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Abstract .  Near-Periodic Patterns (NPP)  are ubiquitous in man-made
scenes and are composed of tiled motifs with appearance differences
caused by lighting, defects, or design elements. A  good NP P  representa-
tion is useful for many applications including image completion, segmen-
tation, and geometric remapping. But representing NP P  is challenging
because it needs to maintain global consistency (tiled motifs layout) while
preserving local variations (appearance differences). Methods trained on
general scenes using a large dataset or single-image optimization struggle
to satisfy these constraints, while methods that explicitly model period-
icity are not robust to periodicity detection errors. To  address these chal-
lenges, we learn a neural implicit representation using a coordinate-based
M L P  with single image optimization. We design an input feature warp-
ing module and a periodicity-guided patch loss to handle both global
consistency and local variations. To  further improve the robustness, we
introduce a periodicity proposal module to search and use multiple can-
didate periodicities in our pipeline. We demonstrate the effectiveness of
our method on more than 500 images of building facades, friezes, wallpa-
pers, ground, and Mondrian patterns in single and multi-planar scenes.

Keywords:  Near-Periodic Patterns, Neural Implicit Representation, Sin-
gle Image Optimization.

1 Introduction

Patterns are all around us and help us understand our visual world. In the
1990s, a human preattentive vision experiment [43] showed that periodicity is a
crucial factor in high-level pattern perception. But most real patterns are not
composed of perfectly periodic (tiled) motifs. Consider the commonly occurring
real-world building facade scene in Figure 1 (a). While the windows are laid out
periodically, they vary in their individual appearances. There are several design
elements (borders, texture), shading variations, or obstructions (tree, car, street
lamp) that are not periodic. These factors make it challenging to create a good
computational representation for such “Near-Periodic Patterns” (NPP).

A  good NPP representation must preserve both global consistency (similar
motifs layout) and local variations (different appearances). For global consis-
tency, the distance (periods) and orientations between adjacent motifs should
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(a) A  NP P  Scene (b) Input (c) B P I  [23] (d) Ours

Fig. 1: Inpainting to remove the tree, street lamp, and car from a near-periodic
patterned (NPP)  scene in (a). Input image (b) visualizes the mask (white un-
known region) and detected (but inaccurate) NPP representation (yellow lat-
tice). Guided by this inaccurate representation, the state of the art method
B P I  [23] (c) fails to generate windows occluded by the tree (orange arrow) and
the white strip across the bottom (green arrow). Our NPP-Net (d) maintains
global consistency and local variations, while preserving the known regions.

be accurate (e.g., window layout). At the same time, the local details in the
scene should be fully encoded (e.g., appearance variations in windows or the
horizontal design strips). In this paper, we present a novel method to learn such
a representation that can be used for applications such as image completion
(our main focus), segmentation of periodic parts, and resolution enhanced scene
remapping, e.g., transforming to a fronto-parallel view (see supplementary).

Existing image completion works applicable for NPP can be classified into
two categories. The first category does not explicitly consider knowledge of pe-
riodicity. They complete images by training on large datasets [36,58,22,46,57] or
by exploring single image statistics [44,50,2]. However, these methods fail to
generate good global consistency, especially with a large unknown mask inside
(interpolation) or outside (extrapolation) the image border, or severe perspec-
tive effect. The other category [16,24,23,32] models periodicity as prior for image
completion. These works extract explicit NPP representations (e.g., displacement
vectors) and use them to guide image completion. These methods can generate
good global periodic structure if the estimated periodicity is accurate. However,
this is hard to achieve in the presence of strong local variations.

Our work is inspired by the recent progress on implicit neural representa-
tions [35] that map image coordinates to R G B  values using coordinate-based
multi-layer perceptrons (MLP).  But, naively using this method fails on our task
due to the lack of a good periodicity prior. Thus, we present a periodicity-
aware coordinate-based M L P  to learn a continuous implicit neural representa-
tion, which we call NPP-Net for short. The key idea is to extract periodicity
information from a partially observed NPP scene and inject it into both the
M L P  input and the loss function to help optimize NPP representation.
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Three novel steps are proposed for the above idea: (1) The Periodicity Pro-
posal step extracts periodicity in the form of a set of candidate periods and
orientations that are used together to handle inaccurate detections; (2) The
Periodicity-Aware Input Warping injects periodicity into the M L P  input by
warping input coordinates according to the proposed periodicities. This step
preserves global consistency and the M L P  converges to a good periodic pattern
easily; (3) Finally, the Periodicity-Guided Patch Loss samples observable patches
according to periodicity to optimize the representation. This step preserves local
variations, improves extrapolation ability, and removes high-frequency artifacts.

