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Abstract
This study explores the impact of content creators’
competition on user welfare in recommendation
platforms, as well as the long-term dynamics of
relevance-driven recommendations. We establish
a model of creator competition, under the setting
where the platform uses a top-K recommendation
policy, user decisions are guided by the Random
Utility model, and creators, in absence of explicit
utility functions, employ arbitrary no-regret learn-
ing algorithms for strategy updates. We study the
user welfare guarantee through the lens of Price of
Anarchy and show that the fraction of user welfare
loss due to creator competition is always upper
bounded by a small constant depending on K and
randomness in user decisions; we also prove the
tightness of this bound. Our result discloses an
intrinsic merit of the relevance-driven recommen-
dation policy, as long as users’ decisions involve
randomness and the platform provides reasonably
many alternatives to its users.

1. Introduction
“(Producers) are led by an invisible hand to make
nearly the same distribution of the necessaries of
life... thus without intending it, without knowing
it, advance the interest of the society.”
— Adam Smith, The Theory Of Moral Sentiments,
1759.

Online recommendation platforms such as Instagram and
YouTube have become prevalent in our daily life (Bobadilla
et al., 2013). At the core of those platforms is a recom-
mender system (RS) designed to match each user with the
most relevant content based on predicted relevance. Such
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a practice, often referred to as the top-K recommendation,
is believed to improve user satisfaction and has served as a
rule-of-thumb principle in both academia and industry for
decades (Konstan et al., 1997; Koren et al., 2009; He et al.,
2017).

Until recently, the community came to realize that users’ util-
ities cannot be maximized unilaterally due to the potential
strategic behaviors of content creators (Qian & Jain, 2022).
Because the content creators’ utilities are directly tied to
their content’s exposure, they are motivated to adaptively
maximize their own utilities. This leads to competition that
may potentially harm the social welfare (defined as the total
user satisfaction/engagement) (Fleder & Hosanagar, 2009).
For example, consider a scenario where the user population
contains a large group of sports fans and a small group of
travel enthusiasts. Social welfare is maximized when the
available content for recommendation covers both topics.
However, one possible equilibrium of the competition is
that all creators post homogeneous sports content when the
gain from creating niche content cannot compensate for the
utility loss caused by abandoning the exposure from the
majority of users. It is thus urgent to understand in the long
run how bad the social welfare loss could be under strategic
content creators driven by a top-K RS.

In this work, we propose the competing content creation
game to model the impact of the creators’ competition on
user engagement in a top-K RS. We measure the social wel-
fare guarantee through the lens of Price of Anarchy (PoA)
(Koutsoupias & Papadimitriou, 1999), which quantifies the
inefficiency of selfish behavior by the ratio between the
worst-case welfare value of the game’s equilibrium and that
of an optimal outcome. Some previous works touched upon
this question under different competition models, and their
answers are all pessimistic. For example, Ben-Porat & Ten-
nenholtz (2018) noticed that the PoA of social welfare under
the RS implemented by a Shapley mediator is unbounded.
Ben-Porat et al. (2019) studied a competition model in 1-
dimensional space and showed that the PoA under the top-1
matching principle could be as bad as a constant 2. These
negative results are either based on a deterministic user
choice model or assume creators compete for the shares
of content exposure. We overturn these pessimistic conclu-
sions by showing that the PoA induced by a top-K RS is at
most 1 +O( 1

logK ) when (1) K > 1, (2) user choices have
mild stochastic noises, and (3) creators are incentivized to
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compete for user engagement instead of content exposure.
We also prove its tightness by analyzing a lower-bound in-
stance. Thus an RS under these assumptions will approach
the optimal efficiency (i.e., PoA ratio approaches 1) when K

grows, though at a relatively slow rate of 1/ logK. Notably,
our PoA upper bound also holds in dynamic settings where
creators gradually learn to improve their strategies in an on-
line fashion. Extensive synthetic and real-world data based
simulations also support these theoretical findings. Overall,
our results robustly demonstrate that content creation com-
petitions are efficient under properly set incentives. This
echoes the famous insight of Adam Smith, as cited at the
beginning of the section, about the market’s “invisible hand”
on driving socially efficient production of goods.

Our results rely on three key assumptions, all of which find
their roots in recommendation literature and practice. First,
on the platform side, we assume the top-K RS is based on
a relevance function that best predicts user satisfaction if
recommended content is consumed. To simplify our set-
ting, we assume the true relevance function is known to
the RS, since a tremendous amount of research has been
spent on this aspect (Bobadilla et al., 2013; Konstan et al.,
1997; Koren et al., 2009; He et al., 2017) and the goal of our
study is not to improve its estimation. Second, on the user
side, we employ the well-established Random Utility (RU)
model (Manski, 1977) to specify the distributional struc-
ture of a user’s choices and resulting utility when presented
with a list of recommendations. The RU model has been
widely adopted and found its success in marketing research
to model consumer choices (Baltas & Doyle, 2001). Third,
on the creator side, we assume that their utilities collected
from matching their content with a user are proportional to
the user’s utility, as it is a common practice by platforms
to set revenue sharing with content creators proportional
to the user’s satisfaction or engagement (Meta, 2022; Savy,
2019; Youtube, 2023; TikTok, 2022). When we move on
to the dynamic setting where the creators do not have or-
acle access to their utility functions, we allow creators to
adopt arbitrary no-regret learning algorithms, which cover a
variety of rational learning behaviors.

2. Related Work
The theoretical studies of content creators’ strategic behav-
ior under the mediation of an RS date back to the sem-
inal works from Ben-Porat & Tennenholtz (2018; 2017),
where they extended the game setting in search and ranking
systems (Ben Basat et al., 2015; Raifer et al., 2017) and
proposed an RS based on Shapley value that leads to the
unique PNE and several fairness-related requirements. How-
ever, they showed that the social welfare under the proposed
Shapley mediator could be arbitrarily bad.

Another line of work studies the RS with strategic content

creators under the Hotelling’s spatial competition frame-
work (Hotelling, 1929). First introduced by Hotelling
(1929), Hotelling’s model studied two restaurants trying
to determine their locations to attract customers who are
evenly distributed on the segment [0, 1]. The Nash equi-
librium (NE) of the resulting game is that both restaurants
locate at the center, known as the “principle of minimum
differentiation”. Recently, Shen & Wang (2016) proposed
a variant of Hotelling’s competition in which each player
has its attraction region, and they showed that the PoA is
2 in the worse case. We show that their game settings are
special cases of our proposed competing content creation
game in Appendix H, and thus our main result directly im-
plies their PoA bound. A more closely related work is from
Ben-Porat et al. (2019), where they introduce the RS into
the competition as a mediator who directs users to facilities.
They studied mediators with different levels of interven-
tion and proposed a limited intervention mediator with a
good trade-off between social welfare and intervention cost.
Interestingly, their game setting under a no-intervention me-
diator also turns out to be a special case of ours. We also
note that the problem settings and theoretical discussions
in both (Shen & Wang, 2016) and (Ben-Porat et al., 2019)
are limited to pure strategy in 1-dimensional cases with a
distance-induced user utility function, while our model and
result apply to arbitrary dimensions and a generic form of
user utility functions.

Two recent works (Hron et al., 2022; Jagadeesan et al.,
2022) studied the supply-side competition where the cre-
ators’ strategy space is high dimensional. Their models
assume creators directly compete for user exposure without
considering the role of an RS. They focused on the charac-
terization of NE and the identification of conditions under
which specialization among creators’ strategies may occur.
In contrast, we study the social welfare under the impact of
a top-K RS without being limited to the existence of NE,
and our result applies to general user utility functions.

3. A Model of Content Creator Competition
In this section, we formalize the competing content
creation game. The game G is defined by a tuple
({Si}ni=1,X ,�,�,K) with the following ingredients:

1. A finite set of users X = {xj 2 Rd}mj=1, and a set
of players (i.e., content creators1) denoted by [n] =
{1, · · · , n}. Each player i can take an action si, often
referred to as a pure strategy in game-theoretic literature,
from an action set2 Si ⇢ Rd. si can be understood as
the embedding for the type of content that creator i can

1We use these two terms interchangeably when there is no
ambiguity.

2The action sets are not assumed to be finite and thus can be
continuous.
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produce. Let S =
Qn

i=1 Si denote the space of joint
strategies. As a convention, for any s = (s1, · · · , sn) 2
S, we use s�i to denote the joint strategy s excluding
si. Moreover, we use ↵i 2 �(Si) to denote a mixed
strategy of player i, which is a probability measure with
support Si. Similarly, ↵ 2 �(S) is used to represent a
(possibly correlated) joint strategy profile distribution
over all players.

2. A relevance function �(s,x) : Rd ⇥ Rd ! R�0 which
measures the relevance between a user x 2 X and
content s. Without loss of generality, we normalize �

to [0, 1], where 1 suggests perfect matching. We focus
on modeling the strategic behavior of creators and thus
abstract away the estimation of �.

3. Recommendation policy: given a joint strategy s =
(s1, · · · , sn) 2 S for all players, for each user xj , the
RS first calculates the relevance scores {�(si,xj)}ni=1
over all available content and then generates Tj(s;K),
the subset of s containing the top-K recommendations
for user j. Formally,

Tj(s;K) = {sli |i = 1, · · · ,K}, (1)

where (li)ni=1 is a permutation of [n] such that
�(sl1 ,xj) � �(sl2 ,xj) � · · · � �(sln ,xj).3

4. User utility and choice model: we employ the widely
adopted random utility (RU) model to capture users’
utility and choices of recommendations. Formally, the
RU model assumes that the utility for user xj to con-
sume content si is �(si,xj) + "i, where "i is a noise
term containing any additional uncertainty that cannot
be captured by the RS’s prediction �(si,xj) (e.g., user’s
mood at that moment). The RU model assumes that {"i}
are i.i.d. random, which are often assumed to follow
the Gumbel distribution with cumulative distribution
function Gumbel(µ,�) = e

�e
� x�µ

� .4 We further as-
sume "i is zero mean, thus implying µ = ��� where
� ⇡ 0.577 is the Euler–Mascheroni constant. The vari-
ance of Gumbel(���,�) is ⇡�p

6
and the parameter �

measures the noise level.

Upon receiving the recommended list Tj(s;K), user j

3When (li)
n
i=1 is not unique, Tj(s;K) can be the top-K trun-

cation of any such permutation with equal probability.
4There are many natural reasons to use the Gumbel noise model.

