
Three Pillars of Practical Reproducibility

Kate Keahey∗, Jason Anderson†, Mark Powers†, Adam Cooper†

∗ Argonne National Laboratory

Lemont, United States of America

Email: keahey@mcs.anl.gov
† University of Chicago

Chicago, United States of America

Abstract—Practical reproducibility is the ability to reproduce
results is a manner that is cost-effective enough to become a
vehicle of mainstream scientific exploration. Since computational
research artifacts usually require some form of computing to
interpret, open and programmable infrastructure, such as a range
of NSF-supported testbeds spanning infrastructure from datacen-
ter through networks to wireless systems, is a necessary – but not
sufficient – requirement for reproducibility. The question arises
what other services and tools should build on the availability of
such programmable infrastructure to foster the development and
sharing of findable, accessible, integrated, and reusable (FAIR)
experiments that underpin practical reproducibility. In this
paper, we propose three such services addressing the problems
of packaging for reuse, findability, and accessibility, respectively.
We describe how we developed these services in Chameleon, an
NSF-funded testbed for computer science research which has
supported the research of a community of 8,000+ users, and
discuss their strengths and limitations.

Index Terms—reproducibility, infrastructure, scientific plat-
forms, resource management

I. INTRODUCTION

There is a broad agreement that in the digital age science

should be shared digitally, through artifacts such as code

and data, and that adopting practices enabling or facilitating

reproducibility of computational results can lead to more

robust science and increased scientific productivity [1]–[4].

To support this consensus, the computer science community

supports activities such as artifact evaluation at conferences,

data preservation initiatives, and reproducibility hackathons

[5], [6], and sponsors incentives such as reproducibility badges

awarded by major computing organizations [7], [8]. But de-

spite all these efforts it is not clear how much science gets

reproduced beyond those targeted initiatives, as part of indi-

vidual quest for knowledge. We argue that unless reproducing

research becomes as vital and mainstream part of scientific

exploration as reading papers is today, reproducibility will be

hard to sustain in the long term because the incentives to

make research results reproducible won’t outweigh the still

considerable costs of making them so. Thus, in addition to

seeking ways to ensure that every experiment can be repeated

regardless of the effort, we should also explore mechanisms

for practical reproducibility, i.e., a practice where many – or

even most – experiments or results are packaged in such a

way that they can be repeated cost-effectively.

In a research ecosystem that supports practical reproducibil-

ity, scientists could “click through” results presented in a

paper, reproduce the experiment that yielded them or redo the

data analysis to try it on different hardware, introduce variation

into the algorithm and provide a side-by-side comparison, or

answer new questions with the available data. This mode of

exploration means that rather than just reading about new

research, a scientist is exploring science interactively and can

immediately verify or challenge new results, extend them

on-the-fly by inserting new ideas, or more easily integrate

new research into teaching, thus accelerating evolution of

curricula to keep up with advancing science. Furthermore,

going beyond sharing results through papers, scientists could

access experiments – representing electronic packaging of

results – directly through a digital hub, similarly to how they

might look for relevant papers in the ACM Digital Library [9]

today. Such direct access to reproducible experiments could

be an effective method not just for sharing results themselves,

but also for exploring the means via which they were obtained,

i.e., the experimental methodology, or ways in which the

experimental data were analyzed – placing more emphasis and

stimulating more discussion of different aspects of scientific

exploration. This kind of dissemination of research has the

potential to invert the role of papers and results and make the

papers indeed “an advertisement for scholarship” [10].

Such research ecosystem may be more readily within reach

than it currently appears, as its underpinnings are already

present. In [11] we note the enabling power of two factors.

The first one is the availability of resources through open

platforms or clouds with unique hardware and configurations

on which research can be readily re-played. An open platform

means that all investigators have equal access to the same

experimental hardware, no matter how rare or expensive; thus,

it is no longer the case that “I can do my research because I

have a GPU cluster – but you can’t reproduce it, because you

don’t”. The second factor is the platform’s programmability,

i.e., the ability to establish an arbitrarily complex experimental

environment in programmatic ways, that can be saved and then

replayed many times. To support computer science experimen-

tation in particular, the National Science Foundation (NSF)

has created a collection of open, programmable experimen-

tal platforms – Chameleon, CloudLab, FABRIC, COSMOS,

POWDER, AERPAW, and ARA [12]–[18]. Supplemented by

commercial cloud resources openly available via NSF-funded

CloudBank [19], these platforms can collectively support

most computer science experiments ranging from topics in



performance variability, operating systems, or networking, to

machine learning, artificial intelligence, and robotics research.

