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Abstract

Is overparameterization a privacy liability? In
this work, we study the effect that the number of
parameters has on a classifier’s vulnerability to
membership inference attacks. We first demon-
strate how the number of parameters of a model
can induce a privacy–utility trade-off: increasing
the number of parameters generally improves gen-
eralization performance at the expense of lower
privacy. However, remarkably, we then show that
if coupled with proper regularization, increasing
the number of parameters of a model can actually
simultaneously increase both its privacy and per-
formance, thereby eliminating the privacy–utility
trade-off. Theoretically, we demonstrate this curi-
ous phenomenon for logistic regression with ridge
regularization in a bi-level feature ensemble set-
ting. Pursuant to our theoretical exploration, we
develop a novel leave-one-out analysis tool to pre-
cisely characterize the vulnerability of a linear
classifier to the optimal membership inference
attack. We empirically exhibit this “blessing of
dimensionality” for neural networks on a variety
of tasks using early stopping as the regularizer.

1 INTRODUCTION

Recently, the machine learning community has been gravi-
tating towards the trend of increasingly overparameterized
models, which have been shown both theoretically (Belkin
et al., 2020; Hastie et al., 2022; Mei and Montanari, 2022)
and empirically (Kaplan et al., 2020; Nakkiran et al., 2021)
to generalize better than their smaller counterparts in diverse
settings. These findings encourage machine learning system
designers to opt for the largest possible model to maximize
performance on unseen data.

However, when training machine learning models on sensi-
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tive data (Chen et al., 2019; Batmaz et al., 2019; Google), it
is also crucial to understand the attendant privacy issues to
prevent data leaks. Alarmingly, multiple attacks have been
developed in the literature to perform membership inference

(MI), which extracts information about specific examples in
a model’s training dataset, even when given only black-box
access (Fredrikson et al., 2015; Shokri et al., 2017).

Is the trend of increasingly overparameterizing models detri-
mental to privacy? In this paper, we focus on the effect that
the number of parameters of a model has on its vulnerability
to MI attacks. We study this problem both theoretically and
empirically.

We first demonstrate a parameter-wise privacy–utility trade-
off: increasing the number of parameters of a model in-
creases its generalization performance while also increasing
its vulnerability to MI attacks. We show this theoretically
for logistic regression and empirically for neural networks
(NNs). This corroborates previous empirical (Carlini et al.,
2021; Mireshghallah et al., 2022) and theoretical (Tan et al.,
2022) findings that larger models are less private.

However, we then show that this is not the end of the story
between overparameterization and privacy. Remarkably,
we discover that if proper regularization is incorporated
while increasing the number of parameters, the larger model
can actually enjoy greater privacy (stronger protection from
MI attacks) for the same generalization performance as its
smaller counterpart. That is, there is a “blessing of dimen-
sionality,” rather than a curse, and more overparameterized
models can in some cases in fact be more private when
paired with regularization. We show this behavior theoret-
ically for logistic regression with ridge regularization and
empirically for neural networks with early stopping.

This behavior is due to the fact that regularization induces
its own privacy–utility trade-off: beyond a point, increasing
regularization provide greater protection from MI attacks
while decreasing generalization performance. However, the
trade-off induced by regularization for a larger network
traces a trajectory of lower MI vulnerability and better gen-
eralization performance than the trade-off for a smaller net-
work. That is, larger networks have better regularization-
wise privacy–utility trade-offs.

To demonstrate this effect theoretically, we must be able
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to precisely characterize the output distribution of a model
on a fixed training data point over the randomness of all
other training data. We overcome this challenge by de-
veloping a novel leave-one-out analysis tool based on the
convex Gaussian min-max theorem (Thrampoulidis et al.,
2018; Salehi et al., 2019) that we apply to high-dimensional
logistic regression in the asymptotic regime. We believe
our theoretical tool may be of independent interest to other
researchers pursuing theoretical studies of privacy for ma-
chine learning models. In this work, we use our tool to
provide a precise asymptotic characterization of MI for the
optimal black-box MI attack.

For the practitioner, our analysis encourages considering the
number of parameters when designing privacy-preserving
machine learning models. In particular, larger models may
be more beneficial if they are carefully coupled with proper
regularization. In summary, our paper has three core contri-
butions:

1. We demonstrate how individually increasing either the
number of parameters or decreasing the regularization
of a classification model can decrease its privacy.

2. We discover multiple situations where wider NNs en-
joy an improved regularization-induced privacy–utility
trade-off compared to narrow ones, and that, control-
ling for the privacy level by regularization, increased
generalization performance due to overparameteri-
zation is not at odds with privacy.

3. We theoretically analyze high-dimensional logistic re-
gression in the asymptotic regime and replicate our
empirical NN observations for a bi-level feature en-
semble using a novel leave-one-out analysis that may
be of independent interest. Using this tool, we also
derive the fundamental MI vulnerability for overparam-
eterized logistic regression models.

Related Work. This work contributes to the rapidly grow-
ing field of membership inference (MI), a framework being
increasingly used to study the privacy implications of ma-
chine learning models. Previous works have shown how MI
is in principle a task of hypothesis testing with the optimal
adversary being the likelihood ratio test (LRT) (Sablayrolles
et al., 2019; Carlini et al., 2022). We leverage this optimal
LRT adversary in our theoretical analysis. Since the dis-
tributions for the LRT are typically not known for general
models such as neural networks, more practical attack strate-
gies such as binary classification (Shokri et al., 2017; Salem
et al., 2019) and perturbation-based inference (Choquette-
Choo et al., 2021; Kaya et al., 2020) have been proposed.
We refer the reader to Hu et al. (2021) for a comprehensive
survey of MI attacks. For our neural network experiments,
we use the loss thresholding attack introduced by Yeom et al.
(2018) and improved by Ye et al. (2021) due to its simplicity
and effectiveness.

Prior work has also studied how various types of regulariza-
tion affect MI attacks (Song et al., 2019; Wang et al., 2021;
Kaya and Dumitras, 2021; Galinkin, 2021; Rezaei et al.,
2021). There are limited studies on the effect of overparame-
terization on MI. Tan et al. (2022) analyze how linear regres-
sion models are more susceptible to MI as they become more
overparameterized, and Carlini et al. (2021); Mireshghallah
et al. (2022) empirically observe larger language models
being more vulnerable to MI than their smaller counterparts.
Yeom et al. (2018) study the theoretical connection between
overfitting and membership advantage but do not connect
this to (over)parameterization.

In addition to MI, differential privacy (DP) is another popu-
lar framework used to study the privacy implications of ma-
chine learning algorithms (Dwork, 2008; Abadi et al., 2016;
Ha et al., 2019). Differentially private training algorithms
ensure that models obtained when training on datasets dif-
fering in one data point do not differ much. Yu et al. (2022);
Li et al. (2022) show that larger models achieve better utility
for the same DP amount when using fine-tuning, echoing
our message that larger models can have better privacy–
utility trade-offs than smaller ones. By providing rigorous
worst-case guarantees, DP also protects models from MI
attacks (Yeom et al., 2018), but typically at the cost of hav-
ing very low utility (Rahman et al., 2018; Jayaraman and
Evans, 2019; Cai et al., 2021). Indeed, it has been shown
that DP techniques provide poorer MI defense vs. utility
trade-offs than other MI defense schemes (Kaya et al., 2020;
Liu et al., 2021). Furthermore, while they provide powerful
information-theoretic guarantees, it is not clear how the DP
metrics of (✏, �) translate to vulnerability from real-world
MI attacks. As such, we believe both MI and DP analyses
complement each other in providing a comprehensive un-
derstanding of privacy-preserving machine learning, and we
focus on MI in this work.

Our work is strongly related to the “double descent“ liter-
ature that studies the relationship of overparameterization
and generalization error (Dar et al., 2021). Nakkiran et al.
(2021) demonstrate double descent behavior in neural net-
works as a function of the number of parameters and number
of training epochs. To theoretically understand the trade-off
between generalization error and an adversary’s MI accu-
racy, we study the popular “bi-level ensemble” model that
has been shown to exhibit benign overfitting in classification
(Muthukumar et al., 2021; Wang and Thrampoulidis, 2021).
To characterize the difference of predictions on training
points and test points, we leverage the proportional asymp-
totics regime, where precise analysis is enabled by tools
such as the convex Gaussian min-max theorem (Thram-
poulidis et al., 2018) and approximate message passing
(Emami et al., 2020; Gerbelot et al., 2020). In particular,
we directly build upon Salehi et al. (2019) to analyze the
behavior of logistic regression in the asymptotic regime.
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Figure 1: Loss gap increases with epochs. Empirical histograms of log cross-entropy losses for training and non-training
data points of 20 ResNet18s (w = 64) trained on CIFAR10 for different training epochs. While both distributions generally
shift towards smaller losses with more epochs, losses for training points shift more quickly than those for non-training
points, enabling loss-threshold attacks. The optimal threshold is depicted with a red dashed line. This illustrates why loss
threshold MI accuracy increases with epochs (Figure 4). For visualization purposes, we drop points that achieve 0 (to
machine precision) loss.

2 THEORETICAL FOUNDATIONS OF
MEMBERSHIP INFERENCE

We define our MI problem for classification as follows.
Let S = ((xi, yi))ni=1 be a training dataset of features
xi 2 X ✓ Rp and labels yi 2 Y = {1, . . . , k} (i.e., multi-
class classification). We assume that each data point and its
associated label is an independent sample from a distribu-
tion D over the data such that S ⇠ Dn. Furthermore let F
denote a class of machine learning models (e.g., linear mod-
els or neural networks) such that for f 2 F , f : X ! Rk,
producing a vector of confidence values from which the
the final prediction is given as ŷ(x) = argmaxj [f(x)]j .
For each pair (x, y), we have access to a loss function
` : Y ⇥ Rk ! R�0 that measures the performance of
any f 2 F on the data S. The model’s test (misclassifi-
cation) error is defined as E(f) = Pr (y 6= ŷ(x)), where
(x, y) is drawn from D for our theoretical results or from
the test set for our experiments. Finally, let A be a MI
adversary. For a fixed model f 2 F trained on S, we as-
sume that A : F ⇥ X ⇥ Y ! {0, 1} has access to f and a
sample (x, y) and predicts 1 if it believes (x, y) 2 S and 0
otherwise. To be rigorous, we define MI as the following
experiment (Yeom et al., 2018).
Experiment 1. Given distribution D, model class F , loss

function `, and adversary A, a membership inference exper-

iment consists of the following:

1. Sample S ⇠ Dn
.

2. Learn f̂ 2 argminf2F
Pn

i=1 `(yi, f(xi)).