This noise model is nearly indistinguishable from a Gaussian distri-
bution empirically, but has slightly thicker tails, allowing for more
aberrant user behavior. The RU model with Gumbel noise is also
known as the multinomial logit model (McFadden, 1974). It deeply
connects to the discrete choice model (McFadden, 1984), quantal
response equilibrium to capture bounded rational behaviors (McK-
elvey & Palfrey, 1995), and entropy regularizer for optimizing
randomized strategies (Ling et al., 2018).

chooses i⇤j 2 Tj(s;K) that maximizes her utility:

i
⇤
j = arg max

si2Tj(s;K)
{�(si,xj) + "i}. (2)

Note that i⇤j is random, with randomness inherited from
{"i}. Consequently, user j derives the following ex-
pected utility ⇡j from consuming the selected content

⇡j(s) , E{"i}


max

si2Tj(s;K)
{�(si,xj) + "i}

�
. (3)

5. Player utilities: following the convention, we assume
that each player i’s expected utility is the sum of the
utilities from users that i served, i.e.,

ui(s) =
mX

j=1

E[�(si,xj) + "i|xj � si] ·Pr[xj � si],

(4)

where “xj � si” denotes the event i⇤j defined in (2)
equals i. Elegantly, Pr[xj � si] / e

��(xj ,si) for any
i 2 Tj(s;K) (McFadden, 1974) and Pr[xj � si] = 0
if i /2 Tj(s;K).

6. Social welfare: the social welfare function is defined as
the total utilities from all the users:

W (s) =
mX

j=1

⇡j(s). (5)

Note that under the player utility function (4), we have
W (s) =

Pn
i=1 ui(s). That is, the social welfare is also

the total utility of players.

We remark that the player i’s utility defined in (4) de-
pends on not only the proportion of users matched with
i, but also the user’s engagement reflected in the term
E[�(si,xj) + "i|xj � si]. This differs crucially from
the settings in Hotelling’s competition (Hotelling, 1929)
and its recent applications to recommender systems (Shen
& Wang, 2016; Ben-Porat et al., 2019; Hron et al., 2022;
Jagadeesan et al., 2022), where players’ utilities are set to
the total user exposure, i.e., total number or proportion of
user visits (regardless of how satisfied the users are with
the recommendations). Both metrics have been widely used
in current industry practice to reward creators (Meta, 2022;
Savy, 2019). In this paper, we primarily consider user en-
gagement (i.e., the previously less studied case) as the cre-
ator’s utility, and in Section 4.2 we will compare it with the
user exposure metric to highlight their different impact.

Our research question and equilibrium concept. We are
particularly interested in quantifying the average social wel-
fare when creators learn to update their strategies adaptively.
Specifically, we consider the repeated form of a competing
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content creation game played by n creators over a period
of time T . At each time t, each creator chooses an action,
observes the utility induced by all creators’ strategies at
that round, and uses the feedback to adjust their subsequent
actions. Naturally, creators aim to optimize their accumu-
lated utility over the course of interactions. However, in
real-world online recommendation platforms, creators can
only evaluate the utility of their chosen actions and have
to gradually learn their optimal strategies through trial and
error with such limited information (i.e., bandit feedback).
A natural notion for capturing the “reasonable” learning
behavior under such an environment is no regret. The (ex-
ternal) regret Ri(T ) for player i is defined as the difference
between her optimal utility in hindsight and the realized
accumulated utilities, i.e.,

Ri(T ) = max
s0i

TX

t=1

Es�i⇠↵t
�i

[ui(s
0
i, s�i)]�

TX

t=1

Es⇠↵t [ui(s)]

(6)
where ↵t =

Qn
i=1 ↵

t
i denotes the joint-strategy distribution

at time t. Player i’s learning has no regret if Ri(T ) = o(T ),
or equivalently, the average regret Ri(T )/T ! 0 as T goes
to infinity. Note that such no-regret algorithms exist since
any no-regret adversarial online learning algorithm (e.g.,
Exp3 in bandit literature (Auer et al., 2002)) guarantees no
regret in such a multi-agent learning setup.

To characterize the outcome under no-regret learning play-
ers, we focus on an equilibrium concept termed coarse cor-
related equilibrium (CCE), as it is well known that the em-
pirical action distribution of any no-regret playing sequence
in a repeated game converges to its set of CCEs (Blum et al.,
2008). The formal definition of CCE is as follows:
Definition 1. A coarse correlated equilibrium (CCE) is a
distribution ↵ over the space of joint-strategy profile S such
that for every player i and every action s0i 2 Si,

Es⇠↵[ui(s)] � Es⇠↵[ui(s
0
i, s�i)]. (7)

Thanks to the nice connection between no-regret dynamics
and CCE, we first establish the welfare guarantee for CCE in
Section 4.1 and then extend it to account for the accumulated
welfare induced by repeated plays in Section 4.2.

We also note that the concept of CCE is particularly useful
for two additional reasons. First, CCE always exists in any
finite games (thus in our game), hence eliminating the ne-
cessity to address the existence of Nash equilibrium (NE),
perhaps the most celebrated solution concept, as in previous
research (Hron et al., 2022). In fact, when the action sets
are continuous, the existence of NE (either pure or mixed)
cannot be guaranteed in our game as the player utility func-
tion defined in (4) is not continuous. This is an inherent
challenge of the problem, as any change in �(s,x) may
result in a different top-K recommendation list Tj(s;K),
leading to dramatically different player utilities. Similar

challenges and the non-existence of mixed NE have also
been observed by Hron et al. (2022), though their utility
model and research questions differ from ours. Second,
even in situations where NE exists, it is more realistic to
assume that players eventually achieve some CCE rather
than NE due to various criticisms about NE, including the
computational concerns (Daskalakis et al., 2009) of NE.

4. The Price of Anarchy Analysis
We analyze the social welfare of any top-K RS under any
possible CCE; or more specifically, how bad can the welfare
possibly be due to the competition among self-interested
content creators – compared to the idealized non-strategic
situation in which the platform can “dictate” all creators’
content choices and thus globally optimize the welfare func-
tion (5). This can be captured by the celebrated concept of
the Price of Anarchy (PoA) (Koutsoupias & Papadimitriou,
1999). As its name indicates, PoA captures the welfare inef-
ficacy due to players’ selfish behavior. Our main result in
this section is a comprehensive characterization of the PoA
of competing content creation games.
Definition 2 (PoA under CCE). Define the price of anarchy
of a game G as

PoA(G) = maxs2S W (s)

min↵2CCE(G) Es⇠↵[W (s)]
, (8)

where CCE(G) is the set of CCEs of G.

By definition, PoA(G) � 1 always holds and larger values
indicate worse welfare. Our choice of the CCE concept leads
to the strongest possible welfare guarantee in the sense that
any upper bound of PoA under CCE also trivially holds for
the PoA under refined solution concepts such as correlated
equilibrium (CE), PNE or mixed NE (if they exist), since
these are all CCEs as well. Unless otherwise emphasized,
any PoA in this paper refers to the PoA under CCE.

4.1. Matching PoA Upper and Lower Bounds

Our main theoretical findings are an upper and lower bound
for the PoA, which match with each other and thus demon-
strates the tightness of our analysis. We first present the
upper bound as follows.
Theorem 1. The PoA of any competing content creation
game instance G with parameter � � 0 and K � 1 satisfies

PoA(G) < 1 +
1

c(�,K)
, (9)

where c(�,K) is defined as

c(�,K) =
(b+ 1) log(b+K)

(b+K)(log(b+K)� logK)
, b = e

1
� � 1. (10)
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The proof of Theorem 1 is intricate and thus the detailed
arguments are relegated to Appendix A. The primary chal-
lenge in the proof is to analyze various smoothness proper-
ties of the welfare and players’ utility functions, especially
how the welfare function changes after excluding any player
i’s participation. In Section 4.3, we highlight some of the
noteworthy properties of the welfare function, including
its submodularity, which we develop en route to proving
Theorem 1 but is also of independent merit towards under-
standing the competing content creation game.

The format of c(�,K) may not be intuitive enough for the
readers to appreciate the derived PoA upper bound. We thus
provide the following observations, which reveal various
properties of c(�,K) aiding the interpretation of (9):

1. For any � > 0 and K � 1, we have c(�,K) � 1 and
thus PoA(G) < 2 always holds.

2. c(�,K) = 1 if and only if K = 1 or � ! 0.

3. Fix any � > 0, c(�,K) monotonically increases in
K; similarly, fix any K � 1, c(�,K) monotonically
increases in �.

4. For sufficiently large � and K, c(�,K) ⇡ (1+�) logK
asymptotically, and therefore

PoA(G) < 1 +
1

(1 + �) logK
. (11)

Based on these observations, Theorem 1 has multiple in-
teresting and immediate implications. First, the welfare
loss under any CCE is at most half in any situation, as the
PoA is always upper bounded by 2. The second and third
facts above show that such worst-case PoA occurs and only
occurs when users’ choices are made in a “hard” manner:
either the RS dictates the user’s choice by setting K = 1
or the randomness in users’ choices is extremely low (i.e.,
� ! 0). Note that in the latter case, the user will only con-
sume the most relevant content (i.e., the top-ranked content)
due to small decision randomness.

Second, the welfare guarantee improves as either K in-
creases (i.e., more items are recommended) or � increases
(i.e., users’ choices have more randomness). Welfare im-
provement in the latter situation is intuitive because when
supplied with multiple items, the user can pick the content
with large "i (i.e., the reward component that is not pre-
dictable by the RS) to gain utility. These together reveal an
interesting operational insight that when the RS cannot per-
fectly predict user utility (i.e., � > 0), providing more items
can help improve social welfare. This justifies top-K recom-
mendation and the necessity of diversity in recommendation
(Hurley & Zhang, 2011).

Our following second main result shows that this PoA upper
bound is tight, up to negligible constants.

Theorem 2. Given any 0  �  1, n > 2 and any 1 
K  min{n � 1, e

1
5� }, there exists a competing content

creation game instance G({Si}ni=1,X ,�,�,K) such that

PoA(G) > n� 1

n
+

1

1 + 5� logK
. (12)

This theorem also implies that the argument we employed
for Theorem 1, which is based on the smoothness proof de-
veloped by Roughgarden (2015), yields a tight PoA bound
for our proposed game. The tightness of the smoothness ar-
gument is itself an intriguing research question. Only three
classes of games are known to enjoy a tight PoA bound
derived from the smoothness argument: congestion games
with affine cost (Christodoulou & Koutsoupias, 2005), sec-
ond price auctions (Christodoulou et al., 2008), and the valid
utility game (Vetta, 2002), which are all fundamental classes
of games. Theorem 2 suggests that our competing content
creation game subscribes to this list. The proof of Theorem
2 is to explicitly construct a game instance which provably
yields the stated PoA lower bound (see Appendix D).

4.2. Implications of the PoA Bounds

We have discussed some direct implications of Theorem 1.
Now we develop new results which are either derived from
or can be compared to Theorem 1 and 2. They will reveal
additional insights from our main theoretical results.