However, while open platforms and programmability create

an opportunity, they don’t offer a complete solution. To

illustrate: over the years of operating Chameleon [12] – a bare

metal reconfigurable platform which to date has supported a

community of over 8,000 users working on over 1,000 research

and education projects – we noted that experimenters using the

testbed created thousands of digital artifacts. Those artifacts –

images, orchestration templates, and digital notebooks – were

created entirely as a side-effect of using the platform, i.e., with

no special effort made towards reproducibility. At the same

time, they represent experimental environments that supported

research on Chameleon, and could be used to re-establish such

environments – often the most complex step in reproducing a

computer science experiment. This is a treasure trove of digital

content – most of it publicly available – that should in principle

significantly improve potential for interactive science – but it

does not. There are several reasons for this: those artifacts

represents only part of an experiment and are not much use

without the other parts; despite being publicly available they

can be very hard to find; there are no incentives to keep

them current; potential “consumers” of this content simply

lack access to hardware, content, or both. To remedy this

situation, we sought to create services, tools, and processes

that would help our users make their research more shareable;

the proposals shared below are a result of these efforts.

In this paper, we make the case that in order to support

practical reproducibility we need to support findable, accessi-

ble, integrated, and reusable (FAIR) experiments, represented

as a combination of hardware, experimental environment,

experiment body, and data analysis components. Further, we

also argue, that no one tool, but an ecosystem of integrated

tools is needed to create progress in providing a practical

reproducibility platform, and propose three infrastructure-

related capabilities fundamental to the support of practical

reproducibility: (1) an effective method of packaging for reuse

that associates access to hardware with the digital representa-

tion of an experiment (a ”compute capsule”); in as much as

possible such method should be a side-effect of developing

an experiment, (2) providing ways of sharing and finding

packaged experiments integrated with platforms on which

they can be executed, and (3) supporting access to platforms

specifically for reproducibility purposes, potentially outside of

regular policies. Our viewpoint is naturally informed by the

experience of operating a testbed; we therefore present specific

proposals for these integrated tools, explain how interacting

with our community shaped our development decisions, and

explain how they were implemented in Chameleon.

II. EXPERIMENTS AND EXPERIMENTERS

As operators of Chameleon [12], an NSF-funded exper-

imental infrastructure for computer science research , our

perspective is informed primarily by the need of computer

science experiments; therefore the needs of those experiments

specifically define the scope of this paper. This means that we

explore many particularly challenging computational scenarios

– but at the same time may de-emphasize common experimen-

tal patterns and needs present in other sciences.

In general, these types of experiments can usually be seen

as composed of three parts: (1) the creation of experimental

environment or topology: the allocation, configuration, and

orchestration of resources in which the experiment will execute

(e.g., ”create Linux cluster with a distributed storage system”),

(2) experiment body, i.e., the actual execution of experimental

actions (e.g., benchmarking the created environment), and (3)

data analysis and presentation. Experiments may emphasize

or de-emphasize some of those stages; for example, they

may skip the creation of an experimental environment if e.g.,

the objective is to discover new properties of existing envi-

ronments (e.g., a specific datacenter configuration). Further,

reproducing the experiment may involve reproducing all of

those stages, or only one of them: for example, a reviewer

may be interested in repeating the data analysis without re-

playing the whole experiment. Similarly, variation can also

be introduced at different stages, by e.g., re-running the same

experiment in different experimental environments.

Reproducing experiments is primarily a dialogue between

experiment authors, who create experiments and may package

them for reproducibility, and experiment reviewers, who at-

tempt to reproduce those experiments. We note that scientists

taking on those different roles have different perspectives and

motivations, and argue that to provide effective support for

reproducibility we need to develop infrastructure, services, and

tools that take those motivations into account and align them

to the extent possible. We discuss these factors in explaining

our design decisions and explain how they influenced our

approach.

