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ABSTRACT

Federated learning is promising for its capability to collaboratively train models
with multiple clients without accessing their data, but vulnerable when clients’ data
distributions diverge from each other. This divergence further leads to a dilemma:
“Should we prioritize the learned model’s generic performance (for future use at the
server) or its personalized performance (for each client)?” These two, seemingly
competing goals have divided the community to focus on one or the other, yet in this
paper we show that it is possible to approach both at the same time. Concretely, we
propose a novel federated learning framework that explicitly decouples a model’s
dual duties with two prediction tasks. On the one hand, we introduce a family of
losses that are robust to non-identical class distributions, enabling clients to train
a generic predictor with a consistent objective across them. On the other hand,
we formulate the personalized predictor as a lightweight adaptive module that is
learned to minimize each client’s empirical risk on top of the generic predictor.
With this two-loss, two-predictor framework which we name Federated Robust
Decoupling (FED-ROD), the learned model can simultaneously achieve state-of-
the-art generic and personalized performance, essentially bridging the two tasks.

1 INTRODUCTION

Large-scale data are the driving forces for modern machine learning but come with the risk of data
privacy. In applications like health care, data are required to be kept separate to enforce ownership and
protection, hindering the collective wisdom (of data) for training strong models. Federated learning
(FL), which aims to train a model with multiple data sources (i.e., clients) while keeping their data
decentralized, has emerged as a popular paradigm to resolve these concerns ( , ).

The standard setup of FL seeks to train a single “global” model that can perform well on generic data
distributions ( , ), e.g., the union of clients’ data. As clients’ data are kept separate,
mainstream algorithms like FEDAVG ( , ) take a multi-round approach shown in
Figure 1. Within each round, the server first broadcasts the “global”” model to the clients, who then
independently update the model locally using their own (often limited) data. The server then aggre-
gates the “local” models back into the “global” model and proceeds to the next round. This pipeline
is shown promising if clients’ data are IID (i.e., with similar data and label distributions) ( s
s ), whrch is, however, hard to meet in reality and thus results in a drastic
performance drop ( , , ). Instead of sticking to a smgle ‘global” model
that features the generic performance another setup of FL seeks to construct a personahzed” model
for each client to acknowledge the heterogeneity among clients (
, ). This latter setup (usually called personalized FL) is shown to outperform
the former (which we name generic FL) regarding the test accuracy of each client alone.

So far, these two seemingly contrasting FL setups are developed independently. In this paper, we
however found that they can be approached simultaneously by generic FL algorithms like FEDAVG.

Concretely, algorithms designed for generic FL (G-FL) often discard the local models {w,, } after
training (see Figure 1). As a result, when they are evaluated in a personahzed setting (P- FL) it is the
global model w being tested ( s ;
; s ). Here we found that if we 1nstead
keep {wm} and evaluate them in P- FL they outperform nearly all the existing P-FL algorithms. In
other words, personalized models seem to come for free from the local training step of generic FL.
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At first glance, this may not be totally surprising:
local training in G-FL algorithms is driven by the
client’s empirical risk, which is what a personalized
model strives to optimize'. What really surprises us
is that even without an explicit regularization term
imposed by most P-FL algorithms (

s ), the local models of G- FL algo—
rithms can achieve better generalization performance.
We conduct a detailed analysis and argue that global
aggregation — taking average over model weights —
indeed acts like a regularizer for local models. More-
over, applying advanced G-FL algorithms ( ,

) to improve the G-FL accuracy seems to not hurt
the “local” models’ P-FL accuracy.

Building upon these observations, we dig deeper into
generic FL. Specifically for classification, the non-
IID clients can result from non-identical class dis-
tributions or non-identical class-conditional data
distributions. One way to mitigate their influences
is to make the local training objectives more aligned
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Figure 1: The multl round generic FL pipeline

(top). The dashed arrow indicates that local mod-
els or statistics may be carried to the next round.
Here we apply FEDAVG ( , )on
CIFAR-10 with 20 non-IID clients (see section 5),
and show that personalized models come for free
from generic FL (bottom). The global model w

outperforms local models w,,, on the bottom-left
generic accuracy (G-FL), yet w,,, outperforms w
on the bottom-right personalized accuracy (P-FL).
The accuracy is computed at the end of each round.

among clients. While this can hardly be achieved for
the latter case without knowing clients’ data, we can
do so for the former case by setting a consistent goal
among clients — the learned local models should
classify every class well, even if clients’ data have different class distributions. We realize this by
viewing each client’s local training as an independent class-imbalanced problem ( , ;

, ) and applying objective functions dedicated to it ( , ; ).
As will be shown in section 5, these class-balanced objectives lead to much consistent local trammg
among clients, making the resulting “global” model more robust to non-IID conditions.

The use of class-balanced objectives, nevertheless, degrades the local models’ P-FL performance.
This is because the local models are no longer learned to optimize clients’ empirical risks.
risk
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Figure 2: Local training of FED-ROD.
/blue boxes are the models for G-FL/P-FL.

ellipsoids are the learning objectives. The
area means what to be aggregated at the server.

To address this issue, we propose a unifying frame-
work for G-FL and P-FL which explicitly decouples a
local model’s dual duties: serving as the personalized
model and the ingredient of the global model. Con-
cretely, we follow the FEDAVG pipeline and train the
local model with the class-balanced loss, but on top
of the feature extractor, we introduce a lightweight
personalized predictor and train it with client’s em-
pirical risk (see Figure 2). With this two-loss, two-
predictor framework which we name Federated Ro-
bust Decoupling (FED-ROD), the resulting global model can be more robust to non-identical class
distributions; the personalized predictor can lead to decent P-FL accuracy due to the implicit regular-
ization and the empirical loss. Specifically for the personalized predictor, we propose to explicitly
parameterize it with clients’ class distributions via a hypernetwork ( , ). That is, we
learn a shared meta-model that outputs personalized predictors for clients given their class distribu-
tions. This not only enables zero-shot model adaptation to new clients (without their data but class
distributions), but also provides a better initialization to fine-tune the models given new clients’ data.

Feature
Extractor

We validate FED-ROD on multiple datasets under various non-IID settings. FED-ROD consistently

outperforms existing generic and personalized FL algorithms in both setups. Moreover, FED-ROD is

compatible with and can further improve advanced generic FL algorithms like FEDDYN ( ,
) whenever non-identical class distributions occur. Our contributions are three-folded:

* Unlike most of the previous works that focus on either generic FL or personalized FL, we propose
FED-ROD to excel on both at the same time. We validate FED-ROD with extensive experiments.

"However, when G-FL algorithms are tested on the P-FL setup, the literature does not use their local models.
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* We show that strong personalized models emerge from the local training step of generic FL
algorithms, due to implicit regularization. We further show that class-balanced objectives are
effective for improving the generic FL performance when clients have different class distributions.

* FED-ROD enables zero-shot adaptation and much effective fine-tuning for new clients.

2 RELATED WORK (A DETAILED VERSION IS IN APPENDIX A)

Generic federated learning. FEDAVG ( , ) is the standard algorithm, and
many works are proposed to improve it, either in the global aggregation step ( , ;

; ; , ; , ; ; )
or local tralnlng step (

, ). For example, to reduce local models drifts from the global model, FEDPROX (

, ) and FEDDYN ( , ) employed regularization toward the global model;
SCAFFOLD ( , ) leveraged control variates to correct local gradients. We
also aim to reduce local models’ drifts but via a different way. We apply objective functions in
class-imbalanced learning ( s ), which are designed to be robust to class distribution
changes. The closest to ours is ( s ), which used a traditional class-imbalanced treatment

named re-weighting. We show that more advanced techniques can be applied to further improve the
performance, especially under extreme non-IID conditions where re-weighting is ineffective.

Personalized federated learning. Many approaches for personalized FL ( , ) are

based on multi-task learning (MTL) ( , ; , ). For instance,

( ) encouraged related clients to learn similar models; ( ); ( );
( ) regularized local models with a learnable global model. Our approach is inspired

by MTL as well but has notable differences. First, we found that global aggregation in generic FL
already serves as a strong regularizer. Second, instead of learning for each client a feature extractor
( ) ; , ) or an entire model, FED-ROD shares a single feature extractor
among clients, 1nsp1red by ( ); ( ). This reduces the total parameters to
be learned and improves generalization. Compared to ( ;

which also learned a shared feature extractor, FED-ROD simultaneously excels in both FL setups

Instead of designing specific algorithms for personalized FL, ( ); ( );

( ) showed that performing post-processing (e.g., fine-tuning) to a generic FL model
(e.g., w in FEDAVG) leads to promising personalized accuracy. We further showed that, the local
models {w,, } learned in FEDAVG and other generic FL algorithms are strong personalized models.

We note that, while many personalized FL algorithms also produce a global model, it is mainly used
to regularize or construct personalized models but not for evaluation in the generic setup. In contrast,
we learn models to excel in both setups via a single framework without sacrificing either of them.

A recent work PFEDHN ( , ) also applies hypernetworks ( , )butina
very different way from FED-ROD. PFEDHN learns a hypernetwork at the server to aggregate clients’
updates and produce entire models for them for the next round. In contrast, we learn the hypernetwork
locally to construct the personalized predictors, not the entire models, for fast adaptation to clients.

3 PERSONALIZED MODELS EMERGE FROM GENERIC FEDERATED LEARNING

In this section, we show that personalized FL (P-FL) models emerge from the training process of
generic FL (G-FL) algorithms. To begin with, we review representative G-FL and P-FL algorithms.

3.1 BACKGROUND

Generic federated learning. In a generic FL setting with M clients, where each client has a data set
D = {(xs,v:)} ‘ZDT |, the optimization problem to solve can be formulated as

DYVI
mm L(w Z ||D|| ), where L, |D | ZE T, Y w (1)

Here, w is the model parameter, D = U,,,D,, is the aggregated data set from all clients; £, (w) is
the empirical risk computed from client m’s data; £ is a loss function applied to each data instance.
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Federated averaging (FEDAVG). As clients’ data are separate, Equation 1 cannot be solved directly.
A standard way to relax it is FEDAVG ( s ), which iterates between two steps,
local training and global aggregation, for multiple rounds of communication

Dm|

Local: w,, = argmin,, £,,(w), initialized with w; Global: w <« Z ‘ | D\

m=1
The local training is performed at all (or part of) the clients in parallel, usually with multiple epochs
of SGD to produce the local model w,,. The global aggregation is by taking element-wise average
over model weights. Since local training is driven by clients’ empirical risks, when clients’ data are
non-1ID, w,,, would drift away from each other, making w deviate from the solution of Equation 1.

2

Personalized federated learning. Personalized FL learns for each client m a model w,,, whose

goal is to perform well on client m’s data. While there is no agreed objective functlon so far, many

existing works ( s ; s ;
, ; , ) define the optlmlzatlon problems 31m11ar to the following

Dm

{2, wl, - ,wM}

where R is a regularizer; €2 is 1ntroduced to relate clients. The regularizer is imposed to prevent w,,
from over-fitting client m’s limited data. Unlike Equation 1, Equation 3 directly seeks to minimize
each client’s empirical risk (plus a regularization term) by the corresponding personalized model w,,, .