Welfare implications to learning content creators. The
PoA bounds presented in Theorem 1 and 2 are based on the
assumption that creators are aware of the game parameters
and play some CCEs of the game. While CCE is a reason-
able equilibrium concept, one potential critique is that to
find the CCE, it is assumed that each creator has knowl-
edge about the system parameters (e.g., all other creators’
strategies and the � function), which can be unrealistic.
Fortunately, in real-world scenarios where creators utilize
no-regret algorithms to play a repeated competing content
creation game with bandit feedback, we can still establish a
slightly worse PoA upper bound leveraging the fact that the
average strategy history of no-regret players converges to a
CCE, as shown in the following Corollary 1.
Corollary 1. [Dynamic Version of Theorem 1] Suppose
each player in a repeated competing content creation
game G({Si}ni=1,X ,�,�,K) independently executes some
no-regret learning algorithm, with worst regret R(T ) =
maxi Ri(T ) as defined in (6). Then we have

maxs2S W (s)
1
T

PT
t=1 Es⇠↵t [W (s)]

< 1+
⇣
1+

n
� logK

·R(T )
T

⌘
· 1
c(�,K)

,

(13)
where ↵t denotes the joint-strategy distribution at step t

and c(�,K) is the constant defined in (10).

In other words, the average welfare across all rounds
1
T

PT
t=1 Es⇠↵t [W (s)] is close to the maximum possible
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welfare maxs2S W (s), up to a constant factor. The quan-
tity in the LHS of (13) is also known as the “price of total
anarchy” (Blum et al., 2008). It is a substitute for PoA
when we want to characterize the welfare of an outcome
from repeated play which does not necessarily fall into any
equilibrium concept. The proof of Corollary 1 is presented
in Appendix B. Because R(T )/T ! 0 as T ! 1 for
any no-regret algorithm (most no-regret algorithms have
R(T ) = O(

p
T )), the RHS of (13) is still strictly less than

2 for any fixed constants (n,�,K).

Theorem 1 relies on two crucial platform features: 1. the
player’s utility in (4) is defined as the total user engagement
that accounts for the user utility �(si,xj) + "j , as opposed
to just “user exposure” (i.e., the expected total number of
matches); 2. the platform uses the top-K recommenda-
tion policy. Next, we illustrate the insights revealed from
Theorem 1 with respect to these two key features.

The importance of rewarding user engagement rather
than solely exposure. A key reason for the nice
PoA guarantee in our competing content creation game
is each player i’s utility is chosen as the user engagementP

j E[�(si,xj) + "i|xj � si]Pr(xj � si) in (4), while
not the following user exposure metric:

User exposure for player i :
mX

j=1

Pr(xj � si). (14)

Our next result shows that incentivizing creators to maxi-
mize user exposure can lead to significantly worse welfare.

Proposition 1. Let G̃ denote the variant of the competing
content creation game G = ({Si}ni=1, {xj}mj=1,�,�,K)
by substituting player utility function in (4) by the above
user exposure in (14). Then for any K � 1, 0  � 
min{0.14, 1

5 logK }, there exist G and G̃ such that

PoA(G̃) > 2 > PoA(G). (15)

Moreover, when K = 1 or � approaches 0, PoA(G̃) can be
arbitrarily large.

In stark contrast to Theorem 1 guaranteeing PoA(G) < 2,
Proposition 1 implies the deterioration of user welfare when
content creators are incentivized to compete for the expected
exposure of their content. However, we find in practice both
metrics are used: for example, user engagement has been
used more often as a reward metric for established creators,
whereas user exposure is used more for new creators (Meta,
2022; Savy, 2019). Our result serves as a theoretical defense
for rewarding creators by user engagement if the system
aims to improve overall welfare of the users.

To prove Proposition 1, we construct a game instance in
which the user welfare at NE is arbitrarily close to zero. Our
construction also reveals interesting insights about situations

where user welfare can be very bad. Hence, we briefly ex-
plain our construction here and leave our formal arguments
in Appendix E. Our constructed game has two groups of
users: one dispersed group that is fine with any content but
is never very happy with it (i.e., a low relevant score for
all content) and one focused group who looks for a specific
type of high-quality content (a high relevance score on such
content); but only a small group of specialized creators can
produce such high-quality content. However, if players are
incentivized to compete for exposure, even creators from the
small group tend to produce low-quality content that appeals
to the dispersed group rather than high-quality content that
benefits the focused group. This, in the worse case, can lead
to arbitrarily worse welfare for the platform.

The welfare efficiency of top-K recommendation policy.
One may wonder whether the top-K recommendation is
indeed a good policy for securing the platform’s welfare,
i.e., is it possible that other recommendation policies (e.g., a
probabilistic policy based on Plackett-Luce model (Plackett,
1975; Luce, 1959)) may even lead to better equilibrium out-
comes? Our following analysis, as a corollary of Theorem
1, shows that the answer is to some extent no since any rec-
ommendation policy cannot be better than the top-K rule by
more than a tiny fraction of the theoretical optimality. We
believe this finding also serves as a theoretical justification
for the wide adoption of the top-K principle in practice.
Corollary 2. Consider an arbitrary recommendation policy
providing at most K recommendations, which induces a
different competing content creation game G0. Let CCE(G0)
denote the corresponding CCE set of G0 and W (G0) =
min↵2CCE(G0) Es⇠↵[W (s)] be its worst-case CCE wel-
fare. Then we have

W (G0)  W (G) +W
⇤
K/

⇣
1 +

K log(K + b)

K + b

⌘
, (16)

where W
⇤
K is the best possible social welfare achieved via

any centralized recommendation policy with K slots.

As indicated by (16), the fraction of the loss of welfare is
approximately O( 1

logK ) as K
K+b ⇠ O(1) when K is large.

The proof is straightforward based on Theorem 1 and can
be found in Appendix C.

4.3. Proof Highlights of Theorem 1

Our first step is to derive clean characterizations for the
game primitives by utilizing properties of Gumbel distri-
bution. The form of the user utility ⇡j and welfare W are
corollaries of RU models (Baltas & Doyle, 2001), however,
the closed-form of the creator utility ui is a new property
we derive. Detailed argument is deferred to Appendix A.1.

The main proof of Theorem 1 is based on a smoothness
argument framework developed in the seminal work by
Roughgarden (2015). For any strategy profile s, W (s) =

6
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P
i ui(si, s�i) is its total welfare function. A game is

(�, µ)-smooth if �W (s0) � µW (s) 
P

i ui(s0i, s�i) for
any (s, s0) 2 S. Roughgarden (2015) observes that the
PoA of any (�, µ)-smooth game can be upper bounded by
1+µ
� . After plugging in the expression of W (s), the (�, µ)-

smoothness condition can be re-written as
X

i

[�ui(s
0
i, s

0
�i)� ui(s

0
i, s�i)] 

X

i

µui(s).

Intuitively, the smoothness parameters bound how much
externality other players’ actions (i.e., s0�i or s�i) impose
on any player i’s utility. Moreover, the tighter this bound
is, the smoother the game is and the smaller the PoA is.
To gain some intuition and also as a sanity check, consider
the extreme situation in which each player’s utility is not
affected by other players’ actions at all (i.e., the no external-
ity situation), we have � = 1 and µ = 0 implying PoA=1.
That is, if any player’s utility is not affected by others, then
self-interested utility-maximizing behaviors also maximize
social welfare, which is a straightforward observation. Cer-
tainly, we cannot hope for such a nice property to hold in
general, but fortunately, many well-known games have been
shown to be smooth. For example, second-price auctions
are (1, 1)-smooth as shown by Christodoulou et al. (2008),
congestion games are ( 53 ,

1
3 )-smooth as shown by Rough-

garden (2015), and all-pay auctions are (1/2, 1)-smooth as
shown by Roughgarden et al. (2017).

Hence, the key challenge in proving Theorem 1 is to pin
down the tightest possible (�, µ) parameters for our compet-
ing content creation game. This boils down to a fundamental
question in top-K RS – i.e., to what extent does the exis-
tence of other competing content creators affect a creator’s
utility? To answer this question, we discover multiple inter-
esting properties of the welfare and creator utility functions
formulated as follows. Besides proving our main result in
Theorem 1, we believe these properties are also of interest
for us to understand recommender systems.

Our Lemma 1 demonstrates the submodularity of W (s).
That is, the marginal gain of welfare from adding a new
player decreases as the total number of creators increases.
Lemma 2 further relates this marginal welfare increase with
the added player’s own utility. It shows that the increased
welfare after introducing a new player i with strategy si
is at most i’s utility under si, multiplied by a shrinkage
factor c�1(�,K) 2 (0, 1]. These two lemmas together al-
low us to prove that the competing content creation game is
(c�1(�,K), c�1(�,K))-smooth, yielding Theorem 1. De-
tailed proofs are presented in Appendix A.2.
Lemma 1. [Submodularity of Welfare] For any s =
(s1, · · · , sn) 2 S, let S = {s1, · · · , sn}. The social wel-
fare function defined in Eq (5) is submodular as a set func-
tion, i.e., for any S, sx, sy it holds that

W (S[{sx})�W (S) � W (S[{sx, sy})�W (S[{sy}).

Lemma 2. [Smoothness of Welfare] For any s =
(s1, · · · , sn) 2 S, i 2 [n] and c(�,K) defined in Eq (10),
player-i’s utility function ui(s) defined in Eq (4) satisfies

W (s)�W (s�i)  c
�1(�,K) · ui(si; s�i).

5. Experiments
To confirm our theoretical findings and also to empir-
ically measure the social welfare induced by creators’
competition, we conduct simulations on game instances
G({Si}ni=1,X ,�,�,K) constructed from two synthetic
datasets and the MovieLens-1m dataset (Harper & Kon-
stan, 2015). Before presenting our results, we provide a
detailed overview of the simulation environment, including
the characteristics of the datasets utilized and the metrics
employed for evaluation.

5.1. Specification of Datasets

Synthetic Dataset-1. Dataset-1 simulates the situation
where content creators compete over an unbalanced user
interest distribution. We construct n user clusters with the
largest cluster containing half of the population, and let
each strategy from a creator’s action set generate content
that only appeals to a specific user group.

Specifically, the user population is given by disjoint clusters
X = [n

i=1Xi such that |X1| = m
2 , and the sizes of smaller

clusters |Xl| are sampled uniformly at random such thatPn
l=2 |Xl| = m

2 . Players share the same action set Si =
{s1, · · · , sn}, and the � function satisfies that for any i 2
[n],

�(si,x) =

⇢
1, if x 2 Xi,

0, otherwise. (17)

Dataset-1 depends on the randomness of the partition
[n
i=1Xi.

Synthetic Dataset-2. Dataset-2 simulates the situation
where content creators can either “chase the trend” by gen-
erating mediocre content or cater to a specific user interest
group with high-quality content. Similar to the construction
of dataset-1, we let the user population comprise of n clus-
ters and allow each player to take actions targeting at any
specific user group. But, in addition, we also allow each
player to take a “safe” action s0 by producing some popular
content that can satisfy all users to a certain extent �.

Specifically, the user population is also given by disjoint
clusters X = [n

i=1Xi, where the sizes of all clusters |Xl|
are sampled uniformly at random such that

Pn
l=i |Xl| = m.