III. PACKAGING FOR INTEGRATION AND REUSE

From the perspective of an experiment reviewer, the com-

pleteness of packaging (i.e., availability of all the pre-

conditions for reproduction ) is of course the necessary con-

dition for reproducibility of an experiment – but it is not

sufficient from the perspective of practical reproducibility:

the time to reproduce could still be prohibitive or uncertain.

This factor led to the creation of tools streamlining the

establishment of experimental environments – often the most

complex stage of an experiment setup – so that they can be

re-run as much as possible “with one click” [20]–[22]. Many

such efforts focus on declarative packaging, i.e., describing a

desired state/outcome rather than ways to achieve it, expressed

via orchestration templates or experiment profiles [13], [23]–

[25]. In practice this is often impractical as the same state

can be achieved via different means – that are associated

with different interpretations of the desired state, or different

side-effects – and thus not always yielding consistent results.

In addition, this approach is by nature transactional (i.e.,

the state is not reached until the orchestration transaction

is finished); this makes it difficult to inject variation to an

experiment or handle natural variation in the platform (e.g.,

temporary unavailability of some resources). We find that for



this reason experiment reviewers prefer experiments expressed

in imperative and non-transactional style, where the reviewer

can build up to the desired experimental environment state

gradually, addressing issues or trying new approaches as they

go. Last but not least, a critical requirement for the experiment

reviewer is that all the artifacts pertaining to experimentation –

images, deployment configuration, experiment code, analysis,

as well as the argument that it supports – are connected and

integrated in a way that allows the reviewer to not only grasp

the relationships between them, but manage those relationships

easily (e.g., deploy the same image on a different hardware

configuration), and follow the way the experiment supports

the argument with which it is associated.

These considerations are of less direct importance to the

experiment author, who may care about them as a way of

ultimately achieving impact, but whose direct attention is more

likely to be focused on the cost of packaging an experiment –

in particular, as the time spent on it diverts resources from new

research. In other words, from the author’s perspective it is

critical that packaging an experiment is as cheap as possible,

preferably a side-effect of experimentation itself – and with

cost of reproduction being only a secondary consideration.

We explored two approaches of packaging experiments as

a side-effect of experimentation: (1) monitoring the events

an experiment generates on the testbed and then using pro-

grammatic methods to reconstruct those events and the result-

ing experimental environment, and (2) aligning experimental

methodology and reproducibility so that the most convenient

tools to package experiments happen to be the same ones as

to develop them in the first place. We explored the former

in [26] where we instrumented Chameleon to monitor user’s

actions; presented a summary of those actions to the user

(experiment precis); and then attempted to generate an orches-

tration template to reproduce the same state. The results were

mixed: while it was possible to get good results in relatively

simple cases, it was hard to ensure correctness in the general

case. Given however that many of our users already used

a programmatic approach to creating complex experimental

environments, either via imperative or declarative methods

(CLI/python-chi [27] or Heat templates [23], respectively),

we turned our attention to adapting them to packaging ex-

periments. Specifically, we looked for an imperative, non-

transactional approach that would also provide an integration

of the various experimental artifacts, experiment components,

and tie the experiment to analysis and results presented in the

paper. We noticed that our users increasingly use Jupyter to

program different stages of their experiments, and leverage

the combination of programmability of the bash and python

kernels with analysis expressed in text and images. However,

from the perspective of complex experimentation Jupyter had

one shortcoming: the code executed in a Docker container

– not sufficient to users who typically need complex and

distributed experimental environments. To remedy this, we

decided to provide a Jupyter interface to the testbed so that

users could use Jupyter to create experimental environments

as well as use it for the experiment body and data analysis.

The resulting Jupyter interface to Chameleon allows users to

establish a secure session to the testbed by logging in through

Chameleon’s JupyterHub. From the user’s perspective, this has

a few advantages: the programmatic interface to the testbed

(now through the bash and python Jupyter kernels) becomes

much richer by leveraging the integration of text, programs,

and visualization elements supported by Jupyter; the user’s

credentials are implicit in Jupyter cells allowing the user direct

access to the testbed for programmatic creation of complex

experimental environments, more powerful than the Docker

containers that typically serve as a back-end for Jupyter

computation; and since there is no explicit authentication

step, there is no need for the notebook to include secrets

so that it can be shared more easily. Further, in order to

support programming the body of the experiment (as well as

the experimental container) from Jupyter we have configured

a Chameleon image with a bare bones JupyterLab server;

users can deploy it, and use it to program the body of their

experiment as well as the resulting analysis.

