.77 0.87 0.95
0.5 0.73 0.83 0.91 0.97
0.7 0.83 0.89 0.95 0.98
0.9 0.93 0.96 0.98 0.99

(e) n = 100, m = 400

Figure 5. Empirical success probability achieved by four different experts using our system during test, each with a different success
probability P[Ŷ = Y ; Y], on four prediction tasks where the classifier achieves a different success probability P[Y ′ = Y ]. Each table
corresponds to a different number of label values n and calibration and estimation set size m. For readability, each cell shows only the
average since the standard errors are all below 10−2.
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D. Beyond Standard Conformal Prediction
In Section 4, we have used standard conformal prediction (Angelopoulos & Bates, 2021) to construct the recommended
subsets C(X)—we have constructed C(X) by comparing the conformal scores s(X, y) to a single threshold q̂, as shown in
Eq. 3. Here, we introduce a set-valued predictor based on conformal prediction that constructs C(X) using two thresholds
q̂α1

and q̂α2
. By doing so, the recommended subsets will include label values whose corresponding conformal scores are

neither unreasonably large, as in standard conformal prediction, nor unreasonably low in comparison with the conformal
scores of the samples in the calibration set Dcal. This may be useful in scenarios where the classifier underpinning our
system has not particularly high average accuracy16.

More specifically, given a calibration set Dcal = {(xi, si)}mi=1, let α1, α2 ∈ [0, 1], with α1 < α2, and q̂α1
and q̂α2

be the
⌈(m+1)(1−α1)⌉

m and ⌈(m+1)(1−α2)⌉
m empirical quantiles of the conformal scores s(x1, y1), . . . , s(xm, ym). If we construct

the subsets Cα1,α2
(X) for new data samples as follows:

Cα1,α2(X) = {y | q̂α2 < s(X, y) ≤ q̂α1}, (21)

we have that the probability that the true label Y belongs to the subset Cα1,α2(X) conditionally on the calibration set Dcal
is almost exactly α2 − α1 with high probability as long as the size m of the calibration set is sufficiently large. More
specifically, we first note that the coverage probability is a random quantity whose distribution is given by the following
proposition, which is the counterpart of Proposition 3.1:

Proposition D.1. For a decision support system Cα1,α2
that constructs Cα1,α2

(X) using Eq. 21, as long as the conformal
scores s(xi, yi) for all (xi, yi) ∈ Dcal are almost surely distinct, it holds that:

P[Y ∈ Cα1,α2
(X) | Dcal] ∼ Beta(l,m− l + 1), (22)

where l = ⌈(m+ 1)(1− α1)⌉ − ⌈(m+ 1)(1− α2)⌉.

As an immediate consequence of Proposition D.1, using the definition of the beta distribution, we have that

α2 − α1 ≤ E [P[Y ∈ Cα1,α2
(X) | Dcal]] = α2 − α1 +

c1 − c2
m+ 1

≤ α2 − α1 +
1

m+ 1
,

where c1, c2 ∈ [0, 1). Moreover, given a target probability α2 − α1 and tolerance values δ, ϵ ∈ (0, 1), we can compute
the minimum size m of the calibration set Dcal such that Cα1,α2

enjoys Probably Approximately Correct (PAC) coverage
guarantees, i.e., with probability 1− δ, it holds that

α2 − α1 − ϵ ≤ P[Y ∈ Cα(X) | Dcal] ≤ α2 − α1 + ϵ.

Finally, given an estimator of the expert’s success probability µ̂α1,α2 such that for each α1 < α2 and δ ∈ (0, 1), with
probability at least 1− δ, it holds that |µ̂α1,α2

− P[Ŷ = Y ; Cα1,α2
]| ≤ ϵα1,α2,δ, we can proceed similarly as in standard

conformal prediction to find the near optimal α̂1, α̂2 ∈ A that maximizes the expert’s success probability with high
probability, by using µ̂α1,α2 and ϵα1,α2,2δ/(m(m−1)). Here, it is worth pointing out that, in contrast with the case of standard
conformal prediction, the time complexity of finding the near optimal α̂1 and α̂2 is O(m logm + mn log n + mn2).
Moreover, we can still rely on the practical method to estimate the expert’s conditional success probability introduced in
Section 4.