3. Sample m 2 {0, 1} uniformly at random.

4. If m = 0, sample a new test data point (x, y) ⇠ D.

If m = 1, sample a training data point (x, y) 2 S
uniformly at random.

5. Observe the adversary’s prediction A(f̂ ,x, y).

In essence, Experiment 1 reduces the problem of MI to

one of hypothesis testing. Accordingly, we quantify the
performance of an adversary in terms of its membership
(inference) advantage, defined as the difference between the
adversary’s true positive rate and the false positive rate.
Definition 1 (Yeom et al., 2018). The membership advan-
tage of an adversary A against f̂ is

Adv(A) = Pr(A(f̂ ,x, y) = 1 | m = 1)

� Pr(A(f̂ ,x, y) = 1 | m = 0), (1)

where Pr(·) is taken jointly over all randomness in Experi-
ment 1.

Membership inference can be performed successfully when
the model treats points from the training dataset S “differ-
ently” than new test points. For instance, if the distribution
of the model’s output on a data point (x, y) differs signifi-
cantly when (x, y) is a training point vs. when it is not, then
MI attacks can distinguish between the two distributions to
determine ifm = 0 orm = 1. Indeed, we observe in Figure
1 that as a model trains on data, its loss on those data points
decreases at a rate faster than its loss on non-training data
points. Then, even an attack as simple as thresholding the
loss (A(f,x, y) = 1 {`(y, f(x)) < ⌧}) (Yeom et al., 2018;
Sablayrolles et al., 2019) can successfully perform MI.

In this work, we consider single-query black-box adver-

saries, which only have access to the data point (x, y) and
the model’s output f̂(x) rather than the whole model. In this
setting, the optimal attack is known to be the likelihood ratio
test (LRT) (Sablayrolles et al., 2019; Carlini et al., 2022):
Proposition 1 (Tan et al., 2022). The adversary that maxi-
mizes membership advantage is:

A⇤(x0, f̂(x0))

=

(
1 if P ( by0 | m = 1,x0) > P ( by0 | m = 0,x0),

0 otherwise,
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where by0 = f̂(x0) and P denotes the distribution function

for by0 over the randomness in the membership inference

experiment conditioned on x0.

That is, given (x, y) and f̂(x), the LRT adversary outputs
1 if the likelihood of the model outputting f̂(x) is higher if
(x, y) was a training point than if it was not a training point.

2.1 Analysis Framework and Core Theoretical Result

In this work, we theoretically analyze the role of parame-
ters and regularization for MI against a regularized high-
dimensional logistic regression model. We define the logis-
tic loss `(y, z) = ⇢(z)� yz in terms of the function ⇢(z) =
log(1+exp(z)) whose derivative ⇢0(z) = 1/(1+exp(�z))
is the sigmoid function. We let xi ⇠ N (0, 1

p⌃) for some
positive definite covariance matrix ⌃ 2 Rp⇥p, and for
ground truth coefficients �⇤ 2 Rp, binary labels yi 2 {0, 1}
are generated such that Pr(yi = 1|xi) = ⇢0(x>

i �
⇤). Our

learned decision function is f̂(x) = x> b�, yielding predic-
tions ŷ(x) = 1{f̂(x) > 0}, where

b� = argmin
�

1

n

nX

i=1

`(yi,x
>
i �) +

�

2p
k�k22. (2)

We study the accuracy of the LRT adversary in the asymp-
totic limit as n, p ! 1 with n/p ! � 2 (0,1). Being the
optimal adversary, the LRT attack provides upper bounds on
the membership advantage across single-query black-box
adversaries (Proposition 1). The asymptotic setting enables
us to apply the analysis of Salehi et al. (2019), who used
the convex Gaussian min-max theorem (CGMT) (Thram-
poulidis et al., 2018) to completely characterize the gener-
alization performance of logistic regression in terms of the
solution to a nonlinear system of equations of a few scalar
variables; see Appendix B.2 for details.

As observed in Proposition 1, analyzing the LRT requires a
characterization of the distribution of model outputs for both
training and test points. It is typically easy to characterize
the test point output distribution because of the statistical in-
dependence between the model and the test point. However,
the distribution for the model’s output on training points
is much more difficult because the training procedure adds
statistical dependence between the model and the training
point that is nontrivial to address. Existing analyses from
frameworks such as the CGMT are insufficient to give us
the distributions of the outputs for a single training point
over the randomness of the remaining training dataset.

To address this, we provide a novel leave-one-out-based
characterization of the distribution of the output of a linear
model for any specific training point. We first recall the
definition of the proximal operator, and we then provide
the informal statement of our characterization with a more
detailed version in Appendix C.

Definition 2 (Proximal operator). The proximal operator of
a function ⌦ : Rp ! R is defined as

Prox⌦ (v) = argmin
w2Rp

⌦(w) +
1

2
kw � vk22. (3)

Theorem 2 (Informal version of Theorem 6). Consider

the solution b� to the optimization problem in (2). There

exists � > 0 such that in the limit as n, p ! 1 with

n/p ! � 2 (0,1), for any training point xi,

x>
i
b� d�! Prox�`(yi,·)

⇣
x>
i
b��i

⌘
, (4)

where b��i is the solution to (2) with (xi, yi) omitted from

the training set, and
d�! denotes convergence in distribution

where the randomness is over the other n�1 training points.

That is, the distribution of the model output for a training
point is simply the distribution of the proximal operator of
the loss function applied to the output of the training point as
if it was a new test point. In essence, our theorem allows one
to extend the ease of analyzing test points into the analysis
of training points. Note also that the theorem shows how the
model’s loss for training points is driven closer to zero than
for new test points, allowing an adversary to exploit this
difference to perform MI as discussed above. We illustrate
the strong match between the characterization in Theorem 2
and the empirically obtained histograms for the output of a
logistic regression model for practically sized problems in
Figure 2.

We strongly believe this theoretical tool to be of independent
interest, opening the door to future theoretical study of
privacy in high dimensional linear models, in particular
with sharp asymptotics for any given adversary rather than
simply worst-case bounds. Our proof strategy is general and
applies to general convex losses and regularization penalties,
as we describe in Appendix C. A particularly exciting open
question for future work is determining what types of losses,
regularization, and feature distributions can lead to a small
� such that the resulting model is the most private.

2.2 A Bi-level Feature Ensemble

In order to study the trade-off between accuracy and pri-
vacy as a function of overparameterization in machine learn-
ing models, we need a setting in which benign overfitting
occurs—that is, that as we increase the number of parame-
ters of our model, generalization accuracy increases as well.
To that end, we define a bi-level feature ensemble similar
to that considered by Muthukumar et al. (2021); Wang and
Thrampoulidis (2021). In this model, we define ⌃ and �⇤
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Figure 2: Theoretical distributions match empirical observations. We plot theoretical densities (solid line) according
to Theorem 2 (see details in Appendix E) versus empirical histograms of a logistic regression model’s output on a given
sample xi when it is a test or a training point for four different fixed points (i 2 {1, 2, 3, 4}) and fixed �⇤ drawn from a
bi-level ensemble with n/d = 1/2, � = 3, �� = 50, � = 0.1, ⌘ = 1. Empirical histograms are outputs over 500 trials
where n = 500 additional random training points are used to train a logistic regression model on bi-level ensemble features
either including or not including (xi, yi). As we can see, the training point outputs are pulled toward the training labels.

for some d < p and ⌘ > 0 as

[⌃]2k,k0 =

8
><

>:

p
d if 1  k = k0  d,
⌘p
p�d if d < k = k0  p,

0 if k 6= k0,

�⇤
k ⇠

(
N (0,�2

�) if 1  k  d,

0 if d < k  p.

(5)

In this way, there is always a total variance of 1 in the
first d features and of ⌘ in the tail of p � d features. As
� = p/d ! 1, this model is known to exhibit benign
overfitting (Wang and Thrampoulidis, 2021).

The intuition behind this feature model is that the signal
�⇤ is fundamentally low dimensional and is aligned with a
small subset of d highly representative features. Meanwhile,
there are an abundance of nuisance features of very small
magnitude that are uncorrelated with the signal, such that
they can absorb label noise (Bartlett et al., 2020) without
adversely affecting prediction on new examples with un-
correlated nuisance features. In this way, training points
can achieve perfect accuracy even under noise while the
model still generalizes well. Furthermore, nonlinearities
like those used in neural networks are known to add a simi-
lar low-magnitude tail of nonzero eigenvalues to the feature
covariance in their Gaussian equivalents (Pennington and
Worah, 2017; Mei and Montanari, 2022), connecting this
feature model with realistic models like neural networks.

2.3 Asymptotic Privacy and Utility

Given the framework of the CGMT, we can easily deter-
mine the asymptotic generalization error for logistic regres-
sion (Salehi et al., 2019). Thanks to Theorem 2, we can also
determine the MI advantage given an adversary A. The fol-
lowing corollary captures these results, specializing the MI
advantage to that of the worst-case optimal LRT adversary.
Corollary 3. Consider the bi-level feature ensemble in (5)

and the decision function f̂(x) = x> b� for b� solving (2).
Then there exist ↵, �,� > 0 such that, in the limit as p ! 1
with n/p ! � 2 (0,1),

(i) Generalization error. The misclassification error for a

new test pair (x, y) is given by

E(f̂) = E
⇥
⇢0(Z)�(�↵Z

� )
⇤
, (6)

where � is the standard normal CDF and Z ⇠
N (0,�2

�);

(ii) Membership advantage. For any training pair (xi, yi),
the membership advantage of the optimal adversary is

given by

max
A

Adv(A, f̂ ;xi, yi)

= 1
�

Z

R
max

�
�0� z�↵x>

i �⇤+�(⇢0(z)�yi)
�

�
(1+�⇢00(z))

� �0� z�↵x>
i �⇤

�

�
, 0
 
dz, (7)

where �0
is the standard normal PDF.