Our approach only requires a single image for optimization. This is impor-tant
since there are no large dedicated NPP datasets. Thus, we evaluate our

approach on a total of 532 NPP subclasses chosen from three datasets [1,10,48].
The scenes include building facades, friezes, ground patterns, wallpapers, and
Mondrian patterns that are tiled on one or more geometric planes and perspec-
tively warped. Our dataset is larger than those (157 at most) used in previous
works [16,23,24,32] that are designed for NPP. We mainly apply NPP-Net for the
image completion task, but extend it to resolution enhanced NPP remapping and
NPP segmentation in the supplementary. We compare NPP-Net with four tra-
ditional [11,2,16,23] and five deep learning-based methods [50,44,58,57,46], and
eight variants of NPP-Net. Experiments show that NPP-Net can interpolate
and extrapolate images, in-paint large and arbitrarily shaped regions, recover
blurry regions when images are remapped, segment periodic and non-periodic
regions, in planar and multi-planar scenes. Figure 1 shows the effectiveness of
NPP-Net, inpainting a complex NPP scene, compared to the state of the art
B P I  [23]. While our method is not designed for general scenes, it is a useful tool
to understand a large class of man-made scenes with near-periodic patterns.

2 Related Wo r k

Near-Perio dic  Patterns Completion: There are two types of image com-
pletion methods that can be applied to NPP. The first type of methods do not
explicitly consider periodicity as prior for completion [36,58,22,46,57,51,6,63].
The second stream of methods takes advantage of periodicity to guide the com-
pletion. We focus on reviewing the second type of methods.

The first stage for these methods is to obtain an NPP representation to
guide image completion. Existing methods aim to represent NPP by detecting
the global periodicity despite local variations. The types of NPP arrangements
vary [41,42,25,16,54,38] but commonly, periodic patterns are assumed to form
a 2D lattice [27,26,14,21,39,37,24]. The first lattice-based work [14] for peri-
odicity detection without human interaction finds correspondences using visual
similarity and geometric consistency. Liu et al. [26] improve this process by incor-
porating generalized PatchMatch [3] and Markov Random Field. Furthermore,
Lettry et al. [21] detect a repeated pattern model by searching in the feature
space of a pre-trained CNN. Recently, L i  et al. [24] design a compact strategy
by searching on deep feature space without any implicit models. But it requires
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hyperparameter tuning to achieve competitive results. Al l  existing methods de-
scribe periodicity using an explicit representation such as keypoints [14,42,49,26],
feature-based motifs [41] or displacement vectors [21,24]. But they do not pre-
serve both global consistency and local variations well.

The second stage is to generate or inpaint an NPP image guided by the NPP
representation [28,29,30,16,32,24,23,13]. One common assumption is that the
NPP lie on a single plane. Liu et al. [29] synthesize an NPP image through multi-
model deformation fields given an input NPP patch and its representation. Mao
et al. [32] propose GAN-based NPP generation. Huang et al. [16] and B P I  [23]
extend image completion to the multi-plane case. They detect periodicities in
these planes [15,31,24] and use them to guide image completion, based on [53]
and [2]. Unlike earlier work Huang et al., B P I  uses the periodicity detection
method based on feature maps extracted from a pre-trained network. Also, the
state of the art BPI ’s image completion step does not use their prior GAN-based
method [32].

In summary, the above methods assume that NPP representation is good
enough for guidance, which is not guaranteed. By contrast, we merge the two
stages by optimizing the implicit representation using image reconstruction error.
Implic i t  Neural  Representations: Recently, coordinate-based multi-layer per-
ceptron (MLP)  has been used to obtain implicit neural representation (INR). It
maps coordinates to various signals such as shapes [12,9,44], scenes [35,33] and
images [8,5,44]. Mildenhall et al. [35] represent a 3D scene from a sparse set of
views for novel view synthesis. Siren [44] replaces ReLU by a periodic activation
function and designs an initialization scheme for modeling finer details. Chen et
al. [8] present a Local Implicit Image Function for the generation of arbitrary
resolutions. Skorokhodov et al. [45] design a decoder based on INR with GAN
training, for high-quality image generation.

