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Abstract

In this paper, we propose a neural network-based approach for learning to represent
the behavior of plastic solid materials ranging from rubber and metal to sand and
snow. Unlike elastic forces such as spring forces, these plastic forces do not result
from the positional gradient of any potential energy, imposing great challenges on
the stability and flexibility of their simulation. Our method effectively resolves this
issue by learning a generalizable plastic energy whose derivative closely matches
the analytical behavior of plastic forces. Our method, for the first time, enables
the simulation of a wide range of arbitrary elasticity-plasticity combinations using
time step-independent, unconditionally stable optimization-based time integrators.
We demonstrate the efficacy of our method by learning and producing challenging
2D and 3D effects of metal, sand, and snow with complex dynamics.

1 Introduction

Combining machine learning with physical simulations has recently attracted a lot of attention. A vast
amount of existing research adopts an end-to-end approach, where the specific underlying computa-
tional physics system is treated as a black box [46, 41]. Harnessing the power of neural networks, this
research has been successfully applied in computer animation [10], multibody systems [3, 6, 59, 12],
human musculature simulation [20], computational fluid dynamics [4, 13], and non-linear contin-
uum mechanics [5]. An alternative direction is represented by physics-informed neural networks
(PINN) [44, 21], where in its original form, the residual of a partial differential equation is directly
used as the loss function so that the network training is a physics-aware learning process. PINN
becomes powerful when the design space of the input to the network can be parameterized, which
accelerates both the roll-out and the inverse optimization process [51]. Another noteworthy category
is learning the physical modeling where the machine can either help increase the model resolution in
a coarser grid [24], inject nonlinearity to a linear model [37], or apply a learnable model reduction to
reduce the system degrees-of-freedom (DOF) for acceleration [47, 48].
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Despite its great success, training a neural network to replace a traditional simulator is not always
the preferred choice. This is partially due to the challenges in the trained model’s generality and
portability. For example, a trained model on a particle-based deformable body solver (such as the
Material Point Method (MPM [19]) cannot be directly applied to the mesh-based Finite Element
Method (FEM) [49], while in traditional continuum mechanics, the constitutive model that describes
the relationship between force and deformation is an independent module from the underlying
geometric description or simulation scheme. Indeed, by simply switching the constitutive model and
applying minor changes to the existing and general simulation pipeline, a wide range of materials
can be simulated in the same framework, ranging from sand [42, 9, 23, 52] and metal [39], to snow
[15, 57, 35] and glacier [58].

Many elastic materials, including those represented by mass-spring systems [2] and common hypere-
lastic solids [50], are usually governed by analytical elastic potential energy functions in terms of the
deformation. These models are well fitted to experiments and proven to be simple, accurate, and pre-
dictive. Although most of these energy functions are highly nonlinear and non-convex, reformulating
the dynamic simulation process as a numerical optimization problem and solving it using projected
Newton and line search can guarantee global convergence to a solution [28]. Beyond hyperelasticity,
plasticity is much more challenging. The mechanical response of plastic materials imposes extra
difficulties in the implementation as it is path-dependant and non-smooth. One common handling
of plasticity is the return mapping algorithm, which applies the effects of plastic deformation to the
elastic forces. However, this leads to asymmetrical force derivatives, which eliminate the possibility
of integrating the plasticity into the energy function in a single optimization and complicates the
pipeline. In the recent work of Energetic Consistent Inelasticity (ECI) [34], the plasticity is analyt-
ically modeled as an energy functional, and the simulation can be formulated as an optimization
problem just like simulating pure elastic materials. However, their analytical derivation only works
for St.Venant-Kirchhoff (StVK) elasticity with the von-Mises plasticity.

In this work, we propose PlasticityNet, a neural network-based approach for learning an energy-
based force that locally approximates elastic forces with plasticity models and is compatible with
optimization time integrators. PlasticityNet framework supports any combinations of elastic models
and plastic models and works with both MPM and FEM discretizations. With optimization time
integrators, we demonstrate that our framework can simulate vast types of plasticities, such as metal,
sand, and snow, with large time step sizes.