Players share the same action set Si = {s0, s1, · · · , sn},
and the � function satisfies that for any i 2 [n],

�(si,x) =

8
<

:

1, if x 2 Xi, i � 1
�, if i = 0
0, otherwise.

(18)
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Table 1. PoA under � = 0.1. Results reflect the worst cases ob-
tained from 10 independently sampled game instances.

K

n * 2 3 4 5

1 2.00 1.33 1.54 1.66 1.72
2 1.93 1.28 1.46 1.56 1.60
3 1.89 1.42 1.47 1.51
4 1.86 1.43 1.42
5 1.84 1.42
⇤ denotes the theoretical upper bound.

Dataset-2 depends on the randomness of the partition
[n
i=1Xi and the parameter � 2 [0, 1].

The Dataset Generated from MovieLens-1m. We use
deep matrix factorization (Fan & Cheng, 2018) to train user
and movie embeddings targeted at movie ratings from 1 to 5.
The total number of users m = 6040, the number of movies
k = 3883, and the embedding dimension is set to d =
32. To validate the quality of the trained representations,
we first performed a 5-fold cross-validation and obtain an
averaged RMSE =0.883 on the test sets, and then train
the user/item embeddings with the complete dataset. The
resulting user embeddings X = {xj}j2[m] are used as
the user population. To construct each player-i’s action
set Si, we randomly sample 500 vectors from the trained
movie embedding set M (|M| = 3883) independently. To
normalize the relevance score to [0, 1], we let �(s,x) = 1
when the predicted rating of movie s to user x is at least 4,
i.e., �(s,x) = I[hs,xi � 4].

5.2. Evaluation Metrics

We use both PoA and PotA in our experiments. The eval-
uation of PoA requires solving two optimization prob-
lems, which are both intractable in general due to the
non-concavity of W (·) and the undetermined structure
of CCE(G). As a result, we use simulated annealing to
approach maxs2S W (s) when the exact computation is
intractable. To compute min↵2CCE(G) Es⇠↵[W (s)], we
compute its exact solution by solving a linear program with
k
n variables and kn constraints (Papadimitriou & Rough-

garden, 2005) for small n and a moderate size of action set k.
To deal with larger problems, we let each player run Exp3
(Auer et al., 2002) over T = 5000 rounds and compute
the price of total anarchy PotA(G) = maxs2S W (s)

1
T

PT
t=1 Es⇠↵t [W (s)]

.
More details are disclosed in Appendix I.

5.3. Results

Empirical PoA from simulations. We first demonstrate the
empirical welfare under different game parameter (n,K,�)
for dataset-1. We fix � = 0.1 and report PoA and PotA
under varying n and K. Results are reported in Table 1 and
2. We observe that for fixed n, both PoA and PotA decrease

Table 2. PotA under � = 0.1. Results reflect the worst cases
obtained from 10 independently sampled game instances.

K

n * 5 10 15 20 40

1 2.00 1.59 1.59 1.60 1.50 1.38
3 1.89 1.37 1.39 1.42 1.41 1.32
5 1.84 1.35 1.34 1.33 1.36 1.31
7 1.80 1.30 1.31 1.30 1.29

⇤ denotes the theoretical upper bound.

w.r.t. K and �, as revealed in Theorem 1. Furthermore,
under fixed (�,K), PoA approaches its theoretical upper
bound as n increases. However, PotA follows this trend
for values of n less than 15, but begins to decrease as n

increases further. This discrepancy can be attributed to
the fact that for larger values of n (i.e., in Table 2), the
approximated optimal welfare becomes less accurate and as
such, the PotA tends to be underestimated. We report the
results under different � in Appendix J.1.

Comparison between user engagement/exposure metrics.
Next we investigate the consequence of utilizing two dif-
ferent incentive metrics, namely user engagement vs., user
exposure. However, Dataset-1 is no longer a good bench-
mark for this purpose, as the utility functions derived under
a simple binary valued �(·, ·) are almost indistinguishable
under these two metrics. To this end, we use dataset-2,
which has a more complex �(·, ·) function that models the
situation in which creators could focus on chasing the trends
other than paying attention to the content quality.

We fix (�,K) = (0.1, 2) and report PotA under different
n and �. The results, shown in Figure 1, demonstrate the
advantage of using the user engagement metric, which con-
sistently leads to a smaller PotA across different values of
n and �. For n larger than 10, PotA with user-exposure
can exceed 2 as revealed by Proposition 15. The perfor-
mance gap between the two metrics is more distinct when
� gets smaller, which can be understood as when creators
can produce popular content with lower effort, simply using
exposure to reward creators can be catastrophic to the total
user welfare. Additional results under different experimen-
tal conditions can be found in Appendix J.2.

Social welfare under different levels of rationality. In
this experiment, we aim to investigate the competition out-
comes when players utilize online-learning algorithms with
varying levels of rationality. To better simulate what hap-
pens in practice, we employed the dataset generated from
MovieLens-1m (Harper & Konstan, 2015). In our simula-
tion, we model the scenario in which each player runs Exp3
under different exploration rates ✏ (i.e., with probability ✏,
each player will take a random action in each round). We

5Again, due to the approximation error in computing optimal
W , the PotA could be underestimated as n gets larger.
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Figure 1. PotA under exposure/engagement metrics with (�,K) =
(0.1, 2). � is the relevance score obtained from creators’ “safe”
action. The error bars indicate the largest/smallest values from 10
independent trials and the dots correspond to the mean values.

use this simulation setup to examine a practical situation,
i.e., creators try to optimize their accumulated regret but
with bounded rationality: since Exp3 is known to enjoy a

sub-linear regret when ✏ ⇠ O(
q

k log k
T ) (Auer et al., 2002),

it would be less rational for creators to set ✏ to be too large
or too small as it would incur a larger regret R(T ). We fix
(�,K, T ) = (0.1, 5, 1000) and report the averaged social
welfare over T rounds, i.e., W̄ = 1

mT

PT
t=1 W (s(t)) under

different n and ✏, as illustrated in Figure 2.

Our results indicate that the optimal exploration rate asso-
ciated with the maximum welfare is around ✏ = 0.1 across
different values of n. When ✏ is set to be either too small
or too large, the average welfare decreases, thereby con-
firming our claim in Corollary 1 that the welfare guarantee
deteriorates as the accumulated regret of each player’s learn-
ing algorithm increases. Additionally, we observed that
the average welfare increases when more creators are in-
volved, which is not unexpected given that users will have a
higher chance of receiving a satisfactory recommendation
when there is a larger pool of content on the platform. Fur-
thermore, when the number of players is sufficiently large
(n = 100), the welfare is fairly good even when players
adopt nearly randomized strategies (✏ = 0.9). We also illus-
trate the PotA and content distribution induced by creators’
sequence of play in Appendix J.3.

6. Conclusion and Future Work
We propose the competing content creation game, a game-
theoretical framework for analyzing the strategic behaviors
of creators on online content recommendation platforms.
Our primary contribution is a comprehensive characteriza-
tion of social welfare as the outcome of competition among
creators, which suggests that the traditional top-K recom-
mendation principle is effective when the platform utilizes
user engagement as an incentive metric and offers a suffi-
cient number of choices to users, resonating with the well-
known “invisible hand” argument posited by Adam Smith.

Figure 2. The averaged welfare W̄ over T = 1000 rounds under
different exploration rate ✏ and number of players n. Results are
averaged over 10 independent runs under (�,K) = (0.1, 5).

Our positive result hinges on two crucial assumptions: 1.
users on the platform employ the RU model with Gumbel
noise when making decisions; 2. the incentive provided
by the platform in creator utilities must align with the user
utilities (i.e., user engagement) utlized in the social wel-
fare metric. A fascinating and significant future direction
may require the relaxation of either of these assumptions.
Consequently, we propose two open questions:

Open Question 1: Does our main result still hold under
different user choice models? For instance, what if users
are permitted to make multiple choices, or users adhere
to the RU model but with a different decision noise (e.g.,
Gaussian)? Although we have some preliminary empirical
evidence suggesting a similar PoA upper bounded strictly
less than 2, rigorous theoretical analysis can be challenging,
as players’ utility functions do not necessarily have closed
forms and we might need novel techniques to derive a new
smoothness constant.

Open Question 2: What can we say regarding the social
welfare when user utility metrics employed in players’ in-
centives and social welfare do not align? Although it is rea-
sonable for the platform to design such aligned incentives,
practical reasons might occasionally render this challenging
to implement. Although our Proposition 1 demonstrates that
the welfare can be arbitrarily bad if player incentives do
not correspond with user engagement, it is still intriguing to
examine the intermediate situations: what if player incen-
tives and user engagement are correlated but not perfectly
aligned? Any understanding of this extended setting can
yield more profound impact on real-world systems.
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Appendix to “How Bad is top-K Recommendation under Competing Content
Creators?”

A. Proof of Theorem 1
First we derive the closed-forms of the utility and welfare functions of competing content creation game.
Lemma 3. Given {"i} are drawn i.i.d. from zero-mean Gumbel(���,�), the utility and welfare functions defined in (3),
(4) and (5) have the following closed forms

⇡j(s) = � log
h X

sk2Tj(s;K)

exp (��1
�(sk,xj))

i
, (19)

ui(s) =
mX

j=1

⇡j(s)
I[si 2 Tj(s;K)] exp(��1

�(si,xj))P
sk2Tj(s;K) exp(�

�1�(sk,xj))
, (20)

W (s) = �

mX

j=1

log
h X

sk2Tj(s;K)

exp (��1
�(sk,xj))

i
. (21)

A.1. Proof of Lemma 3: Closed Forms of Utility and Welfare Functions

We start with a few known and useful properties of Gumbel distributions.
Lemma 4. [e.g., (Balog et al., 2017)] Let (v1, · · · , vn) 2 Rn be any real-valued vector and "1, · · · , "n be independent
samples from Gumbel(µ,�). Then

argmax
i

(vi + "i) ⇠ Categorical
⇣ exp(��1

vi)Pn
j=1 exp(�

�1vj)

⌘
, (22)

and

max
i

(vi + "i) ⇠ Gumbel
⇣
µ+ � log

⇣ nX

j=1

exp(��1
vj)

⌘
,�

⌘
. (23)

Derivation of user utility and welfare. These derivations follow easily from Lemma 4. Since we assumed that
"i ⇠Gumbel(���,�), leveraging properties in Lemma 4 we conclude that xj’s choice distribution over K alternatives
{s1, · · · , sK} = Tj(s;K) follows the soft-max rule

Pr[xj � si] =
exp(��1

�(si,xj))P
sk2Tj(s;K) exp(�

�1�(sk,xj))
, (24)

and the expected user utility after making choices has the following form

⇡j(xj) = E

max
i2[K]

{�(si,xj) + "i}
�
= � log

2

4
X

sk2Tj(s;K)

exp(��1
�(sk,xj))

3

5 . (25)

