
Visual Query Tuning: Towards Effective Usage of Intermediate Representations
for Parameter and Memory Efficient Transfer Learning

Cheng-Hao Tu* Zheda Mai* Wei-Lun Chao
The Ohio State University, {tu.343, mai.145, chao.209}@osu.edu

Abstract

Intermediate features of a pre-trained model have been

shown informative for making accurate predictions on

downstream tasks, even if the model backbone is kept frozen.

The key challenge is how to utilize these intermediate fea-

tures given their gigantic amount. We propose visual query

tuning (VQT), a simple yet effective approach to aggregate

intermediate features of Vision Transformers. Through in-

troducing a handful of learnable “query” tokens to each

layer, VQT leverages the inner workings of Transformers

to “summarize” rich intermediate features of each layer,

which can then be used to train the prediction heads of

downstream tasks. As VQT keeps the intermediate features

intact and only learns to combine them, it enjoys memory

efficiency in training, compared to many other parameter-

efficient fine-tuning approaches that learn to adapt features

and need back-propagation through the entire backbone.

This also suggests the complementary role between VQT

and those approaches in transfer learning. Empirically,

VQT consistently surpasses the state-of-the-art approach

that utilizes intermediate features for transfer learning and

outperforms full fine-tuning in many cases. Compared to

parameter-efficient approaches that adapt features, VQT

achieves much higher accuracy under memory constraints.

Most importantly, VQT is compatible with these approaches

to attain even higher accuracy, making it a simple add-

on to further boost transfer learning. Code is available at

https://github.com/andytu28/VQT.

1. Introduction
Transfer learning by adapting large pre-trained models to

downstream tasks has been a de facto standard for competi-
tive performance, especially when downstream tasks have
limited data [37, 59]. Generally speaking, there are two
ways to adapt a pre-trained model [15, 27]: updating the
model backbone for new feature embeddings (the output
of the penultimate layer) or recombining the existing fea-

*Equal contributions.

ture embeddings, which correspond to the two prevalent ap-
proaches, fine-tuning and linear probing, respectively. Fine-

tuning, or more specifically, full fine-tuning, updates all the
model parameters end-to-end based on the new dataset. Al-
though fine-tuning consistently outperforms linear probing

on various tasks [54], it requires running gradient descent
for all parameters and storing a separate fine-tuned model
for each task, making it computationally expensive and pa-
rameter inefficient. These problems become more salient
with Transformer-based models whose parameters grow ex-
ponentially [17, 26, 46]. Alternatively, linear probing only
trains and stores new prediction heads to recombine features
while keeping the backbone frozen. Despite its computa-
tional and parameter efficiency, linear probing is often less
attractive due to its inferior performance.

Several recent works have attempted to overcome such a
dilemma in transfer learning. One representative work is by
Evci et al. [15], who attributed the success of fine-tuning to
leveraging the “intermediate” features of pre-trained models
and proposed to directly allow linear probing to access the
intermediate features. Some other works also demonstrated
the effectiveness of such an approach [14,15]. Nevertheless,
given numerous intermediate features in each layer, most of
these methods require pooling to reduce the dimensionality,
which likely would eliminate useful information before the
prediction head can access it.

To better utilize intermediate features, we propose Vi-
sual Query Tuning (VQT), a simple yet effective approach
to aggregate the intermediate features of Transformer-based
models like Vision Transformers (ViT) [13]. A Transformer
usually contains multiple Transformer layers, each starting
with a Multi-head self-attention (MSA) module operating
over the intermediate feature tokens (often > 100 tokens)
outputted by the previous layer. The MSA module trans-
forms each feature token by querying all the other tokens,
followed by a weighted combination of their features.

Taking such inner workings into account, VQT intro-
duces a handful of learnable “query” tokens to each layer,
which, through the MSA module, can then “summarize” the
intermediate features of the previous layer to reduce the di-
mensionality. The output features of these query tokens af-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7725

ter each layer can then be used by linear probing to make
predictions. Compared to pooling which simply averages
the features over tokens, VQT performs a weighted combi-
nation whose weights are adaptive, conditioned on the fea-
tures and the learned query tokens, and is more likely to
capture useful information for the downstream task.

At first glance, VQT may look superficially similar to
Visual Prompt Tuning (VPT) [23], a recent transfer learn-
ing method that also introduces additional learnable tokens
(i.e., prompts) to each layer of Transformers, but they are
fundamentally different in two aspects. First, our VQT only
uses the additional tokens to generate queries, not keys and
values, for the MSA module. Thus, it does not change the
intermediate features of a Transformer at all. In contrast, the
additional tokens in VPT generate queries, keys, and values,
and thus can be queried by other tokens and change their
intermediate features. Second, and more importantly, while
our VQT leverages the corresponding outputs of the addi-
tional tokens as summarized intermediate features, VPT in
its Deep version disregards such output features entirely. In

other words, these two methods take fundamentally differ-

ent routes to approach transfer learning: VQT learns to

leverage the existing intermediate features, while VPT aims

to adapt the intermediate features. As will be demonstrated
in section 4, these two routes have complementary strengths
and can be compatible to further unleash the power of trans-
fer learning. It is worth noting that most of the recent meth-
ods towards parameter-efficient transfer learning (PETL),
such as Prefix Tuning [30] and AdaptFormer [10], all can
be considered adapting the intermediate features [19]. Thus,
the aforementioned complementary strengths still apply.

Besides the difference in how to approach transfer learn-
ing, another difference between VQT and many other PETL
methods, including VPT, is memory usage in training.
While many of them freeze (most of) the backbone model
and only learn to adjust or add some parameters, the fact
that the intermediate features are updated implies the need
of a full back-propagation throughout the backbone, which
is memory-heavy. In contrast, VQT keeps all the intermedi-
ate features intact and only learns to combine them. Learn-
ing the query tokens thus bypasses many paths in the stan-
dard back-propagation, reducing the memory footprint by
76% compared to VPT.