In practice, personalized FL algorithms often run iteratively between the local and global steps as well,
S0 as to update 2 according to clients’ models One example is to define 2 as a global model (

; , ), e.g., by taking average
over chents models, and apply an LQ regularlzer between 2 and each w,,,. The corresponding local
training step thus could generally be formulated as

A
Local: w'*V) = argmin,, £,,(w) + lw— Q||2, initialized with w(), (4)

where wy(n) denotes the local model after the ¢-th round; A is the regularization coefficient. It is worth

noting that unlike Equation 2, w in Equation 4 is initialized by w( ) not by Q (or w).

Terminology. Let us clarify the concepts of “global” vs. “local” models, and “generic” vs. “person-
alized” models. The former corresponds to the training phase: local models are the ones after every
round of local training, which are then aggregated into the global model at the server (Equation 2).
The latter corresponds to the testing phase: the generic model is used at the server for generic future
test data, while personalized models are specifically used for each client’s test data.

3.2 LOCAL MODELS OF GENERIC FLL ALGORITHMS ARE STRONG PERSONALIZED MODELS

Building upon the aforementioned concepts, we investigate the literature and found that when generic
FL algorithms are evaluated in the P-FL setup, it is their global models being tested. In contrast,
when personalized FL algorithms are applied, it is their local models (e.g., Equation 4) being tested.
This discrepancy motivates us to instead evaluate generic FL algorithms using their local models.

Figure 1 summarizes the results (see section 5 for details). Using local models of FEDAVG (i.e.,
Equation 2) notably outperforms using its global model in the P-FL setup. At first glance, this may
not be surprising, as local training in FEDAVG is driven by clients’ empirical risks. What really
surprises us, as will be seen in section 5, is that FEDAVG’s local models outperform most of the
existing personalized FL algorithms, even if no explicit regularization is imposed in Equation 2.

3.3 INITIALIZATION WITH WEIGHT AVERAGE IS A STRONG REGULARIZER

To gain a further understanding, we plot FEDAVG local models’ accuracy on clients’ training and test
data. We do so also for a state-of-the-art personalized FL algorithm DITTO ( s ), whose
local training step for producing personalized models is similar to Equation 4. As shown in Figure 3,
FEDAVG has a lower training but higher test accuracy, implying that FEDAVG’s local training is more
regularized than Equation 4.
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We attribute this effect to the initialization in Equation 2. Specifically, 1.0

by initializing w with w, we essentially impose an Ly regularizer

2|lw — wl|3 with A\ — oo at the beginning of each round of local 08

training, followed by resetting A to be 0. We found that this implicit f — Ditto train
regularization leads to a smaller value of ||w—w||3 at the end of each & 06 —— FedAvg train
local training round, compared to Equation 4. Due to the page limit, —— Ditto test

we leave additional analyses in the appendix. We note that, advanced 04 —— FedAvg test
generic FL algorithms like SCAFFOLD ( ) 0 50 100
and FEDDYN ( , ) still apply this initialization and Rounds

learn with the empirical risk during local training. Thus, their local Figure 3: Comparison of the
models are strong personalized models as well. training and test accuracy in the P-

FL setup. FEDAVG’s local mod-
els achieve lower training accu-

4 FEDERATED ROBUST DECOUPLING (FED-ROD)  racy but higher test accuracy.

The fact that personalized models emerge from generic FL algorithms motivate us to focus more on
how to improve the latter, especially when clients have non-IID data distributions.

4.1 IMPROVING GENERIC FL WITH BALANCED RISK MINIMIZATION (BRM)

We first analyze what factors may lead to non-IID conditions. Suppose the data instance (x, y) of
client m is sampled from a client-specific joint distribution P, (, y) = Py, (x|y)Pm (v), the non-IID
distributions among clients can result from non-identical class distributions P,,, (x|y), non-identical
class-conditional data distributions P, (y), or both. All these cases can make L,, (w) deviate from
L(w) in Equation 1, which is the main cause of degradation in generic FL ( s ;b).

One way to mitigate the influence of non-IID data is to make L, (w) align with each other. This can
be challenging to achieve if clients have different P,, (x|y): without knowing clients’ data, it is hard
to design such an aligned £,,, (w). However, when clients have different P,,(y)°, i.e., drfferent and
hence imbalanced class distributions, we can indeed design a consistent local training objective by
setting a shared goal for the clients — the learned local models should classify all the classes well. It
is worth noting that setting such a goal does not require every client to know others’ data.

Learning a classifier to perform well on all classes irrespective of the training class drstrrbutlon
is the main focus of class-imbalanced learning (

, ). We therefore propose to treat each clrent S local training as a class imbalanced
learning problem and leverage techniques developed in this sub-field. Re-weighting and re-sampling
( , ) are the most fundamental techniques. Denote by Ny, . the number of training
instances of class ¢ for client m, these techniques adjust £, (w) in Equation 1 into

1

1
EB i s. (i, yi;w),  where g, is usually set as or . 5
m Z (JJ, iy Yis W ) le y Nm,yi Nm7yi ( )

Namely, they mitigate the influence of P,,(y) by turning the empirical risk £,,, into a balanced risk
L7 such that every client solves a more consistent objective that is robust to the class distributions.
Recently, many class-imbalanced works proposed to replace the instance loss E (e.g., cross entropy)
with a class-balanced loss ( , ;

, ), showing more promising results than re- we1ght1ng or re- samplmg We can also deﬁne

,CBR using these losses, e.g., the balanced softmax (BSM) loss ( s )

Nm Y eXP(gy(m w))
ZCGC Nm,,(: eXP(gc($7 'LU))

Here, g.(x; w) is the logit for class ¢, C is the label space, and +y is a hyper-parameter. The BSM loss
is an unbiased extension of softmax to accommodate the class distribution shift between training and
testing. It encourages a minor-class instance to claim a larger logit g, (#; w) in training to overcome
feature deviation ( , ) in testing. We list other class-balanced losses in the appendix.

LR (w ZEBSM x;,yi; w), where (M (x y;w) = —log . (6)

“Clients having different P, (z|y) is related to domain adaptation ( , ) and generaliza-
tion ( , ), which require knowing the distributions of all/some clients for algorithm design.
3This is indeed the main cause of non-1ID data distributions in the literature of FL ( s ; ).
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(a) Empirical risk minimization (ERM) (b) Balanced risk minimization (BRM)
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Figure 4: Comparison of local training strategies and model architectures. G: generic; P: personalized.
Yellow boxes correspond to the models for G-FL; green boxes, for P-FL. Boxes that are covered by the red
background are sent back to the server for aggregation (e.g., weight average), and re-initialized at the next round.
Green ellipsoids correspond to the learning objectives. ¢ stands for the predicted logits (of all classes); §Jc and
yp come from the G-head and P-head, respectively. (a) local training with ERM; (b) local training with BRM;
(c) FED-ROD (linear): learning with both BRM (for G-FL) and ERM (for P-FL) using the two-predictor (head)

architecture; (d) FED-ROD (hyper): same as (c), but the P-head is constructed by a shared hypernetwork.

We take advantage of these existing efforts by replacing the empirical risk £,,, in Equation 2 with
a balanced risk £2%, which either takes the form of Equation 5 or applies a class-balanced loss
(e.g., Equation 6), or both We note that, a variant of Equation 5 has been used in ( , ).
However, our experiments show that it is less effective than class-balanced losses in extreme non-1ID
cases. Interestingly, we found that L2 can easily be incorporated into advanced FL algorithms like
FEDDYN ( , ), because these algorithms are agnostic to the local objectives being used.

4.2 LOCAL TRAINING AND LOCAL MODEL DECOUPLING WITH ERM AND BRM

The use of balanced risk £2 in local training notably improves the resulting global model ’s
generic performance, as will be seen in section 5. Nevertheless, it inevitably hurts the local model
w,,’s personalized performance, since it is no longer optimized towards client’s empirical risk £,,,.

To address these contrasting pursuits of generic and personalized FL, we propose a unifying FL.
framework named Federated Robust Decoupling (FED-ROD), which decouples the dual duties of
local models by learning two predictors on top of a shared feature extractor: one trained with empirical
risk minimization (ERM) for personalized FL (P-FL) and the other with balanced risk minimization
(BRM) for generic FL (G-FL). Figure 4 (c-d) illustrates the model and local training objective of
FED-ROD. The overall training process of FED-ROD follows FEDAVG, iterating between local
training and global aggregation. As mentroned in subsection 4.1, other generic FL algorithms (

, ) can easﬂy be applied to the BRM branch to
further 1mprove the generic performance Without loss of generality, we focus on the basic version
built upon FEDAVG. We start with the model in Figure 4 (c).

Notations. We denote by f(x; 6) the shared feature extractor parameterized by 6, whose output is z.
We denote by h%(z; ) and h'’(z; ¢,,,) the generic and personalized prediction heads parameterized
by 1 and ¢,,,, respectively; both are fully-connected (FC) layers. In short, our generic model is
parameterized by {0, 1) }; our personalized model for client m is parameterized by {0, 1, ¢, }.

Predictions. For generic prediction, we perform z = f(x; @), followed by j¢ = h%(z;4). For
personalized prediction, we perform f(x; ), followed by §p = h%(2;v) + h¥(z; ¢,,). That is,
hY is an add-on to A, providing personalized information that is not captured by the generic head.
The overall objective. FED-ROD learns the generic model with the balanced risk £ and the

personalized predictor with the empirical risk £,,. That is, different from Equation 1, FED-ROD
aims to solve the following two optimization problems simultaneously

win £((6,1)) = Z'ﬁ;’;'ﬁ“ (0.6)) and inLa((0.9,00)) Vm e M. ()

We note that, £,,, is only used to learn the personalized head parameterized by ¢, .
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Learning. Equation 7 cannot be solved directly in federated learning, so FED-ROD follows FEDAVG
to learn iteratively between the local training and global aggregation steps

Local: 6}, = argming , £, ({6, }), initialized with 6, 1, 8)
¢y, = arg ming L., ({6 ¢ bm }) initialized with ¢/, )
Do
Global: 0 e, (10)
Z D| Z IDI

where ¢/, is learned from the previous round, similar to w( ) in Equation 4. That is, the person-
alized head will not be averaged globally but kept locally. In our implementation, Equation 8 and
Equation 9 are solved simultaneously via SGD, and we do not derive gradients w.r.t. 8 and 1) from
L, ({0,%,dm}). The 6 and 1) in Equation 9 thus come dynamically from the SGD updates of
Equation 8. In other words, Equation 9 is not merely fine-tuning on top of the generic model. In
the end of federated learning, we will obtain 8 and v (Equation 10) for generic predictions and
{65, 9%,, &5 YM_| (Equation 8 and Equation 9) for personalized predictions, respectively. Please
be referred to the appendix for the pseudocode.

4.3 ADAPTIVE PERSONALIZED PREDICTORS VIA HYPERNETWORKS

In subsection 4.2, the parameter ¢,,, of the personalized predictor is learned independently for each
client and never shared across clients. In other words, for a new client not involved in the training
phase, FED-ROD can only offer the global model for generic prediction. In this subsection, we
investigate learning a shared personalized predictor that can adapt to new clients. Concretely, we
propose to learn a meta-model which can generate ¢, for a client given the client’s class distribution.
We denote by H P (a,; V) the meta-model parameterized by v, whose output is ¢,,,. Here, a,, € RICI

is the |C|-dimensional vector that records the class distribution of client m; i.e., the ¢-th dimension

amlc] = 5. N’J’\‘," . Accordingly, the local training step of ¢,, in Equation 9 is replaced by

Local: v}, = argmin,, £,,({0,,v}), initialized with &; Global: & « Z 1;'[ . (11

We implement H* by a lightweight hypernetwork ( , ) with two fully-connected layers.
With the learned 7, the meta-model H* can locally generate ¢,,, based on a,,, making it adaptive to
new clients simply by class distributions. The parameter ¢,, can be further updated using clients’
data. We name this version FED-ROD (hyper); the previous one, FED-ROD (linear). Please see
Figure 4 (c-d) for an illustration. We include more details in the appendix.

