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Abstract— The uncertainty quantification of prediction mod-

els (e.g., neural networks) is crucial for their adoption in

many robotics applications. This is arguably as important

as making accurate predictions, especially for safety-critical

applications such as self-driving cars. This paper proposes our

approach to uncertainty quantification in the context of visual

localization for autonomous driving, where we predict locations

from images. Our proposed framework estimates probabilistic
uncertainty by creating a sensor error model that maps an inter-

nal output of the prediction model to the uncertainty. The sensor

error model is created using multiple image databases of visual

localization, each with ground-truth location. We demonstrate

the accuracy of our uncertainty prediction framework using the

Ithaca365 dataset, which includes variations in lighting, weather

(sunny, snowy, night), and alignment errors between databases.

We analyze both the predicted uncertainty and its incorporation

into a Kalman-based localization filter. Our results show that

prediction error variations increase with poor weather and

lighting condition, leading to greater uncertainty and outliers,

which can be predicted by our proposed uncertainty model.

Additionally, our probabilistic error model enables the filter to

remove ad hoc sensor gating, as the uncertainty automatically

adjusts the model to the input data.

I. INTRODUCTION

The evolution of modern prediction models (e.g., neural
networks) has revolutionized the performance of applica-
tions ranging from medical diagnostics, business analysis
to robotics. However, much of the research in this field
has focused primarily on enhancing performance (e.g., av-
erage prediction accuracy) through better data collection and
architectures. Despite these advancements, one significant
weakness of many models is their inability to provide a sense
of confidence in individual predictions. Predictive accuracies
of these models can vary based on factors such as the amount
and diversity of training data, the model architecture details,
and the complexity of the test environment [1], [2].

In certain applications, such as medical imaging or self-
driving, probabilistic uncertainty quantification of prediction
outputs is crucial. Realizing uncertainty models for these
networks will not only facilitate their integration into formal
probabilistic perception and planning frameworks but also
enable better reasoning over the outputs. For example, in
medical diagnosis, doctors should intervene when the neu-
ral network lacks confidence in its prediction [3]. While
some modern neural networks attempt to output probabilistic
uncertainty, the reliability of the uncertainty prediction is
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still insufficient for safety-critical decision-making [4]. Most
modern neural networks are deterministic or produce only
non-probabilistic confidence, such as the softmax function.

Current uncertainty modeling methods can generally be
divided into three categories: Bayesian neural networks,
ensemble, and post-processing methods. Bayesian neural
networks [5], [6] construct an inherent uncertainty estimation
framework by formalizing a probability distribution over
the model parameters [7]. However, they are difficult to
train and often output poorly calibrated confidence scores
[8]. Ensemble methods [9] typically train multiple neural
networks with different training data or architectures, and the
variance of the networks’ output can indicate the uncertainty
level. However, these methods require larger networks and
additional training and inference steps. Post-processing meth-
ods, such as neural network calibration, are general enough
to be used with different networks. However, they require
uncalibrated uncertainty as an input and cannot predict un-
certainty directly. Examples include histogram binning [10]
and isotonic regression [11]. Some post-processing methods,
such as Platt scaling [12], can predict uncertainty directly
but require additional layers to be trained. The output of
these methods is typically a simple confidence score, which
is calibrated to be an approximate probability of correctness.

This paper presents a general uncertainty prediction
framework that does not require additional training of the
network or changes in network architecture. The framework
is probabilistically formulated to provide both probabil-
ity/confidence and an uncertainty distribution across the
outputs. To achieve this, we leverage the concept of sensor

models in estimation frameworks (e.g., Kalman filter). For
traditional sensors, manufacturers typically provide error
model specifications that indicate the accuracy of the sensor
under different conditions, e.g. the accuracy of LiDAR as
a function of range or the covariance of pseudo-ranges for
GPS in various weather conditions. We propose creating an
error uncertainty model for the network predictions using the
internal network outputs and analysis across datasets.