16In such scenarios, the conformal scores of the samples in the calibration set can occasionally have low values—otherwise, the classifier
would be highly accurate—and thus it is beneficial to exclude label values with (very) low conformal scores from the recommended
subsets—those label values the classifier is confidently wrong about.
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E. Sensitivity to the Choice of Calibration Set
In this section, we repeat the experiments on synthetic and real data using 100 independent realizations of the calibration,
estimation and test sets. Then, for each data split, we compare the empirical coverage 1

|Dtest|
∑

(x,y)∈Dset
I[y ∈ Cα̂(x)] :=

1− α̂emp achieved by our system Cα̂ on the test set Dtest to the corresponding target coverage 1− α̂.

Figure 6 summarizes the results for (a) one synthetic prediction task and one synthetic expert and (b) one popular deep
neural network classifier on the CIFAR-10H dataset. We find that the value of the near-optimal α̂ does not vary significantly
across experiments (i.e., across calibration sets) and, for each experiment, the empirical coverage 1− α̂emp is very close to
and typically higher than the target coverage 1− α̂. We found similar results for other expert-classifier pairs with different
success probabilities.
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(a) Synthetic Task
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(b) CIFAR-10H

Figure 6. Empirical test coverage 1− αemp and target coverage 1− α̂ for 100 independent realizations of the calibration, estimation and
test sets. In Panel (a), the synthetic task comprises a classifier with P[Y ′ = Y ] = 0.5 and an expert with P[Ŷ = Y ; Y] = 0.5, the
number of labels is n = 10 and the size of the calibration and estimation sets is m = 1,200. In Panel (b), the classifier is the popular
DenseNet classifier and m = 1,500.
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F. Success Probability Achieved by an Expert using Top-k Set-Valued Predictors
In this section, we estimate the success probability achieved by an expert using the top-k set-valued predictor for different
k values using both synthetic and real data. Figures 7 and 8 summarize the results, which show that, by allowing
for recommended subsets of varying size, our system is consistently superior to the top-k set-valued predictor across
configurations. Moreover, the results on synthetic data also show that, the higher the expert’s success probability P[Ŷ =
Y ; Y], the greater the optimal k value (i.e., the greater the optimal size of the recommended subsets Ck(X)). This latter
observation is consistent with the behavior exhibited by our system, where the higher the expert’s success probability
P[Ŷ = Y ; Y], the lower the value of the near-optimal α̂ and thus the greater the average size of the recommended subsets
Cα̂(X), as shown in Figure 9.
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Figure 7. Empirical success probability achieved by two different experts using the top-k set-valued predictor (Ck) during test, each
with a different success probability P[Ŷ = Y ; Y], on three prediction tasks where the classifier achieves a different success probability
P[Y ′ = Y ]. In each panel, the horizontal dashed line shows the empirical success probability achieved by the same experts using our
system (Cα̂) during test. In all panels, the number of labels is n = 10, the size of the calibration and estimation sets is m = 1,200 and the
results for the optimal k value during test are highlighted in orange.
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Figure 8. Empirical success probability achieved by an expert using three different top-k predictors (Ck) during test, each with a different
deep neural network classifier, on the CIFAR-10H dataset. In each panel, the horizontal dashed line shows an empirical success probability
achieved by the same expert using our system (Cα̂) during test. In all panels, the size of the calibration and estimation sets is m = 1,500
and the results for the optimal k value during test are highlighted in orange.
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G. Size Distribution of the Recommended Subsets
Figure 9 shows the empirical size distribution of the subsets Cα̂(X) recommended by our system during test for different
experts and prediction tasks on synthetic data. The results show that, as the expert’s success probability P[Ŷ = Y ; Y]
increases and the near optimal α̂ decreases, the spread of the size distribution increases.
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P[Ŷ = Y ; Y] = 0.9, P[Y ′ = Y ] = 0.9