Taking expectation over all users, we obtain the following welfare function

W (s) =
mX

j=1

E


max
sk2Tj(s;K)

{�(sk,xj) + "i}
�
= �

mX

j=1

log

2

4
X

sk2Tj(s;K)

exp (��1
�(sk,xj))

3

5 . (26)

By setting W̃ (s) = �W (s), �̃(s,x) = �
�1

�(s,x), we have W̃ (s) =
Pm

j=1 log[
P

sk2Tj(s;K) exp (�̃(sk,xj))]. Therefore,
under a rescaling of constant � it is with out loss of generality to consider a scoring function � 2 [0, 1

� ], the user utility
function and the social welfare function in the following form
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⇡j(s) = log
h X

sk2Tj(s;K)

exp (�(sk,xj))
i
, (27)

W (s) =
mX

j=1

log
h X

sk2Tj(s;K)

exp (�(sk,xj))
i
. (28)

Derivation of creator utility. This turns out to be a new result which requires non-trivial arguments. The players’ utility is
given by

ui(s) =
mX

j=1

E[�(si,xj) + "i|xj � si] ·Pr[xj � si] (29)

=
mX

j=1

E[�(si,xj) + "i|xj � si] ·
exp(�(si,xj))P

sk2Tj(s;K) exp(�(sk,xj))
, (30)

According to the definition in (30), what we need to show is that for i.i.d. random variables {"i}Ki=1 sampled from
Gumbel(���,�),

E[�(si,xj) + "i|xj � si] = E[max
k2[K]

{�(sk,xj) + "i}] = log
h X

sk2Tj(s;K)

exp (�(sk,xj))
i
, (31)

i.e., for any (v1, · · · , vK) 2 RK and i.i.d. random variables {"i}Ki=1 sampled from Gumbel(0, 1),

E[vi + "i|i = arg max
k2[K]

(vk + "k)] = � + log
⇣ KX

k=1

exp(vk)
⌘
. (32)

Let Yi = maxk2[K],k 6=i(vk + "k) ⇠ Gumbel(log(
P

k 6=i exp(vk)), 1) and Xi = vi + "i ⇠ Gumbel(vi, 1). Then Xi has the
probability density function

fi(x) = exp(�((x� vi) + e
�(x�vi))), (33)

and Y has the cumulative distribution function

Fi(y) = exp(�e
�(y�log(

P
k 6=i exp(vk))))). (34)

13
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Therefore we can explicitly compute the conditional expectation of Xi as follows:

E[vi + "i|i = arg max
k2[K]

(vk + "k)]

=E[vi + "i|vi + "i � max
k2[K],k 6=i

(vk + "k)]

=E[X|X � Y,X ⇠ Gumbel(vi, 1), Y ⇠ Gumbel(log(
X

k 6=i

exp(vk)), 1)] (35)

=

R
R xfi(x)Fi(x)dxR
R fi(x)Fi(x)dx

=

R
R x exp(�((x� vi) + e

�(x�vi))) exp(�e
�(x�log(

P
k 6=i exp(vk)))))dx

R
R exp(�((x� vi) + e�(x�vi))) exp(�e

�(x�log(
P

k 6=i exp(vk)))))dx

=

R
R�0

� ln t · exp(�t
PK

k=1 exp(vk))dt
R
R�0

exp(�t
PK

k=1 exp(vk))dt
(36)

= ln
⇣ KX

k=1

exp(vk))
⌘
+

R
R�0

� ln s · exp(�s)ds
R
R�0

exp(�s)ds
(37)

= ln
⇣ KX

k=1

exp(vk))
⌘
� d

d↵

Z

R�0

s
↵
e
�s

ds

= ln
⇣ KX

k=1

exp(vk))
⌘
� d

d↵
�(↵+ 1)

���
↵=0

= ln
⇣ KX

k=1

exp(vk))
⌘
+ �. (38)

where (35) holds because of Lemma 4, (36) and (37) hold by change of variables t = e
�x and s = t

PK
k=1 exp(vk)), and

(38) is from the definition of Euler-Mascheroni constant. Therefore we show (32) and the players’ utility function has the
following form

ui(s) =
mX

j=1

⇣
log

h X

sk2Tj(s;K)

exp (�(sk,xj))
i⌘ I[si 2 Tj(s;K)] exp(�(si,xj))P

sk2Tj(s;K) exp(�(sk,xj))
. (39)

A.2. Proof of Lemma 1 and 2: Properties of Utility and Welfare Functions

We consider the utility and welfare functions given in (27), (39) and (28) under the re-scaling of constant � with the
new assumption that �(s,x) 2 [0, 1

� ], 8s 2 [n
i=1Si,x 2 X . To simplify the subsequent analysis, we first specify some

useful notations and conventions. For any joint strategy profile s = (s1, · · · , sn), we use capital letter S to denote its set
representation, i.e., S = {s1, · · · , sn}. In this way we can view Tj(s;K),⇡j(s), ui(s),W (s) defined in (1), (3), (4), (5)
as set functions Tj(S;K),⇡j(S), ui(S),W (S). From now on, we will use the set notation S and the vector notation s
interchangeably, depending on the context. Similarly, we use S�i to denote the set {s1, · · · , sn} excluding element si.
Moreover, we extend the definition of Tj(S;K) by allowing |S| = K � 1 in the following sense: when |S| = K � 1, we let
Tj(S;K) = S [ {s̄}, where s̄ is a default external choice such that �(s̄,x) = 0 for all x 2 X . This extension captures
the situation when the system does not have enough active content creators to allocate to the users. When such a situation
happens, the system will put a default choice s̄ in the top-K list without any utility guarantee. We remark that this extended
definition is introduced merely for the convenience of presentation and does not affect the implication of our main result.

Prior to the proofs for Lemma 1 and 2, we present two intermediate results in Proposition 2 and Lemma 5. Proposition 2
reveals a rather basic property of social welfare W which is useful in the proof of Theorem 1, and Lemma 5 is useful in the
proof of Lemma 2.
Proposition 2. Fix a joint strategy S = {s1, ..., sn} in any n�player competing content creation game G. If we add an
additional player indexed by n+ 1 with pure strategy sn+1 to the game and let S0 = {s1, ..., sn, sn+1}, the social welfare

14
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W will strictly increase, i.e.,
W (S0) > W (S). (40)

Proof. By definition,

W (S0) =
mX

j=1

⇣
log

h X

s2Tj(S0;K)

exp (�(s,xj))
i⌘

, (41)

W (S) =
mX

j=1

⇣
log

h X

s2Tj(S;K)

exp (�(s,xj))
i⌘

, (42)

It is obvious that for any fixed user j, the sum of exponential scores of top-K choices from S
0 is better than that from S , i.e.,

X

s2Tj(S0;K)

exp (�(s,xj)) �
X

s2Tj(S0;K)

exp (�(s,xj)).

Therefore, (40) holds immediately by the monotonicity of the logarithmic function.

Proposition 2 reveals an important yet natural property of real-world content provider competitions: when there are more
competitors in the market, users are facing more alternatives and thus their welfare will always increase.
Lemma 5. The following function

f(x, y) =
(x+ 1) log(x+ y)

(x+ y)(log(x+ y)� log y)
, (x, y) 2 R+ ⇥ N+, (43)

is monotonically increasing in y for any x 2 R+, and is monotonically decreasing in x for any integer y 2 N+.

Proof. We first demonstrate the monotonicity of f(·, y) by directly calculating its partial derivatives. Note that t � log(1+t)
holds for any t � 0, we have

1

x+ 1

@f(x, y)

@y
=

log(1 + x
y ) + log(x+ y)[xy � log(1 + x

y )]

[(x+ y)(log(x+ y)� log y)]2
> 0, (44)

which implies that f(x, y) is increasing in y. Now it remains to show the monotonicity w.r.t. x when fixing y = K, which is
slightly more intricate. The derivative of f(x,K) w.r.t. x now writes

f
0(x,K) =

(K � 1) log(x+K) log(1 + x
K )� (x+ 1) logK

[(x+K)(log(x+K)� logK)]2
, �g(x,K)

[(x+K)(log(x+K)� logK)]2
, (45)

and

g
0(x,K) =

1

x+K

h
(2K + x� 1) logK � 2(K � 1) log(x+K)

i
(46)

=
2(K � 1)

x+K

h2K + x� 1

2(K � 1)
logK � log(x+K)

i

=
2(K � 1)

x+K

h
x+ 1

2(K � 1)
logK � log(1 +

x

K
)
i

(47)

� 2(K � 1)

x+K

h
x+ 1

2(K � 1)
logK � x

K

i

� x

x+K

h
logK � 2(K � 1)

K

i
. (48)

We claim g
0(x,K) � 0, 8K 2 N+, and this is because

1. if K = 1, from (46) we have g
0(x,K) = 0.
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2. for K � 5, we can verify logK � 2(K�1)
K > 0. From (48) we have g

0(x,K) > 0.

3. for K 2 {2, 3, 4}, we can verify x+1
2(K�1) logK� log(1+ x

K ) > 0 for any x � 0. Therefore (47) we have g0(x,K) > 0.

Now since g
0(x,K) � 0, we conclude that g(x,K) � g(0,K) = logK � 0, which implies f

0(x,K)  0, 8K 2 N+.
Hence, f(x,K) is decreasing in x.

Now we are ready to prove Lemma 1 and 2.

Proof of Lemma 1. By the definition we only need to show the submodularity of ⇡j(S) for any j 2 [m], i.e.,

⇡j(Tj(S [ {sx};K))� ⇡j(Tj(S;K)) � ⇡j(Tj(S [ {sx, sy};K))� ⇡j(Tj(S [ {sy};K)). (49)

With out loss of generality we assume �(sx,xj) � �(sy,xj), and let

{v1, · · · , vK} = {exp(�(s,xj))|s 2 Tj(S;K)},

where v1  · · ·  vK . Then depending on the values of vx = exp(�(sx,xj)), vy = exp(�(sy,xj)) and K, there are three
situations :

1. vx  v1: (49) holds because its LHS and RHS are both equal to 0.

2. vx > v1,K = 1: The LHS of (49) is equal to log vx
v1

> 0, the RHS of (49) is equal to 0.

3. vx > v1,K � 2: The LHS of (49) is equal to log vx+v2+a
v1+v2+a , the RHS of (49) is equal to log vx+vy+a

vy+v2+a , where

a =
PK

k=3 vk if K � 3 and a = 0 if K = 2. We can verify

(vx + v2 + a)(vy + v2 + a)� (v1 + v2 + a)(vx + vy + a)

=(v2 � v1)(a+ v1 + v2) + (vx � v1)(vy � v1) � 0.

Therefore, (49) holds and Lemma 1 follows by summing (49) over all j 2 [m].