NPP-Net differs from previous methods in two ways: (1) Directly using
M L P  [35,44] fails to learn accurate NPP representation without high-level struc-
tural understanding. We propose a periodicity-aware MLP. (2) Many works re-
quire a large dataset for training, while we optimize on a single image.

3 N P P - N e t

We aim to build an M L P  that maps image coordinates to pixel values, given a
partial observation of an NPP image. We will describe NPP-Net using the image
completion task. The unknown (masked) region is completed (or inpainted) by
training on the remainder of the NPP image. For clarity, we first describe the
method for single planar NPP scene and pre-warp the image to be fronto-parallel
[60]. Then we will extend NPP-Net to handle multi-planar scenes.

Our key idea is to extract periodicity information from the known NPP re-
gion and inject it into the M L P  input and the loss function. The initial pipeline
of NPP-Net (Figure 2) consists of three modules: (1) Periodicity-Aware In-put
Warping transforms image coordinates using the detected periodicity. (2)
Coordinate-based M L P  maps the transformed coordinates to the corresponding
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Fig. 2: Initial pipeline of NPP-Net consists of three modules. (1) Periodicity-
Aware Input Warping (pink) warps input coordinates using detected periodicity.
(2) Coordinate-based M L P  (blue) maps warped and input coordinate features
to an R G B  value. (3) Single Image Optimization (yellow) uses pixel loss and
periodicity-guided patch loss on a single NPP image. Final pipeline in section
3.4 shows how multiple periodicities are automatically detected and utilized.

R G B  value. (3) Single Image Optimization provides a periodicity-guided loss
function for optimizing the M L P  on a single image.

3.1 Perio dicity-Aware I n p u t  War p i n g

A  traditional M L P  is not good at capturing global periodic structure without
additional priors. In fact, previous works [55,64] have shown that a traditional
M L P  is unable to extrapolate a 1D periodic signal even with many training
samples. The Periodicity-Aware Input Warping module thus explicitly injects
periodicity information into the M L P  by warping image coordinates (x, y).

Assuming a 2D lattice arrangement, the periodicity is represented as two dis-
placement vectors d1 and d2 (orange arrows in Figure 2). A  perfect infinite pe-
riodic pattern is invariant if shifted by αd1 + βd2(α, β � Z).  This representation
can be transformed into periods and orientations, visualized as the magnitudes
and orientations of the red arrows (p and p , called p erio dicity vectors).
Mathematically, the transformation is obtained by solving p · d2 =  d1 · p =  0
and p ×  d2 =  d1 ×  p =  d1 ×  d2, where the cross product is defined using the
corresponding 3D vectors on the plane z =  0. A  p eriodicity is then defined as a
vector pair (p , p ). Extension to circular patterns is available in supplementary.
One way to obtain the periodicity for an NPP image is to treat it as a learn-able
parameter and jointly optimize it with NPP-Net [7,17]. However, this is hard

for two reasons. (1) Good periodicity is not unique (any multiple works). (2)
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Many real-world NPP scenes contain strong local variations, leading to a compli-
cated cost function. Thus we adopt an existing periodicity detection method [24]
for input warping, which extracts feature maps from a pretrained CNN and per-
forms brute force search to obtain a periodicity. Then, for each periodicity vector
p =  (p cos θ, p sin θ) � {p1, p2}, we define a warp as a bivariate function:

fp (x, y ) =  (x cos θ +  y sin θ) mod p. (1)

This function generates a warped coordinate value sampled from a periodic pat-
tern with period |p| along direction |p| , as shown in Figure 2. Through this
feature engineering, the warped coordinates explicitly encode the periodicity
information. The warped coordinates f p  (x, y) and f p  (x, y), together with the
original coordinates x  and y, are further normalized to [−1, 1] and passed through
positional encoding [35] to allow the network to model high frequency signals [47].
The encoded coordinates are then input to the MLP. We keep the notations of
coordinates before and after positional encoding the same for simplicity. The di-
mension of the features is 4d, including d frequencies in the positional encoding,
and a set of four values for each frequency: x, y , fp 1  (x, y), and f p 2  (x, y).