To implement this integration we used the “Zero to Jupyter-

Hub on Kubernetes” deployment of JupyterHub [28]; it spawns

per-user instances of JupyterLab with minimal allocation of

resources, as its intended usage is for orchestration of testbed

resources rather than direct computation. The JupyterLab envi-

ronment comes with OpenStack [29] command line interface

(CLI) (the CHameleon Infrastructure (CHI) builds on top of

OpenStack) and python software development kits (SDK)s

installed, along with Chameleon’s python SDK (python-chi).

To create a seamless interface, we authenticate JupyterHub

users to our central OAuth Keycloak server [30] and then

use the OAuth token granted by the JupyterHub authenticator

to authenticate the user to all Chameleon sites. This token,

along with other relevant user information, is loaded into

environment variables when the user spawns a JupyterLab

instance, and is automatically read by OpenStack’s CLI and

SDK as well as python-chi. We have implemented a periodic

check for OAuth token expiration, which refreshes the user’s

session in the background.

To facilitate the transition between the creation of an experi-

mental environment and the execution of the experiment body

inside the JupyterLab environment, we also create an SSH

key for the user; this key is placed on all OpenStack instances

created with python-chi. This allows users to connect to any

resources they deploy and run commands over SSH to upload

data and execute experiments on the deployed instances (in

a sense, any experiment body command becomes “wrapped”

by SSH). Some users prefer to execute the experiment body

and/or the analysis part of the experiment on remote resources

directly from a Jupyter notebook. To support this, we provide

methods to install and run a bare bones Jupyter server on

the remote instance via SSH and create a tunnel from the

user’s local machine to this new Jupyter server; this allows

the user to execute the body of the experiment by running the

kernels directly on the created cloud instances. Neither method

provides a completely seamless experience and devising better

ways of relating experimental containers to experiment body



and analysis is one of the open questions of an ecosystem for

reproducibility.

IV. FINDABLE VIA TROVI

The principal challenge of sharing digital artifacts rests

in the nature of their readability: we are all well-equipped

to read papers and require no additional infrastructure to

interpret them, whereas data, code, and other digital artifacts

generally require computation, visualization or other means

of digital interpretation. Support requirements for a digital

artifacts repository are therefore analogous to a library that

has a microfilm collection: in addition the artifacts themselves,

such library might also provide a microfilm reader as a means

of interpretation. Similarly, having a digital artifact, even one

that is complete, integrated, otherwise ready to reproduce, is

but half the battle. The lack of hardware to reproduce it on –

especially in computer science where so many experiments

rely on novel, specialized, or even simply just sufficiently

powerful hardware – often means that reproducing an ex-

periment in practice is impossible. Platforms like Google

Collab [31] and CodeOcean [32] recognize this and associate

hardware with computation, but have significant limitations:

they are restricted to a specific platform or a small set of

platforms, have ceilings on use, and a relatively narrow range

of capabilities, generally limited to execution on a single node

rather than complex experimental environments.

We argue that to provide an effective hub for executable

experiments, a service should provide open APIs that would

enable integration with multiple open testbeds/clouds and thus

support many different types of experiments on multiple plat-

forms. Further, a sharing hub of this type should also be well

positioned to propose measures of impact, a critical incentive

that creates a bridge between the interests of the experiment

authors and reviewers. This can be done by connecting to the

existing publishing and incentive structures, e.g., making digi-

tal artifacts citable via assigning them digital object identifiers

(DOIs), or by providing its own by supporting e.g., metrics

of how much a specific artifact was executed. In addition,

a service of this kind should of course also provide all the

features that allow users to effectively index and discover

experiments.