Proof of Lemma 2. By definition,

ui(si; s�i) =
mX

j=1

⇣
log

h X

s02Tj(S;K)

exp (�(s0,xj))
i⌘ I[si 2 Tj(S;K)] exp(�(si,xj))P

s02Tj(S;K) exp(�(s
0,xj))

, (50)

and

W (S) =
mX

j=1

⇡j(Tj(S;K)). (51)

It is sufficient to prove that for any user j,
⇣
log

h X

s02Tj(S;K)

exp (�(s0,xj))
i⌘ I[si 2 Tj(S;K)] exp(�(si,xj))P

s02Tj(S;K) exp(�(s
0,xj))

� c(�,K) ·
⇥
⇡j(Tj(S;K))� ⇡j(Tj(S�i;K))

⇤
.

(52)

Note that when si /2 Tj(S;K), (52) is trivial as its LHS=RHS=0. Now we suppose si 2 Tj(S;K) and thus Tj(S�i;K)
and Tj(;K) only differ in one element. Without loss of generality we let

{exp(�(s,xj))|s 2 Tj(S�i;K)} = {v01, v2, · · · , vK},

and
{exp(�(s,xj))|s 2 Tj(S;K)} = {v1, v2, · · · , vK}, v1 � v

0
1.
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Because of our extended definition of Tj(S;K), Tj(S�i,K) is well defined when K = n, under which case we have
v
0
1 = exp(�(s̄,xj)) = 1. Now we let z = v2 + · · ·+ vK , (52) is equivalent to

v1

v1 + z
log(v1 + z) � c(�,K) · log

h
v1 + z

v01 + z

i
. (53)

Since v
0
1 = exp(�(·,xj)) � 1, a sufficient condition for (53) to hold is

v1

v1 + z
· log(v1 + z)

log(v1 + z)� log(1 + z)
� c(�,K). (54)

Note that x = v1 � 1 2 [0, e1/� � 1], y = z + 1 2 [K, (K � 1)e1/� + 1], the LHS of (54) becomes a function of (x, y)
which has the following form

f(x, y) =
(x+ 1) log(x+ y)

(x+ y)(log(x+ y)� log y)
. (55)

From Lemma 5 we know f(x, y) is monotonically increasing in y for any x > 0 and is monotonically decreasing in x any
integer K � 1. Therefore, it holds that

f(x, y) � f(x,K) � f(e1/� � 1,K) = c(�,K). (56)

Hence, (52) holds and we complete the proof.

A.3. Proof of Theorem 1

With the help of Proposition 2, Lemma 2 and 1, now we are ready to prove our claim in Theorem 1. We will demonstrate
that any competing content creation game instance G({Si}ni=1,X ,�,�,K) is a smooth game with parameter (�, µ) =
(c(�,K), c(�,K)) so that its PoA can be upper bounded by 1+µ

� = 1 + 1
c(�,K) .

Proof. Let s = (s1, ..., sn) and s⇤ = (s⇤1, ..., s
⇤
n) be two different strategy profiles. First, due to function W ’s sub-modular

property disclosed in Lemma 1, for every i 2 [n] we have

W ([s⇤i , s�i])�W (s�i) � W ([s⇤1, · · · , s⇤i�1, s
⇤
i , s])�W ([s⇤1, · · · , s⇤i�1, s]). (57)

Summing over all player i we obtain

nX

i=1

(W ([s⇤i , s�i])�W (s�i)) �
nX

i=1

(W ([s⇤1, · · · , s⇤i�1, s
⇤
i , s])�W ([s⇤1, · · · , s⇤i�1, s]))

= W ([s⇤, s])�W (s)

> W (s⇤)�W (s), (58)

where the last inequality holds because of Proposition 2. On the other hand, from Lemma 2 it also holds that

ui(s
⇤
i ; s�i) � c(�,K) ·

⇥
W ([s⇤i , s�i])�W (s�i)

⇤
, (59)

And therefore
nX

i=1

ui(s
⇤
i ; s�i) � c(�,K) ·

nX

i=1

⇥
W ([s⇤i , s�i])�W (s�i)

⇤
(60)

> c(�,K)[W (s⇤)�W (s)]. (61)

where inequality (60) holds by (59), and inequality (61) holds by (58).

Since (61) holds for any s 2 S , for any ↵ 2 CCE(G) we can take expectation over s ⇠ ↵ and obtain
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nX

i=1

Es⇠↵[ui(s
⇤
i ; s�i)] > c(�,K)[W (s⇤)� Es⇠↵[W (s)]]. (62)

Therefore,

Es⇠↵[W (s)] = Es⇠↵[
nX

i=1

ui(s)]

� Es⇠↵[
nX

i=1

ui(s
⇤
i ; s�i)] (63)

� c(�,K) ·
nX

i=1

⇥
Es⇠↵[W ([s⇤i , s�i])]� Es⇠↵[W (s�i)]

⇤

> c(�,K)[W (s⇤)� Es⇠↵[W (s)]]. (64)

where inequality (63) follows by the definition of CCE and inequality (64) holds by (61). Rearranging terms we obtain

PoA(G) = maxs2S W (s)

min↵2CCE(G) Es⇠↵[W (s)]
< 1 +

1

c(�,K)
. (65)

A.4. Proof of the Property of c(�,K)

Proof. The c(�,K) function has the following form:

c(�,K) =
(b+ 1) log(b+K)

(b+K)(log(b+K)� logK)
, b = e

1
� � 1. (66)

We prove the following facts one by one.

1. Fix any � > 0, c(�,K) is monotonically increasing in K; similarly, fix any K � 1, c(�,K) is monotonically
increasing in �.

Note that e
1
� � 1 is decreasing in �, from Lemma 5 the claim holds.

2. c(�,K) = 1 if and only if K = 1 or � ! 0.
When K = 1, c(�,K) = 1 directly holds. When � ! 0, b ! +1 and c(�,K) ! 1. The “only if” direction follows
from the monotonicity property of c(�,K).

3. For any � > 0 and K � 1, we have c(�,K) � 1 and thus PoA(G) < 2 always holds.
By the monotonicity of c, c(�,K) � c(�, 1) = 1. Hence, PoA(G) < 1 + 1

c(�,K)  2.

4. For sufficiently large � and K, c(�,K) ⇡ (1 + �) logK asymptotically, and therefore

PoA(G) < 1 +
1

(1 + �) logK
. (67)

When � is sufficiently large, b = e
1
� � 1 ⇡ 1

� ! 0. Therefore,

c(�,K) =
(b+ 1) log(b+K)

(b+K) log(1 + b
K )

⇡ (b+ 1)K log(b+K)

(b+K)b
since log(1 + x) ⇡ x as x ! 0

⇡ (b+ 1) logK

b
since K >> b

⇡ (1 + �) logK. since b ⇡ 1
�
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B. Proof of Corollary 1

Proof. Let ✏(T ) = R(T )
T , and s⇤ = (s⇤1, ..., s

⇤
n) be a global maximizer of W (s). By definition,

Es⇠↵[ui(s)] � Es⇠↵[ui(s
⇤
i , s�i)]� ✏(T ). (68)

Summing over all player i 2 [n] we obtain

Es⇠↵[W (s)] =
nX

i=1

Es⇠↵[ui(s)] �
nX

i=1

Es⇠↵[ui(s
⇤
i , s�i)]� n✏(T ). (69)

On the other hand, by (61) from the proof of Theorem 1, we have

nX

i=1

ui(s
⇤
i ; s�i) > c(�,K)[W (s⇤)�W (s)], 8s 2 S. (70)

Taking the expectation of s over distribution ↵ we obtain

nX

i=1

Es⇠↵[ui(s
⇤
i ; s�i)] > c(�,K)

�
W (s⇤)� Es⇠↵[W (s)]

�
. (71)

(69) and (71) together imply that

Es⇠↵[W (s)] + n✏(T ) > c(�,K)
�
W (s⇤)� Es⇠↵[W (s)]

�
. (72)

Note that for any s 2 S , we have W (s) =
Pm

j=1

⇣
log

hP
s2Tj(s;K) exp (�(s,xj))

i⌘
� � logK and therefore, n✏(T ) 

n✏(T )
� logKEs⇠↵[W (s)]. Substituting it into (72), we obtain (13).

C. Proof of Corollary 2
Proof. Note that fix any players’ strategy profile s, the top-K matching mechanism maximizes the social welfare W .
Therefore, W (G0)  W

⇤
K . On the other hand, from the PoA bound in Theorem 1 it holds that

W
⇤
K

W (G) < 1 +
(b+K)(log(1 + b/K))

(b+ 1) log(b+K)

< 1 +
(b+K)(b/K)

(b+ 1) log(b+K)

= 1 +
b+K

K log(b+K)
.

Rearranging term yields W (G0)�W (G)  W
⇤
K �W (G)  W

⇤
K/(1 + K log(b+K)

b+K ).

D. Proof of Theorem 2
Proof. Let b = exp(1/�)� 1. Consider an n-player game where each player-i has the same action set Si = {x1, · · · ,xn}.
Let the user population X be a set with size m = n+ (n� 1)a, in which n users have profile x1 and a users have profile xi

for i = 2, · · · , n. Here a = � logK + 1 is a constant whose choice will become clear later. Let the scoring function � be
the indicator function defined as follow:
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�(s,x) =

⇢
1, if s = x,
0, otherwise. (73)

First we lower bound the optimal welfare maxs2S W (s). Consider the joint-strategy profile s⇤ = (x1,x2, · · · ,xn),
under which each user gets one player with � score 1 and K � 1 player with � score 0. In this case, each user-j’s utility
⇡j(s) = � log(b+K) and the social welfare W (s) = m� log(b+K). Therefore, the optimal social welfare

max
s2S

W (s) � W (s⇤) = m� log(b+K). (74)

Next we show that s = (x1,x1, · · · ,x1) is a pure NE of G and thus s 2 CCE(G). Given players’ joint-strategy s, n
users will be assigned with K players with � score 1 and (n� 1)a users will be assigned with K players with � score 0.
Therefore, the utility for an arbitrary player-i is given by

ui(s) =
h
n · (� logK + 1) + a(n� 1) · � logK

i
/n

= � logK + 1 +
a(n� 1)� logK

n
. (75)

If player-i switches from strategy s1 to sj , n users still get K players with score 1, (n� 2)a users get players with score 0,
and a users get K players with scores (1, 0, · · · , 0). Therefore, player-i’s utility after the deviation is

ui(sj , s�i) = n · 0 + a(n� 2) · � logK · 1
n
+ a · � log(b+K) · e

1
�

e
1
� +K � 1

=
a(n� 2)� logK

n
+

b+ 1

b+K
· a� log(b+K).

We can verify that ui(s) � ui(sj , s�i) for any 2  j  n if we take

a = � logK + 1  � logK + 1

�

⇣
b+1
b+K log(b+K)� 1

n logK
⌘ . (76)

This is because: 1. The inequality in (76) always holds as b+1
b+K log(b + K) < log(b + 1) = 1

� when � 2 [0, 1] (this is
due to the monotonicity of log x/x); 2. ui(s) = ui(sj , s�i) when a = � logK+1

�

⇣
b+1
b+K log(b+K)� 1

n logK

⌘ . Hence, s is an NE of G.