Figure 9. Empirical size distribution of the subsets Cα̂(X) recommended by our system during test for different prediction tasks where
the expert and the classifier achieve different success probabilities P[Ŷ = Y ; Y] and P[Y ′ = Y ], respectively. In all panels, the number
of labels is n = 10 and the size of the calibration and estimation sets is m = 1,200.
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H. Performance of Our System Under Different α Values
In this section, we complement the results on CIFAR-10H dataset in the main paper by comparing, for each choice of
classifier, the performance of our system under the near optimal α̂ found by Algorithm 1 and under all other possible α
values, including the optimal α∗. Figure 10 summarizes the results, which suggest that, similarly as in the experiments on
synthetic data, the performance of our system under α̂ and α∗ is very similar. However, since the classifiers are all highly
accurate, the average size of the recommended subsets under α̂ and α∗ is quite close to one even though α̂ is much smaller
than in the experiments in synthetic data.
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(a) Empirical success probability vs α
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Figure 10. Empirical success probability achieved by an expert using our system and average size of the recommended sets during test for
each α ∈ A and for three popular deep neural network classifiers on the CIFAR-10H dataset. The size of the calibration and estimation
sets is m = 1,500. Each marker corresponds to a different α value and the darker points correspond to α̂ for each task.
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I. Additional Experiments using an Estimator of the Expert’s Success Probability with a More
Expressive Context

In this section, we repeat the experiments on the CIFAR-10H dataset using an alternative discrete choice model with a
more expressive context which, additionally to the true label, distinguishes between different levels of difficulty across data
samples. The goal here is to show that our results are not an artifact of the choice of context used in the main paper.

We consider three increasing levels of difficulty, denoted as Leasy, Lmedium, Lhard. The difficulty levels correspond to the 50%
and 25% quantiles of the experts’ fractions of correct predictions per sample in the (original) multiclass classification task.
Samples with a fraction of correct predictions larger than the 50% quantile belong to Leasy, those with a fraction of correct
predictions smaller than the 25% quantile belong to Lhard, and the remaining ones belong to Lmedium. Then, given a sample
(x, y) of difficulty L, we assume that the expert’s conditional success probability for the subset Cα(x) is given by:

P[Ŷ = y ; Cα | y ∈ Cα(x), L] =
eu

L
yy∑

y′∈Cα(x) e
uL
yy′

, (23)

where uL
yy′ denotes the expert preference for the label value y′ ∈ Y whenever the true label is y and the difficulty level of

the sample is L.

Further, to estimate the parameters uL
yy′ , we resort to the conditional confusion matrix for the expert predictions on samples

of difficulty L, i.e., CL =
[
CL

yy′

]
y,y′∈Y , where CL

yy′ = P[Ŷ = y′ ; Y |Y = y, L], and set uL
yy′ = logCL

yy′ . Finally, we

compute a Monte-Carlo estimate µ̂α of the expert’s success probability P[Ŷ = Y ; Cα] required by Algorithm 1 using the
above conditional success probability and an estimation set Dest = {(xi, yi)}i∈[m], i.e.,

µ̂α =
1

m

∑
i∈[m] | yi∈Cα(xi)

P[Ŷ = yi ; Cα | yi ∈ Cα(xi), L(xi)], (24)

where L(xi) ∈ {Leasy, Lmedium, Lhard} denotes the difficulty level of xi.

Table 3 summarizes the results, which suggest that, in agreement with the main paper, an expert using our system may solve
the prediction task significantly more accurately than the expert or the classifier on their own.

Table 3. Empirical success probabilities achieved by three popular deep neural network classifiers and by an expert using our system
with these classifiers during test on the CIFAR-10H dataset. Here, we assume the expert follows the alternative discrete choice model
defined by Eq. 23. The size of the calibration and estimation sets is m = 1,500 and the expert’s empirical success probability at solving
the (original) multiclass task is P[Ŷ = Y ; Y] ≈ 0.947. Each cell shows only the average since the standard errors are all below 10−2.

CLASSIFIER EXPERT USING Cα̂

RESNET-110 0.928 0.981
PRERESNET-110 0.944 0.983
DENSENET 0.964 0.987

Finally, similarly as in the main paper, we also found that our system performs well with a small amount of calibration and
estimation data—the relative gain in empirical success probability achieved by an expert using our system with respect to
the same expert on their own raises from 3.02± 0.05% under m = 200 to just 3.28± 0.04% under m = 1,500.
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