We validate VQT on various downstream visual recog-
nition tasks, using a pre-trained ViT [13] as the backbone.
VQT surpasses the SOTA method that utilizes intermedi-
ate features [15] and full fine-tuning in most tasks. We fur-
ther demonstrate the robust and mutually beneficial compat-
ibility between VQT and existing PETL approaches using
different pre-trained backbones, including self-supervised
and image-language pre-training. Finally, VQT achieves
much higher accuracy than other PETL methods in a low-
memory regime, suggesting that it is a more memory-

Transformer Layer L1

Transformer Layer LM

Z0 P0

Transformer Layer L2

...

Head

Zm Pm

Wk WqWv

V K Q V' K' Q'

MSA

Add & Norm

MLP

Add & Norm

...cls

...cls

...cls

...cls

...

...

......

...

...

(a) VPT: Visual Prompt Tuning (deep version) [23]

Transformer Layer L1

Transformer Layer LM

Z0 P0

Transformer Layer L2

...

Head

Zm Pm

Wk WqWv

V K Q Q'

MSA

Add & Norm

MLP

Add & Norm

...cls

...cls

...cls

...cls

...

...

......

...

...

Frozen
Parameters

Tunable
Parameters

Backward
Pass

Intermediate
Features

Forward
Pass

Unmodified w.r.t
Tunable Parameters

Modified w.r.t
Tunable Parameters

(b) Our VQT: Visual Query Tuning

Figure 1. Our Visual Query Tuning (VQT) vs. Visual Prompt
Tuning (VPT) [23]. Our VQT allows linear probing to directly
access the intermediate features of a frozen Transformer model for
parameter-efficient transfer learning. The newly introduced query
tokens in VQT (marked by the red empty boxes in the red shaded
areas) only append additional columns (i.e., Q0) to the Query fea-
tures Q, not to the Value features V and the Key features K.
Thus, VQT keeps the intermediate features intact (gray empty
boxes), enabling it to bypass expensive back-propagation steps in
training (hence memory efficient). In contrast, VPT modifies the
intermediate features (gray solid boxes) and needs more memory
to learn its prompts. Please see section 3 for details.

efficient method.

To sum up, our key contributions are

1. We propose VQT to aggregate intermediate features of
Transformers for effective linear probing, featuring pa-
rameter and memory efficient transfer learning.

2. VQT is compatible with other PETL methods that adapt
intermediate features, further boosting the performance.

3. VQT is robust to different pre-training setups, including
self-supervised and image-language pre-training.

7726

2. Related Work

Transformer. The splendent success of Transformer mod-
els [46] in natural language processing (NLP) [48] has
sparked a growing interest in adopting these models in vi-
sion and multi-modal domains [26]. Since the proposal
of the Vision Transformer (ViT) [13], Transformer-based
methods have demonstrated impressive advances in various
vision tasks, including image classification [35, 44, 51], im-
age segmentation [40, 49], object detection [7, 58], video
understanding [2, 36], point cloud processing [16, 56], and
several other use cases [9, 50]. As Transformer mod-
els assume minimal prior knowledge about the structure
of the problem, they are often pre-trained on large-scale
datasets [8, 11, 39]. Given that the Transformer models are
notably larger than their convolutional neural network coun-
terparts, e.g., ViT-G (1843M parameters) [53] vs. ResNet-
152 (58M parameters) [21], how to adapt the pre-trained
Transformers to downstream tasks in a parameter and mem-
ory efficient way remains a crucial open problem.

PETL. The past few years have witnessed the huge suc-
cess of parameter-efficient transfer learning (PETL) in NLP,
aiming to adapt large pretrained language models (PLMs)
to downstream tasks [6, 25]. Typically, PETL methods in-
sert small learnable modules into PLMs and fine-tune these
modules with downstream tasks while freezing the pre-
trained weights of PLMs [3,5,19,22,29,33,38,41,43,47,57].
The current dominance of Transformer models in the vi-
sion field has urged the development of PETL methods in
ViT [10, 23, 24, 31, 34, 55]. Recently, Visual Prompt Tun-
ing (VPT) [23] was proposed to prepend learnable prompts
to the input embeddings of each Transformer layer. Adapt-
Former [10] inserts a bottleneck-structured fully connected
layers parallel to the MLP block in a Transformer layer.
Convpass [24] inserts a convolutional bottleneck module
while NOAH [55] performs a neural architecture search
on existing PETL methods. Unlike all the aforementioned
methods that update the output features of each Transformer
layer, our VQT focuses on leveraging the frozen intermedi-
ate features. Thus, VQT is compatible with most existing
PETL methods and enjoys memory efficiency.

Transfer learning with intermediate features. Intermedi-
ate features of a pre-trained model contain rich and valuable
information, which can be leveraged in various tasks such
as object detection [4, 18, 32] and OOD detection [28], etc.
Recently, multiple works [12,14,15,42] have demonstrated
the effectiveness of these features on transfer learning. On
the NLP side, LST [42] trains a lightweight Transformer
network that takes intermediate features as input and gener-
ates output features for predictions. On the CV side, Evci et

al. [15] attribute the success of fine-tuning to the ability to
leverage intermediate features and proposed Head2Toe to
select features from all layers for efficient transfer learn-

ing. Eom et al. [14] proposed utilizing intermediate fea-
tures to facilitate transfer learning for multi-label classifi-
cation. However, due to the massive number of intermedi-
ate features, most methods rely on the pooling operation to
reduce the dimensionality, which may distort or eliminate
useful information. This observation motivates us to intro-
duce VQT, which learns to summarize intermediate features
according to the downstream task.

3. Approach
We propose Visual Query Tuning (VQT) to adapt pre-

trained Transformers to downstream tasks while keeping the
backbone frozen. VQT keeps all the intermediate features
intact and only learns to “summarize” them for linear prob-

ing by introducing learnable “query” tokens to each layer.