We demonstrate the effectiveness of our uncertainty pre-
diction approach using the problem of visual localiza-
tion [13]. We focus on this problem for two reasons: first, the
neural network outputs a 2D position from an image, making
it easy to analyze, and second, the network’s performance
is known to degrade in poor weather and lighting condi-
tions [14], [15]. We build upon a typical visual localization
model [16] which predicts the pose of a query image by
searching the most similar image from a database of images
with known poses using keypoint matching [17]. Firstly, we
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analyze the performance of a baseline neural network to
understand its performance over different databases (weather
and lighting). We then create a statistical error model using
the internal outputs of the network (number of keypoint
matches between the query and retrieved images) as the cue

to predict visual localization error uncertainty. Importantly,
the matched keypoints of each model/database can be cali-
brated and binned based on both a probability and 2D error.
During inference, given the number of keypoint matches
from an image, the sensor error model can directly return
an uncertainty estimate in the form of a 2D error covariance
(analogous to a traditional sensor) and a formal confidence.
We can also incorporate the error model output in a Kalman-
based localization filter, which provides a range of formal
evaluation tools such as filter integrity and sensor hypothesis
testing. We evaluate our approach using Ithaca365 [18],
a large-scale real-world self-driving dataset that includes
multiple traversals along repeated routes, varying weather
and lighting conditions, and high precision GPS.

Our main contributions are three-folded: First, we analyze
a state-of-the-art neural network for visual localization across
a comprehensive dataset that includes multiple routes, light-
ing, and weather conditions to understand how errors vary
across these key conditions. Second, we propose an approach
to predict well-calibrated uncertainty without modifying the
base neural network or requiring additional training. Third,
we validate our method in the visual localization problem on
a large real-world dataset under various settings and demon-
strate that it consistently produces well-calibrated uncertainty
estimates and high integrity filters without ad hoc fixes.

II. RELATED WORKS

A. Uncertainty Modeling.

Modern prediction models are known for their high per-
formance in various tasks, but they often lack the ability
to tell the uncertainty in their predictions. While some
models, such as classification neural networks, can produce
a confidence score, it is not probabilistic and therefore may
not be entirely reliable. Ensembles [9], [19], [20] offer a
solution by training multiple networks and combining their
predictions to calculate variance and represent uncertainty.
However, ensembles require more costly training steps for
training multiple networks, as well as more inference time.
Bayesian neural networks (BNNs) [5], [6] offer another
potential solution by treating neural network weights as
random variables instead of deterministic values, with pre-
dictions in the form of an expectation over the posterior
distribution of the model weights. Two prominent methods
in BNN are Bayes by Backprop [21] and Monte Carlo (MC)
Dropout [22]. Bayes by Backprop regularises the weights
by minimising the expected lower bound on the marginal
likelihood. MC Dropout interprets dropout approximately as
integrates over the models’ weights. However, BNN requires
specifying a meaningful prior for the parameters which can
be challenging. Additionally, the uncertainty is often poorly
calibrated, necessitating post-processing methods [8], [23],
[24] to map poorly calibrated uncertainty to well-calibrated

uncertainty. For instance, temperature scaling is a widely
used post-processing methods due to its simplicity and effec-
tiveness [23] . [8] extends the technique from just classifica-
tion tasks to regression tasks. However, such post-processing
methods either require inputs of uncalibrated uncertainty or
re-training some layers. In contrast, our method differs from
these methods in that we do not alter the prediction model’s
structure, hence preserving its performance. Furthermore, our
method can output accurate uncertainty with no additional
training and can be applied to any prediction models.

B. Visual Localization

Visual localization aims to predict the pose of a query
image using environmental information such as images and
point clouds. Two main branches of visual localization are
image-based localization and 3D-structure-based localiza-
tion. Image-based localization [25]–[27] can be understood
as an image retrieval problem, i.e. retrieving the most similar
image from an image database/library with known poses and
taking the pose of the retrieved image as the predicted pose.
Several approaches [28], [29] have been proposed to extract
image features for this purpose In contrast, 3D-structure-
based localization [16], [30]–[35] predicts the location by
finding the pose that best matches the detected 2D keypoints
in the query image with the 3D keypoints in a pre-constructed
3D model. However, to the best of our knowledge, few works
have considered the uncertainty associated with the predicted
location. While some works [17], [36] output confidence
scores on detected keypoints and their matching, they do
not provide any information about the uncertainty of the
predicted location.

III. METHOD

In this section, we discuss our method for uncertainty
quantification of prediction models, using visual localization
as the application task. We start by defining a baseline
visual localization framework, then present our approach
to modeling the errors and calibrating the uncertainties of
the predictive network, and finally, we define a full visual
localization pipeline, with a filter and sensor gating, to be
used in the validation steps.