3.2 Coordinate-Based M L P

We adopt coordinate-based M L P  to represent NPP images. It is more effective
and compact than a CNN to model periodic signals since coordinates are natu-
rally suited for encoding positional (periodic) information. Specifically, we input
the warped coordinate features to enforce global consistency, and also input the
original coordinate features without warping to help preserve local variations.
The output of the M L P  is an R G B  value corresponding to the input image co-
ordinate. Since ReLU activation function has been proven to be ineffective to
extrapolate periodic signals [55], we use the more suitable S N A K E  function [64].

3.3 Single Image Optimization

P i x e l  Loss: Pixel loss is the most intuitive way to optimize coordinate-based
M L P  [35], which compares predicted and ground truth pixel values. For image
coordinate x  =  (x, y), we adopt the robust loss function L r o b  [4], given by:

L p i x e l ( x )  =  L r o b (C (x ) , C (x ) ) , (2)

where C ( x )  and C ( x )  are the output R G B  values of the M L P  and the ground
truth R G B  values from the input image at position x ,  respectively. This loss is
applied only to the known regions.

But merely adopting pixel loss like NeRF [35] fails to generate a good NPP
for two reasons: (1) The high-dimensional input features result in the generation
of high-frequency artifacts (Figure 3 (b)). See [47,61] for details about this prob-
lem. (2) Pixel loss does not enforce explicit constraints to model the correlation
between a coordinate’s features and its neighbors. This constraint is critical for
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preserving local variations since it helps capture local patch statistics. Thus,
pixel loss fails to preserve local variations. For example, in Figure 3 (b), pixel
loss generates some periodic artifacts in the top non-periodic region1.

Per io dic i ty -Guided Pat ch  Loss: To  address the limitations of pixel loss, we
force the network to learn patch internal statistics by incorporating patch loss,
which compares predicted and ground truth patches. The ground truth patches
can be sampled at the same position as the predicted patch (for known regions),
or sampled according to periodicity (for any region).
G T  Pat ch  at the Same Position: For a predicted patch in the known region,
the ground truth patch at the same position is available. Specifically, for a square
patch with size s centered at position x ,  we input all the pixel coordinates in
the patch into M L P  to obtain a predicted R G B  patch I s ( x ) .  Let I s ( x )  be the
corresponding ground truth at the same position and Ms (x)  be the mask of
known pixels. We apply perceptual loss [59] on masked patches:

L p ( x )  =  L p c t ( I s ( x )  � M s (x ) , I s ( x )  � Ms (x)), (3)

where � is the element-wise product.
G T  Patches Sampled Based on Perio dic ity:  To  train on unknown regions,
we propose to sample ground truth patches based on periodicity. This is an
effective way to handle the M L P  extrapolation problem, which cannot be solved
by merely using input warping and S N A K E  activation function [64]. The input
and output images in Figure 2 illustrate this sampling strategy.

Specifically, we sample multiple nearby ground truth patches for supervision
by shifting position x  based on the estimated periodicity. The shifted patch
center is defined as x α β  =  x  +  αd1 +  βd2(α, β � Z),  where d1 and d2 are the
displacement vectors. Because the predicted and ground truth patches are not
necessarily aligned, we adopt contextual loss L c t x  [34]:

L c ( x )  =  
1 X

L c t x ( I s ( x )  � M s (xαβ ) , I s (xαβ )  � Ms (xαβ )), (4)
(α ,β )�T N

where TN  is a set of (α, β) pairs corresponding to the N  nearest ground truth
patches, since local variations are preserved using nearby patches for supervision.
Patch  Loss: Our patch loss combines the two sampling strategies: L p a t c h (x )  =
λp γ ( x ) L p ( x ) + λ c L c ( x ) ,  where λp and λ c  are constant weights. γ (x)  is a binary
function: 1 for x  in known regions and 0 for x  in unknown regions.
Total  Loss: Our final loss is the combination of patch loss and pixel loss:

L  =  
λ1         

X  
L p i x e l ( x )  +  

λ2         
X  

L p a t c h ( x ) , (5)
1     x �B 1

2     x �B 2

where λ1 and λ2 are constant weights. B 1  contains pixel coordinates that are ran-
domly sampled in known areas, and B 2  contains the center coordinates sampled in
both known and unknown areas in proportion.