3.1. Preliminaries

3.1.1 Vision Transformer

Vision Transformers (ViT) [13] adapt the Transformer-
based models [46] from NLP into visual tasks, by divid-
ing an image I into a sequence of N fixed-sized patches
{I(n)}Nn=1 and treating them as NLP tokens. Each patch
I
(n) is first embedded into a D-dimensional vector x

(n)
0

with positional encoding. The sequence of vectors is then
prepended with a “CLS” vector x(Class)

0 to generate the in-
put Z0 = [x(Class)

0 ,x(1)
0 , · · · ,x(N)

0] 2 RD⇥(1+N) to the
ViT. We use superscript/subscript to index token/layer.

Normally, a ViT has M layers, denoted by {Lm}Mm=1.
Given the input Z0, the first layer L1 generates the output
Z1 = L1(Z0) = [x(Class)

1 ,x(1)
1 , · · · ,x(N)

1] 2 RD⇥(N+1),
which is of the same size as Z0. That is, Z1 has 1 + N
feature tokens, and each corresponds to the same column
in Z0. Such layer-wise processing then continues to gen-
erate the output of the next layer, Zm = Lm(Zm�1) for
m = 2, · · · ,M , taking the output of the previous layer as
input. Finally, the “CLS” vector x(Class)

M in ZM is used as
the feature for prediction. Taking classification as an exam-
ple, the predicted label ŷ = Head(x(Class)

M) is generated by
a linear classifier (i.e., a fully-connected layer).
Details of each Transformer layer. Our approach takes
advantage of the inner workings of Transformer layers. In
the following, we provide a concise background.

Each Transformer layer consists of a Multi-head Self-
Attention (MSA) block, a Multi-Layer Perceptron (MLP)
block, and several other operations including layer normal-
ization and residual connections. Without loss of generality,
let us consider a single-head self-attention block and disre-
gard those additional operations.

Given the input Zm�1 to Lm, the self-attention block
first projects it into three matrices, namely Query Qm, Key

7727

Km, and Value Vm,

Qm = WqZm�1, Km = WkZm�1, Vm = WvZm�1.
(1)

Each of them has 1 + N columns1, corresponding to each
column (i.e., token) in Zm�1. Then, the output of Lm, i.e.,
Zm, can be calculated by:

Zm = MLPm �MSAm(Zm�1), (2)

where MSAm(Zm�1) = Vm ⇥ Softmax(
K

>
mQmp
D

). (3)

The Softmax is taken over elements of each column; the
MLPm is applied to each column of MSAm(Zm�1) inde-
pendently.

3.1.2 Transfer Learning: Linear Probing, Fine-tuning,
and Intermediate Feature Utilization

To adapt a pre-trained ViT to downstream tasks, linear

probing freezes the whole backbone model but the predic-
tion head: it disregards the original Head and learns a new
one. Fine-tuning, on top of linear probing, allows the back-
bone model to be updated as well.

Several recent works have demonstrated the effective-
ness of utilizing intermediate features in transfer learning,
by allowing linear probing to directly access them [14, 15].
The seminal work HEAD2TOE [15] takes intermediate fea-
tures from Z0 and four distinct steps in each Transformer
layer: features after the layer normalization, after the MSA
block, and inside and after the MLP block. Since each of
them has 1+N tokens, HEAD2TOE groups tokens by their
indices and performs average pooling to reduce the dimen-
sionality. The resulting features — over each group, step,
and layer — are then concatenated together for linear prob-

ing. To further reduce dimensionality, HEAD2TOE employs
group lasso [1, 52] for feature selection.

We note that while the second dimensionality reduction
is driven by downstream tasks, the first (i.e., pooling) is not,
which may inadvertently eliminate useful information. This
shortcoming motivates us to develop Visual Query Tuning
(VQT) for the effective usage of intermediate features.

3.2. Visual Query Tuning (VQT)
We propose to replace the average pooling operation in

HEAD2TOE with the intrinsic “summarizing” mechanism
in Transformers. We note that the MSA block introduced
in Equation 3 essentially performs weighted averages of the
Value features V over tokens, in which the weights are de-
termined by the columns of K>

Q. That is, if we can ap-
pend additional “columns” to K

>
Q, the MSA block will

1For brevity, we ignore the layer index m for the projection matrices
Wq ,Wk,Wv , but each layer has its own projection matrices.

output additional weighted combinations of V . In the spe-
cial case that the appended vector to K

>
Q has identical

entries (e.g., an all-zero vector), the weighted average re-
duces to a simple average. In other words, average pooling
can be thought of as a special output of the MSA layer.

Taking this insight into account, we propose to learn and
append additional columns Q

0 to Q. We realize this idea
by introducing a handful of T learnable “query” tokens
Pm�1 = [p(1)

m�1, · · · ,p
(T)
m�1] to the input of each Trans-

former layer Lm. See Figure 1b for an illustration. Differ-
ent from the original input Zm�1 that undergoes the three
projections introduced in Equation 1, Pm�1 only undergoes
the projection by Wq ,

Q
0
m = WqPm�1. (4)

By appending Q
0
m to Qm column-wise, we modify the

computation of the original MSA block in Equation 3 by

Vm ⇥ Softmax(
K

>
m[Qm,Q0

m]p
D

) = (5)

[Vm ⇥ Softmax(
K

>
mQmp
D

),Vm ⇥ Softmax(
K

>
mQ

0
mp

D
)].

The second half (blue color) corresponds to the newly sum-
marized MSA features by the learnable query tokens Pm�1.
Then after the MLP block MLPm, these features lead to the
newly summarized features Z

0
m 2 RD⇥T from layer Lm.