A. Location Prediction from Image Retrieval

Let X = {ki}Ni=1 be a set of database images with known
GPS locations r(ki). Given a query image q, our goal is
to estimate the location where the image was taken. As
images taken from close-by poses should preserve some
content similarity, we find the closest image fclosest(q;X)
from database X and use its corresponding location as the
predicted location r̂(q) = r(fclosest(q;X)). We define the
closest image as the image with the most number of keypoint
matches nkpm to the query image. However, performing
keypoint matching of the query image to all N database
images is computationally expensive. Therefore, more effi-
cient global feature matching (NetVLAD [29]) is performed
first, followed by neural keypoint matching (SuperPoint [36]
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Fig. 1: Pipeline for location prediction form image-retrieval using multiple traversals.

+ SuperGlue [17]) on the top n << N candidate images.
This pipeline is shown in Figure 1 (top, green).

A standard location prediction from image retrieval
pipeline typically uses a database from just one traver-
sal (passing the route once). We propose to use multiple

databases from multiple traversals, motivated by several key
observations. First, a query image has a non-zero distance to
even its closest image from a database (see Figure 2). Using
multiple traversals increases the database image options and
thus lowers the average error. Second, as the query image for
localization can originate from different weather and lighting
conditions, it is important to diversify the database images
to reduce potential errors (those from the traversal and from
keypoint mismatches). Finally and most importantly, data
from multiple traversals can be used to provide a localization
uncertainty prediction, as will be shown in III-B.

One naive approach is to simply treat the additional data
from multiple traversals X

1
, X

2
, . . . , X

L as one combined
(large) database, and apply the same pipeline. However, this
is not effective, as the candidate images retrieved by global
feature matching often are biased to come from a single
database whose color or even foreground object appearance
is most similar to the query image. This motivates our new
approach that encourages retrieval of candidate images from
each traversal as shown in Figure 1.

Fig. 2: GPS locations of several traversals (zoomed in for il-
lustration; full trajectory is not shown). Using multiple traversals
increases the chances that a database image is closer to the query
image location (i.e., smaller theoretical error).

B. Uncertainty Prediction and Quantification

1) Problem Definition: We formally define the uncertainty
quantification problem as predicting the error bound �c(q) 2
R+ of image q and confidence level c 2 [0, 1] such that the

error between the predicted location r̂ = r(f(q;X)) and the
ground-truth rgt is below �c by c probability:

p (kr̂ � rgtk < �c(q)) = c (1)

2) Sensor Error Model: We propose to create a sensor

error model to determine the confidence of the prediction
(e.g. neural network output). A sensor error model maps key
attributes of prediction to error bound �c and confidence c

estimates; for example, the error of stereo depth sensor is
quadratic to range [37]. We first analyze the performance of
visual localization prediction as a function of the number
of keypoint matches nkpm by performing cross-validation
using different databases. As an example, Figure 3 shows
scatter plots of the location error between images from two
databases (sunny and night) and their closest images from
another database (sunny) as a function of the number of
keypoint matches.

Fig. 3: Relationship between number of keypoint matches and
location error for two different database traversals.

From this analysis, we learn two things. First, the number
of keypoint matches nkpm can serve as a good indicator for
uncertainty quantification. Second, the relationship between
number of keypoint matches and error can be different
for different databases (traversals); the scatter plots have
different distributions. Thus, we propose to build the sensor
error model as a function of number of keypoint matches,
and build one model for each different traversal. We can
utilize multiple traversals to learn this mapping as follows.

3) Creating Sensor Error Model: Key to our approach
is creating a sensor error model for each database/traversal.
For database l, we apply the image retrieval pipeline using
traversal X

l as the query and another traversal X
m 6=l as

the database. For every image k
l
i 2 X

l, we find the closest
image f(kli;X

m) from database m and compute the location
error kr(f(kli;Xm)) � r(kli)k. Thus, for each image, we

4180

Authorized licensed use limited to: Cornell University Library. Downloaded on September 29,2023 at 21:24:09 UTC from IEEE Xplore.  Restrictions apply. 