2 Related work

Classic Plasticity Models The classic plastic models utilized the geometry information of the plas-
ticity and are available for many applications. In the computer graphics community, researchers have
followed mechanical literature on the Drucker-Prager elastoplasticity model [42, 9], and developed
particle-based simulations of dry [23] and wet [52] sand. Extending a similar Cam-Clay plasticity
model, snow avalanches [15, 35], glacier calving [58] and food fracturing [57] are also captured
with high visual plausibility as well as physical accuracy. For metals and dough-like materials,
the von-Mises plasticity model [39] is usually adopted, while [56, 18] presented its anisotropic
extensions. Still, the implementation of these models in modern, optimization-based simulators is
cumbersome due to the non-integrable forces. Recently, [34] proposed an elastoplastic energy of
von-Mises plasticity under StVK elasticity for optimization time integrator, which can be viewed
as a special-case analytical solution to our framework under the same combination of elasticity and
plasticity. But our framework works for arbitrary combinations.

Data-Driven Plasticity Models The machine learning approach has been used to find new plastic
models using large sets of measurements and parameters, outperforming many long-standing hand-
crafted models. The macro-level constitutive relationship is learned from the results of the micro-level
simulations [40, 45]. A similar approach is applied in [53] to learn anisotropic hyperelasticity, where
additional geometrical information is included in the input. PINN can also be applied in plastic model
finding from experimental measurements [1, 54, 25], where the loss includes the stress and Hessian,
to infer stress with more accuracy in the implicit simulators. However, there does not exist any prior
work, to the best of the author’s knowledge, that tried to find variational form for arbitrary plasticity
model.
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Optimization Time Integration The optimization time integrators have advantages in terms
of stability under large deformations and large time step sizes. Many of the nonlinear systems
of equations that arise from implicit simulation can be integrated to get equivalent optimization
problems, which allow robust optimization techniques to be applied. The MPM simulator in this
work is based on [14], which formulated the backward Euler time integration with hyperelastic
materials as a minimization problem. [30] and [55] also explored domain decompositions and
hiearachical preconditioners to improve robustness and efficiency. The FEM simulator in this work is
based on Incremental Potential Contact (IPC) [29], which proposed a variational form for frictional
contacts. Their optimization-based frictional contact framework was also extended to codimensional
objects [31], rigid bodies [11, 26], articulated multibodies [7], reduced elastic solids [27], embedded
interfaces [60], and FEM-MPM coupled domains [33].

3 Background

3.1 Optimization Time Integration

In this section, we briefly introduce the optimization time integration for elastodynamics simulations
with the Material Point Method (MPM) and the Finite Element Method (FEM). We refer the readers
to [28] and [14] for more details.

FEM discretizes the simulation domain as unstructured meshes (e.g., triangle meshes in 2D), while in
MPM, a point cloud composed of material particles is used to discretize the domain. While FEM
directly uses the mesh nodes as the simulation degrees-of-freedom (DOF), MPM transfers its particle
state to a uniform background grid, whose nodes are used as the DOFs for the integration of forces
[19]. Robust simulation of elastodynamics can be achieved via implicit time integration, which
updates the nodal positions (x) or velocities (v) step by step based on the previous physical states. To
step from tn to tn+1 = tn +∆t with time step size ∆t, with implicit Euler time integration rule, one
needs to solve a nonlinear system of equations

M(vn+1 − (vn + g∆t)) = ∆tfn+1. (1)

Here v is the velocity DOF formed by concatenating all nodal velocity vectors, similarly concatenated,
M is the mass matrix, g is the gravitational acceleration vector, and f is the internal force vector.
Without plasticity, the internal force on a node i can be calculated as

fn+1

i = −
∑

q

V 0
q P(Fn+1

q )∇wiq, (2)

where q iterates the surrounding elements/particles of node i in FEM/MPM, V 0
q is the initial volume

of the element/particle, F = (I +∆t∇v)Fn (MPM) or F = ∇xn +∆t∇v (FEM) is the deformation
gradient, which measures deformation from the undeformed state to the deformed state, and P is the
first-Piola Kirchhoff stress, which describes the internal force per unit area within a material. ∇wiq

is the gradient of the weight function on node i evaluated on an element/particle center. The weight
function is for transferring physical quantities between the elements/particles and the mesh/grid
nodes. Unlike FEM, the last time step is used in MPM as the reference configuration, and so ∇wiq is

calculated as Fn⊤
q ∇wn

iq .

When there exists an energy density function Ψ such that P(F) = ∂Ψ
∂F

, solving Equation 1 is equivalent
to solving the following optimization problem

vn+1 = argminv

1

2
∥v − (vn + g∆t)∥2M +

∑

q

V 0
q Ψ(Fq). (3)

This formulation is more favored because with line search methods, convergence to a local minimum
of Equation 3 can be guaranteed even when simulating challenging cases with stiff materials or large
time step sizes. After solving for the velocity vn+1, FEM directly updates mesh nodal positions
as xn+1 = xn +∆tvn+1, while for MPM, the velocity on the grid node is interpolated to particle
locations for particle advection. The background grid is reset at the beginning of each time step,
which allows MPM to benefit from the conveniences of a regular grid and a mesh-free formulation at
the cost of some accuracy loss due to the transfers between the grid and particles.