We can then concatenate these newly summarized features
over layers, Z 0

m 2 RD⇥T for m = 1, · · · ,M , together with
the final “CLS” vector x(Class)

M , for linear probing. We name
our approach Visual Query Tuning (VQT), reflecting the
fact that the newly added tokens Pm for m = 0, · · · ,M�1
only serve for the additional columns in Query matrices.
Properties of VQT. As indicated in Equation 5, the newly
introduced query tokens do not change the MSA features
the pre-trained ViT obtains (i.e., the first half). This implies
that VQT keeps all the original intermediate features (e.g.,
Zm) intact but only learns to recombine them.
Training of VQT. Given the training data of the down-
stream task, the query tokens {Pm}M�1

m=0 are learned end-to-
end with the new prediction head, which directly accesses
the outputs {Z 0

m+1}M�1
m=0 of these query tokens.

To further reduce the dimensionality of {Z 0
m+1}M�1

m=0 ,
we optionally employ group lasso, following HEAD2TOE
[15]. In detail, we first learn the query tokens without group
lasso. We then freeze them and apply group lasso to select
useful features from {Z 0

m+1}M�1
m=0 . We also explored vari-

ous ways for dimension reduction in Appendix C.4.

3.3. Comparison to Related Works

Comparison to HEAD2TOE [15]. We list several key dif-
ferences between HEAD2TOE and our VQT. First, com-
pared to HEAD2TOE, which takes intermediate features

7728

from multiple steps in a Transformer layer, VQT only
takes the newly summarized intermediate features after
each layer. Second, and more importantly, VQT employs
a different way to combine intermediate features across to-

kens. Generally speaking, there are two ways to combine a
set of feature vectors {x(n) 2 RD}Nn=1: concatenation and
average pooling. The former assumes that different vec-
tors have different meanings even at the same dimension,
which is suitable for features across layers. The latter as-
sumes that the same dimension means similarly to differ-
ent vectors so they can be compared and averaged, which
is suitable for features across tokens. One particular draw-
back of the former is the dimensionality (i.e., inefficiency).
For the latter, it is the potential loss of useful information
since it combines features blindly to the downstream tasks
(i.e., ineffectiveness). HEAD2TOE takes a mix of these two
ways to combine features over tokens, and likely suffers
one (or both) drawbacks. In contrast, VQT leverages the
intrinsic mechanism of self-attention to aggregate features
adaptively, conditioned on the features and the learnable
query tokens, making it a more efficient and effective way to
tackle the numerous intermediate features within each layer.
Comparison to Visual Prompt Tuning (VPT). At first
glance, VQT may be reminiscent of VPT [23], but they are
fundamentally different as highlighted in section 1 and Fig-
ure 1. Here, we provide some more details and illustrations.

VPT in its deep version (VPT-Deep) introduces learnable
tokens Pm�1 = [p(1)

m�1, · · · ,p
(T)
m�1] to the input of each

Transformer layer Lm, similarly to VQT. However, unlike
VQT which uses Pm�1 only for querying, VPT-Deep treats
Pm�1 the same as other input tokens Zm�1 and generates
the corresponding Query, Key, and Value matrices,

Q
0
m = WqPm�1, K

0
m = WkPm�1, V

0
m = WvPm�1.

These matrices are then appended to the original ones from
Zm�1 (cf. Equation 1) before self attention,

Q̃m = [Qm,Q0
m], K̃m = [Km,K 0

m], Ṽm = [Vm,V 0
m],

making the output of the MSA block as

Ṽm ⇥ Softmax(
K̃

>
mQ̃mp
D

) = (6)

[Ṽm ⇥ Softmax(
K̃

>
mQmp
D

), Ṽm ⇥ Softmax(
K̃

>
mQ

0
mp

D
)].

Compared to Equation 3 and Equation 5, the first half of the
matrix in Equation 6 changes, implying that all the interme-
diate features as well as the final “CLS” vector x(Class)

M are
updated according to the learnable tokens Pm�1. In con-
trast, VQT keeps these (intermediate) features intact.

Perhaps more subtly but importantly, VPT-Deep ends up
dropping the second half of the matrix in Equation 6. In

other words, VPT-Deep does not exploit the newly summa-
rized features by Q

0
m at all, making it conceptually similar

to Prefix Tuning [30]. Please see Figure 1 for a side-by-side
comparison between VQT and VPT-Deep.

The aforementioned differences suggest an interesting
distinction between VQT and VPT: VQT learns to lever-

age the existing intermediate features, while VPT learns

to adapt the intermediate features. In subsection 4.3, we
demonstrate one particular strength of VQT, which is to
transfer self-supervised pre-trained models.
Comparison and Compatibility with PETL methods. In
fact, most of the existing PETL approaches that adjust or
add a small set of parameters to the backbone model up-
date the intermediate features [19]. Thus, our VQT is likely
complementary to them and can be used to boost their per-
formance. In subsection 4.3, we explore this idea by intro-
ducing learnable query tokens to these methods.
Memory efficiency in training. As pointed out in [42],
when learning the newly added parameters, most PETL
methods require storing intermediate back-propagation re-
sults, which is memory-inefficient for large Transformer-
based models. For VQT, since it keeps all the inter-
mediate features intact and only learns to (i) tune the
query tokens (ii) and linearly probe the corresponding out-
puts of them, the training bypasses many expensive back-
propagation paths, significantly reducing the memory foot-
print. See subsection 4.4 for details.

4. Experiments
4.1. Experiment Setup

Dataset. We evaluate the transfer learning performance on
the VTAB-1k [54], which consists of 19 image classifica-
tion tasks categorized into three groups: Natural, Special-
ized, and Structured. The Natural group comprises natural
images captured with standard cameras. The Specialized
group contains images captured by specialist equipment for
remote sensing and medical purpose. The Structured group
evaluates the scene structure comprehension, such as object
counting and 3D depth estimation. Following [54], we per-
form an 80/20 split on the 1000 training images in each task
for hyperparameter searching. The reported result (top-1
classification accuracy) is obtained by training on the 1000
training images and evaluating on the original test set.
Pre-training setup. We use ViT-B/16 [13] as the back-
bone. The pre-training setup follows the corresponding
compared baselines. When comparing with Head2Toe, we
use ImageNet-1K supervised pre-trained backbone. When
investigating the compatibility with other PETL methods,
ImageNet-21K supervised pre-trained backbone is used.
To demonstrate the robustness of VQT to different pre-
training setups, we also evaluate VQT on self-supervised
(MAE) [20] and image-language (CLIP) pre-trained [39]