1 Figure 3 is generated based on the final pipeline explained in Section 3.4.
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(a)  Input (b) P i x e l  Onl y      (c) Patch Onl y  (d)  P i x e l + R and       (e) N P P - N e t (f )  G T

Fig. 3: Comparing different losses based on the final pipeline. The red, yellow
and cyan dots in (a) visualize the Top-3 periodicities. Zoom-ins of the unknown
area (white rectangle) are in (b)-(f ). Merely using pixel loss (b) generates high-
frequency artifacts across the image and periodic artifacts in the top part. Adopt-
ing only patch loss (c) removes the artifacts but has poor global structure. Using
pixel loss and patch loss with random sampling (d) cannot preserve global con-
sistency and local variations well since the ground truth patches are not sampled
according to periodicity and might be far from the predicted patch. With pixel
loss and periodicity-guided patch loss, NPP-Net (e) solves these issues.

Training with this loss preserves both global consistency and local variations,
as shown in Figure 3 (e). In fact, only using patch loss cannot ensure global
consistency if the detected periodicity is not accurate enough. In Figure 3 (c),
the pattern structure is poorly reconstructed because it only focuses on the local
structure. We also show the result for the combination of pixel loss and patch
loss with patches that are randomly sampled in the known regions (we call it
random sampling strategy) in Figure 3 (d). This fails to generate correct periodic
patterns and good local details because the output and sampled patches have a
large misalignment and are far away from each other.

3.4 Per io dic i ty  Proposal

Although the above initial pipeline shows good performance, it still fails to han-
dle very inaccurate periodicity detection. To  improve the robustness of NPP-Net,
we design a Periodicity Proposal module to provide additional periodicity infor-
mation. As shown in Figure 4, we first search multiple candidate periodicities
and then augment the input to M L P  to handle inaccurate periodicity detection.
Per io dic i ty  Searching: Our searching strategy is based on the same periodicity
detection method [24] we adopt in the initial pipeline. But the authors’ original
implementation requires manual hyperparameter tuning. Instead, we design an
automatic tuning method, which evaluates each candidate periodicity (obtained
from various hyperparameters) in the context of image completion. Specifically,
we first generate M pseudo masks in the known regions and treat them as
unknown masks for image completion. Then we execute the initial pipeline for
each candidate periodicity, and compute its reconstruction error in pseudo mask
regions for periodicity ranking. Since we focus on reconstructing a coarse global
structure, we use a lightweight initial NPP-Net without patch loss for eficiency,
which takes around 10 seconds for each periodicity in a Titan Xp  GPU.
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Sec 3.4: Periodicity Proposal Sec 3.2: Coordinate-based MLP

Input Periodicity
Searching
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Fig. 4: Final pipeline of NPP-Net modifies two modules of the initial pipeline.
(1) Periodicity Proposal (green) automatically searches and augments the input
periodicity to handle inaccurate periodicity detection and encourage the global
consistency. (2) Coordinate-based M L P  (lavender blue) has two branches: (a) for
Top-1 periodicity and original coordinates, and (b) for the rest.

Per io dic i ty  Augmentation: Prior methods [16,32,24,23] also use one period-
icity to guide completion as in our initial pipeline. This cannot guarantee global
consistency if the periodicity is inaccurate, especially when the unknown mask is
large (see experiments). So, we augment the pattern periodicity at two levels to
improve robustness. At the coarse level, instead of searching the best periodicity,
we keep Top-K candidates {(p , p )  | i  � Z + , i  ≤  K } ,  to cover multiple possible
solutions. This coarse-level augmentation encourages NPP-Net to move towards
the most reasonable candidate periodicity. At the fine level, we augment period-
icities with small offsets to better handle smaller errors. Specifically, a periodicity
vector p is augmented to be A(p) =  {p +  δ |p| | δ � ∆ } .  We empirically define ∆
=  {0, ±0.5, ±1} (in pixels). Finally, we merge all the augmented periodicity
vectors as P  = + A(p )  � A(p ). Note that |P| =  2K|∆|.

In our final pipeline, P  contains K |∆| periodicities. We perform input warp-
ing (Section 3.1) for each periodicity and input the transformed coordinate fea-
tures into the MLP. We add an additional branch to the MLP, as shown in
Figure 4. Since the Top-1 periodicity is likely the most accurate (see experi-
ments), we input the coordinate features warped using the Top-1 periodicity
(including fine-level augmentation) and original coordinate features, to the first
branch. The coordinate features warped using the Top-2 to K  periodicities are
sent to the second branch. For optimization, we sample patches according to the
Top-1 periodicity. All  other parts remain the same in our final pipeline. We eval-
uate these changes in our ablation study. See supplementary for implementation
details including hyperparameters, network architecture, and runtime.