…

Database w/o

……D
at

ab
as

e 
D

at
ab

as
e

…

Database        as query

C
re

at
e 

Se
ns

or
 E

rr
or

 M
od

el
 fo

r D
at

ab
as

e
In

fe
re

nc
e

Lo
ca

tio
n 

Pr
ed

ic
tio

n

…

… …

Query 

D
at

ab
as

e 
 

D
at

ab
as

e

Er
ro

r (
m

et
er

) 

Number of keypoint matches Er
ro

r (
m

et
er

) 

Er
ro

r (
m

et
er

) 

Number of keypoint matches 

Lo
ca

tio
n 

Pr
ed

ic
tio

n
Lo

ca
tio

n 
Pr

ed
ic

tio
n

Sensor error model 
    for database  

Number of keypoint matches 

     fraction of bin data

Sensor error model 
for every database  

Retrieve sensor error 
model for      b/c the 
closest image is from 
database 

All     databases except

…
…

bin1 bin2 bin3 …

…

combine

Er
ro

r (
m

et
er

) 

Closest image is from 
database        w/ 
number of keypoint 
matches 
(between query and 
closest image)

Fig. 4: Pipeline for uncertainty prediction. Top: creating sensor error model. Bottom: using sensor error model in inference.

can compute the number of keypoint matches (to its closest
image) and location error. This process is repeated using all
L�1 different traversals (other than Xl). We divide the data
(number of keypoints vs error) into bins according to the
number of keypoint matches (e.g., bin 1 contains data points
with keypoint matches ranging from 0-200, bin 2 from 200-
400, and so on). For each bin, we empirically determine the
error bound �c for confidence c such that c fraction of data
in that bin has smaller error than �c. We repeat for each
traversal/database, as shown in Figure 4(top).

4) Model Prediction with Uncertainty and Confidence:

The inference process is shown in Figure 4(bottom). Given
a query image of unknown location, we retrieve the closest
image (as detailed in III-A); the location of the closest image
becomes the predicted location. To find the confidence of
the prediction, we use the database of the closest image (say
l, or X

l). The corresponding (l) sensor error model is then
used; the bin associated with the number of keypoint matches
(between query and closest image) gives the corresponding
error bound �c at confidence level c.

Finally, we form a quantified uncertainty (in the form of a
2D estimation error covariance in this case). Specifically, we
compute the measurement covariance R 2 R2⇥2 from the
cross-validation data, per database, per number of keypoint
matches range (bin). The covariance matrices are formed and
expressed in the ego car (sensor) coordinates. This covari-
ance matrix will be used as the measurement covariance in
subsection III-C.

C. Full Visual Localization Pipeline

We build a full visual localization pipeline using the
location prediction (III-A) as the uncertain measurement,
the uncertainty prediction (III-B) as the error covariance,
within a formal estimation framework using the Sigma Point
(Unscented) filter (SPF) [38], [39]. Our goal is to estimate
the p(st|m1:t) of the state vector st at time t given observed
measurements m1:t. We define the state vector as follows:

s =
⇥
x y ✓ v ✓̇

⇤T
(2)

where x, y, ✓ are the inertial, planar position and heading
angle, and v, ✓̇ are the linear and angular velocity of the car.
In the prediction step of the SPF, we assume constant linear
and angular velocity (v and ✓̇) with a small process noise. In
the measurement update, given an image input, we process
the image through the location and uncertainty prediction
pipeline (III-A and III-B) to give the (x, y) location measure-
ment and error covariance; the covariance is transformed to
the inertial coordinates for the filter.

Most modern estimation frameworks also typically employ
sensor measurement gating to decide whether to accept a
measurement (i.e., use it in the filter update) or reject the
measurement (i.e., it is an outlier, outside the nominal error
mode). Given a measurement vector m, we compute the
Mahalanobis distance dM defined as follows:

d
2
M = (m� m̂)T (HĈH

T +R)�1(m� m̂) (3)

where R is the measurement covariance transformed to the
world coordinate, Ĉ is the estimated state covariance from
the SPF, H is the measurement matrix that maps the state
vector to the measurement, and m̂ = Hs is the expected
measurement. The measurement is rejected if it lies outside
of the validation gate,

if d2M > �
2
k,↵ ! reject, (4)

where �
2
k,↵ is a threshold from the inverse chi-squared

cumulative distribution at a level ↵ with k degrees of
freedom. The level ↵ controls the validation gate, i.e. it
rejects (1�↵)⇥100% of the measurements at the tail; typical
values are 0.99, 0.975, and 0.95.