7729

Natural Specialized Structured

Method C
IF

A
R

-1
00

C
al

te
ch

10
1

D
TD

Fl
ow

er
s1

02

Pe
ts

SV
H

N

Su
n3

97

M
ea

n

C
am

el
yo

n

Eu
ro

SA
T

R
es

is
c4

5

R
et

in
op

at
hy

M
ea

n

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

La
b

K
IT

TI
-D

is
t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

v

M
ea

n

O
ve

ra
ll

M
ea

n

Scratch 7.6 19.1 13.1 29.6 6..7 19.4 2.3 14.0 71.0 71.0 29.3 72.0 60.8 31.6 52.5 27.2 39.1 66.1 29.7 11.7 24.1 35.3 32.8
Linear-probing 50.6 85.6 61.4 79.5 86.5 40.8 38.0 63.2 79.7 91.5 71.7 65.5 77.1 41.4 34.4 34.1 55.4 18.1 26.4 16.5 24.8 31.4 52.7
Fine-tuning 44.3 84.5 54.1 84.7 74.7 87.2 26.9 65.2 85.3 95.0 76.0 70.4 81.7 71.5 60.5 46.9 72.9 74.5 38.7 28.5 23.8 52.2 63.2

HEAD2TOE 54..4 86.8 64.1 83.4 82.6 78.9 32.1 68.9 81.3 95.4 81.2 73.7 82.9 49.0 57.7 41.5 64.4 52.3 32.8 32.7 39.7 46.3 62.3
VQT (Ours) 58.4 89.4 66.7 90.4 89.1 81.1 33.7 72.7 82.2 96.2 84.7 74.9 84.5 50.8 57.6 43.5 77.2 65.9 43.1 24.8 31.6 49.3 65.3

Table 1. Test accuracy on the VTAB-1k benchmark with ViT-B/16 pre-trained on ImageNet-1K. ”Mean” denotes the average accuracy for
each category and ”Overall Mean” shows the average accuracy over 19 tasks.

Methods Natural Specialized Structured

CLIP backbone

AdaptFormer 82.6 85.1 60.9
AdaptFormer+VQT 82.1 0.5 # 85.8 0.7 " 62.6 1.7 "
VPT 80.4 84.9 50.9
VPT+VQT 81.5 1.1 " 86.3 1.4 " 57.2 6.3 "

MAE backbone

AdaptFormer 68.7 81.3 58.3
AdaptFormer+VQT 71.1 2.4 " 83.3 2.0 " 59.2 0.9 "
VPT 63.5 79.1 48.6
VPT+VQT 67.9 4.4 " 82.7 3.6 " 49.7 1.1 "

Supervised ImageNet-21K backbone

AdaptFormer 80.1 82.3 50.3
AdaptFormer+VQT 79.6 0.5 # 84.3 2.0 " 53.0 2.7 "
VPT 79.1 84.6 54.4
VPT+VQT 78.9 0.2 # 83.7 0.9 # 54.6 0.2 "

Table 2. Compatibility of VQT with AdaptFormer and VPT on
MAE, CLIP, and supervised pre-trained backbones.

backbones. Please see Appendix B for more details.

4.2. Effectiveness of VQT

To evaluate the transfer learning performance of VQT,
we compare VQT with methods that fix the whole back-
bone (linear-probing and HEAD2TOE) and full fine-tuning,
which updates all network parameters end to end. For a fair
comparison, we match the number of tunable parame-
ters in VQT with that in HEAD2TOE (details are included
in Appendix B.3). In general, VQT improves over linear-

probing by 12.6% and outperforms HEAD2TOE and full
fine-tuning by 3% and 2.1% respectively, on average per-
formance over 19 tasks, which demonstrates the strength
of using intermediate features and the effectiveness of
VQT in summarizing them. In the Natural category, VQT
surpasses HEAD2TOE and fine-tuning by 2.8% and 7.5%,
respectively, and outperforms them in the Specialized cate-
gory by 1.6% and 2.8%, respectively. As shown in [15,54],
the Natural and Specialized categories have stronger do-
main affinities with the source domain (ImageNet) since
they are all real images captured by cameras. Thus, the
pre-trained backbone can generate more relevant interme-
diate features for similar domains. The only exception is

the Structured category consisting of rendered artificial im-
ages from simulated environments, which differs signifi-
cantly from ImageNet. Although VQT continues to im-
prove HEAD2TOE, fine-tuning shows 2.9% enhancement
over VQT, suggesting that if we need to adapt to a more
different targeted domain, we may consider tuning a small
part of the backbone to produce updated features for new
data before applying our VQT techniques. Appendix C.1
contains more comparisons between HEAD2TOE and VQT.

4.3. Compatibility with PETL Methods in Different
Pre-training Methods

As mentioned in subsection 3.3, most existing PETL
methods and VQT take fundamentally different routes to
approach transfer learning: PETL methods focus on adapt-
ing the model to generate updated features, while VQT aims
to better leverage features. Building upon this conceptual
complementariness, we investigate if they can be combined
to unleash the power of transfer learning. Moreover, in or-
der to demonstrate the robustness of the compatibility, we
evaluate performance on three different pre-trained back-
bones: self-supervised pre-trained (MAE with ImageNet-
1K) [20], image-language pre-trained (CLIP) [39] and su-
pervised pre-trained (ImageNet-21K).

Specifically, we focus on two recently proposed meth-
ods: AdaptFormer [10] and VPT [23]. AdaptFormer inserts
fully connected layers in a bottleneck structure parallel to
the MLP block in each Transformer layer [10]; VPT adds
learnable tokens to the input of every Transformer layer.