3.5 Extensions

N o n - N P P  region segmentation: Parts of a scene may not be near-periodic
(e.g., trees in front of a building facade). We thus segment the non-periodic
regions in an NPP image in an unsupervised manner. We use a traditional seg-
mentation method [18] to provide an initial guess for the non-periodic regions,
treated as the unknown mask in image completion. After training NPP-Net, we
relabel the initial non-periodic regions with low reconstruction error as periodic
regions. Similar strategy is adopted to serve as a pre-filtering step before applying
our method to any arbitrary scene (see supplementary).
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N P P  remapping: NPP scenes captured from a tilted angle can result in blurry
motifs after rectification. To  enhance resolution, we detect blurry regions and
treat them as the unknown mask in image completion. The difference is that we
compute the pixel loss in the blurry regions with a smaller weight.
Mult i -P lane N P P  completion: Given an image with different NPPs on dif-
ferent planes, we first adopt a pre-trained plane segmentation network [56] to
obtain a coarse plane segmentation. Then we select a bounding box in each
plane as a reference to rectify the plane using T I L T  [60]. Note that, we do not
require accurate segmentation since it is only used for bounding box selection.
For each rectified plane, we first use our NPP segmentation method to segment
the non-periodic regions (mainly from other planes) and treat them as invalid
pixels. Then we perform NPP completion on each plane, transform it back to
the original image coordinate system, and recompose the image. Figure 6 shows
qualitative results for this extension. Detailed implementation and experiments
for these extensions are in supplementary.

4 Experiments

Dataset: We evaluate NPP-Net on 532 images selected from three relevant
datasets for NPP completion: PSU Near-Regular Texture Database ( N RT D B )  [1],
Describable Textures Dataset ( D T D )  [10], and Facade Dataset [48]. There are
165 NPP images in the N RT D B  dataset including facades, friezes, bricks, fences,
grounds, Mondrian images, wallpapers, and carpets. Similarly, there are 258 NPP
images in the D T D  Dataset including honeycombs, grids, meshes and dots. The
Facade Dataset has 109 rectified images of facades. Some of these facades are
strictly not NPP because often the windows are not arranged periodically. But
nonetheless we include these to evaluate our approach when the NPP assump-
tion is not strictly satisfied. Finally, we also collect a small dataset with 11
NPP images for real-world applications (e.g., removing trees in the scene). In
general, scenes in N RT D B  are more challenging than D T D  since they contain
more non-periodic regions (boundaries, trees, sky, etc.), complex illuminations
and backgrounds, and multiple periodicities across an image (Figure 5 row 3).
We use T I L T  [60] to rectify all the images to be fronto-parallel if needed. See
supplementary for more details including sampled images and mask generation.
Metrics: No single metric can evaluate NPP image completion comprehensively.
So we adopt three metrics to cover different scales, including L P I P S  (perceptual
distance) [59], SSIM [52], and PSNR. Lower L P I P S ,  higher SSIM, and higher
PSNR mean better performance. A  known limitation for SSIM and PSNR is that
blurry images also tend to receive high scores in these metrics [20], while L P I P S
handles this issue better. See supplementary for F I D  [40] and RM S E  metrics.
Ablat ion Study:  We perform three studies. First, we compare to a “No Period-
icity” variant, which uses a standard coordinated-based M L P  without a period-
icity prior. Results in Table 1 show that it fails to understand the arrangement
of tiled motifs. Note that the Facade dataset may have different performances
because it has some non-NPP images. Second, to study the loss functions, we
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Category Method N RT D B  [1] D T D  [10] Facade [48]

L P I P S  ↓ SSIM ↑ P SN R  ↑ L P I P S  ↓ SSIM ↑ P S NR  ↑ L P I P S  ↓ SSIM ↑ P S N R  ↑

Large
Datasets

PEN-Net [57]
ProFil l  [58]
Lama [46]

0.497 0.452 17.97
0.401 0.300 16.35
0.196 0.551 18.64

0.473 0.365 15.81
0.443 0.249 14.30
0.274 0.479 16.39

0.426 0.444 15.78
0.374 0.391 14.73
0.207 0.468 15.24

Image Quilting [11]     0.428
PatchMatch [2]         0.263

Single                D I P  [50]                0.554
Image               Siren [44]               0.636