Putting (74), (75), and (76) together, we have

PoA(G) = maxs2S W (s)

min↵2CCE(G) Es⇠↵[W (s)]
� W (s⇤)

W (s)

=
m� log(b+K)

nui(s)
� m

nui(s)
(77)

=
n+ (n� 1)a

n(� logK + 1) + a(n� 1)� logK

=
n� 1

n
+

1� t
2
a(a� 1)

a+ ta(a� 1)
(t =

n� 1

n
)

>
n� 1

n
+

1

5a� 4
(78)

=
n� 1

n
+

1

1 + 5� logK
.

where inequality (77) holds because � log(b+K) � � log(b+ 1) = 1, and (78) holds because when a = 1 + � logK 2
[1, 1.2] and t = n�1

n 2 [0.5, 1), it is easy to verify that 1�t2a(a�1)
a+ta(a�1) >

1
5a�4 . It is equivalent to 4t2a + 4 > 5t2a2 + ta,

which is true because t
2
a(5a� 4) + ta < a(5a� 4) + a < 4.
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E. Proof of Proposition 1
Proof. Consider a population of two users X = {x1,x2} and n players in which one player has two pure strategies and the
other n� 1 players only have access to a single strategy, i.e, Si = {s0}, i = 2, . . . , n and S1 = {s1, s2}. Let the scoring
function � be

�(s,x) =

8
<

:

1, if s = s1,x = x1,

�, if s = s2,
0, otherwise.

(79)

We will show that for any given K � 1, 0  �  min{0.14, 1
5 logK } there exists � 2 (0, 1) such that the PoA of game

G̃({Si}ni=1,X ,�,�,K) is always strictly greater than 2.

From the proof of Lemma 3, the user utility and welfare functions of G̃ share the same form as in (19), (21), while the player
utility functions of G̃ have the following form

ui(s) =
mX

j=1

I[si 2 Tj(s;K)] exp(��1
�(si,xj))P

sk2Tj(s;K) exp(�
�1�(sk,xj))

. (80)

Let b = exp(1/�) � 1 and we choose any � 2 [�0, 1) such that exp(�0/�) +K � 1 = 2
1
K + 1

b+K
. Such �0 2 (0, 1) must

exist because function f(�) = exp(�/�) +K � 1 is monotonically increasing in [0, 1] with range [K, b+K] � 2
1
K + 1

b+K
.

Given such choice of �, we can verify that

2u1(s2, s0, · · · , s0) =
2 exp(�/�)

exp(�/�) +K � 1

� 2 exp(�0/�)

exp(�0/�) +K � 1

=
exp(1/�)

exp(1/�) +K � 1
+

1

K

� exp(1/�)

exp(1/�) +K � 1
+

1

n
= 2u1(s1, s0, · · · , s0),

which indicates that (s2, s0, · · · , s0) is a PNE of G̃. Therefore, by picking � = �0 we have

PoA(G̃) = maxs2S W (s)

min↵2CCE(G̃) Es⇠↵[W (s)]
� W (s1, s0, · · · , s0)

W (s2, s0, · · · , s0)

=
log(exp(1/�) +K � 1) + logK

2 log(exp(�0/�) +K � 1)
(81)

=
log(b+K) + logK

2 log[2K(b+K)]� 2 log(b+ 2K)
by the choice of �0 (82)

> 2, (83)

where (83) holds because (83) is equivalent to

(b+ 2K)4 > 16K3(b+K)3. (84)

And we show the correctness of (84) by verifying the following situations:

1. when K 2 {2, 3}, (84) holds for all � 2 [0, 0.14], b = exp(1/�)� 1.

2. when K � 4, from �  1
5 logK we know b+K = exp(1/�) +K � 1 > K

5 and thus (b+2K)4

(b+K)3 > b > K
5 � 16K3.

Therefore, (84) holds.
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Finally we show that when K = 1 or � ! 0, PoA(G̃) can be arbitrarily large.

1. when � ! 0, we have b ! 1. From (82) we have for any fixed K,

lim
�!0

PoA(G̃) = lim
b!+1

n log(b+K) + logK

2 log[2K(b+K)]� 2 log(b+ 2K)

o
= lim

b!+1
log(b+K) ! +1.

2. when K = 1, the user’s choice is deterministic and thus any � 2 (0, 1) makes (s2, s0, · · · , s0) a PNE of G̃. Let � ! 0
and from (81) we have for any fixed �,

lim
�!0

PoA(G̃) = lim
�!0

n log(exp(1/�) +K � 1) + logK

2 log(exp(�/�) +K � 1)

o
= lim

�!0

1

2�
! +1.

F. Additional Discission on Related Work
Our user decision model (see Section 3) stems from the RU model (Baltas & Doyle, 2001) in econometrics, which explains
how an individual makes choices among a discrete set of alternatives. In the RU model, the utility that a decision maker
could obtain from alternative j is decomposed into Uj = Vj + ✏j , where Vj is the known parameterized part, and ✏j is
the unknown stochastic part. The observed choice is then given by the alternative with the maximum utility. It is shown
that if the unobserved stochastic utility follows the extreme value distribution (i.e., Gumbel distribution), then the choice
probability is given by the logit formula, i.e., Pj / exp(Vj) (Luce et al., 1965). In our work, we apply the RU model to
explain how a typical user allocates her attention across the recommended list.

To analyze the equilibrium efficiency of the competing content creation game, we employed the standard framework of the
price of anarchy (PoA). This originates from the seminal work of (Koutsoupias & Papadimitriou, 1999) and has since led to
an extensive literature on understanding the efficiency of numerous strategic games. Our discussion by no means can do
justice to this rich literature; here, we only mention the few works that are closely related to ours. Since Nash equilibrium
(NE) is not guaranteed to exist in our problem with non-continuous agent utilities (Hron et al., 2022), it is thus crucial
for us to consider a solution concept that is weaker than NE and thus to prove a stronger PoA bound. Specifically, we
consider coarse correlated equilibrium (CCE). The PoA for CCE is first studied by (Blum et al., 2008), who considered the
efficiency of a dynamic setup with no-regret learners and coined the new notion of the price of total anarchy, which turns out
to be equivalent to the PoA bound for CCE. This is precisely the question we want to address, but the structure of our new
competing content creation game is significantly different from the games they studied, such as Hotelling’s game on a graph
and the valid utility game of (Vetta, 2002). Thus their techniques are not readily applicable to our problem. We instead
employed a recent framework of (Roughgarden, 2015) using the smoothness argument. It is well-known that this framework
can yield strong PoA bound applicable to CCE. However, the bounds obtained by this powerful framework are usually not
tight; so far, it is only known that it yields tight PoA bounds for linear cost congestion games (Christodoulou & Koutsoupias,
2005), second price auctions (Christodoulou et al., 2008), and the valid utility games (Vetta, 2002). Interestingly, We show
that the smoothness argument also yields a tight PoA bound for our competing content creation game and thus register an
additional member to this important list of games.

G. Additional Discussion on Stability
Our characterization of social welfare does not require any stability property of the creators’ competition. While previous
works (Ben-Porat & Tennenholtz, 2018; 2017; Ben-Porat et al., 2019) strive to establish a unique pure Nash equilibrium
(PNE) guarantee in similar game-theoretic settings, we do not consider such a stability requirement crucial for the system’s
design for two reasons. First, as demonstrated in previous works (Ben-Porat & Tennenholtz, 2018; 2017; Ben-Porat et al.,
2019), the unique PNE is not guaranteed for top-K RS in general. However, our main result indicates the social welfare can
be ensured under top-K RS regardless of the existence of a PNE, thus eliminating the need for tradeoffs between stability
and the complexity of the recommendation algorithm. Second, even in cases where a PNE does exist, it is unclear how
creators can achieve such a stable outcome in practice. For instance, Ben-Porat & Tennenholtz (2018; 2017) showed that
creators following best-response dynamic (Monderer & Shapley, 1996) converge to the unique PNE in their game-theoretical
setting, but it requires creators to have oracle access to their utility functions, which is unrealistic as creators can only
evaluate the utility of their taken actions (i.e., bandit feedback) in practice. Therefore, we refrain from discussing stability
and instead focus on characterizing the average social welfare under the evolving strategies of creators.
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H. Connections to Existing Models
As an extended discussion to the related work, we show how our competing content creation games connect to the following
three previously proposed competition models for content creators. All the following models do not consider the presence
of an RS and match each user with all content creators (players), which corresponds to the case K = n in our setting.
Interestingly, we found that each of them turns out to be a special case of our competing content creation game.

Facility location games under the no intervention mediator (Ben-Porat et al., 2019)

Consider the following competing content creation game instance:

1. the user population X ✓ [0, 1] is a finite set of size m,

2. each player i 2 [n] shares the same action set Si = [0, 1],

3. the scoring function is given by �(s, x) = |s� x|,

4. (�,K) = (0, n),

5. utility function is the user exposure metric, i.e., ui(s) =
P

x2X Pr(x � si).

If we let m ! 1 so that X becomes a continuum with density function g over the unit interval [0, 1], the game instance
G̃({Si}ni=1,X ,�,�,K) 6 defined above is equivalent to the facility location game under the no intervention mediator
proposed by (Ben-Porat et al., 2019).

Hotelling-Downs model with limited attraction under support utility functions (Shen & Wang, 2016)

Consider the following competing content creation game instance:

1. the user population X = {x1, · · · , xm} ✓ [0, 1] is a finite set of size m,

2. each player i 2 [n] shares the same action set Si = [0, 1]⇥ [0, 1]. For each action si = (si, wi) taken by player-i, it is
associated with an attraction region Ri = [si � wi

2 , si +
wi
2 ] \ [0, 1].

3. for each i 2 [n], the scoring function is given by �(si, x) = I[x 2 Ri],

4. (�,K) = (0, n),

5. the utility function is induced by the user engagement metric, i.e., ui(s) =
Pm

j=1 ⇡j(s)Pr(xj � si).

In fact, given � = 0 and the above definition of �, we can see the utility functions under both exposure and engagement
metrics are identical, because it holds that ⇡j(s) 2 {0, 1} and ⇡j(s) = 1 if and only if Pr(xj � si) > 0. We can verify that
the game instance G({Si}ni=1,X ,�,�,K) defined above is equivalent to the Hotelling-Downs model with limited attraction
under support utility functions proposed by (Shen & Wang, 2016).

Exposure games (Hron et al., 2022)

Consider the following competing content creation game instance:

1. the user population X ✓ Rd is a finite set of size m,

2. each player i 2 [n] is associated with an action set Si on the unit sphere in Rd, i.e., Si 2 Sd�1,

3. the scoring function is given by the inner product, i.e., �(s,x) = hs,xi,

4. (�,K) = (⌧, n),

5. the utility function is induced by the user exposure metric, i.e., ui(s) =
P

x2X Pr(x � si).