It is not possible to determine closed-form expressions for
(↵, �,�) in terms of the parameters (�, �,�, ⌘,��) of the
regularized bi-level feature ensemble estimator in general,
as the former are the solutions to a system of nonlinear
equations (see Theorem 5 in Appendix B.2). This makes
direct theoretical analysis of the privacy–utility trade-offs
difficult.

However, we can obtain the values (↵, �,�) by solving
the nonlinear system numerically.1 In the next sections,

1In addition to describing this procedure in Appendix B.2,
we also provide our code at https://github.com/
tanjasper/benign_overparam_MI.
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Figure 3: Privacy vs. parameters. For NNs trained to optimal early stopping with respect to validation error, we show cases
where increasing the network’s width generally increases MI advantage on the network even as it decreases its test error. We
see a similar effect for logistic regression with the bi-level ensemble theoretically when � is tuned to minimize test error.

when we plot theoretical trade-off curves for logistic re-
gression, we solve the nonlinear system and then evalu-
ate the above expressions using numerical integration, re-
porting the average sample-specific membership advantage
E(xi,yi)⇠D[maxA Adv(A, f̂ ;xi, yi)]. We refer the reader
to Appendix E for proof details for Corollary 3, where we
also derive the expressions for the density functions for the
bi-level feature ensemble that we plot in Figure 2.

3 INDIVIDUAL PRIVACY–UTILITY
TRADE-OFFS

We now present multiple scenarios that demonstrate privacy–
utility trade-offs as a function of either the number of model
parameters or the amount of regularization, individually.
Specifically, when either increasing the number of param-
eters or decreasing the amount of regularization from an
over-regularized state, the resulting machine learning model
becomes more accurate (improved generalization perfor-
mance) but becomes less private (higher adversary MI ad-
vantage). The increase in accuracy with overparameteri-
zation has been discussed in detail in the double descent
literature (Belkin et al., 2019; Nakkiran et al., 2021; Dar
et al., 2021). The decrease of MI privacy with overparam-
eterization has been observed for linear regression models
by Tan et al. (2022), but we show that the phenomenon is
robust, extending to classification models and even highly
nonlinear models such as deep NNs. We show parameter-
wise and regularization-wise tradeoffs experimentally on
various machine learning tasks and provide some theoretical
insights to their origins. Experimental details not in the
main text can be found in Appendix F. Shaded areas in NN
plots indicate one standard deviation over repeated trials.

3.1 Parameter-Wise Privacy–Utility Trade-Off

In Figure 3, we consider a variety of neural networks and
plot both the adversary’s membership advantage and the
NN’s test error as a function of the NN’s width (number

of parameters). We observe how MI increases (thus dam-
aging privacy) while test error decreases (yielding a more
accurate model) as the number of parameters grows. Here,
we consider NNs that are trained with optimal (with respect
to validation error) early stopping: we stop training at the
number of training epochs that maximizes validation accu-
racy. We consider three machine learning tasks: feature
vector classification on the Purchase100 dataset (Shokri
et al., 2017) using a 2-layer NN, image classification on CI-
FAR10 (Krizhevsky, 2009) using the ResNet18 architecture
(He et al., 2016), and language translation on the Multi30K
dataset (Elliott et al., 2016) using the Transformer archi-
tecture (Vaswani et al., 2017). We control the number of
parameters of the networks by scaling the size of the hidden
dimensions by a width parameter w. The MI attack we em-
ploy is the sample-specific loss threshold attack (“attack R”
of Ye et al., 2021): A(f,x, y) = 1 {`(y, f(x)) < ⌧(x, y)},
where ⌧(x, y) is a sample-specific threshold learned for each
data point over reference/shadow models. We also include
similar experiments demonstrating the same phenomenon
for support vector machines (SVMs) in Appendix G.5.

Theoretical Insights. Using our theoretical tool from The-
orem 2, we can in fact prove that for an extremely broad
class of settings, including the bi-level ensemble which
exhibits benign overfitting, extreme overparameterization
leads to perfect MI by any loss-thresholding adversary. We
capture this result in the following theorem. We have omit-
ted some technical conditions related to the convergence of
a system of fixed point equations for the statement of part
(a); please see Theorem 7 in Appendix D for precise details.
In the theorem statements, we assume all scalar variables
(such as � and ⌘) to be fixed unless otherwise specified.

Theorem 4. If f̂(x) = x> b�, where b� is the solution to (2),
and for some ⌧ > 0 we have an adversary A(f,x, y) =
1 {`(y, f(x)) < ⌧}, then as n, p ! 1 with n/p ! � 2
(0,1),

(a) If limp!1
��⌃1/2�⇤

��
2
/
p
p exists and is finite, and

lim infp!1 �min(⌃) > 0, where �min(⌃) is the
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Figure 4: Privacy vs. regularization. Regardless of neural network width (parameterized by w), increasing the number
of training epochs (decreasing regularization) increases the adversary’s MI advantage (solid line) while simultaneously
decreasing its test error (dashed line). This induces a regularization-wise privacy–utility trade-off. The same holds
theoretically for logistic regression when decreasing ridge regularization under the bi-level feature ensemble setting.

smallest eigenvalue of ⌃, then as � ! 0, Adv(A) !
1.

(b) For the bi-level ensemble in (5), if p/d ! � 2 (1,1)
and d/n converges to a fixed value, then as � ! 1,

Adv(A) ! 1, and in the limit as � ! 1, E(f̂) is
decreasing in �.

This theorem highlights that as � ! 0 (the model becomes
increasingly overparameterized), any constant-threshold
adversary’s MI advantage converges to 1, yielding per-
fect MI attacks on the learned model. We emphasize that
the constant-threshold adversary is much weaker than the
sample-specific loss threshold adversary we consider in our
experiments, and it need not be adapted to the problem in
any way, yet overparameterized models are still vulnerable.
This is true regardless of any (fixed) value of regularization
strength, meaning that ridge regularization is not sufficient
to protect against MI attacks, echoing the observation of Tan
et al. (2022) in linear regression. This result applies not only
to standard isotropic data covariances, but also to highly
anisotropic covariances such as the bi-level ensemble.

Part (b) highlights how in the right circumstances, we
can still see generalization performance improving with
overparameterization—that there is a trade-off between gen-
eralization and privacy, just as in our experimental results.
We illustrate this alongside neural networks in Figure 3 for
the bi-level model with fixed n/d = 5, �� = 10, and ⌘ = 1,
with � tuned to minimize test error, analogously to the opti-
mal validation error early stopping in the NN experiments.
This plot is generated using the expressions in Corollary 3
for test error and the optimal adversary’s MI advantage. We
see that the generalization error decreases but the adver-
sary’s MI advantage increases as the length of the tail of
small eigenvalues of ⌃ increases for larger values of �.

3.2 Regularization-Wise Privacy–Utility Trade-Off

Using the same classification tasks and NN architectures
as in Section 3.1, we empirically demonstrate an epoch-

wise privacy–utility trade-off in Figure 4, where we plot the
adversary’s MI advantage and the model’s generalization
error as a function of training epochs. Stopping training at
earlier epochs corresponds to higher regularization, as the
model has less opportunity to overfit to training data. We
include a variety of NN widths in our plot, demonstrating
similar trade-offs across widths.

We also plot the theoretical test error and MI advantage
from Corollary 3 for logistic regression with the bi-level
feature ensemble as a function of the regularization strength.
Specifically, we plot the regularization as a function of 1/��,
where � is the `2 regularization parameter, such that smaller
values of 1/�� correspond to more regularization. Just
as we explore a variety of widths for NNs, we consider a
variety of values of � = p/d, measuring the amount of
overparameterization for the bi-level feature ensemble.

Interestingly, Figure 4 shows how the adversary’s MI ad-
vantage can continue to increase with epochs even if test
error stays the same. Thus, generalization error does not
completely characterize MI. Instead, it is the increasing gen-
eralization (cross-entropy) loss gap that leads to increased
MI advantage. As the NN is trained for more epochs, or the
logistic regression model is less regularized, training loss
decreases at a greater rate than test loss, making it easier to
divide the training and test losses with a loss threshold, as
illustrated in Figure 1. The losses continue separating even
after test error has converged, causing the MI advantage to
continue to increase.

4 A BLESSING OF DIMENSIONALITY:
ELIMINATING THE
PRIVACY–UTILITY TRADE-OFF

We now show that, perhaps counter-intuitively, if we jointly
tune both the numbers of parameters and the amount of
regularization, we can eliminate the privacy–utility trade-
off. The main idea is to increase the number of parameters
while also increasing the regularization appropriately.
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Figure 6: Overparameterization with early stopping eliminates the privacy–utility trade-off. (a) For each network
width, we train the network until it reaches a given MI advantage value. We then plot the test error of the networks. Observe
how test error decreases with parameters at a fixed MI advantage value, showing how proper tuning of parameters and
epochs together improves model accuracy without damaging its privacy. Thus, this eliminates the privacy–utility trade-off.
(b) Same as (a) but switching the roles of MI advantage and test error.

Our key observation is that the decrease in the model’s
generalization error and the increase in an adversary’s MI
advantage occur at different rates during training for NNs
of different widths (recall Figure 4). However, it is difficult
to compare these rates across different NN widths when
privacy and utility are individually plotted against regular-
ization. Hence, we plot parametric curves for varying widths
as a function of regularization (epochs for NNs, and ridge
penalty for logistic regression) in a privacy–utility plane in
Figure 5, which enables us to abstract away the regulariza-
tion strength and compare trade-off curves across widths
directly. In the plot, ideal performance is the lower-left cor-
ner, as this represents low MI advantage (high privacy) and
low test error. In this representation, the story becomes clear:
wider networks can induce better privacy–utility trade-offs.
That is, they are both below and to the left of the trade-off
curves for narrower networks. The same occurs for theo-
retical logistic regression with the bi-level ensemble. Thus,
increased parameterization is not inherently a privacy li-
ability and can instead actually improve the privacy of a
model.