5 EXPERIMENT (MORE DETAILS AND RESULTS IN THE APPENDIX)

Datasets, models, and settings. We use CIFAR-10/100 ( , ) and Fashion-
MNIST (FMNIST) ( , ). We also include a realistic EMNIST ( s )
dataset, which collects hand-written letters of thousands of writers. To simulate the non-IID data
distributions on CIFAR and FMNIST, we follow ( ) to create a heterogeneous partition
for M clients: an M-dimensional vector q.. is drawn from Dir(«) for class ¢, and we assign data
of class c to client m proportionally to g.[m]. The resulting clients have different numbers of total
images and different class distributions. With o < 1, most of the training examples of one class are
likely assigned to a small portion of clients. Similar to ( ), we use M = 100 clients for
FMNIST and M = 20 for CIFAR-10/100, and sample 20%/40% clients at every round, respectively.
For EMNIST, we use the digit images, follow ( ) to construct 2, 185 clients (each is
a writer), and sample 5% clients at every round. We use a ConvNet ( , ) similar to
( , ). It contains 3 convolutional layers and 2 fully-connected
layers. We tram every FL algorithm for 100 rounds, with 5 local epochs in each round.

We report the mean accuracy of five times of experiments with different random seeds. We evaluate
the generic performance (G-FL) using the generic model (GM) on the standard generic test set. For
FMNIST and CIFAR-10/100, we evaluate the personalized performance (P-FL) using personalized
models (PM) on the same set, but re-weight the accuracy according to clients’ class distributions
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Table 1: Results in G-FL accuracy and P-FL accuracy (%). x: methods with no G-FL models and we combine
their P-FL models. §: official implementation. Blue/bold fonts highlight the best baseline/our approach.

Dataset |  EMNIST | EMNIST | CIFAR-10 | CIFAR-100 |
Non-IID |  Writers | Dir0.1) | Dir0.3) | Dir(0.1) | Dir0.3) | Dir0.1) | Dir(0.3) |
Test Set IGFL| P-FL |GFL| P-FL |GFL| P-FL |G-FL| P-FL |G-FL| P-FL |G-FL| P-FL |G-FL| P-FL |
Method / Model | GM [GM PM | GM |GM PM | GM |GM PM | GM |GM PM | GM |GM PM| GM |GM PM | GM |GM PM |
FEDAVG 97.0 9699721811 8109151834 832 90.5) 576 571 905/ 68.6 694 83.11 41.8 4167021 46.4 462 61.7
FEDPROX 97.0 97.0 07.0| 822 82.3 01.4| 84'5 84'5 89.7| 58.7 58.9 89.7| 69.9 69.8 84.7| 417 41.6 70.4| 46.5 46.4 61.5
SCAFFOLD 97.1 97.0 97.1| 83.1 83.0 89.0| 85.1 85.0 90.4|61.2 60.8 90.1| 71.1 71.5 84.8| 42.3 42.1 70.4| 465 46.5 61.7
FEDDYN § 97.3 97.3 07.3| 8312 83.290.7| 86.1 86.1 01.5| 63.4 63.9 92.4| 72.5 7372 85.4| 43.0 43.0 72.0| 47.5 47.4 62’5
MTL * 754 75.0 85.6| 36.1 36.0 87.3| 53.1 53.4 78.3| 12.1 12.7 90.6| 13.5 13.7 80.2| 9.5 9.3 60.7| 10.8 10.7 49.9
LG-FEDAVG *§ | 80.1 80.0 956 54.8 5455 895 66.8 66.8 844|205 288 908/ 46.7 462 8214|235 234 66.7| 345 339 554
FEDPER 933 93.1 97.2| 74.5 74.4 91.3| 79.9 79.9 90.4| 50.4 50.2 89.9| 64.4 64.5 84.9| 37.6 37.6 71.0| 40.3 40.1 62.5
PER-FEDAVG 9571 - 97.0|805 - 8278|841 - 867|607 - 827|705 - 807|390 - 666|445 - 589
PFEDME § 963 96.0 97.1| 767 76.7 83.4| 79.0 79.0 83.4| 50.6 50.7 76.6| 62.1 61.7 70.5| 38.6 38.5 63.0| 41.4 41.1 534
DITTO 97.0 97.0 97.4| 81.5 81.5 89.4| 833 83.290.1|58.1 58.3 86.8| 60.7 69.8 81.5| 41.7 41.8 68.5| 46.4 46.4 588
FEDFOMO * 80,5 8014 95.9| 345 34:390.0| 70.1 69.9 89.6| 30.5 31.2 90.5| 45.3 45.1 83.4| 35.4 35.3 63.9| 30.6 39.3 58.4
FEDREP * § 95.0 95.1 97.5| 79.5 80.1 91.8| 80.6 80.5 90.5| 56.6 56.2 91.0| 67.7 67.5 85.2| 40.7 40.7 71.5| 46.0 46.0 62.1
Local only | - 642] - 85.9] - 85.0] - 874| - 757] - - 400] - 325]
FED-ROD Elinearg 97.3 97.3 97.5 83.9 83.9 92.7 86.3 94.5| 68.5 68.5 92.7| 76.9 76.8 86.4| 45.9 45.8 72.2| 48.5 48.5 62.3
FED-ROD (hyper)| 97.3 97.3 97.5| 830 83.9 92.9( 86.3 86.3 94.8| 68.5 68.5 92.5 76.9 76.8 86.8| 45.9 45.8 72.3| 48.5 48.5 62.5

+FEDDYN | 97.4 97.4 97.5|85.9 85.7 95.3 87.5 94.6| 682 68.2 92.7| 74.6 74.6 85.6| 46.2 46.2 72.5| 48.4 48.4 625

P,.(y) and average the weighted accuracy across M clients as M Yom W Here, 7 is

the instance index. This evaluation is more robust (essentially as the expectation) than assigning each
client a specific test set. For EMNIST, each client has its own test set with the same writing style.

Our variants. We mainly use Equation 6 with v = 1 as the L2 and report the FED-ROD (hyper)
version (cf. subsection 4.3). Table 2 provides the ablation study.

Baselines. For G-FL methods including FEDAVG ( , ), FEDPROX ( ,

), SCAFFOLD ( s ), and FEDDYN ( , ), we use their
global models w for G-FL evaluation; their local models (i.e., w,, in Figure 1) for P-FL evaluation.
For P-FL methods, to evaluate their G-FL performance, we use the available global models in

PFEDME ( , ) and DITTO ( , ) or average the final personalized models
for MTL ( R ), FEDPER ( , ), LG-FEDAVG ( s ),
FEDFOMO ( s ), and FEDREP ( s ).

To illustrate the difference between applying GMs and PMs in a P-FL setting, we also evaluate the
P-FL performance using GMs, which is how FEDAVG has been applied to P-FL in literature.

5.1 RESULTS

FED-ROD bridges G-FL and P-FL and consistently outperforms all generic and personalized
FL methods. Table 1 summarizes the results. In terms of G-FL accuracy, advanced local training
(i.e., SCAFFOLD, FEDPROX, and FEDDYN) outperforms FEDAVG and personalized methods,
and our FED-ROD can have further gains by using balanced risk minimization (BRM). We also
investigate combining FED-ROD and FEDDYN ( , ), using the latter to optimize the
generic model with BRM, which outperforms either ingredient in many cases. We report the G-FL
accuracy of personalized FL algorithms mainly to investigate if they have similar properties like
FEDAVG: an algorithm designed for one setup can also construct models for the other setup.

In terms of P-FL accuracy, by using PMs most methods outperform the baseline of local training with
individual client’s data without communication (i.e., local only), justifying the benefits of federated
collaboration*. For generic FL methods, using PMs (i.e., local models {w.,, }) clearly outperforms
using GMs (i.e., w), which supports our claims and observations in Figure 1 and subsection 3.2. It
is worth noting that the local models from generic FL methods are highly competitive to or even
outperform personalized models produced by personalized FL methods. This provides generic FL.
methods with an add-on functionality to output personalized models by keeping the checkpoints on
clients after local training. Our FED-ROD achieves the highest P-FL accuracy and we attribute
this to (a) the shared feature extractor learned with the balanced risk and re-initialized every round to
benefit from implicit regularization; (b) the personalized head learned with clients’ empirical risks.

“PMs of “local only” could outperform the GM of FEDAVG on the P-FL accuracy, especially when the
non-IID condition becomes severe (e.g., Dir (0.1)): it is hard to train a single GM to perform well in P-FL.
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Table 2: Ablation study on vari- Table 3: FED-RoD with dif- Table 4: P-FL accuracy on future non-IID
ants of FED-ROD. FT: fine-tuning ferent balanced losses. x: BSM clients (Dir(0.3) for all datasets). Each cell
is before/after local fine-tuning.

Test Set |G-FL| P-FL

Method / Model | GM |GM PM Test Set |G-FL| P-FL Method |FMNIST CIFAR-10 CIFAR-100

B4 toe o LowMokl IGVIGMIM. Eee [ 30 v
EDDYN . . . . N .

FEDAVG 68.6 69.4 85.1  Cross entropy 68.6 69.4 85.1 PER-FEDAVG  [82.1/89.6 60.0/79.8 37.6/55.6

FEDAVG (BRM) 76.8 76.776.1 , ) | 65.8 65.8 80.1

FEDAVG (BRM, FT) 76.8 76.7 84.5 . Y | 75.7 75.9 83.3 FED-ROD (linear)|83.5/91.3 62.4/80.2 40.0/58.2

FED-ROD (linear, BRMg 769 76.886.4  ( , ) |75.2 75.0 85.1 FED-ROD (hyper)|88.9/91.4 75.7/81.5 40.7/59.0

FED-ROD (hyper, BRM)| 76.9 76.8 86.8  ( , x| 76.9 76.8 86.8 +FEDDYN [89.2/91.3 77.1/83.5 41.4/59.5

BRM effectively reduces the variance of G-FL accuracy — FedAvg - after FedAvg - before

and local gradients. To understand why FED-ROD improves —— Fed-RoD -after Fed-RoD - before

G-FL, we visualize the global model w’s and each local model 70 ]
w,,’s G-FL accuracy on CIFAR-10 (Dir(0.3)), in Figure 5 Goo '

(upper). FED-ROD not only learns a better global model for G- T %0

FL, but also has a smaller variance of accuracy across the local P

models’ generic heads (as their objectives are more aligned). %0

We also show how w,,, deviates from w after local training 20

in Figure 5 (lower). FED-ROD has a smaller variance. This R
coincides with the study in ( , ): lower variances Rounds

of the local gradients could imply better generic performance. 10— reamg R
FED-ROD benefits from decoupling. We compare several £ 08 FedProx — Fed-RoD
variants of FED-ROD (cf. Figure 4), with one head (reduced § 0.6{ | — SCAFFOLD

to FEDAVG) or different networks (linear/hyper). We evalu- 204

ate on CIFAR-10 (Dir(0.3)). As shown in Table 2, FEDAVG 3

with BRM significantly improves G-FL but degrades in P-FL. ~ © %2 .
FED-ROD remedies this by training a decoupled personalized 00— 6 80 100
head. We note that, FED-ROD does not merely fine-tune the Rounds

global model with clients’ data (cf. subsection 4.2). We also Figure 5: Upper: G-FL test accuracy
compare different balanced losses in Table 3: advanced losses along the training rounds before/after av-

outperforms importance re-weighting ( , ). eraging the local models. Lower: vari-
. . ances of w,, — w across clients.