3.2 Return Mapping for Plasticity
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gradients of learned potential energies, so that optimization time integration could be applied to
achieve robust and efficient simulation at large time step sizes. We demonstrated that low-level
components in traditional physical simulation frameworks can be substituted with neural networks
to obtain desired numerical properties that benefit the computation. Notably, this also avoids
tedious analytical derivations or expensive nonlinear root-findings without significantly sacrificing the
accuracy. We believe our work can inspire more research that applies machine learning to physical
simulation in the bottom-up style, maintaining fundamental physical properties and applicability to
general scenarios.

Limitations and Future Work There are several limitations of our framework. (1) We cannot
guarantee our fixed-point iteration will converge for arbitrary scenes. It is theoretically valuable to
explore under what conditions the fixed-point can converge and what loss functions can accelerate
the convergence. (2) Although the regularizer added during the simulation improves the stability
of the simulation without changing the solution at convergence, it may introduce some artificial
viscosity because the regularized energy penalizes deformations away from F0. Running more
fixed-point iterations can alleviate this issue. It will also be interesting to explore adaptive weighting
mechanisms for the regularizer, or convert this soft regularizer into a hard constraint. (3) We do
not consider the Hessian of the learned plastic energy in our training. Since we use second-order
methods to perform optimization time integration, the properties of the Hessian matrices may have an
impact on the convergence of the optimization method. Although the Jacobian matrices of the target
gradients are asymmetric, it may be helpful if the Hessian of our learned elastoplastic energy can
approximate them so that the stiffness of the material can be more accurately resolved. (4) Principled
physical assumptions of the learned potential energies by PlasticityNet, such as lower-boundedness
and convexity, are not enforced. It is interesting to explore whether enforcing these energy properties
would positively influence the convergence of the optimizations and fixed-point iterations. (5) A
trained PlasticityNet can be directly re-scaled to accommodate a different Young’s modulus, but it
needs to be re-trained for materials with different Poisson’s ratio or plasticity parameters. It is an
important future work to let our model more easily generalize to different parameters. For example,
these parameters can become extra inputs to the neural network. The generalized energy can also be
integrated into differentiable simulators [16, 43] to solve many inverse problems [38, 36, 32].
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A Appendix

A.1 Network Architecture

All our models are using the Multilayer Perceptron (MLP) architecture with Swiss activation functions
(x sigmoid(x)) except the output layer. They are trained using ADAM optimizer with the same
parameters: initial learning rate α = 0.01, decay rate γ = 0.95, decay step 1000. The dataset
is generated during the training process with random sampling, as discussed in Section 5.1, and
the batch size is 216 for all cases. The models are all trained with 20000 epochs. The detailed
architectures for each model is listed in Table 2.

A.2 Technical Details on Plasticity Models

We focus on isotropic materials, where the elasticity and plasticity can both be described in the
diagonal space without loss of generality. Given the polar singular value decomposition of the
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A.2.4 Metal Plasticity under Neo-Hookean Elasticity

The combination of neo-Hookean elasticity and von-Mises plasticity does not have a closed-form
return mapping, we thereby use this combination for the task of learning metal plasticity return
mapping. The Kirchhoff stress of neo-Hookean elasticity is given by

τ = µ(Σ2 − 1) + λ log J1. (24)

The implicit representation of the elastic region we used in the training of the return mapping is given
by

y(Σ, h) = ∥τ −
1

d
sum(τ )∥2 − (2µh)2. (25)

During training, h is sampled from [0, 1].

17


	Introduction
	Related work
	Background
	Optimization Time Integration
	Return Mapping for Plasticity

	PlasticityNet
	Hardening of Plasticity
	Optimization Time Integration with PlasticityNet
	Learning Volume-Preserving Return Mapping

	Experiments
	Training
	Testing on 2D Simulations
	Ablation Studies
	Testing on 3D Simulations

	Conclusion
	Appendix
	Network Architecture
	Technical Details on Plasticity Models
	Sand Plasticity
	Snow Plasticity
	Metal Plasticity under StVK Elasticity
	Metal Plasticity under Neo-Hookean Elasticity