We explicitly show how early stopping (with the appropriate

stopping rule) eliminates the privacy–utility trade-off for
overparameterization in Figure 6. If we tune the number of
training epochs for each width such that a fixed MI advan-
tage is reached (which takes fewer epochs for larger widths),
then we see from Figure 6a that overparameterization only
decreases the generalization error. Similarly, tuning the
number of epochs to a fixed validation error results in a
decrease of the adversary’s MI advantage with increasing
width, as shown in Figure 6b. In essence, either privacy or
improved generalization can be obtained without taking a
hit in the other by opting for a larger network with proper
regularization. While we do not recommend early stopping
alone as a sufficient privacy-preserving mechanism (prac-
titioners should likely also consider the wide collection of
existing MI defense schemes), this strongly suggests that
practitioners should include wider networks in their model
search and then tune their regularization appropriately to
achieve a desired level of privacy.

In Appendix G, we include additional experiments that we
could not include in the main paper for space reasons, in-
cluding a version of Figure 6 for Transformers on Multi30K,
repeating all of the experiments in Figures 3–6 for global
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loss thresholding attacks, and the MI vs. test error trade-off
for networks trained with DP-SGD (Abadi et al., 2016) on
CIFAR10. In all cases, we see the same behavior—when
the regularization is tuned for MI, larger models achieve
better protection from MI and better classification accuracy
than smaller models.

5 DISCUSSION

We began this exploration with a question: is overparameter-
ization a privacy liability? In our theoretical and empirical
investigation, we have demonstrated cases wherein overpa-
rameterization can be a privacy risk, but that it need not

be, and that, in fact, it can provide even greater privacy
when coupled with appropriate regularization. To the best
of our knowledge we have provided the first study of this
effect in the context of membership inference. While our
work shows a number of common scenarios where larger
models coupled with regularization achieve greater privacy,
we acknowledge that we do not prove the generality of this
phenomenon. We encourage further investigation into this
topic to better understand how universal this blessing of
dimensionality is.

While we showed how ridge regularization for logistic re-
gression and early stopping for neural networks bring out
this blessing of dimensionality, many other types of regular-
ization are used in practice. For one example, we include a
preliminary experiment using DP-SGD (Abadi et al., 2016)
in Figure 12 in Apppendix G, for which we also observe
wider networks having better trade-offs. However, not every
regularizer may induce the same effect, and an interesting
open research direction is to discover which types of regular-
ization or other learning techniques can draw out even more
privacy benefits from large models. For example, in the field
of differential privacy, by fine-tuning pre-trained language
models, Yu et al. (2022); Li et al. (2022) achieve better ac-
curacy with larger models than smaller ones for the same
privacy budget. A nascent regularization approach strongly
worth further study is network pruning, which has been
observed to be an effective defense against membership in-
ference attacks (Wang et al., 2021) as well as a vulnerability
in some settings (Yuan and Zhang, 2022).

The phenomenon of better privacy–utility trade-offs for over-
parameterized models also has important takeaways for our
general understanding of the benefits of overparameteriza-
tion. As we have shown, highly overparameterized models
not only have more capacity to memorize than smaller net-
works (which leads to increased risk of MI), but they also ap-
pear to learn the underlying structure of the data even more

quickly than they memorize data. Identifying the mechanism
that provides this benefit in overparameterized models and
developing appropriate measures for an “effective” num-
ber of parameters that reflects the memorization capacity
of the model as a function of both the true number of pa-

rameters and forms of regularization are important open
questions. We believe our leave-one-out characterization of
the training output distribution in Theorem 2 will be helpful
in answering these questions with respect to privacy.
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A Limitations and Considerations

A.1 Limitations of this work

A possible limitation of this work is that we focus on a particular class of inference attacks, the loss threshold attack, in
most of our experimental results. More subtly, the procedure we propose for estimating membership inference vulnerability
involves computing an empirical estimate. As such, there is uncertainty in this process. In practical settings where the
training and validation sets are large, this is likely not a major concern. That said, in settings where the privacy budget is
very low and/or privacy is paramount it may additionally be necessary to use high-probability bounds on the adversary’s MI
advantage rather than the estimate directly for an added layer of security. Furthermore, the theoretical guarantees are in the
asymptotic regime. While they show a strong correlation with finite dimension experiments (e.g., Figure 4), developing tight,
non-asymptotic results is an open question. Wang and Thrampoulidis (2021), for instance, are able to derive non-asymptotic
guarantees to connect generalization error to overparameterization, but the same technique does not apply in the case of
membership inference: it is important to consider the distribution of the model’s output for specific inputs—not just the
population on average.

A.2 Ethical Considerations

Ensuring that models protect the data that they are trained on is important for modern machine learning systems. In order to
achieve benign overparameterization for membership inference and generalization error jointly, we perform precise tuning
and early stopping. When implementing these ideas in practical scenarios, it is recommended that a sensitivity analysis
additionally be conducted to ensure that the chosen parameters are sufficiently tight. Without doing so, applying this method
may lead to false confidence in a method’s robustness to MI attacks. In general, the authors believe that in settings where
privacy is of the utmost concern, such as when training with medical data, additional measures beyond those covered in
this work should be taken to ensure that the data stays private. Finally, this paper focuses on membership inference in
particular and these results are not as general as complete differential privacy. Practitioners should consider additional
privacy vulnerabilities beyond membership inference alone.

B Background material

Here we include a few definitions and results borrowed from other works.

B.1 Definitions

We again define the proximal operator for a function ⌦ as follows.

Definition 3 (Proximal operator). The proximal operator of a function ⌦ : Rp ! R is defined as

Prox⌦ (v) = argmin
w2Rp

⌦(w) +
1

2
kw � vk22. (8)

It will be valuable to consider the first-order optimality condition of the proximal operator; for differentiable penalties, the
minimizer w⇤ satisfies

r⌦(w⇤) +w⇤ � v = 0. (9)

For our work, we will need the form of the scalar proximal operator for ⌦(v) = 1
2kAvk22 for symmetric A 2 Rp⇥p, which

for t > 0 is given by

Proxt⌦ (v) =
�
Ip + tA2

��1
v. (10)

We also have the definition of local Lipschitzness from Salehi et al. (2019).

Definition 4 (Locally Lipschitz). A function � : Rd ! R is said to be locally Lipschitz if 8M > 0, 9LM � 0, such that
8x,y 2 [�M,+M ]d, |�(x)� �(y)|  LMkx� yk.
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B.2 Fixed point equations for logistic regression

We borrow the following theorem (slightly adapted to our notation) from Salehi et al. (2019).

Theorem 5 (Theorem 1 of Salehi et al., 2019). For training data xi
i.i.d.⇠ N (0, 1

pIp) and yi ⇠ Bernoulli(x>
j �

⇤), consider
the optimization program

b� = argmin
�2Rp

1

n

nX

i=1

`(yi,x
>
i �) +

�

p
⌦(�), (11)

where `(y, z) = ⇢(z)� yz for ⇢(z) = log(1 + exp(�z)) is the logistic loss, and ⌦ : Rp ! R is a convex regularization

function. Consider also the following nonlinear system

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

2↵ =
1

p
�⇤>Prox��⌧⌦

✓
�⌧(✓�⇤ +

rp
�
g)

◆
,

� =
1

r
p
�p

g>Prox��⌧⌦

✓
�⌧(✓�⇤ +

rp
�
g)

◆
,

2↵2 + �2 =
1

p

����Prox��⌧⌦
✓
�⌧(✓�⇤ +

rp
�
g)

◆����
2

2

,

�2 =
2

r2
E
h
⇢0(�Z1)

�
↵Z1 + �Z2 � Prox�⇢ (↵Z1 + �Z2)

�2i
,

✓� = �2E
⇥
⇢00(�Z1)Prox�⇢ (↵Z1 + �Z2)

⇤
,

1� �

�⌧
= E

"
2⇢0(�Z1)

1 + �⇢00
�
Prox�⇢ (↵Z1 + �Z2)

�
#
,

(12)

where g ⇠ N (0, Ip) is independent of �⇤
and ⌦, and Z1 and Z2 are independent standard normal variables. Assume that

as p ! 1, n/p ! �, k�k2/
p
p ! , and that the system in (12) has a unique solution (↵̄, �̄, �̄, ✓̄, ⌧̄ , r̄). Then, as p ! 1,

for any locally-Lipschitz function  : R⇥ R ! R, we have

1

p

pX

j=1

 (�̂j ,�
⇤
j )

p�! 1

p

pX

j=1

 ([�(�⇤,g)]j ,�
⇤
j ), (13)

where �(v, z) = Prox��̄⌧̄⌦

⇣
�̄⌧̄(✓̄v + r̄p

�
z)
⌘
.

The astute reader may note that Salehi et al. (2019) require separable regularizers and drawing �⇤ element-wise i.i.d. from
some distribution, but that neither of these are required for their proof technique to go through, so we have stated the more
general result here, as we will need both of these assumptions to be relaxed.

For a given problem, we can obtain the limiting solution (↵̄, �̄, �̄, ✓̄, ⌧̄ , r̄) by iterating the system of fixed point equations
(12). That is, we can compute all six right hand sides via numerical integration, then obtain the corresponding values of
(↵,�, �, ✓, ⌧, r) according to the expressions on the left-hand side, and then plugging these values back into the right-hand
side and repeating until convergence.

C Leave-one-out analysis for membership inference

In order to study MI attacks, we need to understand how the distribution of training points differs from test points. We prove
the following result to this end for logistic regression with a ridge penalty; however, the proof strategy is general and applies
readily to other losses and penalties for general linear models that admit a result similar to Theorem 5, which includes many
common models in machine learning (Thrampoulidis et al., 2018; Emami et al., 2020; Gerbelot et al., 2020).