IV. EXPERIMENTS

A. Dataset

We use the Ithaca365 dataset [18], containing data col-
lected over multiple traversals along a 15km route under
various conditions: snowy, rainy, sunny, and nighttime. We
utilize two types of sensor data, images, and GPS locations
for our experiments. For our database, we randomly select
nine traversals, with three traversals each from the sunny
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(X1, X2, X3), nighttime (X4, X5, X6), and snowy (X7,
X

8, X9). We use three additional traversals (Qsunny, Qsnow

and Q
night), one from each condition, as queries for testing

and evaluation. To avoid double counting and ensure a
uniform spatial distribution across the scenes in evaluation,
we sample query images at an interval of ⇡1m, except for
highways where the spacing is larger. This results in an
average of ⇡10,000 images for each query traversal, Q(·).

B. Evaluation

1) Sensor Error Model: First, we evaluate the correctness
of our uncertainty prediction on location prediction using im-

age retrieval. Following [8], [23], we use reliability diagram

to compare the expected confidence level with the observed
confidence level. For a given expected confidence level c, the
observed confidence is obtained by computing the empirical
frequency p̂c that the location error kx̂(q)�xgt(q)k is below
the predicted uncertainty �c(q):

p̂c =
|{q 2 Q s.t. kx̂(q)� xgt(q)k  �c(q)}|

|Q| . (5)

If the uncertainty quantification is accurate, the diagram
should plot the identity function (a straight line with a gra-
dient of one). The reliability diagram in Figure 5 shows that
our method produces accurate probabilistic confidence, as
evidenced by the small gaps between observed and expected
confidence at all levels and across all three conditions.

Fig. 5: Reliability diagrams for Qsunny, Qnight, and Qsnowy.

2) Visual Localization: Filter + Prediction/Error Model:

Next, we evaluate the full visual localization pipeline, which
uses the previous location predictions as measurements in
the SPF (subsection III-C). We evaluate both the localization
error and the uncertainty of the estimates. The localization
error derr is the average distance error between estimated
and ground-truth locations, whereas covariance credibility
measures the frequency that the 2D localization error lies
within an n-sigma covariance ellipse; we use 1-, 2- and 3-
sigma, corresponding to 68%, 95% and 99.7% probability
respectively in a 2D Gaussian distribution.

We present three sets of experiments in Table I. The
first set of experiments (rows 1-9) uses the original image
inputs. The second and the third sets simulate high sensor
error/failure by corrupting several images along the red paths

of Figure 6. Specifically, the second set (rows 10-15) applies
average blurring, and the third set (rows 16-21) applies salt
and pepper noise, as shown in Figure 7. Within each set, three
sets of measurement gating are evaluated, with 0, 1.0% and
2.5% probability gate. We compare our method to a constant
covariance baseline commonly used in Kalman filter, where

the constant covariance value is obtained by tuning on the
validation data, separately for each weather condition. Our
method and the constant covariance baseline receive the
same measurement vectors but use different measurement

covariance. Additionally, in the first experiment set, we
provide a comparison to the Monte Carlo (MC) Dropout
method. Specifically, we apply a dropout layer after the
final keypoint feature projection layer with a 0.3 dropout
probability and repeat the dropout process multiple times
until the SPF localization results stabilize. We report the
converged results.

Fig. 6: Data collection path (black), with corrupted images (red).

Fig. 7: Examples of corrupted images. Top: original images. Mid:
blurred images (average blur with kernel size 80, Bottom: images
corrupted with salt and pepper noise (noise amount is 0.5)).

Analysis of Table I yields several observations. Firstly,
our method outperforms the MC Dropout and constant
covariance baselines in terms of localization accuracy (derr)
in nearly all cases, suggesting that a good uncertainty model
can improve localization accuracy, even with similar mea-
surement quality. Our method also produces more accurate
uncertainty estimates (indicated by covariance-credibility)
than the two baselines in nearly all cases. This is crucial
for making informed decisions in the future. Second, we
observe that formal sensor gating through hypothesis testing
with prediction networks is too sensitive and does not work
well. However, our adaptive covariance method removes
the need for sensor gating and standard outlier rejection in
filters. In the typical estimation framework, sensor gating
is used to reject bad measurements that could adversely
affect the performance. While outlier rejection may improve
performance, it is highly susceptible to threshold parameter
selection (�2

k,↵). We observe that there is hardly a single
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TABLE I: Evaluation result of Unscented Kalman Filter localization for sunny, night, and snowy conditions.