We implemented a service, called Trovi (from Esperanto

“find”), that allows users to share artifacts packaged as Jupyter

notebooks integrated with open platforms. Trovi is not a part

of Chameleon, but rather a general-purpose service that is

designed to ulitmately connect to many platforms via open API

(see below). An experiment author can add an artifact to Trovi

for public availability or limited sharing and index it by using

appropriate keywords. Once the artifact is in Trovi, the author

can create new versions or otherwise edit the artifact metadata.

Users can create versions by uploading file archives or by

importing from a supported storage backend, such as a public

Git repository. Once an experiment is ready for publication,

it can be published to Zenodo [33] which assigns it a DOI

allowing the user to reference the experiment as a first-class

entity. Experiment reviewers search for relevant Trovi artifacts,

and once they find experiments of interest, they can inspect

them and interact with them by clicking on a launch button

that supports seamless execution of the associated notebook

on an integrated platform.

To support this last feature effectively, Trovi exposes an

open API [34] allowing the system to support different back-

end implementations (experiment storage), connect to different

platforms, and support different front-end implementations

(experiment presentation and search). The back-end API, im-

plemented in Chameleon Swift [35], Zenodo [33], and GitHub

[36], fetches artifact retrieval metadata (rather than content

itself), and then uses implementation-specific ways of fetching

content. For example, an artifact version stored in Git provides

information about the Git remote URL and protocol, while one

stored in Chameleon’s object store will provide a temporary

HTTP archive URL.

This content retrieval data is passed into a JupyterLab

“startup hook” (i.e., an import handler that we implemented

with JupyterLab and JupyterHub extensions) which, when run,

fetches the artifact’s contents and loads them into the user’s

working directory. This allows a user to click on the “Launch”

button and be taken to a Jupyter environment with the artifact’s

contents loaded into the working directory. To connect to

different platforms, Trovi’s API effectively exchanges a valid

OAuth token from an approved platform, such as Chameleon,

for a Trovi bearer token, which must be included with testbed

API calls which require authentication; this allows a user to

use multiple platforms from the same notebook (via platform-

specific interfaces).

Lastly, the front-end API represents an implementation that

allows users to view and manage artifacts represented as

Jupyter notebooks. This front-end implementation is currently

surfaced as a web page in the Chameleon portal for conve-

nience, though we anticipate it to be eventually replaced by

an independent implementation. Each Jupyter notebook has

an integrated “Launch” button supported by the JupyterHub

extension described above. This extension also reports when

a user executes a cell from an artifact – a functionality that

allows us to keep track of the number of times an artifact

was executed at least partially (we also keep track of artifact

views). While this is not a perfect measure of impact, it is

a useful approximation, as it helps align the incentives of

experiment authors with those of experiment reviewers.

V. ACCESSIBLE VIA CHAMELEON DAYPASS

Even open platforms typically place some restrictions on

their usage; for example, an open research platform might

disallow commercial use. Further, platform use is often as-

sociated with some kind of allocation, or explicit payment in

the case of commercial clouds – resources that an experiment

reviewer may be unwilling to commit. These factors create a

potential barrier to practical reproducibility on the experiment

reviewer side: even experiments that are packaged for reuse,

integrated, and findable may not be accessible.

One proposal to overcome this challenge is to give exper-

iment authors limited allocation to explicitly support repro-



ducibility of their experiments: we piloted this capability in

Chameleon by implementing Chameleon Daypass. Experiment

authors can request an allocation for 10 experiment executions

of 1000 allocation units (rough default numbers determined

by the requirements of the current pilot) by providing a

brief justification. Once the allocation is granted, the author’s

experiment in Trovi exposes an additional interface allowing

users to request a reproducibility allocation for this specific ex-

periment – and the author can now advertise their experiment

as available via links associated with experiment description in

the paper, QR code on a poster, or otherwise linking traditional

and digital artifacts.

When an experiment reviewer requests a reproducibility

allocation, the request sends an email notification to the

experiment author who reviews and potentially grants the

request. Once the request is granted, the system generates

another email, notifying the experiment reviewer that their

Daypass was approved, and inviting the user to join the

project by clicking on a link. When the user is added to the

daypass allocation, the system notes the time the invitation

was accepted. A periodic task checks all active reproducibility

allocations: if any accepted daypass invitations exceed the

reproducibility allocation time specified by the experiment

author, we automatically remove the user from the alloca-

tion. The current implementation keeps track of invitations

and Daypass allocations in Chameleon’s portal and thus its

enforcement is reliant entirely on allocation limits.