Theorem 6. Consider the solution b� to the optimization problem in (2). Let e�⇤ = ⌃1/2�, exi = ⌃�1/2xi, and
e⌦(e�) =

1
2k⌃

�1/2 e�k
2

2. Assume Theorem 5 holds for e�⇤
in place of �⇤

and e⌦ in place of ⌦. Then for any training point xi,

x>
i
b� d�! Prox�̄`(yi,·)

⇣
x>
i
b��i

⌘
, (14)
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where �̄ is from the result of Theorem 5, and

b��i = argmin
�2Rp

1

n

nX

i0 6=i

`(yi0 ,x
>
i0�) +

�

2p
k�k22. (15)

Proof. We first make a leave-one-out modification the optimization problem for a general loss and regularizer:

b� = ⌃�1/2 · argmin
e�

1

n

nX

i0 6=i

`(yi0 , ex>
i0
e�) + �

p
⌦(e�), (16)

where

⌦i(e�) = e⌦(e�) + 1

��
`(yi, ex>

i
e�). (17)

Applying Theorem 5 to this problem, the solution is equivalent to one of the form

b�equiv = ⌃�1/2 · Prox
t⌦i

⇣
ae�⇤ + bg

⌘
, (18)

where t = ��̄⌧̄ , a = �̄⌧̄ ✓̄, and b = �̄⌧̄ r̄/
p
�. This proximal operator is the solution w⇤ to the equation

tre⌦(w⇤) +
t

��
`0(yi, ex>

i w
⇤)exi +w⇤ � (ae�⇤ + bg) = 0, (19)

where `0(yi, z) = @`(yi, z)/@z. Note that this is equivalent to

w⇤ = Prox
te⌦

✓
ae�⇤ + bg � t

��
`0(yi, ex>

i w
⇤)exi

◆
. (20)

Here we specialize to the ridge penalty, but this can be extended to separable regularizers with careful application of Stein’s
lemma. Plugging in the form of the proximal operator for generalized ridge penalties, we have

w⇤ = ⌃ (⌃+ tIp)
�1
✓
ae�⇤ + bg � t

��
`0(yi, ex>

i w
⇤)exi

◆
. (21)

We wish to characterize x>
i
b�, which is equivalent to characterizing x>

i
b�equiv = ex>

i w
⇤. Firstly, we note that for any random

vector u such that kuk22/
p
p ! Cu < 1 that is independent of exi,

1

p
u>w⇤ p�! 1

p
u>⌃ (⌃+ tIp)

�1
⇣
ae�⇤ + bg

⌘
. (22)

Appealing to Theorem 5 again, this means that the nonlinear system is in fact unaffected by our leave-one-out modification
asymptotically, and that both cases have the same solution (↵̄, �̄, �̄, ✓̄, ⌧̄ , r̄) to the nonlinear system (12). Therefore,

x>
i
b��i

d�! ex>
i ⌃ (⌃+ tIp)

�1
⇣
ae�⇤ + bg

⌘
⇠ N (0,2↵̄2 + �̄2). (23)

Since g/pp and exi have the same distribution, from the second equation in the nonlinear system (12) we know that

ex>
i ⌃ (⌃+ tIp)

�1 exi
a.s.��! 1

p
g>⌃ (⌃+ tIp)

�1 g =
�̄�

�̄⌧̄
. (24)

All together, this gives us

x>
i
b� p�! ex>

i ⌃ (⌃+ tIp)
�1
⇣
ae�⇤ + bg

⌘
� �̄`0(yi,x

>
i
b�) (25)

=) x>
i
b� d�! Prox

�̄`(yi,x>
i

b�)

⇣
x>
i
b��i

⌘
, (26)

which is the stated result.
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D Formal version of Theorem 4 and proof

Theorem 4 is a slightly informal version of the following theorem. The only difference is technical, as we must assume the
convergence of the nonlinear system (12) for part (a). The convergence of MI advantage to 1 of part (b) of Theorem 4 is
implied by part (a) of the following theorem.

Theorem 7. Consider the solution b� to the optimization problem in (2). Then

(a) If the result of Theorem 6 holds and the minimum eigenvalue of⌃ is lower bounded by a positive constant for sufficienly

small �, then as � ! 0, Adv(A) ! 1.

(b) For the bilevel model in (5), if p/d ! � 2 (1,1) and d/n converges to a fixed value, then in the limit as � ! 1,

E(f) is decreasing in �.

This theorem makes claims of two natures: that MI advantage of the adversary goes to 1, and that generalization error is
decreasing. For the former, we will show that the output distributions diverge for train and test points such that it becomes
trivial to distinguish between the two distributions, and for the latter, we will determine the form of the generalization error
and show that it is decreasing in the proposed variable.

D.1 Part (a): membership inference advantage

We will assume the notation and setting from the proof of Theorem 6. When rewriting equations from (12), we will omit
the bars (e.g., �̄ in the next section) when describing general implications of the equations, and then use bars to describe
conclusions about the unique fixed point solution that characterizes the limiting estimator, which we assumed to exist in
applying Theorem 5.

D.1.1 Growth of �̄

First, we show that �̄, the scaling factor of the proximal operator in Theorem 6, tends to infinity as � ! 0+. This will drive
training points to be much different from test points as long as the test point distribution variance doesn’t increase. From
the sixth equation in the nonlinear system (12), since the right hand side is greater than 0 and the fixed point variables are
non-negative, we can conclude that �⌧ > �. We can combine this with the second equation to yield

� =
1

p
g>⌃ (⌃+ ��⌧Ip)

�1 g
�⌧

�
(27)

=
1

��p
g>
✓

1

��⌧
Ip +⌃�1

◆�1

g (28)

>
1

��p
g>
✓

1

��
Ip +⌃�1

◆�1

g (29)

a.s.��! 1

��p
tr

"✓
1

��
Ip +⌃�1

◆�1
#

(30)

Because the smallest eigenvalue �min (⌃) > 0, this implies that

�� >
1

�

1
1
�� + 1

�min (⌃)

=) ��

�min (⌃)
>

1

�
� 1. (31)

Therefore, asymptotically, there exists a constant c�̄ > 0 such that for sufficiently small �, we have ��̄ � c�̄/�, so �̄ ! 1
as � ! 0+.

D.1.2 Vanishing of output variance.

We next argue that 2↵̄2 + �̄2 tends to 0 as � ! 0. We remind the reader that as in the proof of Theorem 6, this is the
variance of x>

i
b��i, which is also equal to the variance of the output for an unseen test point.
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First, we consider the fourth equation in the nonlinear system (12). Applying the first-order optimality condition of the
proximal operator, this is equivalent to

r2 = 2E
h
⇢0(�Z1)⇢

0 �Prox�⇢ (↵Z1 + �Z2)
�2i  2. (32)

Similarly, the fifth equation can be written as

✓ =
�2

�
E
⇥
⇢00(�Z1)

�
↵Z1 + �Z2 � �⇢0

�
Prox�⇢ (↵Z1 + �Z2)

��⇤
(33)

= 2E
⇥
⇢00(�Z1)⇢

0 �Prox�⇢ (↵Z1 + �Z2)
�⇤

(34)

 1

2
, (35)

where we have used the fact that the expectation of any odd function of a standard normal variable is zero, and that
⇢00(u)  1/4 for all u 2 R. Thus, both r and ✓ are upper bounded by constants. Let us now consider the third equation.

2↵2 + �2 =
(�⌧)2

p
(✓ e�⇤ +

rp
�
g)>⌃2 (⌃+ ��⌧Ip)

�2 (✓ e�⇤ +
rp
�
g) (36)

 1

�2

✓
2✓2 +

r2

�

◆
(37)

 1

�2

✓
42 +

1

4�

◆
. (38)

Here the first inequality is obtained by letting �⌧ tend to infinity, and the second is obtained by applying our upper bounds
for ✓ and r. Therefore, for sufficiently small �, there exists c1 such that 2↵2 + �2  c21/�.

We now wish to return to (32) and (34) to determine tighter upper bounds. To that end, we first prove the following lemma
Lemma 8. Let Z be a standard normal random variable. For any a0, b0 > 0, there exist �0 > 0 and c > 0 such that for all

a � a0, b  b0, and 0 < � < �0,

Pr

✓
Proxa⇢/�

✓
bZp
�

◆
> log (c� log(1/�))

◆
 �2. (39)

Proof. We begin by observing that is sufficient to prove the claim for a = a0 and b = b0, since the probability is
monotonically decreasing and increasing, respectively, in each variable for sufficiently small �. By standard Gaussian tail
bounds, for sufficiently small �,

Pr(Z > 4 log(1/�))  �2. (40)

The proximal operator is a strictly increasing function of Z, so we can determine the bound on its tail by determining an
upper bound on Proxa⇢/�

⇣
4b log(1/�))p

�

⌘
. The first-order optimality condition for the proximal operator is

w⇤ =
4b log(1/�))p

�
� a

�
⇢0(w⇤). (41)

It is clear that for sufficiently small �, w⇤ < 0, since ⇢0(u) � 1/2 for u � 0. Therefore, since ⇢0(u) = eu/(1 + eu), there
exists c� 2 (1/2, 1) such that ⇢0(w⇤) = c�ew

⇤
. We can then solve for and bound w⇤ for some c > 0 and sufficiently small �

as

w⇤ =
4b log(1/�))p

�
�W0

✓
ac�
�

exp

✓
4b log(1/�))p

�

◆◆
(42)

 � log
⇣ac�

�

⌘
+ log

✓
4b log(1/�))p

�
+ log

⇣ac�
�

⌘◆
(43)

 log(c� log(1/�)), (44)

where W0 is the principal branch of the Lambert W function, and the first inequality follows from the lower bound
W0(x) � log x � log log x for x � e. Let �0 be a sufficiently small so that the above arguments hold, and the claim is
proved.
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Applying Lemma 8 with a0 = c�̄ and b0 = c1 to (32), we can use the facts that ⇢0(u)  1 and that ⇢0(u)  eu to obtain for
some cr > 0

r2  2
�
c2r�

2 log2(1/�) + �2
�
. (45)

Thus for some cr̄ > 0, r̄  cr̄� log(1/�) for sufficiently small �. We then apply Lemma 8 to (34) to similarly obtain for
some c✓ > 0

✓  1

2

�
c✓� log(1/�) + �2

�
(46)

Thus for some c✓̄ > 0, ✓̄  c✓̄� log(1/�) for sufficiently small �. Therefore, returning again to (37), there exists some
c2 > 0 such that for sufficiently small �,

2↵̄2 + �̄2  c22� log
2(1/�). (47)

Hence the output variance tends to zero as � ! 0+.