FED-ROD (hyper) benefits future clients. To validate the

generalizability to new clients, we build on the Dir(0.3) non- B ~ redoyn

IID setting for FMNIST and CIFAR-10/100, but split the train- FedProx — Per-FedAvg

ing data into 100 clients (50 are in training; 50 are new). We g %] scarFop  — Fed-RoD

train on the 50 training clients for 100 rounds (sampling 20 of ; 80

them every round). We then evaluate on the 50 new clients indi-  * — *7_

vidually, either using the global model directly or fine-tuning it 70 =

with clients’ data for several steps. Table 4 and Figure 6 shows o 0 4 6 s 0o

the averaged accuracy on new clients. Without fine-tuning, Local Steps

FED-ROD (hyper) can already generate personalized models, Figure 6: The average P-FL accuracy

and outperforms others methods stably with fine-tuning. on future clients, with local training.

More results and analyses in the Appendix. The Appendix includes studies with class-imbalanced
global distributions and we show that FED-ROD still performs well. BRM can be further improved
with meta-learned hyper-parameters. We validate that re-initializing the local models by the global
model at every round (i.e., Equation 2) does lead to a much smaller regularization loss than Equation 4
to support our claim in subsection 3.3. More comprehensive results regarding more clients, deeper
backbones, compatibility with other methods, robustness against adversaries, etc, are also provided.

6 CONCLUSION

Most of the existing work in federated learning (FL) has been dedicated to either learning a better
generic model or personalized models. We show that these two contrasting goals can be achieved
simultaneously via a novel two-loss, two-predictor FL framework FED-ROD. Concretely, we show
that strong personalized models emerge from the local training of generic FL algorithms, due to
implicit regularization; imposing class-balanced objectives further improves the generic FL accuracy
when clients have non-IID distributions. FED-ROD seamlessly incorporates these two observations
to excel in both FL settings, and further enables fast adaptation to new clients via an adaptive module.
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Appendix
We provide details omitted in the main paper.

* Appendix A: additional comparison to related work (cf. section 2 and section 3 of the main
paper).

* Appendix B: additional details of FED-ROD (cf. section 3 and section 4 of the main paper).

* Appendix C: details of experimental setups (cf. section 5 of the main paper).

* Appendix D: additional experimental results and analysis (cf. section 3 and section 5 of the
main paper).

A COMPARISON TO RELATED WORK

A.1 FOLLOW-UP WORKS OF FEDAVG

Several recent works ( ;b; s ) have shown that, with multiple
steps of local SGD updates, the local model w,, would drift away from each other, leading to a
degenerated global model w that deviates from the solution of Equation 1 of the main text.

One way to mitigate this is to modify the local training objective (cf. Equation 2 of the main text).
For instance, FEDPROX ( s ) introduced a regularizer with respect to w,

A
min £, (w) + §||w —w|?.

FEDDYN ( , ) further added a dynamic term based on the local model of the previous
round w),,,

A
min L,y (w) + (VL (wy,), w>+§||’w—117||2-

These regularizers aim to stabilize local training and align the objectives among clients. Some other
works did not change the objectives but introduced control variates or momentum to correct the local
gradient ( , ;b), or designed a new optimizer more suitable for decentralized
learning ( R ; s ; s ).

It is worth mentioning, in most of these works, the empirical risk £,,, (w) still plays an important role
in driving the local model update. Since L, (w) directly reflects the (non-1ID) client data distribution,
the learned local models are indeed strong candidates for personalized models.

A.2 GENERIC FEDERATED LEARNING

FEDAVG ( , ) is the standard algorithm, which involves multiple rounds of local
training and global aggregation. Many works have studied its convergence ( ,
; , ), robustness ( , ), communication ( s ;

, ), espemally for non-IID clients ( , , ). Many

other works proposed to improve FEDAVG. In terms of global aggregatlon ( , ;
, ) matched local model weights before averaging. ( ;

, ; , ; , ) replaced weight average by model ensemble and
distillation. ( , ; , ) applied server momentum and adaptlve optimization
to improve the global model update. In terms of local training, (

, ) improved the optlmlzer To reduce
local models drifts from the global model, ( s ) mixed client and server data in
local training; FEDPROX ( , ), FEDDANE ( s ), and FEDDYN ( s

) employed regularization toward the global model; SCAFFOLD ( , )
MIME ( , ) leveraged control varieties and/or server statistics to correct local
gradients; ( ; , ) modified the local model update rules. For most of
them, the empirical rlsks on chents data are the major forces to drive local training.

We also aim to reduce local models’ drifts but via a different way. We directly bypass the empirical
risks that reflect clients’ data distributions. Instead, we apply objective functions in class-imbalanced
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learning ( , ), which are desrgned to be robust to the change of class distributions. Our
approach is different from ( , ), which monitored
and resolved class imbalance from the server Whrle we tackled 1t at the clients. Our approach is also
different from agnostic FL ( , s ), whose local training is still built
on empirical risk minimization. The closest to ours is ( s ), which used a traditional
class-imbalanced treatment, re-weighting, to mitigate non-identical class distributions. We show
that more advanced techniques can be applied to further improve the performance, especially under
extreme non-IID conditions where re-weighting is less effective. Moreover, our method is compatible
with existing efforts like FEDDYN ( R ) and SCAFFOLD ( s )
to boost the generic performance.

A.3 PERSONALIZED FEDERATED LEARNING

Personalized FL ( , ) learns a customized model for each client. Many approaches
are based on multi-task learning (MTL) (

, ) — leveraging the clients task relatedness to
1mprove model generalizabrhty For instance, ( , ) encouraged related clients to learn
similar models ( s ; s ; s ;

; s ) regularized local models with a learnable global
model prior or set of data logits. (

, ) designed the model architecture to have both personahzed (usually the feature extractor)
and shareable components. ( , ) constructed for each client an
initialized model or regularizer based on learnable bases. Our approach is inspired by MTL as well
but has several notable differences from existing works. First, we found that the global aggregation
step in generic FL already serves as a strong regularizer. Second, instead of learning for each client a
personalized feature extractor ( s ; s ) or an entire independent model
that can operate alone ( ; ; R ), FED-ROD shares
a smgle feature extractor among all clients inspired by mvariant risk minimization ( ,

s ) and domain generalization ( ).
This reduces the total parameters to be learned and improves model’s generalrzabrlrty Compared to
FEDPER ( , ) and FEDREP ( , ) which also learned a shared
feature extractor, FED-ROD simultaneously outputs a single, strong global model to excel in the
generic FL setup.

Some other approaches are based on mixture models. ( ;

, ) (separately) learned global and personahzed
models and performed a mixture of them for prediction. ( , ) learned a sets of expert
models and used them to construct personalized models. Meta-learning is also applied to learn a
good initialized model that can be adapted to each client with a few steps of local training (

, ; , ; , ; ; ).
Instead of designing specific algorithms for personalized FL, ( ; )
showed that performing post- processrng (e.g., fine-tuning) to a generic FL model (e.g., w learned by
FEDAVG) already leads to promising personalized accuracy. In this work, we further showed that, the
local models w,, learned in FEDAVG and other generic FL algorithms are indeed strong personalized
models.

We note that, while many personalized FL algorithms also produce a global model, it is mainly used
to regularize or construct personalized models but not for evaluation in the generic setup. In contrast,
we learn models to excel in both the setups via a single framework without sacrificing either of them.

PFEDHN ( , ) also applies hypernetworks ( , ) but for a very different
purpose from FED-ROD. Specifically, PFEDHN learns a hypernetwork at the server to aggregate
clients’ model updates and produce their entire models for the next round. In contrast, we learn
the hypernetwork locally to construct the personalized predictors, not the entire models, for fast
adaptation to clients.
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A.4 AVERAGING MODEL WEIGHTS AS A REGULARIZER

In subsection 3.3, we demonstrate that taking the average over model weights indeed acts as a
regularizer for local models to improve their individual personalized performance.

In more traditional machine learning, the regularization effects of averaging multiple 1ndependently-
trained models have been observed in some techniques like bagging ( , ;
, ). Indeed, in several recent works of FL ( R ;

; , ), the authors replaced weight average by bagglng/model ensemble to
1mpr0ve the generic performance on the global test set. That is, they found that performing the model
ensemble over clients’ models can yield more robust predictions on the global test set than the global
model, which is generated by averaging the client models’ weights.

Here, we however study a different regularization effect, in personalized FL on local test sets.
As reviewed in subsection 3.1, personalized FL algorithms often impose a regularizer on the lo-
cal/personalized models to overcome the fact that clients usually have limited data (please see Equa-
tion 3 and Equation 4 and the surrounding text). What we claim is that even without such an explicit
regularizer, the model weight average before local training (Equation 2) already serves as an im-
plicit regularizer to the local models for their individual personalized performance, as we discussed
in subsection 3.3 (Figure 3) and empirically verified in subsection D.2 and Figure 7.

A.5 SYSTEMATIC OVERHEAD

FED-ROD has similar computation cost, communication size, and number of parameters as FEDAVG.
We discuss the difference between FED-ROD and existing generic FL methods from a system view.
FEDPROX ( , ) proposes a proximal term to prevent client from diverging from the server
model, which is more robust to the heterogeneous system. SCAFFOLD ( , )
imposes a gradient correction during client training. Maintaining such a correction term, however,
doubles the size of communication. FEDDYN ( s ) resolves the communication cost
issue by introducing a novel dynamic regularization. However, it requires all users to maintain their
previous models locally throughout the FL process, which is not desired when users have memory
and synchronization constraints.

A.6 CLASS-IMBALANCED LEARNING

Class-imbalanced learning attracts increasing attention for two reasons. First, models trained under
this scenario using empirical risk minimization perform poorly on minor classes of scarce training
data. Second, many real-world data sets are class-imbalanced by nature ( ,

, ). In this paper we employ a mainstream approach cost-
sensitive learmng ( ; s ),
which ad]usts the training objectlve to reﬂect class 1mbalance SO as t0 train a model that is less biased
toward major classes.

A.7 ZERO-SHOT LEARNING
Our design choice of parameterizing the personalized predlctlon head W1th clients’ class dlStI'lblltlonS
is reminiscent of zero-shot learning ( ;

, ), whose goal is to build an object clas31ﬁer based on its semantlc representatlon The key

difference is that we build an entire fully-connected layer for FL, not just a single class vector. We
employ hypernetworks ( , ) for efficient parameterization.

B ADDITIONAL DETAILS OF FED-ROD

B.1 ADDITIONAL BACKGROUND (CF. SUBSECTION 3.1 OF THE MAIN PAPER)

In the generic federated learning (FL) setting, the goal is to construct a single “global” model that
can perform well for test data from all the clients. Let w denote the parameters of the model, for a
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classification problem whose label space is C, a commonly used loss is the cross entropy,

exp(gy (z; w))

Uz, y;w) = —log > cec exp(ge(x; w))’

12)

where g.(x; w) is the model’s output logit for class c.