Note that in exposure games the parameter � no longer represents the user decision noise but becomes a temperature
parameter ⌧ controlling the spread of exposure probabilities over items. The game instance G̃({Si}ni=1,X ,�,�,K) defined
above is equivalent to the exposure games proposed by (Hron et al., 2022).

6Note that we use G̃ to refer to the variant of G that utilizes the user exposure metric instead of the user engagement metric in player
utility functions.
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I. The Detailed Experimental Setup
I.1. The computation of globally optimal social welfare

We use two heuristic methods for the computation of maxs2S W (s), when the exact solution is computationally infeasible:
Simulated Annealing (SA) shown in Algorithm 1 and Best-response Search (BRS) shown in Algorithm 2. For SA, we set
T = 5000 and the temperature schedule ⌧t = 0.1/

p
t; for BRS, we set T = max{30, 2n} and take the best output from 5

independent runs. Both methods perform as well as the brute-force search when the number of players n and the size of
action set k are less than 6, thus yielding the exact global optimal under such situations. For larger problem scales, we run
both methods and select the best output to approximate maxs2S W (s).

Algorithm 1 Simulated Annealing for Computing the Globally Optimal Welfare
Input: Time horizon T , joint action space S =

Qn
i=1 Si, welfare function W (s), temperature schedule {⌧t}Tt=1.

Initialization: A randomly selected joint action s(0) = (s(0)1 , · · · , s(0)n ) 2 S .
for t = 0 to T do

Randomly choose a player i 2 [n] and randomly perturb her action s(t)i in s(t) to yield s0(t).
Compute W (s0(t)),W (s(t)).
if W (s0(t)) > W (s(t)) then

Set s(t+1) = s0(t).
else

With probability e
(W (s0(t))�W (s(t)))/⌧t , set s(t+1) = s0(t); otherwise, s(t+1) = s(t).

end if
end for
Output: maxt2[T ] W (s(t)).

Algorithm 2 Best-response Search for the Globally Optimal Welfare
Input: Time horizon T , joint action space S =

Qn
i=1 Si, welfare function W (s).

Initialization: A randomly selected joint action s(0) = (s(0)1 , · · · , s(0)n ) 2 S .
for t = 0 to T do

Randomly choose a player i 2 [n] and search for her best-response that maximizes W , i.e.,

s(t+1)
i = arg max

si2Si

W (si, s
(t)
�i).

Set s(t+1) = (s(t+1)
i , s(t)�i).

end for
Output: W (s(T )).

I.2. The computation of the worst case welfare under CCE

We can express the definition of CCE into a set of linear constraints. Let ↵ 2CCE(G) be a probability distribution over the
joint action space S =

Qn
i=1 Si. Then ↵ satisfies

8i, 8s0i,
X

s2S
↵(s)ui(s) �

X

s2S
↵(s)ui(s

0
i, s�i). (85)

And min↵2CCE(G) Es⇠↵[W (s)] is solving
min

↵2CCE(G)
↵(s)W (s) (86)

under linear constraints (85). Suppose each Si shares the same size k, then we obtain a linear program with k
n variables

and kn constraints.

I.3. The details of no-regret dynamic simulation and computation of PotA

For the computation of PotA, we need to simulate each player’s sequence of play. We let all players run the following
Exp-3 algorithm 3 simultaneously to update their strategies in a fixed time horizon T = 5000. According to (Auer et al.,
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Table 3. PoA under � = 0.5. Results reflect the worst cases obtained from 10 independently sampled game instances.

K

n * 2 3 4 5

1 2.00 1.33 1.54 1.66 1.72
2 1.77 1.11 1.24 1.32 1.34
3 1.65 1.08 1.13 1.18
4 1.57 1.05 1.08
5 1.52 1.02
⇤ denotes the theoretical upper bound.

Table 4. PotA under � = 0.5. Results reflect the worst cases obtained from 10 independently sampled game instances.

K

n * 5 10 15 20 40

1 2.00 1.59 1.59 1.60 1.50 1.38
3 1.65 1.13 1.20 1.21 1.22 1.20
5 1.52 1.03 1.10 1.12 1.14 1.14
7 1.45 1.05 1.08 1.09 1.11

⇤ denotes the theoretical upper bound.

2002), Algorithm 3 enjoys sublinear regret if ⌘ = ✏ ⇠ O(
q

k log k
T ). However, it is not realistic to assume content creators

in practice are sophisticated enough to figure out the game parameters and the optimal learning/exploration rates. Hence,
unless specified, we always use a fixed value (⌘, ✏) = (0.1, 0.1) in our experiments.

Algorithm 3 Exp3 for player-i
Input: Time horizon T , number of actions k, exploration parameter ✏, learning rate ⌘.
Initialization: The score vector y0 = (y1(0), · · · , yk(0)) = (0, · · · , 0).
for t = 0 to T do

Compute a mixed strategy from the accumulated scores:

pj(t) = (1� ✏)
exp(yj(t))P

l2[k] exp(yl(t))
+

✏

k
, 8j 2 [k].

Draw action si,t 2 [k] randomly accordingly to the distribution pt = (p1(t), p2(t), . . . pk(t)).
Play action si,t and observe the utility ui(si,t, s�i,t).
Update the score

ysi,t(t+ 1) = ysi,t(t) + ⌘ · ui(si,t, s�i,t)

psi,t(t)
.

end for

J. Additional Experiment Result
J.1. Empirical PoA from simulations

In Table 3 and 4 we summarize the PoA and PotA under � = 0.5 for game instances constructed from dataset-1. Keeping
n fixed, the trend with respect to K is consistent with the results observed for � = 0.1. When compared to the results
in Tables 1 and 2, it is observed that both PoA and PotA values are smaller for any fixed K � 2, thereby confirming the
theoretical claim made in Theorem 1 that the PoA monotonically decreases with respect to �.

J.2. Comparison between user engagement/exposure metrics

The results presented in Figure 3 further support the superiority of utilizing the user engagement metric across a range of
environments (�,K). It is also observed that the advantage of the engagement metric over the exposure metric diminishes
as either � or K increases. This might suggest that the PotA under the exposure metric also decreases with respect to K and
�, although this claim remains unproven. Nonetheless, it constitutes an interesting question for further investigation.
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Figure 3. PotA under user exposure and user engagement metrics under different (�,K). � is the relevance score obtained from
creators’ “safe” action. Upper-left: (0.1, 1), Upper-right: (0.3, 2), Lower-left: (0.1, 5), Lower-right: (0.3, 5). The error bars indicate the
largest/smallest values from 10 independent trials and the dots correspond to the mean values.

Table 5. PotA under (�,K) = (0.1, 5) for the MovieLens dataset. Results are averaged over 10 independent simulations under different
exploration factor ✏.

n

✏ .003 .01 .03 .1 .3 .9

5 1.51 1.32 1.18 1.10 1.12 1.51
10 1.15 1.14 1.08 1.03 1.05 1.25
30 1.06 1.05 1.04 1.02 1.03 1.07
100 1.02 1.02 1.02 1.02 1.02 1.03

J.3. Additional Results on MovieLens-1m

The social welfare under different levels of rationality

Together with Figure 2, plots in Figure 4 suggest a consistent optimal exploration rate ✏ = 0.1 for K = 5. However,
the optimal exploration rate for K = 1 is observed to be around ✏ = 0.3, as demonstrated in the left panel of Figure
4. One potential explanation for this discrepancy is that when the RS provides a greater number of alternatives in the
recommendation list, the randomness in users’ decisions can better compensate for creators’ exploration in finding more
diversified strategies, leading to improved social welfare.

The PotA for MovieLens dataset

Under the same setting used in Figure 2 and 4, where we computed the average welfare for different numbers of players
with various exploration rates, we also present the corresponding PotA in Table 5 and 6. As can be observed, when creators
are able to utilize the optimal exploration rates that minimize regret, social welfare is unexpectedly high. Even with as few
as five creators, the fraction of welfare loss is only around 10% (PotA=1.10). As the number of creators increases, the PotA
rapidly approaches the ideal value of 1.0. Although the PotA may be underestimated due to approximation accuracy in
determining the optimal welfare, such results still convey a very optimistic message.

The genre distribution resulting from the sequence of play
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Figure 4. The averaged welfare W̄ over T = 1000 rounds under different exploration rate ✏ and number of players n. Results are averaged
over 10 independent simulations under (�,K) 2 {(0.5, 1), (0.5, 5)}.

Table 6. PotA under (�,K) = (0.5, 5) for the MovieLens dataset. Results are averaged over 10 independent simulations under different
exploration factor ✏.

n

✏ .003 .01 .03 .1 .3 .9

5 1.37 1.25 1.18 1.15 1.18 1.48
10 1.15 1.12 1.08 1.05 1.06 1.26
30 1.04 1.04 1.02 1.02 1.01 1.07
100 1.01 1.01 1.01 1.01 1.01 1.02

In addition to evaluating the welfare metric, we also examined the content distribution induced by creators’ sequence of play
under different exploration rates, as shown in Figure 5. The content distribution is generated by counting the frequency of
genres (in MovieLens-1m dataset, each movie is associated with multiple genre tags) throughout a simulation trajectory.
Specifically, for each simulation path with a fixed time horizon T = 1000, we collect the complete set of content that all
creators have produced and summarize their frequencies w.r.t. genres. We also compute the genre distributions for the
optimal joint strategy that maximizes the social welfare under different n as references.

The leftmost panel in Figure 5 illustrates the genre distribution of the globally optimal content creation strategies under
varying numbers of creators n. As n increases, the optimal genre distribution becomes “flatter”, which is consistent with the
expectation that new creators who want to maximize their utility should focus on niche interest groups to diversify the overall
content distribution. The empirical genre distributions from simulations, shown in the three panels on the right side, are
observed to be more polarized in comparison to the optimal distributions. For example, in all cases, creators generate content
from the drama genre (the most popular genre) more than the ideal frequency. Such polarization effect is alleviated as the
exploration factor on the creator side increases. Interestingly, if we look at the empirical frequency under different n for a
fixed ✏, we can find that the content distribution also becomes increasingly diversified as n gets larger, which is beneficial
for social welfare. This explains our finding in Table 5 and 6 as well: that PotA gets consistently smaller under various ✏ as
the number of creators increases. These observations provide insight into the positive impact of creators adopting regret
minimization strategies: the resulting social welfare is fairly good, even if they are subject to bounded rationalities.
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Figure 5. The genre distribution induced by creators’ adaptive content creation strategies under different n. The left most panel shows
the optimal genre distribution of the joint content creation strategy that maximizes social welfare under n = 5, 10, 30. The remaining 3
panels from left to right correspond to the genre distribution obtained from simulation under n = 5, 10, 30. The green/red/blue colors in
the 3 panels on the right represent simulation results with different exploration rate ✏ = 0.003, 0.1, 0.9 and the black bars denote the
optimal distribution. All the frequency values are averaged over 5 independent runs.
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