D.1.3 Membership inference advantage

We wrap up the proof by proposing two more lemmas for the proximal operator of the logistic loss

Lemma 9. Fix C > 0. For all v such that |v| < C and y 2 {0, 1},

lim
a!1

|Proxa`(y,·) (v) | = 1 uniformly, (48)

where `(y, z) = log(1 + exp(z))� yz is the logistic loss.

Proof. The proximal operator Proxa`(y,·) (v) is the unique solution w 2 R to the equation

w = v + a(y � ⇢0(w)). (49)

Consider y = 1, and suppose the claim was not true. Then there exists c1 > 0 such that for all a0 > 0, there exists a > a0
and v 2 (�C,C) such that |w| < c1. Let c2 = ⇢0(c1). This implies that

c1 + ac2 > v + a. (50)

Since c2 < 1, this inequality does not hold for any a > a0 if a0 is sufficiently large, leading to a contradiction. The case for
y = 0 is entirely analogous if we make the substitution ⇢0(w) = 1� ⇢0(�w).

Lemma 10. Let Z be a standard normal random variable. Then for any ⌧ > 0, if an and bn are sequences such that as

n ! 1, an ! 1 and bn ! 0, then

lim
n!1

Pr
⇣
|Proxan`(y,·) (bnZ) | > ⌧

⌘
� Pr (|bnZ| > ⌧) = 1, (51)

Proof. For sufficiently large n, by a standard tail bound for Gaussian variables, with probability at least 1� e�(⌧/bn)
2/2, we

know that |bnZ| < ⌧ . Again for sufficiently large n, we know that |Proxan`(y,·) (bnZ) | > ⌧ for all |bnZ| < ⌧ by Lemma 9.
Thus,

Pr
⇣
|Proxan`(y,·) (bnZ) | > ⌧

⌘
� Pr (|bnZ| > ⌧) � 1� 2e�(⌧/bn)

2/2, (52)

which tends to 1 as n ! 1.

Applying Lemma 10 to our problem, using the fact that �̄ ! 1 and 2↵̄2 + �̄2 ! 0, we see that any adversary that applies
a threshold |f̂(x)| > ⌧ for a fixed threshold ⌧ will achieve MI advantage of 1 as � ! 0. Any loss-based fixed-threshold
adversary inherits this behavior, as for the logistic loss, `(y, f̂(x)) is a monotonically decreasing function of |f̂(x)|, so
thresholding the loss is equivalent to thresholding the magnitude of the model output.
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D.2 Part (b): test accuracy for the bi-level ensemble

In the bi-level ensemble, when applying Theorem 5 for e�⇤ in place of �⇤, asympotically, the first three equations in the
nonlinear system (12) become

8
>>>>>>>>><

>>>>>>>>>:

2↵ =
�⌧✓2

1 + ��⌧
�

,

� =
�⌧

�

 
1

�+ ��⌧
+

�� 1

�+ ��⌧
⌘ (�� 1)

!
,

2↵2 + �2 =
(�⌧✓�)2 + (�⌧r)2 �

�

(�+ ��⌧)2
+

(�⌧r)2 �
� (�� 1)

(�+ ��⌧
⌘ (�� 1))2

.

(53)

As we discussed in the proof of part (a), r and ✓ are always upper bounded by constants, so as � ! 1, regardless of the
behavior of �⌧ , the left-hand sides of all three equations tend to zero. For this reason, applying our reformulations of the
proximal operators and taking appropriate limits, the last three equations in the nonlinear system become

8
>>><

>>>:

r2 =
1

4
,

✓ = E [⇢00(�Z1)] ,

�⌧ = 4.

(54)

These simplifications largely result from applying ⇢0(0) = 1/2 and appealing to symmetry arguments. The final equation
results from the algebraic manipulation

�

�⌧
= E

"
2⇢0(�Z1)

 
1� 1

1 + �⇢00
�
Prox�⇢ (↵Z1 + �Z2)

�
!#

(55)

= E
"
2⇢0(�Z1)

�⇢00
�
Prox�⇢ (↵Z1 + �Z2)

�

1 + �⇢00
�
Prox�⇢ (↵Z1 + �Z2)

�
#
. (56)

Now knowing that �̄⌧̄ = 4, we can consider very large � ! 1 to obtain
8
>>>>>><

>>>>>>:

↵ =
✓�

�
+ o

�
1
�

�
,

� =
2

��
+ o

�
1
�

�
,

2↵2 + �2 =
1

�2

✓
(✓�)2 +

�

4�

✓
1 +

⌘2

�� 1

◆◆
+ o

�
1
�

�
.

(57)

Generalization error equals Pr
⇣
y � 1

n
x> b� > 0

o
= 1
⌘
, where � is the exclusive or operator, which by symmetry we can

compute as

Pr
⇣
y � 1

n
x> b� > 0

o
= 1
⌘
= 2Pr

�
y = 0, ↵̄x>�⇤ + �̄Z > 0

�
(58)

= 2E
x


Pr(y = 0|x>�⇤)�

✓
x>�⇤

�̄/↵̄

◆�
, (59)

where � : R ! [0, 1] is the standard normal CDF, and Z is a standard normal random variable. It can be shown that this is
decreasing in ↵/�, and from the above, in the limit as � ! 1,

↵̄2

�̄2
=

4✓2 �
�

1 + ⌘2

��1

, (60)

which is increasing in � for fixed d/n = �/�.
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E Proof of Corollary 3

Proof. The generalization error result immediately follows from (59) the previous section, since

2 =
��e�⇤��2

2
/p = �⇤>⌃�⇤/p ! �2

� . (61)

For membership advantage, we know from the previous section, Theorem 6, and Theorem 5 that the predictions on training
and test points follow

x>
i
b� d�! Prox�̄`(yi,·) (↵̄Zi + �̄W ) , x> b� d�! ↵̄Z + �̄W, (62)

where x>
i �

⇤ d�! Zi, x>�⇤ d�! Z, and W ⇠ N (0, 1) is independent of Zi or Z. Here randomness is over the training
dataset, so for a fixed �⇤ and xi (or x), we have a fixed Zi (or Z). Suppose the adversary is given some x0 and its (noisy)
training label y0. If x0 (with corresponding Z 0) is not a training point,

µtest(ẑ|x = x0, y = y0) = µtest(ẑ|x = x0) (63)

= µW

✓
ẑ � ↵̄Z 0

�̄

◆
1

�̄
. (64)

The first equality is from the independence of the model output and the unused training label, and the second equality comes
by the change of variables formula for scalar random variables in terms of µW , which is a standard normal Gaussian density.

If x0 is a training point, we have the following probability density:

µtrain(ẑ|x = x0, y = y0) = µW

✓
gy(ẑ)� ↵̄Z 0

�̄

◆
g0y(ẑ)

�̄
. (65)

Here gy(·) is the inverse of Prox�̄`(y,·) (·), which by the first-order optimality condition is

gy(z) = z + �̄(⇢0(z)� y), g0y(z) = 1 + �̄⇢00(z). (66)

We remind the reader that ⇢00(z) = ⇢0(z)(1 � ⇢0(z)). Therefore, the densities can be easily evaluated by numerical
integration.

Since the adversary is given the value of the loss, which is monotonic in f̂(x0), and knows predicted label ŷ(x0), the
adversary is equivalent to an adversary based on f̂(x0) with the densities described above. The optimal adversary is given by

A⇤(f,x0, y0) = 1
n
µtrain(f̂(x

0)|x = x0, y = y0) > µtest(f̂(x
0)|x = x0, y = y0)

o
, (67)

and we can compute its MI advantage specific to (x0, y0) as

Adv(A⇤, f̂ ;x0, y0) =

Z

R
max {µtrain(z|x = x0, y = y0)� µtest(z|x = x0, y = y0), 0} dz, (68)

Additionally, we can numerically evaluate this integral, and then we can compute the average sample-specific membership
inference advantage as

Adv(A⇤, f̂) = E
x0,y0

h
Adv(A⇤, f̂ ;x0, y0)

i
, (69)

which we can easily compute by numerical integration over the Gaussian density of Z 0 and the fact that Pr(y0 = 1|x0) =
⇢0(Z 0).

F Neural network experimental setup

This section provides details on the NN experiments whose results are shown in Figures 3, 4, 5, and 6. Unless otherwise
specified, we use the default hyperparameters and initalizations of Pytorch implementations. The NN experiments are run
on our internal servers with the following GPUs: NVIDIA TITAN X (Pascal), NVIDIA GeForce RTX 2080 Ti, NVIDIA
TITAN RTX, and NVIDIA A100. The choice of which particular GPU is used for each experiment is decided only based on
availability of the GPUs in our internal servers.
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F.1 The MI attack

The MI attack employed in these experiments is the loss-threshold attack (Yeom et al., 2018; Sablayrolles et al., 2019;
Ye et al., 2021). Given a trained NN f , the data point of interest z0 = (x0, y0), and a loss function `, the prediction
A(f(x0), z0) of this attack is given by:

A(f(x0), y) =

(
1 if `(y0, f(x0)) < ⌧z0

0 otherwise
, (70)

where ⌧z0 is a calibrated threshold. The threshold is learned with the following procedure. Given a full training dataset D,
we train nshadow shadow models on random subsamples of this dataset such that for each z0 in the full dataset, some models
are trained on datasets including z0 and the rest are trained on datasets that do not include z0. The shadow models have the
same architecture and training procedure as the target models that will be attacked. Let nshadow,z0,m=1 and nshadow,z0,m=0

denote the (random) numbers of shadow models trained on z0 and not trained on z0, respectively. We then evaluate all these
shadow models on z0 and collect all loss values of the shadow models trained on z0 into a vector sz0,m=1 and the loss
values of the shadow models not trained on z0 into a vector sz0,m=0. The membership advantage Advshadow of a threshold
⌧̂z0 is given by:

Advshadow,z0 =
|{s2sz0,m=1 : s<⌧z0}|

nshadow,z0,m=1
� |{s2sz0,m=0 : s<⌧z0}|

nshadow,z0,m=0
, (71)

which is simply the difference of the empirical true positive rate and false positive rate. Note that there are many optimal
thresholds that maximize Advshadow. Indeed, if ⌧̂z0 is one such optimal threshold, then so is any ⌧ 2 [s⇤m=1, s

⇤
m=0], where

s⇤m=1 is the closest element in sm=1 that is less than ⌧z0 and s⇤m=0 is the closest element in sm=0 that is greater than
⌧z0 . Thus, we set the attack’s calibrated loss threshold as the midpoint: ⌧z0 = 1

2 (s
⇤
m=1 + s⇤m=0). This sample-based loss

threshold attack, wherein a different threshold is learned for each data point z0, is the attack we use for the CIFAR10 and
Multi30k experiments.