VI. DISCUSSION AND OPEN CHALLENGES

In this paper, we argue that a compute capsule combining

experiment enactment with hardware on which it can be exe-

cuted is necessary – but not sufficient – to achieving practical

reproducibility for computer science experiments. A key com-

ponent removing friction from reproducing experiments is how

these elements are combined, i.e., how integrated, findable,

and accessible experiemnts are in practice. Experiences gained

in operating Chameleon indicate that not one service but an

ecosystem of services each supporting a specific aspect of

FAIR experimentation is needed to achieve a “critical mass”

of reproducibility.

Our approach to packaging fulfills the critical requirement

in that it ties hardware available via an open platform to

all three elements of an experiment: environment creation,

experiment body, and data analysis. This allows experiment

authors to ensure that experiment reviewers will find the

necessary resources to reproduce experiments. We encourage

the use of Jupyter notebooks, since many of our users use them

to structure experiments anyway; thus, a representation of an

experiment viable for practical reproducibility is effectively

created by side-effect. By integrating them with Chameleon

we allow users to extend their use over all three elements

of experiment described in Section II, from experimental

environment creation, to experiment body, and analysis. We

note however, that currently the transition between the creation

of an experimental environment and experiment body and

analysis is a challenge; we propose two methods of over-

coming it in our approach, but more seamless transitions can

be imagined. Structuring the relationship of an experimental

environment to experiment body and analysis stages in general

is an open problem and depends on how those environments

can be created.

Further, our approach to sharing experiments fulfills its

mission in that it further ties findable experiments to open

platforms on which they can be executed. While Jupyter is

a promising approach, different types of packaging may be

appropriate in different contexts or for different problems;

although our current implementation focuses on Jupyter, an

abstraction of experiment representation that could be executed

on different platforms would therefore make the system more

general. In addition, a closer integration of the system with

existing ecosystems of tools that already provide versioning

and serve as a repository of useful digital artifacts related to

experimentation (e.g., GitHub or Zenodo) would also improve

user experience.

The biggest set of open challenges in developing an ecosys-

tem for practical reproducibility however deals with com-

munity interaction with the process. A significant issue in

this space is that of incentives as they create an alignment

between the interests of experiment authors and reviewers:

while experiment authors themselves may not be interested in

ease of replication directly, they will become interested if we

can tie it to the impact of their research. From this perspective,

one-time acknowledgement such as reproducibility badges are

limited as they do not provide the kind of differentiated recog-

nition that is available via e.g., citation counts (themselves an

imperfect measure). Our approach to addressing this problem

is to provide metrics of Jupyter notebook views and execution

counts (of at least one code cell) on viable platforms for a

given experiment; while not a perfect indicator, it does give an

idea of an artifact’s popularity. Another potential approach is

the integration of ongoing open reviews and comments into the

system – translating them into feedback is less instantaneous

than a numerical metric but could provide a good alternative

to use in conjunction. A related issue is that of sustaining the

artifacts: software and thus experiments needs upgrades and

updates (e.g., to keep up with security vulnerabilities), and thus

the ability to maintain a FAIR experiment in some form. Ex-

periment authors are not always willing or able to support the

experiments; one possible way to resolve this problem is via

community collaboration where interesting experiments could

be ”forked” as reviewers find ways to upgrade or otherwise

fix them, potentially borrowing policies and processes from

the open source community. This in itself could provide a

measure of impact, as maintained (and therefore clearly used)

experiments would likely see enough attention to keep them

current.

Lastly, our pilot solution for accessibility provides limited

enforcement and relies strongly on the networking of re-

searchers sharing their experiments with others. This suggests

that some form of social network mechanisms could play a

useful role in both popularizing reproducibility and providing



a better incentive structure.