We note that, the concepts of global vs. local models and generic vs. personalized models should not
be confused. No matter which task (generic or personalized) an FL algorithm focuses on, as long as
it has the local training step, it generates local models; as long as it has the global aggregation step
(of the entire model), it generates a global model. For instance, FEDAVG ( R )
aims for generic FL but it creates both the global and local models.

B.2 OVERVIEW OF FED-ROD

For generic predictions, FED-ROD performs feature extraction z = f(x; 8), followed by h%(z; ).
For personalized predictions, FED-ROD performs z = f(z; 6), followed by h%(z; ) + hf (z; ).
The element-wise addition is performed at the logit level. That is, g.(a; w) in Equation 12 can be
re-written as

G(o. .
ge(: {0, %, pm}) = {Zﬁ;(z’ ?) Generic model, (13)

S(z;9) + hl(2;¢m) Personalized model,

where z = f(x; 0) is the extracted feature.

The overall training process of FED-ROD iterates between the local training and global aggregation
steps. In local training, FED-ROD aims to minimize the following objective

LER(0,9}) + Lin({0,. P }). (14)

The empirical risk L, (w,, = {0,v, ¢, }) is defined as ﬁ > Uxi, yi; wy ), where D,,, =

{(zi,yi)} LZT" is the training data of client m. We will introduce more options of the balanced risk
LB in subsection B.3. We optimize Equation 14 via stochastic gradient descent (SGD). We updates
0, 1, and ¢,, in a single forward-backward pass, which consumes almost the same computation cost
as FEDAVG. For £,,,({0, v, ¢, }), we do not derive gradients w.r.t. 8 and ).

We emphasize that, according to subsection 4.2 of the main paper, the finally learned parameters of
FED-ROD (linear) are 0, 1, and {¢}, }2_,. We then plug them into Equation 13 for predictions.
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In algorithm 1 and algorithm 2, we provide pseudocode of our FED-ROD algorithm.

Algorithm 1: FED-ROD (linear) (Federated Robust Decoupling)

Server input :initial global model parameter 6 and );

Client m’s input :initial local model parameter ¢7;;,, local step size 7, local labeled data D, ;

forr < 1to Rdo

Sample clients S C {1,--- ,N};

Communicate 0 and 1) to all clients m € S;

for each client m € S in parallel do
Initialize 8 < 0, ¥ < v, and P, <+ @},:
{65, Y., &1, } + Client local training({0, v, ¢ }, D, 1); [Equation 8 and Equation 9]
Communicate 6}, and v}, to the server;

end

0 Dm | *
Construct 6 = —1Pml__gx .
2imes T a1 0m

n D | *
Construct ¢p = ) —1Pml_ ;
'lp meS > s \'Dm/\d)m’

end
Server output  :0 and 1;
Client m’s output:{6;,,, y,,, dr. }-

Algorithm 2: FED-ROD (hyper) (Federated Robust Decoupling)

Server input :initial global model parameter 0, 1), and &;

Client m’s input :local step size 7, local labeled data D,,,;

forr < 1to Rdo

Sample clients S C {1,--- ,N};

Communicate 0, 1, and © to all clients m € S;

for each client m € S in parallel do
Initialize 8 < 0, v < v, and v < U;
{6, Y., v } < Client local training({0, ¥, v}, D, n); [Equation 11]
Communicate 0, 1}, and v;;, to the server;

end

2 D | *
Construct 6 = —1Pml__gx .
Zmes S ies Dy 10me

Construct ¢ = Y omes %dﬁ%;

m'es |P
_ D | *
nstruct v = APl
Construct 2 =3 rnes 5o 1001V’
end
Server output :0, 1, and U (for personalized model generation).

Client m’s output : {6}, 7, v }.

B.3 BALANCED RISK MINIMIZATION (BRM)

To learn a generic model, standard federated learning (e.g., FEDAVG ( )
aims to optimize £(w) in Equation | of the main paper. In theory, the overall objective E( ) is
equal to the expected objective E[L,, (w)] for client m, if client m’s data D,,, are IID partitioned
from D. Here, the expectation is over different D,, partitioned from D. In reality, £,, could
diverge from £ due to non-IID partitions of the aggregated data D into clients’ data. That is,
E[L (w)] # E[L (w)] # L(w). We mitigate the non-IID situation by directly adjusting £,,, such
that E[L,, (w)] = E[L,, (w)] = L(w).

Essentially, £,,(w) is the client’s empirical risk, which could be different among clients if their
class distribution P, (y) are different. We, therefore, propose to turn the empirical risk £,,, into
a class-balanced risk ,CBR by replacing ¢ in Equation 12 with a class—balanced loss (

, ). The
class- balanced loss attempts to make the learned model robust to dlfferent tralnmg class distributions,
such that the learned model can perform well for all the test classes. In other words, the class-balanced
loss is designed with an implicit assumption that the test data will be class-balanced, even though the
training data may not be. Table 5 summarizes some popular class-balanced losses. We also include
some extensions with meta-learning. See subsection B.5.

20



Published as a conference paper at ICLR 2022

Table 5: Balanced risk and loss functions. We ignore the normalization in £,,(w). Red highlights the
modifications by the balanced losses. Blue highlights the terms learned with meta-learning (see subsection B.5).

Method ‘ Lz, y; w) Lo or LEF
exp(gy (z;w)) gt
Cross entropy ‘ —log e oxp(ge(@w)) > (i, i w)
exp(gy(w;w)) ch; Nm,c . .
IR ( 2020) o8 5 et e e S A
LDAM ( , )
exp (gy(w;w)—%\frniflb>
(7y tuned with validation) | — log — > l(@i, v w)
Yeec, ety eXP(ge(@w))+exp gy(w;w)**/Nmﬁ,>
CDT ( ) )
o xp () oy (i) )
(v tuned with validation) —log ~ > U@, yis w)
S )
BSM ( ) )
o . N;:l_y exp(gy(m;'w)) ) .
(7 = 1fixed) log Seec N c exp(ge(miw)) 22 (i, yis w)
Meta-BSM
(v = 1 fixed,
Gm.,y, Meta-learned) —log N'A;"""fxp(gy(m;m) D Gmoy L, yi; w)
™ Yi >ecec N, exp(ge(z;w)) @AY e
Meta-BSM
Ny Y™ exp( gy (z5w)) .
(Ym Gm,y; meta-learned) —log Soec ]\“{”LVC"V'HL exz(gc(m;w)) ZZ Gy (s, yi; w)

Table 6: # of parameters in ConvNets for EMNIST/FMNIST and CIFAR-10/100

Module | EMNIST/FMNIST CIFAR-10 CIFAR-100
Feature extractor 92,646 1,025,610 1,025,610
Generic head 500 640 6400
Total 93,146 1,026,250 1,032,010

Hypernetworks | 8,160 (+8.8%) 20,800 (+2.0%) 104,000 (+10.0%)

One may wonder what if the global distribution is class-imbalanced? Will BRM still be beneficial to
FL? In subsection D.5, we perform experiments to show that FED-ROD with BRM can still improve
on FEDAVG since BRM seeks to learn every class well. Even though the global distribution might be
skewed, BRM provides a novel alternative to mitigate the non-IID problem by making every client
optimize a more consistent objective as we discussed above. Designing better losses for BRM in FL
will be interesting future work.

B.4 ON FEDERATED LEARNING FOR THE PERSONALIZED HEAD WITH HYPERNETWORKS

One drawback of existing personalized methods is that the personalized models are only available for
clients involved in training or with sufficient training data. When new clients arrive in testing, is it
possible for the federated system to provide corresponding personalized models?

To this end, instead of learning a specific prediction head ¢,, for each client m, we propose to learn
a meta-model H” (a,,,; v) with a shared meta-parameter v. The input to H” is a vector a,,, € RICI,
which records the proportion of class ¢ € C in client m’s data. The output of H” is ¢,,, for h”. In
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other words, H can adaptively output personalized prediction heads for clients given their local
class distributions a,,,.

We implement the meta-model H” by a hypernetwork ( , ), which can be seen as a
lightweight classifier generator given a,,. This lightweight hypernetwork not only enables clients
to collaboratively learn a module that can generate customized models, but also allows any (future)
clients to immediately generate their own personalized predictors given their local class distribution
a,, as input, even without training. We construct the hypernetwork by two fully-connected (FC)
layers (with a ReLU nonlinear layer in between). Table 6 summarizes the number of parameters of
each part in FED-ROD. Hypernetworks add only a small overhead to the original model.

B.5 EXTENSION WITH META-LEARNING FOR THE IMPROVED BSM LOSS

FED-ROD incorporates a balanced loss to learn the generic model. Here we study a more advanced
way to derive such balanced loss with meta-learning. Inspired by ( ,

) and the FL scenario proposed by ( , ), we seek to combine the BSM loss and
re-weighting as >, gy, (M (x5, y;; w), where g, , is meta-learned with a small balanced meta
dataset Dpera provided by the server. (See Table 5 for a comparison.) The Diyera should have a similar
distribution to the future test data. We implement this idea with the Meta-Weight Net (MWNet) (

, ) with learnable parameter (.

Iy €xP(gy (T;w))

oo exp(ge (@w))
parameter v which is set to be 1 via validation ( s ). However, in federated learning it
can be hard to tune such a hyperparameter due to the large number of non-IID clients. Therefore,
we propose to learn a client-specific v, with meta-learning for EESM More specifically, given a
meta-learning rate 7, the meta-learning process involves the following iterative steps:

In addition, we notice that the original BSM loss /5™ = —log Z has a hyper-

1. Compute the Meta-BSM loss with a mini-batch B ~ D,,; i.e., V(x,y) € B, compute

BSM(z, g3 wyy,).

2. Predict the example weights with g, ,, = MWNet(¢35M(x, y; wy, ) G ), V(, y) € B.

3. Re-weight the Meta-BSM loss: LEX 5(w,,) = Y (wy)EB Gy, BN (2, y; wyy,), and per-
form one step of gradient descent to create a duplicated model w,,, = Wy, — NV, Lﬁﬁ B-

4. Computes the loss on the meta dataset Dy, using the duplicated model: £LER (W) =

M, Dineta
> (2.) € Do G,y 23N (2, y, Wy, ), followed by updating ., <= Y — 7V, Lovp  and

M, Dineta
Cm <_ C’m - nVCnL ‘Cm,Dme!a'

5. Update the model: wy, = Wy, — 7V, LEX 5 (wn,).

Throughout the federated learning process, vy, and g, are dynamically learned with meta-learning
for different clients and rounds.

Results of FED-ROD with Meta-BSM We sample 10 images for each class (only 0.2% of the overall
training set) from the training set as the meta set. We compare to ( , ) that concatenates
the meta set to clients’ local data. The results in Table 10 and Table 12 are encouraging. With a
very small meta set, FED-ROD outperforms ( , ) by 1% to 14% on accuracy across
different settings, validating the importance of balanced losses and how to set them up dynamically
via meta-learning.