A variation of this attack that we apply for the Purchase100 dataset is the global loss threshold, where ⌧z0 = ⌧ for every z0.
In words, the same threshold value is applied when attacking the model on any data point. The procedure for threshold
calibration is the same, except now sm=1 contains the losses for each of the data points each model was trained on and
sm=0 contains the losses for the data points the models were not trained on.

F.2 Evaluation procedure

To evaluate the attack, we first randomly subsample a training dataset S from the full training dataset D and train a target
model on S. Denote by S̄ the data points in D that are not in S. We collect the losses t(z0) of the target model on each
data point z0 in S into a vector tm=1 and the losses of the target model on each data point in S̄ into a vector tm=0. The
membership advantage for the target model is:

Advtarget =
|{t(z0)2tm=1 : t(z0)<⌧z0}|

|S| � |{t(z0)2tm=0 : t(z0)<⌧z0}|
S̄ . (72)

We repeat this evaluation procedure ntarget times, each time training a new target model on a newly sampled S. The mean
and standard deviation of the membership advantage over all experimental runs is what is reported in the paper figures.

Each shadow and target model is trained for E epochs with checkpoints saved every C epochs, where E and C differ per
dataset. For the experiments in Section 3.1 and Figure 3, the checkpoints for each shadow and target model that achieves the
highest classification accuracy rate on the dataset’s validation set is used for the experiment. The results in Figures 4 and 5
are obtained for each checkpoint. For each curve in Figure 6, for all shadow and target models, we use the same number of
epochs: the number of epochs (out of the checkpoints acquired) that achieves a membership advantage (Figure 6a) or test
error (6b) closest to the one specified in the figure.

F.3 Datasets and architectures

We split each dataset into a “full training dataset” and a validation set. The full training dataset contains all the points on
which membership inference will be performed. Each shadow and target model will be trained on a sample of the full
training dataset such that the full training dataset would always contain both members (training points) and non-members
(test points) for each model. The validation set is only used for calculating classification test error.
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Classification on Purchase100. The Purchase100 dataset is based on Kaggle’s “acquire valued shoppers” challenge dataset
subsequently processed by Shokri et al. (2017). It contains 197,324 length-600 binary feature vectors, each belonging to
1 of 100 classes. Each feature vector corresponds to a purchaser, and each entry of the vector corresponds to whether or
not a particular product was purchased by the customer. The 100 classes correspond to purchasing styles. We use the first
180,000 data points as the full training dataset and the remaining data points for the validation set. We train two-layer
neural networks with hidden dimension w, which we vary. We set nshadow = 50 and ntarget = 50. Each model is trained on a
random sample of 10,000 data points. We use the ADAM optimizer (Kingma and Ba, 2014) with a learning rate of 0.001 for
E = 3000 epochs with checkpoints saved every V = 20 epochs. For Figure 5, we save checkpoints every V = 1 epoch and
only display the results for less than 3000 epochs for better visualization (each curve uses a different number of epochs,
according to which provides best visualization).

Image classification on CIFAR10. The CIFAR10 dataset (Krizhevsky, 2009) contains 60,000 32⇥32 RGB images, each
belonging to 1 of 10 object classes. We use the 50,000 images in the official training dataset as our full training dataset,
and the 10,000 images in the official validation dataset as our validation set. We train ResNet18 models (He et al., 2016)
to perform image classification on the dataset. To vary the models’ widths, we follow Nakkiran et al. (2021) and use
convolutional layer widths (number of filters) of [w, 2w, 4w, 8w] for different w values. Note that w = 64 yields the original
ResNet18 architecture. We set nshadow = 50 and ntarget = 50, where each model is trained on a random sample of 25,000
images. We train for 50,000 gradient steps using the ADAM optimizer with a batch size of 128 (amounting to ⇡ 256 epochs
through the training dataset), a learning rate of 0.0001 and the cross-entropy loss. Data augmentation is a common technique
used in image classification, and so we also employ random translations of up to 4 pixels and random horizontal flipping
during training, as was done by Nakkiran et al. (2021).

Language translation on Multi30K. The Multi30K dataset (Elliott et al., 2016) consists of 29,001 pairs of English-German
sentences. We perform English to German translation on these sentences using the Transformer architecture (Vaswani et al.,
2017). To vary the models’ widths, we follow Nakkiran et al. (2021) and set the encoder/decoder feature sizes to w and the
fully connected layers’ dimensions to 4w for different values of w. We train for 300 epochs using the ADAM optimizer
with a learning rate of 0.0001, a batch size of 128, and the cross-entropy loss over each token. We set nshadow = 15 and
ntarget = 15 and train each model on a random sample of 14, 500 sentence pairs. In calculating the loss of a sentence pair for
performing membership inference, we sum the cross-entropy loss values over all tokens in the sentence and divide by the
sentence length.

G Additional Experiments

G.1 Blessing of Dimensionality for Multi30K

In Figure 7, we show the equivalent of Figure 6 in the main paper for the transformer architecture on the Multi30k dataset.
Similarly to the Purchase100 and CIFAR10 datasets, increasing the width of the neural network here improves either privacy
(i.e. decreases membership advantage) or test accuracy when holding the other fixed via proper epoch tuning.

G.2 Global Loss Threshold Attack

In Figures 3, 4, 5, and 6, we used the sample-specific loss threshold attack for CIFAR10 and Multi30K, where a different
loss threshold is learned for each data point. Here, we repeat the same experiments using the global loss threshold, where a
single threshold value is used for all the data points. Note that in the mentioned figures, we already employed the global
loss threshold attack for Purchase100. The trends we observe for the global loss threshold attack are similar to those of the
sample-specific loss threshold attack. The results are shown in Figures 8, 9, 10, and 11. We use nshadow = ntarget = 15 for
both datasets in this experiment.

G.3 Privacy-Utility Trade-offs for DP-SGD on CIFAR10

We perform the same experiment of Figure 5 for CIFAR10 with ResNet18 models trained with DP-SGD (Abadi et al.,
2016). In DP-SGD, gradients are clipped to a maximum bound, and noise is added to the gradients before the gradient
descent step. The model training procedure is guaranteed to be (✏, �) differentially private for some ✏ and � according to the
amount of noise added and the number of training epochs. The addition of noise also serves as a form of regularization.
We thus obtain the regularization-wise privacy-utility trade-off for each network width by varying the amount of noise
added. Specifically, we set the gradient clipping bound to 1, the number of epochs to 200, and � to 1

25000 . For each
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Figure 7: Overparameterization with early stopping eliminates the privacy–utility trade-off on Multi30k. This is
similar to Figure 6 in the main body, but performed on the Multi30k dataset with the Transformer architecture. (a) For each
network width, we train the network until it reaches a given MI advantage value. We then plot the test error of the networks.
Observe how test error decreases with parameters at a fixed MI advantage value. Thus, this eliminates the privacy–utility
trade-off. Proper tuning of parameters and epochs together improves model accuracy without damaging its privacy. (b)
Same as (a) but switching the roles of MI advantage and test error.
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Figure 8: Privacy vs. parameters (global loss threshold attack). We repeat the experiment in Figure 3, but now using the
global (instead of sample-specific) loss threshold attack. Similarly, wider networks generally suffer from higher vulnerability
to MI attacks while achieving lower test error.
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Figure 9: Privacy vs. epochs (global loss threshold attack). We repeat the experiment in Figure 4, but now using the
global (instead of sample-specific) loss threshold attack. Again, as epochs increase, membership advantage increases while
test error decreases.

✏ 2 {1, 2, 3, ..., 14, 15, 16, 20, 50, 100} and each learning rate in {0.1, 0.5, 1, 2, 4, 8}, we train 5 networks with noise added
to the gradients such that the procedure is (✏, �) differentially private. Smaller ✏ parameters yield more noise, which serves as
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Figure 10: Trade-offs (global loss threshold attack). We repeat the experiment in Figure 5, but now using the global
(instead of sample-specific) loss threshold attack. We observe again how wider networks are closer to the lower-left portion
of the graph, indicating better privacy and better test accuracy compared to their narrower counterparts.
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Figure 11: Overparameterization with early stopping eliminates the privacy–utility trade-off (global loss threshold).
Similar to Figures 6 and 7, but using the global loss threshold. Increasing the parameters can improve either privacy or test
accuracy when keeping the other fixed (by epoch tuning).

increased regularization. We try different learning rates as it has been observed that learning rate tuning can affect DP-SGD
performance. We apply the global loss threshold attack and plot the mean test errors and mean membership advantage
across the 5 networks for each ✏ and learning rate for different model widths in Figure 12. For each network width, we only
include its Pareto optimal points. That is, we exclude a point if there exists another point that has both lower test error and
lower membership advantage. We observe the same phenomenon as in Figure 5. Wider networks enjoy better privacy-utility
trade-offs than narrower networks.