VII. CONCLUSIONS

Effectively supporting reproducibility in the digital age

requires rethinking and refining the current research shar-

ing ecosystem. Since computational research artifacts require

some form of computing – sometimes unique and rare – to

interpret, we argue that open infrastructure will play key role

in any such ecosystem. Further, we posit that an effective

sharing ecosystem will support not only reproducibility, but

practical reproducibility, where many artifacts will be not only

reproducible, but reproducible in a cost-effective manner so

that computational reproducibility can become a mainstream

vehicle of research sharing.

In this paper, we summarize our experiences of encouraging

reproducibility on the Chameleon testbed for computer science

research and propose three services that in our experience

are fundamental to the support of such ecosystem: packaging

experiments with the hardware on which they can be executing

(i.e., “compute capsules”), ways of sharing experiments that

tie them to the hardware, and explicitly supporting infras-

tructure access for reproducibility purposes. We describe how

we developed these services in Chameleon and discuss their

strengths and limitations.

ACKNOWLEDGEMENT

Results presented in this paper were obtained using the

Chameleon testbed supported by the National Science Foun-

dation. This material is based upon work supported by the

U.S. Department of Energy, Office of Science, under contract

number DE-AC02-06CH11357.

REFERENCES

[1] O. E. Gundersen, Y. Gil, and D. W. Aha, “On reproducible ai: Towards
reproducible research, open science, and digital scholarship in ai publi-
cations,” AI magazine, vol. 39, no. 3, pp. 56–68, 2018.

[2] M. S. Krafczyk, A. Shi, A. Bhaskar, D. Marinov, and V. Stodden,
“Learning from reproducing computational results: introducing three
principles and the reproduction package,” Philosophical Transactions

of the Royal Society A, vol. 379, no. 2197, p. 20200069, 2021.
[3] D. Rosendo, P. Silva, M. Simonin, A. Costan, and G. Antoniu, “E2clab:

Exploring the computing continuum through repeatable, replicable and
reproducible edge-to-cloud experiments,” in 2020 IEEE International

Conference on Cluster Computing (CLUSTER). IEEE, 2020, pp. 176–
186.

[4] V. Stodden, M. McNutt, D. H. Bailey, E. Deelman, Y. Gil, B. Hanson,
M. A. Heroux, J. P. Ioannidis, and M. Taufer, “Enhancing reproducibility
for computational methods,” Science, vol. 354, no. 6317, pp. 1240–1241,
2016.

[5] J. Pineau, P. Vincent-Lamarre, K. Sinha, V. Larivière, A. Beygelzimer,
F. d’Alché Buc, E. Fox, and H. Larochelle, “Improving reproducibility in
machine learning research (a report from the neurips 2019 reproducibil-
ity program),” The Journal of Machine Learning Research, vol. 22, no. 1,
pp. 7459–7478, 2021.

[6] T. Malik, A. Vahldiek-Oberwagner, I. Jimenez, and C. Maltzahn, “Ex-
panding the scope of artifact evaluation at hpc conferences: Experience
of sc21,” in Proceedings of the 5th International Workshop on Practical

Reproducible Evaluation of Computer Systems, 2022, pp. 3–9.
[7] R. F. Boisvert, “Incentivizing reproducibility,” Communications of the

ACM, vol. 59, no. 10, pp. 5–5, 2016.
[8] A. C. Frery, L. Gomez, and A. C. Medeiros, “A badging system

for reproducibility and replicability in remote sensing research,” IEEE

Journal of Selected Topics in Applied Earth Observations and Remote

Sensing, vol. 13, pp. 4988–4995, 2020.

[9] “ACM Digital Library,” https://dl.acm.org/.
[10] D. L. Donoho, A. Maleki, I. U. Rahman, M. Shahram, and V. Stodden,

“Reproducible research in computational harmonic analysis,” Computing

in Science & Engineering, vol. 11, no. 1, pp. 8–18, 2008.
[11] K. Keahey, “The Silver Lining,” IEEE Internet Computing, vol. 24, no. 4,

pp. 55–59, 2020.
[12] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,

H. Gunawi, C. Hammock, and M. Joe, “Lessons Learned from the
Chameleon Testbed,” in 2020 USENIX Annual Technical Conference

(USENIX ATC 20), 2020, pp. 219–233.
[13] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,

L. Stoller, M. Hibler, D. Johnson, K. Webb et al., “The design and
operation of {CloudLab},” in 2019 USENIX annual technical conference

(USENIX ATC 19), 2019, pp. 1–14.
[14] I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C. Wang,

T. Lehman, and P. Ruth, “FABRIC: A National-scale Programmable Ex-
perimental Network Infrastructure,” IEEE Internet Computing, vol. 23,
no. 6, pp. 38–47, 2019.