B.6 CONNECTION TO INVARIANT RISK MINIMIZATION GAMES (IRMG)

FED-ROD is inspired by a recently proposed machine learning framework Invariant Risk Min-
imization (IRM) ( , ) and its extension Invariant Risk Minimization Games
(IRMG) ( ) )

Suppose that the whole dataset is collected from many environments, where data from each envi-
ronment is associated with its characteristic, IRM introduces the concept of learning an invariant
predictor. (Note that, in IRM the learner can access data from all the environments; thus, it is not
for an FL setting.) Given the training data partition, IRM aims to learn an invariant feature extractor
z = f(x;0) and a classifier h(z; 1)) that achieves the minimum risk for all the environments.
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The concept of environments can be connected to clients’ private local data in FL. which are often
non-IID. That is, given M environments, we can re-write IRM in a similar expression to Equation 7
in the main paper

M
min L0, ) = 37 L (6,), (as)
st 4 € argming, £,,(0,¢"),Ym € [M]. (16)

Unfortunately, IRM is intractable to solve in practice given the constraint that every environment relies
on the same parameters ( , ). IRMG relaxes it by reformulating the classifier 4 as an
ensemble of environment-specific classifiers (by averaging over model weights) ¢ = ﬁ Yo P

mip LG, ¢) = > Ln(0,0), (17)
’ m=1
st ¢m €argming . L,(0, {Dm Y M,_ ), ¥m € [M]. (18)

IRMG is proved to optimize the same invariant predictor of IRM when it converges to the equilibrium
in game theory, and it holds for a large class of non-linear classifiers. IRMG is solved through iterative
optimization: (1) training the feature extractor 8 with centralized data (i.e., aggregated data from all
environments), (2) training the environment-specific classifiers ¢,,, on the data of each environment
D, and (3) updating the main classifier through weight averaging ¢ = % Yo P

We highlight the similarity between IRMG and FED-ROD: both are training a strong generic feature
extractor and a set of personalized classifiers. For predictions on data of client (environment) m
in Equation 18, IRMG uses § = 37 (¢, 2 + 3.,/ 4, s 2); FED-ROD’s personalized model is
§ = h%(z;%) + h'(z; ¢,n). We can connect IRMG to FED-ROD by re-writing its prediction as

ho(z;) =Tz =1, ¢ zand b (z;¢,,) = & (o) z — @, z), where ¢, is the client
m’s model in the previous round/iteration of learning.

IRMG can not be applied directly to federated learning for the following reasons. First, centralized
training of the feature extractor is intractable since clients’ data are not allowed to be aggregated
to the server. Second, to perform the iterative optimization of IRMG, the clients are required to
communicate every step, which is not feasible in FL due to communication constraints.

C IMPLEMENTATION DETAILS

Implementation. We adopt ConVN et ( s ) following the existing works (

s ). For EMNIST/FMNIST, it contains 2 ConV
layers and 2 FC layers The Conv layers have 32 and 64 channels, respectively. The FC layers
are with 50 neurons as the hidden size and 10 neurons for 10 classes as outputs, respectively. For
CIFAR-10/100, it contains 3 Conv layers and 2 FC layers. The Conv layers have 32, 64, and 64
channels, respectively. The FC layers are with 64 neurons as the hidden size and 10/100 neurons for
10/100 classes as outputs, respectively. To implement hypernetworks in FED-ROD, we use a simple
2-FC ReLU network with hidden size 16 for EMNIST/FMNIST/CIFAR-100 and 32 for CIFAR-10.

We use standard pre-processing, where EMNIST/FMNIST and CIFAR-10/100 images are normalized.
EMNIST/FMNIST is trained without augmentation. The 32 x 32 CIFAR-10/100 images are padded
2 pixels each side, randomly flipped horizontally, and then randomly cropped back to 32 x 32.

We train every method for 100 rounds. We initialize the model weights from normal distributions. As
mentioned in ( , ), the local learning rate must decay along the communication rounds.
We initialize it with 0.01 and decay it by 0.99 every round, similar to ( , ). Throughout
the experiments, we use the SGD optimizer with weight decay 1le—5 and a 0.9 momentum. The
mini-batch size is 40 (16 for EMNIST). In each round, clients perform local training for 5 epochs.
We report the mean over five times of experiments with different random seeds.

For FEDPROX ( , ), the strength of regularization A is selected from [le—2, le—3, le—4].
For FEDDYN ( , ), the strength of regularization A is selected from [le—1, le—2, le— 3]
as suggested in ( s ). For PER-FEDAVG ( R ), the meta-learning rate ﬂ
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Table 7: EMNIST and FMNIST results in G-FL accuracy and P-FL accuracy (%). *x: methods with no G-FL
models and we combine their P-FL models. §: official implementation.

Dataset | EMNIST | FMNIST |
Non-IID | Writers | Dir(0.1) | Dir(0.3)
Test Set | G-FL | P-FL | G-FL | P-FL | G-FL | P-FL |
Method / Model | GM | GM PM | GM | GM PM | GM | GM PM |
FEDAVG 97.040.05 96.9+0.05 97.240.06 | 81.14+0.12 81.04-0.14 91.5+0.14 | 83.440.15 83.2+0.15 90.540.21
FEDPROX 97.040.05 97.0+£0.05 97.04-0.05 | 82.2+0.15 82.34+0.13 91.44+0.10 | 84.54+0.14 84.5+0.17 89.740.19
SCAFFOLD 97.140.11 97.0£0.12 97.140.09 | 83.1£0.25 83.04-0.30 89.0+0.32 | 85.1+0.27 85.0£0.29 90.440.34
FEDDYN § 97.3+0.12 97.3£0.10 97.340.10 | 83.2+£0.15 83.240.16 90.7+0.20 | 86.1+0.18 86.1+£0.17 91.540.19
MTL * 75.440.85 75.0+£0.78 85.640.77 | 36.1£0.65 36.040.66 87.3+0.75 | 53.1+0.70 53.4£0.69 78.340.80
LG- FEDAVG § 80.14+0.34 80.0+0.24 95.6+0.15 | 54.8+0.41 54.5+0.44 89.540.64 | 66.84+0.40 66.840.42 84.4+0.55
FEDPER * 93.340.14 93.1£0.20 97.240.11 | 74.54£0.24 74.440.25 91.3+0.48 | 79.940.20 79.9£0.22 90.440.41
PER-FEDAVG 95.140.24 - 97.04-0.14 | 80.54-0.60 - 82.841.20 | 84.14+0.75 - 86.740.99
PFEDME § 96.31+0.11 96.0+£0.10 97.140.11 | 76.74£0.33 76.740.35 83.4+0.41 | 79.0+0.35 79.0+£0.35 83.440.45
DiTTO 97.040.05 97.0+£0.06 97.440.09 | 81.5+0.24 81.540.27 89.4+0.41 | 83.3+0.20 83.2+£0.22 90.140.34
FEDFOMO * 80.54+0.75 80.440.78 95.940.67 | 34.5+£1.57 34.3£1.59 90.040.77 | 70.1+0.56 69.94+0.55 89.6+0.70
FEDREP * § 95.0+0.08 95.1£0.11 97.540.05 | 79.5£0.30 80.14+0.31 91.84+0.29 | 80.6+0.28 80.5+£0.34 90.54+0.35
Local only | - - 64.240.68 | - - 85.940.69 | - - 85.040.80 |
FED-ROD (linear) | 97.3+0.10 97.3+£0.09 97.54-0.09 | 83.9+0.20 83.940.21 92.7+0.24 | 86.3+0.16 86.3+0.18 94.54+0.20
FED-ROD (hyper) | 97.3+0.10 97.3£0.11 97.54-0.08 | 83.9+0.18 83.94-0.18 92.9+0.26 | 86.3+0.17 86.3+£0.18 94.84+0.19
+ FEDDYN 97.440.08 97.4+0.11 97.540.11 | 85.9+0.22 85.740.22 95.3+0.36 | 87.5+0.26 87.5+£0.26 94.640.35

is selected from [le—2, le—3, le—4]. For PFEDME ( , ), the strength of regularization
A is selected from [15, 20, 30]. FED-ROD introduces no extra hyperparameters on top of FEDAVG.

For the generic and personalized heads of FED-ROD, we study using 1 ~ 4 FC layers but do not see
a notable gain by using more layers. We attribute this to the well-learned generic features. Thus, for
all our experiments on FED-ROD, we use a single FC layer for each head.

We run our experiments on four GeForce RTX 2080 Ti GPUs with Intel 19-9960X CPUs.

Evaluation. Both datasets and the non-IID Dirichlet simulation are widely studied and used in
literature ( ; ; ) ). We use the standard balanced test set
Dies: for evaluation on generlc FL (G- FL)

G-FL accuracy : 1(y; = ¥i.c), 19)

1
| Drest

where §J; ¢ here is the predicted label (i.e., arg max over the logits). For evaluation on personalized
FL (P-FL), we still apply Dies; but weight instances w.r.t. each client’s class distribution:

P-FL accuracy : Z 2 P Z P (% ; Ui P). (20)

We do so instead of separating D into separate clients’ test sets in order to avoid the variance
caused by how we split test data (except the EMNIST dataset that each client has its own test set with
the writer’s styles). What we compute is essentially the expectation over the splits. We have verified
that the difference of the two evaluation methods is negligible.

In Table | of the main paper and some other tables in the appendix, we evaluate G-FL by an
FL algorithm’s generic (usually the global) model, denoted as GM. We evaluate P-FL by an FL
algorithm’s personalized models (or local models of a G-FL algorithm), denoted as PM. For P-FL,
we also report the generic model’s accuracy following the literature to demonstrate the difference.

Due to the space limit of the main paper, we provide the standard deviations of the results of Table 1
in Table 7, Table 8, and Table 9 here.
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Table 8: CIFAR-10 results in G-FL accuracy and P-FL accuracy (%). x: methods with no G-FL models and we
combine their P-FL models. §: official implementation.

Non-IID | Dir(0.1) \ Dir(0.3)
Test Set | GFL | P-FL | GFL | P-FL |
Method/Model | GM | GM PM | GM | GM PM |
FEDAVG 57.6+043 57.140.42 90.5+0.48 | 68.6--0.38 69.4+0.41 85.140.45
FEDPROX 5874021 5891045 89.7£0148 | 69.9039 69.8+039 84.7%0.42
SCAFFOLD 6123056 60.840.59 90.1£0.65 | 71.1£0.61 71.5F0.60 84.830.67
FEDDYN § 6341040 6394038 92.4+045 | 7255037 73.2H039 85.4F0.44
MTL * 12.143.55 12.743.78 90.6£0.98 | 13.541.89 13.7+1.93 80.241.01
LG-FEDAVG *§ [295+1.46 28.8+1.46 90.8+0.61 | 4674045 46.2+0.47 82.430.65
FEDPER * 5044047 5024048 89.9+0.50 | 64.4-£0.44 64.5+0.46 84.940.55
PER-FEDAVG 60.7%+0.77 - 827141 | 70.5%£0.81 - 80.7%1.23
PFEDME § 50.6+0.56 50.740.58 76.6£0.60 | 62.120.60 61.7+0.57 70.5%0.66
DITTO 58.140.49 583+047 86.8+0.61 | 69.740.44 69.8+046 81.540.59
FEDFOMO * 30.5+1.72 3124174 90.5+0.85 | 45.3+1.69 45.1+1.66 83.440.81
FEDREP *§ 56.6+£034 5624035 91.0+£0.50 | 67.7£041 67.5+033 8524045
Local only |- - 8744069 | - - 75.740.78 |
FED-ROD (linear) | 68.5+0.35 68.5+0.35 92.7+0.54 | 76.9+0.37 76.8+037 86.440.49
FED-ROD (hyper) | 68.52038 6852039 92.55055 | 76.9£0.34 76.8+035 86.820.55

+FEDDYN | 682042 682+044 9271057 | 74.6+043 74.6+0.43 85.6£0.58

Table 9: CIFAR-100 results in G-FL accuracy and P-FL accuracy (%). x: methods with no G-FL models and
we combine their P-FL models. §: official implementation.