To equip AdaptFormer [10] and VPT [23] with our VQT,
firstly, we update the pre-trained model with AdaptFormer
or VPT so that the model can generate relevant intermediate
features for the downstream task. Then we add T = 1 query
token to the input of every layer to summarize the updated
intermediate features. For AdaptFormer, we use the default
bottleneck dimension 64; for VPT, we use the best number
of added tokens for each task reported in their paper.

We summarize the results in Table 2, where each row
shows the results for one pre-trained backbone, and each
column shows the results for one data category. Generally
speaking, AdaptFormer and VPT benefit from VQT in most
of the scenarios across different data categories and pre-

7730

Figure 2. The power of leveraging intermediate features provided
by VQT allows AdaptFormer to incorporate additional informa-
tion from the updated model (red curve), which would not be pos-
sible by simply increasing the complexity of the inserted modules
(green curve). d̂ denotes the bottleneck dimension of AdaptFormer
and T represents the number of VQT’s query tokens.

Methods Natural Specialized Structured

Linear-probing 18.87 53.72 23.70
Fine-tuning 59.29 79.68 53.82

VPT 63.50 79.15 48.58
VQT (Our) 66.00 82.87 52.64

Table 3. Average accuracy on VTAB-1k using the MAE backbone.

trained backbones. The improvement is more salient in
the MAE backbone. Since the MAE pre-training uses the
reconstruction objective instead of the classification or con-
trastive one, we hypothesize that some useful intermediate
features for classification may not be propagated to the fi-
nal layer2. With the help of VQT, AdaptFormer and VPT
can leverage intermediate features in a more concise and ef-
fective way. Additionally, VQT also benefits from Adapt-
Former and VPT. In subsection 4.2, we found that directly
applying VQT to the pre-trained backbone may not be ef-
fective for the Structured category due to the low domain
affinity. With the intermediate features updated by Adapt-
Former and VPT, VQT can summarize these more relevant
features to improve the results for the Structured group.
To sum up, the experiment results illustrate that VQT and
PETL methods are complementary and mutually ben-
eficial, with the potential to further unleash the power of
transfer. We provide detailed results of various pre-trained
backbones in Appendix C.6 and the compatibility compari-
son between HEAD2TOE and VQT in Appendix C.7.

To confirm that the improvement mentioned above does
not simply come from the increase of tunable parameters,
we enlarge AdaptFormer’s added modules by increasing
the bottleneck dimension d̂ from 64 to 128 and 256 to
match the tunable parameter number of AdaptFormer when
it is equipped with VQT3. As shown in Figure 2, Adapt-

2Table 3 shows the transfer learning results by each method alone, us-
ing the MAE backbone. Our VQT notably outperforms other methods.

3For VPT, since we already use its best prompt sizes, adding more
prompts to it will not improve its performance.

(a) (b)
Figure 3. Comparison under memory constraints. (a) Without
constraints, VPT and AdaptFormer slightly outperform VQT. (b)
With constraints, VQT performs the best in low-memory regimes.

Former with VQT significantly outperforms AdaptFormer
with larger added modules when the numbers of tunable pa-
rameters are similar. This further demonstrates the comple-
mentary strength of VQT and AdaptFormer: the improve-
ment by leveraging intermediate features summarized by
VQT cannot be achieved by simply increasing the complex-
ity of the inserted modules in AdaptFormer.

4.4. Memory Efficient Training
While many PETL methods reduce the number of tun-

able parameters, they cannot cut down the memory footprint
during training by much, and therefore, the evaluation of
PETL methods often ignores memory consumption. In real-
world scenarios, however, a model is often required to adapt
to new data on edge devices for privacy concerns, necessi-
tating the need for methods that can be trained with limited
memory. This motivates us to further analyze the accuracy-
memory trade-off for VPT, AdaptFormer, and VQT.

As discussed in subsection 3.3, VPT and AdaptFormer
require storing the intermediate back-propagation results to
update their added parameters, while VQT bypasses the ex-
pensive back-propagation because it keeps all the interme-
diate features intact. To evaluate their performance in the
low-memory regime, we only add their inserted parameters
to the last few layers to match the memory usage. Figure 3a
shows the performance of VQT, VPT, and AdaptFormer
under their best hyperparameters without memory con-
straints; Figure 3b depicts the accuracy-memory trade-
off for these methods. When memory is not a constraint,
VPT and AdaptFormer slightly outperform VQT, but they
consume 3.8x and 5.9x more memory (GB) than VQT, re-
spectively, as we can see in Figure 3b.

When memory is a constraint (left side of Figure 3b), we
see drastic accuracy drops of AdaptFormer and VPT. Al-
though they still surpass linear-probing, VQT outperforms
them significantly, suggesting that VQT is a more memory-
efficient method thanks to its query-only mechanism.

4.5. Discussion

Layer importance for each category. As VQT leverages
the summarized intermediate features for predictions, we

7731

Figure 4. Layer importance for each category in VTAB-1k.

SVNH-Natural EuroSAT-Specialized CLEVR/distance-Structured

C
LS

 +
 S

um
m

ar
iz

ed
 fe

at
ur

es
C

LS

Figure 5. t-SNE visualization of the CLS tokens alone (top) and
CLS tokens plus our summarized features (bottom) on 3 tasks
from each VTAB’s category. Adding the summarized intermediate
features makes the whole features more separable.