Huang et al. [16]        0.287
B P I  [23] 0.254

0.074 13.25
0.542 18.14
0.292 16.46
0.084 14.38
0.410 16.99
0.442 16.86

0.415 0.077 12.18
0.361 0.383 15.47
0.659 0.181 13.15
0.762 0.080 13.11
0.302 0.320 14.88
0.303 0.305 14.82

0.550 0.002 10.28
0.369 0.341 14.22
0.582 0.258 15.22
0.780 0.052 12.00
0.387 0.279 13.75
0.458 0.173 12.20

No Periodicity 0.429
Pixel Only 0.308
Patch Only 0.322

NPP-Net     Pixel +  Random 0.216
Variants  Initial Pipeline 0.213

Top1 +  Offsets 0.205
Top5 +  Offsets 0.197

Top3 w/o Offsets 0.210

0.449 18.22
0.618 20.20
0.340 15.83
0.670 20.74
0.647 20.38
0.656 20.60
0.661 20.73
0.648 20.44

0.468 0.350 16.38
0.397 0.473 17.86
0.395 0.275 13.22
0.264 0.501 18.03
0.293 0.462 17.26
0.285 0.477 17.70
0.259 0.492 18.03
0.275 0.474 17.36

0.379 0.443 15.54
0.427 0.458 15.54
0.412 0.164 11.99
0.316 0.426 15.43
0.277 0.438 15.11
0.289 0.412 14.80
0.265 0.483 15.51
0.269 0.460 15.33

NPP-Net      Top3 +  Offsets 0.188      0.679     21.01       0.249      0.504     18.32 0.263       0.485     15.93

Table 1: Comparison with baselines and NPP-Net variants for NPP completion
and the metrics are evaluated only in unknown regions. The best and second-best
results (excluding variants) are highlighted in bold and underline respectively.
NPP-Net outperforms all the baselines on N RT D B  and D T D .  While Facade has
some non-NPP images, NPP-Net can still outperform all other baselines except
for Lama. See the supplementary for the results tested on the full images.

design three variants: (1) Only pixel loss, (2) Only patch loss, (3) Pixel loss and
patch loss with random patch sampling. As discussed in Section 3.3, the results
in Table 1 and Figure 3 show that NPP-Net outperforms other variants.

Third, we study the effect of the periodicity augmentation (coarse level Top-K
candidate periodicities and fine level offsets) by testing four variants: (1) Initial
pipeline (No augmentation), (2) Top-1 with offsets, (3) Top-5 with offsets, (4)
Top-3 without offsets. Table 1 shows that the initial pipeline performs the worst.
Larger K  (Top-5) hurts the performance as more inaccurate periodicities may be
included. But, smaller K  (Top-1) also performs badly because the correct period-
icity may not be included. A  suitable K  (Top-3) without offsets performs worse
since offsets can help better handle smaller errors. With the appropriate K  and
offsets, NPP-Net generates the best results. See more studies in supplementary.
Baselines: We compare against non-periodicity-guided and periodicity-guided
baselines. For the former, we select two traditional methods, Image Quilting [11]
and PatchMatch [2], that can handle pattern structure locally for some scenes
with properly selected patch size. We then consider two learning-based methods
D I P  [50] (CNN-based) and Siren [44] (MLP-based) trained on a single image for
inpainting. We also choose several learning-based methods: PEN-Net [57], Pro-
Fill [58] and Lama [46] that are trained on large real-world datasets [62,10,18,19]
since they show competitive NPP completion examples in their work.

For periodicity-guided methods, we choose two baselines - Huang et al. [16]
and B P I  [23]. Both works were designed for multi-planar scenes, but can be



12 B. Chen et al.

used for single-plane completion as well. B P I  first segments and rectifies planes,
then performs periodicity detection [24] on each plane, and inpaints each plane
independently. For fair comparison in single-plane NPP image, we only compare
with BPI ’s completion step to remove potential inconsistency introduced from
other steps (e.g., plane rectification). For Huang et al., we use their pipeline
without modification as their method works directly for a single plane and the
completion step cannot be easily separated out. We will also compare with these
two methods in multi-plane NPP images.