Non-IID | Dir(0.1) \ Dir(0.3)
Test Set | G-FL | P-FL | GFL | P-FL \
Method/Model | GM | GM PM | GM | GM PM |
FEDAVG 4184067 41.6+0.71 70.240.66 | 46.440.44 462041 61.740.40
FEDPROX 4175051 41:630.54 70.4F0.60 | 4655048 464F0.41 61.530.50
SCAFFOLD 4233073 42.140.77 70.4F0.69 | 46.5£0.68 46.5+0.65 61.740.65
FEDDYN § 4301039 4301047 7204038 | 4754041 47.4%044 6254035
MTL * 95+6.55 934598 60.7£1.45| 1084871 10.7+6.78 49.942.33
LG-FEDAVG *§ |235+£250 234+2.14 66.7£1.00 | 345+256 33.9+3.01 554=+1.11
FEDPER * 37.6+0.65 37.640.63 71.0+0.55 | 40.3+£0.51 40.1+0.53 62.540.55
PER-FEDAVG 39.030.89 - 66.6%1.12 | 4453079 - 589%130
PFEDME § 38.610.67 38.5+0.65 63.0+0.80 | 41.4H071 41.14+0.68 534070
DITTO 4174056 41.8+0.54 68.5%0.71 | 464045 464+£046 58.8+0.38
FEDFOMO * 3543200 353+1.87 68.9+0.98 | 39.6+£1.89 39.3+1.74 584%1.15
FEDREP * § 4074051 40.740.55 71.5£049 | 46.0£0.37 46.0+0.40 62.140.43
Local only | - - 400+1.03 | - - 32.540.99 |
FED-ROD (linear) | 45.94-0.44 458041 72.2+0.51 | 48.5+039 4854038 62.3--0.40
FED-ROD (hyper) | 45.93041 458039 72.3+048 | 48.5+042 4851045 62.5+0.52
+FEDDYN | 46.2£0.50 4624051 72.5+0.55 | 48.4+049 4844047 6254052
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Figure 7: Comparison of the empirical risk and regularization between personalized models of DITTO and local
models of FEDAVG. The dataset is CIFAR-10, with Dir(0.3).

D ADDITIONAL EXPERIMENTS AND ANALYSES

Here we provide additional experiments and analyses omitted in the main paper. We validate our
claims in the main paper and the designs of our proposed FED-ROD via the following experiments:

* subsection D.1: personalized models emerge from local training of generic federated learning
(cf. subsection 3.2, subsection 3.3, and subsection 5.1 in the main paper).

* subsection D.2: balanced risk minimization (BRM) improves generic-FL performance (cf.
subsection 5.1 in the main paper).

* subsection D.3: the roles of FED-ROD’s generic and personalized heads (cf. subsection 4.2
in the main paper).

* subsection D.4: personalization with hypernetworks (cf. subsection 5.1 in the main paper).

* subsection D.5: robustness to class-imbalanced global data.

* subsection D.6: compatibility of FED-ROD with other G-FL algorithms (cf. subsection 5.1
in the main paper).

* subsection D.7: comparison to personalized FL algorithms (cf. subsection 5.1 in the main
paper).

e subsection D.8: ablation studies and discussions on FED-ROD (cf. subsection 5.1 in the
main paper).

D.1 PERSONALIZED MODELS EMERGE FROM LOCAL TRAINING OF GENERIC FEDERATED
LEARNING

As mentioned in section 3 in the main paper, personalized FL algorithms usually impose an extra
regularizer (cf. Equation 3 and Equation 4 of the main paper) during local training, but do not
re-initialize the local models by the global models at every round. In contrast, generic FL algorithms
like FEDAVG do not impose extra regularization but re-initialize the local models at every round.

Here in Figure 7, we monitor the two loss terms, » MEm('wm) and ) % |wm — w|3 (cf.

m |D|
Equation 3 and Equation 4 of the main paper), for FEDAVG and a state-of-the-art personalized FL
algorithm Ditto ( , ) at the end of each local training round. (Ditto does include the

Ly regularizer in training the personalized models.) Ditto achieves a lower empirical risk (i.e., the
first term), likely due to the fact that it does not perform re-initialization. Surprisingly, FEDAVG
achieves a much smaller regularization term (i.e., the second term) than Ditto, even if it does not
impose such a regularizer in training. We attribute this to the strong effect of regularization by
re-initialization: as mentioned in subsection 3.3 of the main paper, re-initialization is equivalent to
setting the regularization coefficient A as infinity. We note that, the reason that the regularization
term of Ditto increases along the communication rounds is because ever time the global model w
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Figure 8: The G-FL accuracy by the local models w,, of different generic methods. There are 100/20 clients
for FMNIST/CIFAR-10, respectively. Both datasets use Dir(0.3).
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Figure 9: Variances of local model updates w.r.t. the global model. For both datasets, we use Dir(0.3).

is updated, it moves sharply away from the local model w,,,. Thus, even if the regularization term
is added into local training, it cannot be effectively optimized. This analysis suggests that the local
models of generic FL algorithms are more regularized than the personalized models of personalized
FL algorithms. The local models of generic FL algorithms are thus strong candidates to be evaluated
in the personalized FL setting.

D.2 BALANCED RISK MINIMIZATION (BRM) IMPROVES GENERIC-FLL PERFORMANCE

To understand why FED-ROD outperforms other generic methods in the G-FL accuracy, we visualize
each local model w,,’s G-FL accuracy after local training in Figure 8 (both datasets with Dir(0.3)).
Methods rely on ERM suffer as their local models tend to diverge. Figure 9 further shows that the
variances of local weight update Aw,,, = w,,, — W across clients are smaller for FED-ROD, which
result from a more consistent local training objective.

In Figure 10, we further compare the G-FL accuracy among FEDAVG, FED-ROD with the original
BSM loss, and FED-ROD with the Meta-BSM loss introduced in subsection B.5 along the training
process (i.e., training curve). The local models of FEDAVG tend to diverge from each other due to the
non-IID issue, resulting in high variances and low accuracy of G-FL. The global aggregation does
improve the G-FL accuracy, validating its importance in federated learning. The local training in
FED-ROD (BSM) not only leads to a better global model, but also has smaller variances and higher
accuracy for the local models (as their objectives are more aligned). With the help of meta dataset and
meta-learning, FED-ROD (Meta-BSM) yields even better G-FL performance for both global models
and local models, and has much smaller variances among local models’ performance, demonstrating
the superiority of using meta-learning to learn a balanced objective.

D.3 THE ROLES OF FED-ROD’S GENERIC AND PERSONALIZED HEADS

To demonstrate that FED-ROD’s two heads learn something different, we plot in Figure 11 every
local model’s generic prediction and personalized prediction on its and other clients’ data (i.e., P-FL
accuracy). The generic head performs well in general for every client’s test data. The personalized
head could further improve for its own data (diagonal), but degrade for others’ data.
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Figure 10: Training curves of different FL algorithms. We show the G-FL accuracy along the training process,
using models before (i.e., local models) and after global aggregation. The dataset is CIFAR-10 Dir(0.3).
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Figure 11: P-FL accuracy of G-head (left) and G-head + P-head (right) using the local models of FED-ROD,
evaluated on each client’s test data. Here we use CIFAR-10 Dir(0.3) with 20 clients.

D.4 PERSONALIZATION WITH HYPERNETWORKS

FED-ROD (hyper) learns the personalized head with hypernetworks as introduced in subsection B.4.
The goal is to learn a hypernetwork such that it can directly generate a personalization prediction
head given client’s class distribution, without further local training. Figure 12 shows the training
(convergence) curves on CIFAR-10 Dir(0.3). The hypernetwork (globally aggregated, before further
local training) can converge to be on par with that after local training. In the main paper (cf. Figure 6),
we also show that it servers as a strong starting point for future clients — it can generate personalized
models simply with future clients’ class distributions. That is, the clients may not have labeled
data, but provide the hypernetwork with their preference/prior knowledge. It can also be used as the
warm-start model for further local training when labeled data are available at the clients.

Table 4 provides the P-FL results for the new 50 clients studied in subsection 5.1 and Figure 6 in
the main paper. Except for FED-ROD (hyper), the accuracy before local training is obtained by the
global model. The best personalized model after local training is selected for each client using a
validation set. FED-ROD (hyper) notably outperforms other methods before or after local training.

D.5 CLASS-IMBALANCED GLOBAL DISTRIBUTIONS

In the real world, data frequency naturally follows a long-tailed distribution, rather than a class-
balanced one. Since the server has no knowledge and control about the whole collection of the clients’
data, the clients data may collectively be class-imbalanced. This adds an additional challenge for the
server to learn a fair and class-balanced model. We follow the setup in (Cao et al., 2019) to transform
FMNIST and CIFAR-10 training sets into class-imbalanced versions, in which the sample sizes per
class follow an exponential decay. The imbalanced ratio (IM) is controlled as the ratio between
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Table 10: Class-imbalanced global training distribution. *: methods with no global models and we combine
their P-FL models. Gray rows: meta-learning with 100 labeled server data.

Dataset \ FMNIST \ CIFAR-10

Non-IID / Imbalance Ratio | Dir(0.3), IM10 |Dir(0.3), IM100| Dir(0.6), IM10 |Dir(0.6), IM100
Test Set |G-FL| P-FL |G-FL| P-FL |G-FL| P-FL |G-FL| P-FL
Method / Model | GM |[GM PM | GM |GM PM | GM |GM PM | GM |GM PM |
FEDAVG ( ,2017) 80.2 80.2 85.1| 71.6 71.5 86.9| 50.9 50.2 76.5| 40.1 40.0 78.2
FEDPROX ( , ) 81.0 81.0 82:3| 70.4 70.2 87.0| 58.6 58.7 76.5| 37.6 38.0 76.6
SCAFFOLD ( , )| 81.1 81.1 822 72.0 71.8 86.9| 58.7 58.7 76.6| 38.4 38.4 77.6
FEDDYN ( ,2021) 83.3 83.2.86.4|77.2 77.1 87.5| 62.5 62.3 80.4| 46.6 46.5 80.9
MTL ( ,2017)* 453 45.4 75.6| 47.7 47.577.5| 17.9 18.2 63.4| 14.4 14.9 65.9
LG-FEDAVG ( , 2020)* 62.8 62.4 82.4(74.0 74.1 83.2| 31.5 31.5 62.8/ 24.9 24.8 66.3
PER-FEDAVG ( , 2020) 80.1 - 825720 - 785|463 - 772|317 - 743
PFEDME ( , 2020) 78.9 78.9 81.6|69.3 69.2 71.6| 462 46.2 542|317 31.8 50.6
DITTO ( , ) 81.0 81.0 83.7| 71.8 71.6 86.5| 51.0 50.9 73.1| 40.3 40.2 75.4
FEDFOMO ( ,2021)* 65.5 65.2 89.5|64.5 64.490.1| 42.7 42.6 76.6| 23.6 23.8 76.7
Local only | - - 761 - - 798| - - 721] - - 745
FED-ROD gBSM) 81.3 81.3 89.576.8 76.8 89.8] 63.3 63.3 80.1| 48.3 48.3 81.1
FED-ROD (BSM) + FEDDYN 84.5 84.5 90.0| 80.0 79.9 83.6| 65.5 65.5 79.7| 49.6 49.6 81.0
FEDAVG + Meta ( ,2018) ‘ 80.5 80.5 85.1‘ 71.8 71.8 86.9‘ 51.5 51.3 77.4‘ 40.4 40.2 84.0‘
FED-ROD (Meta-BSM) 86.5 86.5 90.2| 82.5 82.5 90.9| 72.3 72.1 82.1| 61.9 60.9 83.5

sample sizes of the most frequent and least frequent classes. Here we consider IM= 10 and IM= 100.
The generic test set remains class-balanced.