(a) (b)
Figure 6. (a) Average accuracy over the 19 tasks in VTAB-1k
using different training data sizes. For each task, 100% means that
we use all the 1000 training images. In the 10% data case, we
averagely have only 2 images per class. (b) Average accuracy on
VTAB-1k using different numbers of query tokens for VQT.

investigate which layers produce more critical features for
each category. In Figure 4, we show each layer’s importance
score computed by averaging the feature importance in the
layer. Features in deeper layers are more important for the
Natural category, while features from all layers are almost
equally important for the Specialized category. Contrast-
ingly, VQT heavily relies on the CLS token for the Struc-
tured category. We hypothesize that the low domain affinity
between ImageNet and the Structured category may cause
the intermediate features to be less relevant, and the model
needs to depend more on the CLS token.
Different downstream data sizes. We further study the
effectiveness of VQT under various training data sizes. We
reduce the VTAB’s training sizes to {10%, 20%, 30%, 50%,
70%} and compare VQT with Fine-tuning and Linear prob-

ing in Figure 6a. Although fine-tuning slightly outperforms
VQT on 100% data, VQT consistently performs better as
we keep reducing the training data. On the 10% data case,
where we only have 2 images per class on average, Linear
probing obtains the best accuracy, but its improvement di-
minishes and performs much worse than VQT when more
data become available. These results show that VQT is
more favorable in a wide range of training data sizes.
Number of query tokens. As we use only one query to-
ken for VQT in previous experiments, we now study VQT’s
performance using more query tokens on VTAB-1k. Fig-
ure 6b shows that more query tokens can improve VQT,
but the accuracy drops when we add more than 40 tokens.
We hypothesize that overly increasing the model complex-
ity causes overfitting due to the limited data in VTAB-1k.
Visualization. Figure 5 shows t-SNE [45] visualization of
the CLS token and our summarized features for three tasks
(SVHN, EuroSAT, and Clevr-Dist), one from each category.
Compared with the CLS token alone, adding summarized
features makes the whole features more separable, showing
the strength of using intermediate features and the effective-
ness of our query tokens in summarizing them. We provide
the visualization of other tasks in Appendix C.5.

5. Conclusion
We introduced Visual Query Tuning, a simple yet effec-

tive approach to aggregate intermediate features of Vision
Transformers. By introducing a set of learnable “query”
tokens to each layer, VQT leverages the intrinsic mecha-
nism of Transformers to “summarize” rich intermediate fea-
tures while keeping the intermediate features intact, which
allows it to enjoy a memory-efficient training without back-
propagation through the entire backbone. Empirically, VQT
surpasses HEAD2TOE, the SOTA method that utilizes in-
termediate features, and we demonstrate robust and mutu-
ally beneficial compatibility between VQT and other PETL
methods. Furthermore, VQT is a more memory-efficient
approach and achieves much higher performance in a low-
memory regime. While VQT only focuses on summariz-
ing features within each layer, we hope our work can pave
the way for exploring more effective ways of using features
across layers and leveraging intermediate features in trans-
fer learning for other tasks, such as object detection, seman-
tic segmentation and video classification.

Acknowledgments
This research is supported in part by NSF (IIS-2107077, OAC-

2118240, and OAC-2112606) and Cisco Research. We are thank-
ful for the computational resources of the Ohio Supercomputer
Center. We thank Yu Su (OSU) for the helpful discussion. We
thank Menglin Jia and Luming Tang (Cornell) for code sharing.

7732

References
[1] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano

Pontil. Multi-task feature learning. Advances in neural in-

formation processing systems, 19, 2006. 4
[2] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen

Sun, Mario Lučić, and Cordelia Schmid. Vivit: A video
vision transformer. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 6836–6846,
2021. 3

[3] Akari Asai, Mohammadreza Salehi, Matthew E Peters, and
Hannaneh Hajishirzi. Attentional mixtures of soft prompt
tuning for parameter-efficient multi-task knowledge sharing.
arXiv preprint arXiv:2205.11961, 2022. 3

[4] Sean Bell, C Lawrence Zitnick, Kavita Bala, and Ross Gir-
shick. Inside-outside net: Detecting objects in context with
skip pooling and recurrent neural networks. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 2874–2883, 2016. 3
[5] Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bit-

Fit: Simple parameter-efficient fine-tuning for transformer-
based masked language-models. In Proceedings of the 60th

Annual Meeting of the Association for Computational Lin-

guistics (Volume 2: Short Papers), pages 1–9. Association
for Computational Linguistics, 2022. 3

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-

formation processing systems, 33:1877–1901, 2020. 3
[7] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-

ence on computer vision, pages 213–229. Springer, 2020. 3
[8] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,

Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 9650–9660, 2021. 3
[9] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping

Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and
Wen Gao. Pre-trained image processing transformer. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 12299–12310, 2021. 3
[10] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang,

Yibing Song, Jue Wang, and Ping Luo. Adaptformer: Adapt-
ing vision transformers for scalable visual recognition. arXiv

preprint arXiv:2205.13535, 2022. 2, 3, 6, 14
[11] Xinlei Chen, Saining Xie, and Kaiming He. An empiri-

cal study of training self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 9640–9649, 2021. 3
[12] Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and Yonatan

Belinkov. Analyzing redundancy in pretrained transformer
models. In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages
4908–4926, 2020. 3

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-

tions, 2021. 1, 2, 3, 5, 12
[14] Seongha Eom, Taehyeon Kim, and Se-Young Yun. Layover

intermediate layer for multi-label classification in efficient
transfer learning. In Has it Trained Yet? NeurIPS 2022 Work-

shop, 2022. 1, 3, 4
[15] Utku Evci, Vincent Dumoulin, Hugo Larochelle, and

Michael C Mozer. Head2toe: Utilizing intermediate rep-
resentations for better transfer learning. In International

Conference on Machine Learning, pages 6009–6033. PMLR,
2022. 1, 2, 3, 4, 6, 12, 13, 14

[16] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud
transformer. Computational Visual Media, 7(2):187–199,
2021. 3

[17] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen,
Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao, Chun-
jing Xu, Yixing Xu, et al. A survey on vision transformer.
IEEE transactions on pattern analysis and machine intelli-

gence, 2022. 1
[18] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Ji-

tendra Malik. Hypercolumns for object segmentation and
fine-grained localization. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages
447–456, 2015. 3

[19] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. Towards a unified view of
parameter-efficient transfer learning. In International Con-

ference on Learning Representations, 2021. 2, 3, 5
[20] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr

Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 16000–
16009, 2022. 5, 6, 12

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 3
[22] Yun He, Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi

Aribandi, Zhe Zhao, YaGuang Li, Zhao Chen, Donald Met-
zler, et al. Hyperprompt: Prompt-based task-conditioning
of transformers. In International Conference on Machine

Learning, pages 8678–8690. PMLR, 2022. 3
[23] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,

Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In European Conference on Computer

Vision (ECCV), 2022. 2, 3, 5, 6, 12, 14
[24] Shibo Jie and Zhi-Hong Deng. Convolutional bypasses

are better vision transformer adapters. arXiv preprint

arXiv:2207.07039, 2022. 3
[25] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina

Toutanova. Bert: Pre-training of deep bidirectional trans-

7733

formers for language understanding. In Proceedings of

NAACL-HLT, pages 4171–4186, 2019. 3, 12
[26] Salman Khan, Muzammal Naseer, Munawar Hayat,

Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak
Shah. Transformers in vision: A survey. ACM computing

surveys (CSUR), 54(10s):1–41, 2022. 1, 3
[27] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do

better imagenet models transfer better? In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 2661–2671, 2019. 1
[28] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A

simple unified framework for detecting out-of-distribution
samples and adversarial attacks. Advances in neural infor-

mation processing systems, 31, 2018. 3
[29] Brian Lester, Rami Al-Rfou, and Noah Constant. The power

of scale for parameter-efficient prompt tuning. In Proceed-

ings of the 2021 Conference on Empirical Methods in Natu-

ral Language Processing, pages 3045–3059. Association for
Computational Linguistics, 2021. 3

[30] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimiz-
ing continuous prompts for generation. In Proceedings of

the 59th Annual Meeting of the Association for Computa-

tional Linguistics and the 11th International Joint Confer-

ence on Natural Language Processing (Volume 1: Long Pa-

pers), pages 4582–4597, 2021. 2, 5
[31] Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao

Wang. Scaling & shifting your features: A new baseline
for efficient model tuning. arXiv preprint arXiv:2210.08823,
2022. 3

[32] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 2117–2125, 2017. 3
[33] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao

Du, Zhilin Yang, and Jie Tang. P-tuning: Prompt tuning can
be comparable to fine-tuning across scales and tasks. In Pro-

ceedings of the 60th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), pages
61–68, 2022. 3

[34] Yen-Cheng Liu, Chih-Yao Ma, Junjiao Tian, Zijian He,
and Zsolt Kira. Polyhistor: Parameter-efficient multi-
task adaptation for dense vision tasks. arXiv preprint

arXiv:2210.03265, 2022. 3
[35] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng

Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 10012–10022, 2021. 3
[36] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,

Stephen Lin, and Han Hu. Video swin transformer. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 3202–3211, 2022. 3
[37] Ying Lu, Lingkun Luo, Di Huang, Yunhong Wang, and Lim-

ing Chen. Knowledge transfer in vision recognition: A sur-
vey. ACM Computing Surveys (CSUR), 53(2):1–35, 2020.
1

[38] Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Scott Yih, and Madian Khabsa.
UniPELT: A unified framework for parameter-efficient lan-
guage model tuning. In Proceedings of the 60th Annual

Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 6253–6264. Association for
Computational Linguistics, 2022. 3

[39] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 3, 5, 6, 12

[40] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia
Schmid. Segmenter: Transformer for semantic segmenta-
tion. In Proceedings of the IEEE/CVF International Confer-

ence on Computer Vision, pages 7262–7272, 2021. 3
[41] Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan,

Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan Liu,
Peng Li, Juanzi Li, et al. On transferability of prompt tun-
ing for natural language processing. In Proceedings of the

2022 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language

Technologies, pages 3949–3969, 2022. 3
[42] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Lad-

der side-tuning for parameter and memory efficient transfer
learning. arXiv preprint arXiv:2206.06522, 2022. 3, 5

[43] Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neu-
ral networks with fixed sparse masks. Advances in Neural

Information Processing Systems, 34:24193–24205, 2021. 3
[44] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347–10357. PMLR, 2021. 3

[45] Laurens Van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(11), 2008. 8

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural

information processing systems, 30, 2017. 1, 3
[47] Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’, and

Daniel Cer. SPoT: Better frozen model adaptation through
soft prompt transfer. In Proceedings of the 60th Annual

Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 5039–5059. Association for
Computational Linguistics, 2022. 3

[48] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers:
State-of-the-art natural language processing. In Proceed-

ings of the 2020 conference on empirical methods in natural

language processing: system demonstrations, pages 38–45,
2020. 3

[49] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and

7734

efficient design for semantic segmentation with transform-
ers. Advances in Neural Information Processing Systems,
34:12077–12090, 2021. 3

[50] Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Bain-
ing Guo. Learning texture transformer network for image
super-resolution. In Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition, pages
5791–5800, 2020. 3

[51] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou,
Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer
is actually what you need for vision. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 10819–10829, 2022. 3
[52] Ming Yuan and Yi Lin. Model selection and estimation in re-

gression with grouped variables. Journal of the Royal Statis-

tical Society: Series B (Statistical Methodology), 68(1):49–
67, 2006. 4

[53] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lu-
cas Beyer. Scaling vision transformers. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 12104–12113, 2022. 3
[54] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov,

Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djo-
longa, Andre Susano Pinto, Maxim Neumann, Alexey Doso-
vitskiy, et al. A large-scale study of representation learning
with the visual task adaptation benchmark. arXiv preprint

arXiv:1910.04867, 2019. 1, 5, 6
[55] Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural

prompt search. arXiv preprint arXiv:2206.04673, 2022. 3
[56] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and

Vladlen Koltun. Point transformer. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,
pages 16259–16268, 2021. 3

[57] Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. Panda: Prompt transfer meets knowledge
distillation for efficient model adaptation. arXiv preprint

arXiv:2208.10160, 2022. 3
[58] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,

and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. In International Conference

on Learning Representations, 2020. 3
[59] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,

Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He. A
comprehensive survey on transfer learning. Proceedings of

the IEEE, 109(1):43–76, 2020. 1

7735