Row Method Gating (1� ↵) derr(m) # Cov-credibility(%) nr(%) derr(m) # Cov-credibility(%) nr(%) derr(m) # Cov-credibility(%) nr(%)

Normal measurement — Average measurement error: 0.83m / 11.67m / 1.76m for MC dropout – 0.87m / 8.68m / 1.42m for baseline and ours.

1 MC d.o 0 0.792 32.8 / 67.4 / 84.7 0 7.442 27.6 / 56.2 / 71.0 0 1.501 20.4 / 50.4 / 69.8 0
2 Baseline 0 0.766 46.1 / 81.2 / 92.3 0 8.425 38.5 / 67.0 / 78.9 0 1.302 30.5 / 61.8 / 79.6 0
3 Ours 0 0.569 62.2 / 91.4 / 97.4 0 3.075 75.9 / 94.6 / 98.6 0 0.811 55.4 / 86.4 / 95.9 0

4 MC d.o 1.0% 0.612 33.1 / 68.2 / 85.6 1.0 165.282 23.4 / 46.0 / 57.7 33.0 1.442 21.2 / 51.6 / 71.6 4.8
5 Baseline 1.0% 0.610 46.6 / 82.1 / 93.3 1.0 54.382 33.9 / 57.2 / 67.0 30.3 333.538 17.5 / 38.3 / 51.7 37.7
6 Ours 1.0% 0.570 62.3 / 91.4 / 97.5 0.2 2.926 76.2 / 94.6 / 98.7 0.3 222.608 34.5 / 56.4 / 63.9 33.2

7 MC d.o 2.5% 0.613 33.1 / 68.2 / 85.9 1.5 7607.294 3.6 / 8.5 / 11.5 86.7 8144.861 3.7 / 9.0 / 12.3 82.5
8 Baseline 2.5% 790.307 32.8 / 54.5 / 61.6 35.2 54.205 34.1 / 57.9 / 69.1 31.3 8169.233 5.1 / 11.2 / 14.8 82.3
9 Ours 2.5% 82.828 47.7 / 67.9 / 72.5 26.2 2.942 76.3 / 94.6 / 98.7 0.4 8121.261 7.6 / 14.1 / 16.7 82.0

Study case where 5.0% / 4.7% / 4.6% of data are corrupted with average blurring — Average measurement error: 108.21m / 121.78m / 108.66m

10 Baseline 0 107.163 41.9 / 74.6 / 85.4 0 121.370 36.3 / 63.5 / 74.4 0 108.080 29.2 / 58.9 / 75.3 0
11 Ours 0 3.371 61.0 / 90.3 / 96.9 0 7.702 72.9 / 92.7 / 97.2 0 3.351 56.4 / 87.0 / 95.7 0

12 Baseline 1.0% 1726.025 3.6 / 7.1 / 8.3 91.1 8776.021 1.8 / 2.6 / 3.4 97.2 726.828 14.9 / 28.9 / 37.0 58.7
13 Ours 1.0% 3.529 61.3 / 90.6 / 97.0 1.3 66.813 65.8 / 82.3/ 86.7 12.4 264.000 35.8 / 57.4 / 64.2 33.3

14 Baseline 2.5% 1756.856 6.0 / 8.0 / 8.9 91.4 1510.11 6.0 / 11.4 / 15.6 84.1 8169.514 5.5 / 11.6 / 15.0 83.3
15 Ours 2.5% 110.299 51.3 / 73.2 / 78.2 20.6 70.659 65.9 / 82.0 / 86.5 13.2 820.152 16.0 / 29.0 / 34.8 62.1

Study case where 5.0% / 4.7% / 4.6% of data are corrupted with salt and pepper noise — Average measurement error: 66.09m / 103.63m / 85.26m

16 Baseline 0 65.365 42.0 / 74.9 / 85.6 0 102.887 36.8 / 63.9 / 75.0 0 84.738 29.1 / 58.7 / 75.1 0
17 Ours 0 1.971 61.9 / 91.1 / 97.4 0 7.083 73.1 / 92.2 / 97.1 0 2.468 57.0 / 87.4 / 96.1 0

18 Baseline 1.0% 0.985 45.8 / 80.4 / 92.1 5.5 3563.210 24.6 / 36.2 / 40.2 60.4 724.023 15.1 / 29.3 / 38.0 56.7
19 Ours 1.0% 1.719 62.3 / 91.3 / 97.5 0.6 437.251 28.7 / 40.6 / 48.0 39.5 1329.145 13.3 / 17.7 / 18.8 76.7