G.4 TPR at FPR=1%

In Figure 13, we perform the same experiment as in Figure 5 of the main paper, but we instead use the global loss threshold
attack and report the maximum achievable true positive rate (TPR) when the false positive rate (FPR) is constrained to be
at most 1%. For the loss threshold attack, the adversary predicts the data point to be a member if the model’s loss on the
data point is below some ⌧ . When ⌧ is increased, the adversary more frequently predicts the data point as being a member.
This increases the adversary’s TPR, but it will also increase its FPR. For the attack used in Figure 13, we choose the global
thresholds for each individual network that maximizes the TPR under the constraint that the FPR is at most 1%. We refer
readers to Carlini et al. (2022) for additional discussion on using the metric of TPRs for constrained FPRs. In this metric,
we still observe the same blessing of dimensionality: wider networks can achieve lower test error and lower MI adversary
TPRs than their narrower counterparts.

G.5 Parameter-Wise Privacy-Utility Trade-Off for Support Vector Machines

We now consider support vector machines (SVMs), plotting both an adversary’s membership advantage and the SVM
model’s validation error as a function of the number of parameters in Figure 14 for a variety of data models. We observe
how MI increases (thus damaging privacy) while test error decreases (yielding a more accurate model) as the number
of parameters grows. We consider data models based on those that have been shown to exhibit double descent in the
overparameterized machine learning literature, including the weak features ensemble from Muthukumar et al. (2021),
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Figure 12: DP-SGD Trade-off. We train ResNet18 networks on CIFAR-10 with DP-SGD. We sweep through ✏ 2
{1, 2, 3, ..., 15, 16, 20, 50, 100} and learning rates {0.1, 0.5, 1, 2, 4, 8}. For each ✏ and learning rate, we train 5 networks.
Each point on the plot corresponds to the mean test error and mean MI advantage of the global loss threshold attack over the
5 networks for some ✏ and learning rate. We only include points that are Pareto optimal—we exclude a point if there exists
another point with both lower test error and lower MI advantage. We fix the clipping bound to 1 and the number of epochs
to 200. The plot shows that wider ResNet18 networks achieve better privacy–utility trade-offs than narrower networks when
tuning the DP-SGD noise amount added.
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Figure 13: TPR at FPR=1%. We show the privacy-utility trade-offs similar to Figure 5 but reporting the global loss
threshold’s true positive rate (TPR) using the threshold value that maximizes TPR under the constraint that the false positive
rate  0.01. We again observe wider networks enjoying better privacy-utility trade-offs than narrower ones.

separable Gaussians with irrelevant features (based on synthetic dataset 1 of Belkin et al., 2018), random ReLU features
(Montanari et al., 2019), and random projections on two classes of CIFAR10. For the MI attack, we estimate the optimal
LRT adversary (Tan et al., 2022) by approximating the model output distributions as discrete histograms using Monte Carlo
sampling over a minimum of 20,000 trials.

G.5.1 SVM experimental setup

This subsection provides details on the SVM experiments whose results are shown in Figure 14. For all SVM models, we
use scikit-learn’s SVC class (Pedregosa et al., 2011). When the number of SVM parameters is smaller than the number of
data points in the training dataset, we add regularization C = 1, where C is the corresponding regularization parameter in
scikit-learn’s SVC class. Else, we use C = 1020, essentially applying no regularization to yield the hard-margin SVM. The
hard-margin SVM has been studied considerably in the double descent literature (Montanari et al., 2019; Muthukumar et al.,
2021), especially with regards to its relationship to logistic regression trained with gradient descent (Soudry et al., 2018; Ji
and Telgarsky, 2019).

We use the optimal MI adversary (Tan et al., 2022), which is a likelihood ratio test, as our MI attack. Suppose we are given
two discrete distributions over values si with probability mass functions qm=0 and qm=1. The optimal adversary A⇤ is
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Figure 14: Privacy vs. parameters (SVMs). We demonstrate on SVMs for a variety of feature models how increasing
overparameterization increases the adversary’s MI advantage on the SVM model even as it decreases validation error. Thus,
the number of parameters induces a privacy–utility trade-off.

defined by:

A⇤(si) =

(
1 if qm=1(si) > qm=0(si),

0 otherwise
. (73)

For each experiment, the general procedure is as follows. We first generate a D-dimensional data point x0 with binary label
y0, for some D. This is the data point on which MI will be performed. Then, for an integer p, we perform the following
procedure L times. We first generate an n ⇥ p training dataset matrix X, for some n, and a corresponding label vector
y. Generally, these are distributed in the same way as (x0, y0). All experiments here are binary classification tasks, so
yi 2 {�1,+1} for i 2 {1, 2, ..., n}. We then apply label noise to y: we flip each label yi to the other class with probability
↵. Afterwards, we learn an SVM on X and y. We then denote by ŷ0 the signed distance of x0 to the decision hyperplane of
the learned SVM. We collect the ŷ0 of all L learned SVMs into an output vector ŷm=0. We then repeat the same procedure
another L times, but this time, before learning the SVM onX and y, we first replace the first rowsX1 = x0 and y1 = y0.
Label noise is never applied to y0. We collect the resulting L signed distances to the learned SVM hyperplanes into the
output vector ŷm=1. We form discrete histograms for both ŷm=0 and ŷm=1 with bin width b. Finally, we perform the
optimal adversary attack on these histograms and measure the corresponding membership advantage. This entire experiment
is repeated for multiple values p to generate Figure 14.

The following subsections provide the distributions of x0, y0, X, and y, as well as the hyperparameters n (number of
data points), D (full data dimensionality), label noise probability ↵, L (number of samples used to form the histogram),
histogram bin width b, and the set of number of features p investigated for each data model.

G.5.2 Weak features

The weak features experiment is based on the weak features ensemble discussed in Definition 9 of Muthukumar et al.
(2021). In our experiment, we let D = 1000, x0 ⇠ N (1D, ID), and y0 = 1. We perform the experiment for p 2
{5, 10, 15, ..., 95, 100, 200, 300, ..., 900} with number of data points n = 100, number of samples L = 20, 000, histogram
bin width b = 0.05, and label noise probability ↵ = 0.2. The n⇥ p training dataset matrix X is generated such that the i’th
row Xi ⇠ N (zi, Ip), with zi ⇠ N (0, 1). The elements of the label vector y are defined by yi = sign(zi). In essence, each
element of a training data point Xi is the true signal zi (on which the label yi is based) corrupted by Gaussian noise.

G.5.3 Separable Gaussians

The separable Gaussians model is based on synthetic dataset 1 of Belkin et al. (2018) with some modifications. In our
experiment, we set D = 1000 and generate x0 by sampling its individual elements as:

x0,j ⇠
(
N (1, 1) if j  100

N (0, 1) otherwise
, (74)

with true label y0 = 1. We perform the experiment for p 2 {10, 20, 30, ..., 90, 100, 150, 200, 250, ..., 1000} with number
of data points n = 100, number of samples L = 10, 000, and histogram bin width b = 0.05.. Each element of the label
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vector yi is randomly selected from {�1,+1} with uniform probability. The individual elements (row i and column j) of
the training dataset matrixX are distributed as:

Xi,j ⇠
(
N (yi, 1) if j  100

N (0, 1) otherwise
. (75)

Label noise with probability ↵ = 1 is then applied to y afterX is generated. Essentially, the first min(100, p) features of
each data point depend on its true class, and the remaining features are irrelevant (independent of the class). Thus, in the
overparameterized regime, as p increases, we are including more irrelevant features to the model.

G.5.4 Random ReLU features

The random ReLU features model has been studied by multiple papers, such as Rahimi and Recht (2007) and Monta-
nari et al. (2019) (section 3). In essence, it is a two-layer ReLU neural network with fixed first-layer random weights.
Different from the previous SVM data models, here x0 is defined differently for each trained SVM model because of
the random projections. Instead, there is a latent data vector z0 that is kept fixed for all experiments and on which
MI is performed. We set D = 200, and generate z0 by sampling it from N (0, ID). We perform the experiment for
p 2 {10, 20, 30, ..., 90, 100, 150, 200, ..., 950} with number of data points n = 100, number of samples L = 100, 000,
histogram bin width b = 0.001, and no label noise. To generate the training data, a random p⇥D “featurizer” matrixW
is first generated by sampling each row independently from the D-dimensional unit sphere. Then, an n⇥D feature data
matrix Z is generated by sampling each element iid standard normal. The training data matrix X = max(0,ZWT ), where
themax operation is applied elementwise. The MI data point x0 is defined as x0 = max(0, z>0 W

>). Note that sinceW
is sampled for each trained SVM, x0 changes for each experimental run. To generate the labels of the data points, first,
a random vector � is sampled uniformly from the D-dimensional sphere of radius 4 (such that ||�||2 = 4). Then, yi is
assigned class 1 with probability 1

1+e�Z� and class �1 otherwise. The label y0 of x0 is defined similarly and is assigned
class 1 with probability 1

1+e�Z� and class �1 otherwise. Essentially, the class of a data point depends only on Z, and the
training set consists of random projections of Z that are then passed through the ReLU operation.

G.5.5 CIFAR10

To experiment on real data, we train SVMs on random projections of a subset of the CIFAR10 dataset (Krizhevsky, 2009).
We first define z0 to be the first image of the training dataset with class “airplane” converted to grayscale and then vectorized.
We perform the experiment for p 2 {10, 20, 30, ..., 90, 100, 200, 300, ..., 1800, 1900} with number of data points n = 200,
number of samples L = 10, 000, histogram bin width b = 0.05, and no label noise. To generate the n⇥ p data matrix, we
first randomly sample n

2 images uniformly from the “airplane” images of the dataset (excluding x0) and n
2 images from the

“automobile” images of the dataset. We convert the images to grayscale, vectorize them, and collect them into a matrix Z
(where each row is a vectorized image). Since each image is of size 32⇥ 32, the vectorized image isD = 1024 dimensional.
We then sample a p⇥ 1024 random projections matrixW, where each row is sampled uniformly from the 1024-dimensional
unit sphere. Finally, the data matrix X = ZW>. The MI point x0 = z>0 W

>. The labels of each data point is �1 if it
originated from an “airplane” image and +1 if it originated from an “automobile” image.