[15] J. Yu, T. Chen, C. Gutterman, S. Zhu, G. Zussman, I. Seskar, and
D. Kilper, “COSMOS: Optical Architecture and Prototyping,” in Optical

Fiber Communication Conference. Optical Society of America, 2019,
pp. M3G–3.

[16] J. Breen, A. Buffmire, J. Duerig, K. Dutt, E. Eide, A. Ghosh, M. Hibler,
D. Johnson, S. K. Kasera, E. Lewis et al., “POWDER: Platform for Open
Wireless Data-driven Experimental Research,” Computer Networks, vol.
197, p. 108281, 2021.

[17] M. L. Sichitiu, I. Guvenc, R. Dutta, V. Marojevic, and B. Floyd, “AER-
PAW Emulation Overview,” in Proceedings of the 14th International

Workshop on Wireless Network Testbeds, Experimental evaluation &

Characterization, 2020, pp. 1–8.
[18] H. Zhang, Y. Guan, A. Kamal, D. Qiao, M. Zheng, A. Arora, O. Boyraz,

B. Cox, T. Daniels, M. Darr et al., “Ara: A wireless living lab vision
for smart and connected rural communities,” in Proceedings of the 15th

ACM Workshop on Wireless Network Testbeds, Experimental evaluation

& Characterization, 2022, pp. 9–16.
[19] M. Norman, V. Kellen, S. Smallen, B. DeMeulle, S. Strande, E. La-

zowska, N. Alterman, R. Fatland, S. Stone, A. Tan et al., “Cloudbank:
Managed services to simplify cloud access for computer science research
and education,” in Practice and Experience in Advanced Research

Computing, 2021, pp. 1–4.
[20] L. Sarzyniec, S. Badia, E. Jeanvoine, and L. Nussbaum, “Scalability

testing of the kadeploy cluster deployment system using virtual machines
on grid’5000,” in SCALE Challenge 2012, held in conjunction with

CCGrid’2012, 2012.
[21] I. Baldine, Y. Xin, A. Mandal, C. H. Renci, U.-C. J. Chase, V. Marupadi,

A. Yumerefendi, and D. Irwin, “Networked cloud orchestration: A geni
perspective,” in 2010 IEEE Globecom Workshops. IEEE, 2010, pp.
573–578.

[22] K. Keahey and T. Freeman, “Contextualization: Providing One-click
Virtual Clusters,” in 2008 IEEE Fourth International Conference on

eScience. IEEE, 2008, pp. 301–308.
[23] “OpenStack Heat,” https://docs.openstack.org/heat/latest/.
[24] “AWS CloudFormation,” https://aws.amazon.com/cloudformation/.
[25] “Terraform by HashiCorp,” https://www.terraform.io/.
[26] S. Wang, Z. Zhen, J. Anderson, and K. Keahey, “Reproducibility as

Side Effect,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage, and Analysis (SC’18

Poster). IEEE Press, 2018.
[27] “python-chi,” https://python-chi.readthedocs.io/en/latest/.
[28] “Project Jupyter — JupyterHub,” https://jupyter.org/hub.
[29] “OpenStack,” https://www.openstack.org/.
[30] J. Anderson and K. Keahey, “Migrating towards single sign-on and

federated identity,” in Practice and Experience in Advanced Research

Computing, 2022, pp. 1–8.
[31] “Welcome to Colaboratory,” https://colab.research.google.com/.
[32] A. Clyburne-Sherin, X. Fei, and S. A. Green, “Computational repro-

ducibility via containers in social psychology,” Meta-Psychology, vol. 3,
2019.

[33] “Zenodo,” https://zenodo.org/.
[34] “Trovi,” https://chameleoncloud.gitbook.io/trovi/.
[35] “OpenStack Swift,” https://docs.openstack.org/swift/latest/.
[36] “GitHub,” https://github.com/.