Table 10 shows that FED-ROD remains robust on both generic accuracy and client accuracy con-
sistently. We see that FEDDYN also performs well, especially on FMNIST of which the setup has
more clients (100) but a lower participation rate (20%). By combining FEDDYN with FED-ROD, we
achieve further improvements.

Essentially, the generic FL methods (except for FED-ROD) are optimizing toward the overall class-
imbalanced distribution rather than the class-balanced distribution. In Table 11, we further examine
the G-FL accuracy on a class-imbalanced test set whose class distribution is the same as the global
training set. FED-ROD still outperforms other methods, demonstrating that FED-ROD learns a robust,
generic, and strong model.

D.6 COMPATIBILITY OF FED-ROD WITH OTHER G-FL ALGORITHMS

As mentioned in the main paper, other G-FL algorithms like FEDDYN ( , ) can be
incorporated into FED-ROD to optimize the generic model (using the balanced risk). We show
the results in Table 12, following Table 1 of the main paper. Combining FED-ROD with SCAF-
FOLD ( , ), FEDDYN ( s ), and FEDPROX ( R )
can lead to higher accuracy than each individual algorithm along in several cases.
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Table 11: G-FL accuracy on class-imbalanced test data. Here we use CIFAR-10 Dir(0.3).

Method | IM10 IM100
FEDAVG ( s ) 61.8 73.0
FEDPROX ( s ) 63.1 729
SCAFFOLD ( , )| 654 704
FEDDYN ( R ) 68.6 733
FED-ROD 719 76.0

Table 12: Main results in G-FL accuracy and P-FL accuracy (%), following Table 1 of the main paper.
FED-ROD is compatible with other generic FL. methods.

Dataset \ FMNIST \ CIFAR-10
Non-IID | Dir(0.1) | Dir(0.3) | Dir(0.1) | Dir(0.3)
Test Set |G-FL| P-FL |G-FL| P-FL |G-FL| P-FL |G-FL| P-FL
Method / Model | GM |[GM PM| GM |IGM PM| GM |GM PM| GM |GM PM |
FEDAVG ( , ) 81.1 81.091.5|83.4 83.2 90.5| 57.6 57.1 90.5]| 68.6 69.4 85.1
FEDPROX ( s ) 822 82.391.4|84.5 84.589.7| 58.7 58.9 89.7| 69.9 69.8 84.7
SCAFFOLD ( , )| 83.1 83.0 89.0| 85.1 85.0 90.4| 61.2 60.8 90.1| 71.1 71.5 84.8
FEDDYN ( , )8 83.2 83.290.7| 86.1 86.1 91.5| 63.4 63.9 92.4| 72.5 73.2 85.4
FED-ROD (linear) 83.9 83.992.7| 86.3 86.3 94.5| 68.5 68.592.7| 76.9 76.8 86.4
FED-ROD (hyper) 83.9 83.992.9| 86.3 86.3 94.8| 68.5 68.5 92.5| 76.9 76.8 86.8
+ FEDPROX 83.3 83.393.8| 85.8 85.7 92.2| 70.6 70.5 92.5|74.5 74.5 85.7
+ SCAFFOLD 84.3 84.394.8| 88.0 88.0 94.7/ 72.0 71.8 92.6| 77.8 77.7 86.9
+ FEDDYN 85.9 85.795.3[87.5 87.594.6| 68.2 68.2 92.7| 74.6 74.6 85.6
FEDAVG + Meta ( , ) 83.1 83.1 91.5| 84.4 84.3 90.5| 58.7 58.9 90.5] 69.2 69.2 85.3
FED-ROD (Meta-BSM) 86.4 86.4 94.8| 89.1 89.1 94.8| 72.5 72.5 92.8| 80.1 80.1 86.6

D.7 COMPARISON TO PERSONALIZED FLL ALGORITHMS

From Table 1 in the main paper and Table 10, the personalized FL algorithms are usually outperformed
by local models of generic FL algorithms in terms of the P-FL accuracy (i.e., the PM column). The
gap is larger when client data are more IID, especially for P-FL methods whose personalized models
do not explicitly rely on weight averaging of other clients’ models (e.g., MTL, LG-FEDAVG, and
PFEDME). Some P-FL methods can not even outperform local training alone. A similar observation
is also reported in FEDFOMO ( , ). These observations justify the benefits of FL that
similar clients can improve each other by aggregating a global model and updating it locally, while
the benefits might decay for very dissimilar clients.

To further demonstrate the effect of building a global model and re-initialing the local/personalized
models using it (cf. section 3 in the main paper), we investigate DITTO ( , ), a state-of-
the-art personalized FL algorithm. We found that DITTO learns two local models. One of them is
used to build the global model exactly like FEDAVG. The global model is then used to regularize
the other local model (cf. Equation 4 in the main paper), which is used for personalized prediction.
To differentiate these two local models, we call the former the local model (LM), and the latter the
personalized model (PM). We note that, the PM model is kept locally and is never re-initialized by
the global model. In Table 13, we show the P-FL accuracy using the LM and PM models. The LM
model trained in the same way as FEDAVG (with re-initialization) surprisingly outperforms the PM
model.

We further replicate the experiments in ( ) on robustness against adversary attacks
in Table 14. Besides comparing LM and PM, we also evaluate the global model GM for P-FL
accuracy. With out adversarial attacks, the LM model outperforms the PM model. However, with

Table 13: The P-FL accuracy by the two local models of DITTO ( , ).

Method | FMNIST |  CIFAR-10
| Dir(0.1) Dir(0.3) | Dir(0.1) Dir(0.3)

PM 89.4 90.1 86.8 81.5
LM 90.8 90.6 90.8 86.2
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Table 14: DiTTO with adversary attacks. We report the averaged personalized accuracy on benign clients.

Attack | PM LM GM

None 942 947 91.7
Label poisoning 93.6 54.5 84.8
Random updates 932 545 88.7
Model replacement | 63.6 49.8 42.2

Table 15: FED-ROD on CIFAR-10, Dir(0.3).

Test Set | G-FL | P-FL

Network | GM | GM PM
ConvNet ( , ) 76.9 76.8 86.8
VGGI11 ( , )| 822 82.1 88.2
ResNet8 ( , ) 80.3 80.0 86.6
ResNet20 ( , ) 84.0 835 885

adversarial attacks, the PM model notably outperforms the other two models. We surmise that,
when there are adversarial clients, the resulting generic model will carry the adversarial information;
re-initializing the local models with it thus would lead to degraded performance.

D.8 ADDITIONAL STUDIES AND DISCUSSIONS

Different network architectures. FED-ROD can easily be applied to other modern neural network
architectures. In Table 15, we show that FED-ROD can be used with deeper networks.

FED-ROD is not merely fine-tuning. FED-ROD is not merely pre-training the model with BSM
and then fine-tuning it with ERM for two reasons. First, for FED-ROD (linear), the P-head is learned
dynamically with the updating feature extractor across multiple rounds. Second, for FED-ROD
(hyper), the hypernetwork has to undergo the local training and global aggregation iterations over
multiple rounds. In Table 2 of the main paper, we report the fine-tuning baseline. On CIFAR-10
Dir(0.3), it has 84.5% for P-FL (PM), lower than 86.4% and 86.8% by FED-ROD (linear) and
FED-ROD (hyper). Note that, hypernetworks allow fast adaptation for new clients.

Comparison to the reported results in other personalized FL papers. Existing works usually
report FEDAVG’s personalized performance by evaluating its global model (i.e., the GM column
in Table 1 of the main paper). In this paper, we evaluate FEDAVG’s local model w,,, (i.e., the PM
column in Table 1 of the main paper), which is locally trained for epochs. We see a huge performance
gap between these two models. In ( , ), the authors investigated a baseline “FEDAVG
+ update”, which fine-tunes FEDAVG’s global model w with only few mini-batches for each client.
The resulting personalized models thus capture less personalized information than w,,, in FEDAVG.
For a fair comparison, we also strengthen PER-FEDAVG ( , ) by updating with more
epochs.

Effects of local sample size to P-FL performance In subsection 3.2 and Table 1, we show that
local models of generic FL algorithms are strong personalized models. Indeed, the local sample size
is an important factor in the P-FL performance. If a client has enough training samples, training
its own model (the local only baseline) can already be strong without any federated learning. On
the other hand, when each client does not have enough samples to train a good model on its own.
It will be crucial to have a generic model learned from federated learning as the starting point of
personalization.

To confirm our observation when clients have insufficient samples, we further conduct the following
experiments. First, we enlarge the number of clients for CIFAR-10 and FMNIST experiments by five
times. That is, each client’s data size becomes one-fifth on average. Second, we point out that the
experiments on CIFAR-100 in Table 1 are with 20 clients. CIFAR-100 has the same total number of
training images as CIFAR-10 but with 10 times more classes. In other words, the number of images
per class is one-tenth. Table 16 shows the results: all the experiments are based on Dir(0.3). Even
when the local only models perform worse in P-FL, the local models of FEDAVG still perform on a
par with personalized FL algorithms like FEDPER, and FED-ROD can still achieve the best P-FL
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Table 16: Main results in G-FL accuracy and P-FL accuracy (%), following Table 1 of the main paper.
FED-ROD is compatible with other generic FL. methods.

Dataset | FMNIST | CIFAR-10  CIFAR-100

Test Set |G-FL| P-FL |G-FL| P-FL |G-FL| P-FL |
Method / Model | GM |GM PM | GM |GM PM | GM |GM PM |
Local only | - - 729 - - 769 - - 325
FEDAVG ( ,2017) | 78.1 77.9 857|642 64.0 77.4| 46.4 462 61.7
FEDPER ( ,2019)| 72.5 724 85.5| 57.6 55.9 78.0| 40.3 40.1 62.5
FED-ROD (hype) | 82.6 82.6 90.1| 72.7 72.7 82.7| 48.5 48.5 62.5|

accuracy. We attribute the superior personalized performance by FEDAVG and FED-ROD to the
implicit regularization discussed in subsection 3.3.

We also want to point out that, even if each client has insufficient data, the P-FL performance of local
only may still have higher accuracy than the GM of FEDAVG on the personalized accuracy, especially
when the non-IID condition becomes severe (e.g., Dir (0.1)). When the non-1ID condition is severe, it
is harder to train a single GM model to perform well in the personalized setting.
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