Comparison with Baselines: Table 1 shows the quantitative results for all
methods. For N RT D B  and D T D  datasets, among the single-image baselines, B P I
obtains the almost best L P I P S  because it generates a more reasonable global
structure guided by periodicity. PatchMatch obtains better SSIM and PSNR
even if it generates blurred results for large masks. Lama achieves the best results
among the baselines since it adopts fast Fourier convolution for a larger image
receptive field, which allows it to implicitly learn the underlying periodicity from
large datasets. Our NPP-Net outperforms all baselines on these two datasets by
optimizing only on a single image. For the Facade dataset, even if some non-NPP
images are included, NPP-Net performs better than other baselines (except for
Lama). Lama effectively learns scene prior from large datasets and thus works
well for non-NPP images, leading to the best performance in this dataset.

Qualitative results are shown in Figure 5. Large rectangle masks are chal-
lenging since there is less information from which to estimate the representa-
tion. Perceptually, PatchMatch works well when the motifs are small (row 3)
but results in blur with large masks (row 2 and 6). Although B P I  and Huang et
al. perform better than non-periodicity-guided baselines, they generate artifacts
since the NPP representation (periodicity) has poor global consistency (row 1-6)
or lacks local variations (row 6-9). Note that the Top-1 periodicity in row 1 (red
dots) is inaccurate - the actual periods are half of the one shown. We show that
NPP-Net can extrapolate NPP images well (row 5), generalize to irregular masks
(row 6), and work for scenes that contain non-periodic regions (row 4). We show
that NPP-Net can be extended to handle multi-planar scenes in Figure 6. Among
the baselines, Lama (trained on large datasets) can better handle local variations
(row 2 purple box). Although it captures some global structure when the mask is
not large, Lama performs worse than B P I  when the mask is outside the image
border for extrapolation (all rows) and perspective effect is severe (row 2 cyan
box). Learning from the Top-K periodicities, NPP-Net produces the best images,
maintaining global consistency and local variations. Finally, the output of NPP-
Net can in turn improve periodicity detection, leading to better image
completion for both B P I  and NPP-Net (see supplementary).

Influence of Mask Size: We study the influence of different mask sizes for
image completion. All  figures are shown in the supplementary due to the space
limitation. First, for each image, if the K-th periodicity has the smallest error
among Top-3 periodicities, we assign the image to the K-th periodicity. In the
supplementary, we show the number of images assigned to each periodicity with
different mask sizes in Figure 19, and illustrate how to compute periodicity
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Fig. 5: Qualitative results for NPP completion. We show four baselines that op-
erate on a single image. The red, yellow, and cyan dots in input images show the
first, second, and third periodicity from periodicity searching module, respec-
tively. For visualization, all periods are scaled by 2. Our NPP-Net outperforms all
baselines for global consistency (rows 1-6) and local variations (rows 6-9).
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Fig. 6: Qualitative comparison for multi-plane NPP completion. We show three
baselines, which are either designed for multi-plane NPP scenes (Huang et al.and
B P I )  or trained on large datasets (Lama). Some zoom-in boxes are resized for
visualization. Full results are in supplementary.

error in detail. From the figure, while the Top 1st periodicity is the best one for
most of the images with small mask size, the number decreases when the mask is
large (64% of the image). This illustrates that the other two periodicities contain
better periodicity and leveraging them by our periodicity augmentation strategy
can be helpful for learning NPP representation, especially when the mask is large.
Second, we show the performances for different mask sizes in Figure 20 and
21 (supplementary). In particular, we filter out images that contain large non-
periodic regions. When the mask area is small (4% of the image), PatchMatch
slightly outperforms NPP-Net because the unknown regions may not contain
pattern structure, and simply sampling nearby patches is suficient to produce
good results. Among single-image methods, Huang et al., B P I  and NPP-Net
perform better when the mask size increases since they are guided by periodicity.
Taking better advantage of periodicity information, NPP-Net is more robust to
various mask sizes, especially for larger masks.
Limitations: (1) The periodicity proposal cannot be too erroneous, allowing
tolerance of about 10%. (2) It assumes a multi-planar scene with translated,
circular, and potentially other types of symmetrical NPP that can be modeled.
Conclusion: We show how to learn an effective neural representation of Near-
Periodic Patterns. We design the periodicity proposal, periodicity-aware input
warping, periodicity-guided loss to maintain global consistency and local varia-
tions. NPP-Net provides a strong tool to study a large class of man-made scenes.
Acknowledgement: This work was supported by a gift from Zillow Group,
USA, and NSF Grants #CNS-2038612, #IIS-1900821.
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