20 Baseline 2.5% 420.962 35.2 / 58.2 / 66.7 33.7 1308.586 2.2 / 3.2 / 7.9 96.1 1554.474 2.2 / 3.8 / 6.4 94.5
21 Ours 2.5% 81.392 48.3 / 68.4 / 74.0 25.4 408.598 27.6 / 38.7 / 46.6 42.8 1110.267 7.4 / 13.4 / 17.6 79.9

appropriate threshold value that works for different query
and measurement conditions. The analysis of the chi-square
test using errors and covariances indicates that the errors
produced by the DL algorithm do not conform1 to a Gaussian
error model, which is essential to the chi-square test. This
finding suggests potential future work in developing non-
Gaussian uncertainty models and associated gating tech-
niques that can better match the DL errors.

Fortunately, a key novelty of our approach is that it
does not require a formal outlier rejection method. Our
approach automatically adjusts the error covariance based
on the number of keypoints, which addresses the uncertainty
of the measurement, even if it is an outlier. We argue
that this is a key contribution for two reasons. First, it
is clear that outlier prediction is highly sensitive. Second,
even noisy, uncertain measurements can still contain useful
information. Our uncertainty modeling approach allows the
filter to incorporate all prediction outputs, resulting in better
performance and more robust applications.

3) Latency and Data Size: On a 1080Ti GPU, extracting
global features of an image using NetVLAD takes about
8ms, while performing keypoint matching for a single pair of
images using SuperPoint and SuperGlue takes approximately
112ms. Although keypoint matching is done between a query
image and ten candidate images, the GPU can simultaneously
process them in a batch without affecting the speed. The
database comprises 127,225 images with a total size of 417.7

1with exception in cases of sunny weather with many keypoints, where
the errors do fit the Gaussian error model

GB. Instead of storing the original images, we only need to
store the extracted global features (2.24GB) and the keypoint
features (161.9GB).

V. CONCLUSION

We present a general and formal probabilistic approach
for modeling prediction (e.g., neural network) uncertainties,
which we validate in the context of visual localization
problem. Our approach involves creating a sensor error
model that maps the output of the internal prediction model
(number of keypoint matches) to probabilistic uncertainty
for each database. During inference, we use the sensor
error model to map the number of keypoint matches to
confidence probability and 2D covariance. We evaluate our
approach using a large-scale real-world self-driving dataset
with varying weather, lighting, and sensor corruption condi-
tions, demonstrating accurate uncertainty predictions across
all conditions. Notably, our approach of creating a different
error covariance tailored to each measurement eliminates the
need for sensor gating, which is overly sensitive due to their
non-Gaussian nature. Our approach results in more robust
and better-performing perception pipelines.
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and Tomas Pajdla. 24/7 place recognition by view synthesis. In
2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1808–1817, 2015.
[29] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and

Josef Sivic. Netvlad: Cnn architecture for weakly supervised place
recognition. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 5297–5307, 2016.
[30] Arnold Irschara, Christopher Zach, Jan-Michael Frahm, and Horst

Bischof. From structure-from-motion point clouds to fast location
recognition. pages 2599–2606, 06 2009.

[31] J. L. Schonberger, M. Pollefeys, A. Geiger, and T. Sattler. Semantic
visual localization. In 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 6896–6906, Los Alamitos,
CA, USA, jun 2018. IEEE Computer Society.

[32] Marcel Geppert, Peidong Liu, Zhaopeng Cui, Marc Pollefeys, and
Torsten Sattler. Efficient 2d-3d matching for multi-camera visual
localization. pages 5972–5978, 05 2019.

[33] Uzair Nadeem, Mohammad Jalwana, Mohammed Bennamoun,
Roberto Togneri, and Ferdous Sohel. Direct Image to Point Cloud

Descriptors Matching for 6-DOF Camera Localization in Dense 3D

Point Clouds, pages 222–234. 12 2019.
[34] Hugo Germain, Guillaume Bourmaud, and Vincent Lepetit. Sparse-to-

dense hypercolumn matching for long-term visual localization. pages
513–523, 09 2019.

[35] Torsten Sattler, Michal Havlena, Filip Radenović, Konrad Schindler,
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