
Relational Debugging

— Pinpointing Root Causes of Performance Problems

Xiang (Jenny) Ren1, Sitao Wang1, Zhuqi Jin1, David Lion1, Adrian Chiu1, Tianyin Xu2, and Ding Yuan1

1University of Toronto
2University of Illinois at Urbana-Champaign

Abstract

Performance debugging is notoriously elusive—real-world

performance problems are rarely clear-cut failures, but man-

ifest through the accumulation of fine-grained symptoms.

Oftentimes, it is challenging to determine performance

anomalies—absolute measures are unreliable, as system per-

formance is inherently relative to workloads. Existing tech-

niques focus on identifying absolute predicates that deviate

between executions, which limits their application to perfor-

mance problems.

This paper introduces relational debugging, a new tech-

nique that automatically pinpoints the root causes of perfor-

mance problems. The core idea is to capture and reason about

relations between fine-grained runtime events. We show that

relations provide immense utilities to explain performance

anomalies and locate root causes. Relational debugging is

highly effective with a minimal two executions (a good and a

bad run), eliminating the pain point of producing and labeling

many different executions required by traditional techniques.

We realize relational debugging by developing a practical

tool named Perspect. Perspect directly operates on x86 bi-

naries to accommodate real-world diagnosis scenarios. We

evaluate Perspect on twelve challenging performance issues

with various symptoms in Go runtime, MongoDB, Redis, and

Coreutils. Perspect accurately located (or excluded) the root

causes of these issues. In particular, we used Perspect to di-

agnose two open bugs, where developers failed to find root

causes—the root causes reported by Perspect were confirmed

by developers. A controlled user study shows that Perspect

can speed up debugging by at least 10.87 times.

1 Introduction

Performance makes or breaks a software system: severe per-

formance problems lead to unresponsiveness and even mal-

functions; even seemingly-small performance degradations

can incur high costs—a half-second search delay reduces

Google’s revenue by 20% [33]. Therefore, it is crucial to

diagnose performance problems in a timely manner.

Performance debugging is known to be elusive and difficult.

Unlike functional failures with clear-cut symptoms, such as

crashes and runtime exceptions, performance problems are

typically observed via the cumulative effect of fine-grained

symptoms over time, such as latency increases due to regres-

sions of code efficiency and resource overuse due to leaks.

While fine-grained symptoms can potentially be identified by

profilers [9, 10, 12, 13, 19], profiling alone cannot explain a

performance anomaly—not every local symptom is related to

the anomaly. Causality analysis [34, 37, 42] captures runtime

events that are causally related to the symptoms, but it does

not pinpoint the root causes in the code; the causality graph

can be complex to navigate and analyze. In fact, it can be

even challenging to determine whether or not the observed

is performance an anomaly, because absolute measures are

unreliable—system performance is inherently relative to in-

puts and workloads.

Existing performance diagnosis techniques target specific

types of root causes and thus are limited when applied to many

challenging performance problems. For example, X-ray [15]

diagnoses performance anomalies due to unexpected inputs

or configuration values by summarizing performance impact

of each input/configuration value; however, as a tool designed

for end users, X-ray does not address problems rooted in the

source code. Statistical debugging [24, 26, 29, 32, 38] can

address certain types of performance problems which result

in differences in program predicates (e.g., branches and re-

turns) [39]. However, unlike functional failures, many perfor-

mance problems do not cause changes in predicates (e.g., due

to distribution changes in runtime events). Besides, it can be

challenging to design predicates and statistical models in the

first place [39].

This paper introduces relational debugging, a new tech-

nique that automatically pinpoints the root causes of perfor-

mance problems. The core idea is to capture relations be-

tween fine-grained runtime events. We show that relations

provide immense utilities to explain performance anomalies

and locate root causes. Relational debugging analogizes per-

formance problems to relative motion in physics—just like the

speed of an object is a relative measure depending on the ref-

erence frame, so is performance when viewed from different

runtime events during program execution. Root causes of per-

formance problems can be revealed by analyzing changes of

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 65

relative measures of these events (i.e., their relations) between

a good run and a bad run (with performance anomalies).

Consider a real-world performance issue (see §2.1), where

the developer observes an abnormal increase in memory con-

sumption by a server application. Potential root causes can

be: 1) an influx of more requests (in which consuming more

memory is normal), 2) each request allocating more memory

(indicating regression of code efficiency), and 3) allocated

memory not being reclaimed (indicating memory leaks). Each

of these hypotheses can be expressed as a relation (a measure

relative to an event): 1) the number of requests relative to each

time epoch, 2) the amount of memory allocated relative to

each request, 3) the amount of memory reclaimed relative to

each request. Relational debugging verifies the hypotheses by

comparing the three relations in executions with and without

the observed performance anomaly. In this example, 1) and

2) are the same, while 3) decreases significantly, suggesting

memory leaks. Relational debugging further pinpoints the root

cause of the memory leak by analyzing fine-grained relations.

It finds that relative to all memory objects not reclaimed by the

garbage collector (GC), many more are unreachable by point-

ers in the abnormal execution than the normal execution—a

bug in the GC mistakenly treats constant values as pointers.

Relational debugging is highly effective with a minimal

two executions (a good and a bad), eliminating the pain point

of producing and labeling many different executions required

by traditional statistical techniques [24,26,29,32,38,39]. No-

tably, relational debugging utilizes the repetitiveness of perfor-

mance symptoms which accumulate during the execution—a

single execution offers a large sample of normal or abnor-

mal patterns. Relational debugging is generic to performance

problems with different types of root causes, including inef-

ficient code, misconfigurations, and workload changes, etc.

Moreover, relations can describe different types of symptoms

such as slowdowns and memory overuse.

We realize relational debugging by developing a practi-

cal tool named Perspect. Perspect is fully automatic; it does

not require manual instrumentations or annotations. Perspect

takes the symptoms (such as a program counter that indicates

excessive memory usage or a function with abnormal execu-

tion time) as inputs. It outputs the relations that are 1) causally

relevant to the symptoms and 2) have significant impacts on

the performance measures of the symptom; such relations de-

scribe the root causes of the performance problems. Perspect

directly operates on x86 binaries to accommodate real-world

diagnosis scenarios (e.g., when the binary build is nontrivial),

and can tolerate small differences in the binaries.

Perspect focuses on capturing a small set of relations that

can pinpoint the root cause. Instead of tracking all possible

relations of every runtime event, Perspect reduces the search

space by identifying runtime events that are causally related

to the symptoms through control or data flow. Perspect then

filters out relations that are not changed between the good

and bad executions. For relations that are changed between

the executions, Perspect automatically differentiates between

relation changes that reflect the effect (e.g., a decrease of re-

claimed memory relative to each request), and changes that

reflect the cause (e.g., an increase in objects not referred by

real pointers). These strategies effectively filter out most of

the irrelevant relations, with the remaining relations being

root cause candidates. Lastly, Perspect ranks root-cause rela-

tions based on their impacts on performance measures of the

observed symptom, and outputs them in descending order.

Perspect is carefully implemented so its analysis is both

precise and scalable to real complex systems. It has an effi-

cient algorithm that computes all the relations by traversing

the dependency graph only once. In addition, it distributes

the precise but expensive data-flow dependency analysis onto

different servers. Finally, Perspect is able to handle the differ-

ence between two different versions of the binary executables.

We evaluate Perspect on twelve real-world performance

issues from complex systems (Go runtime, MongoDB, Re-

dis, and Coreutils), covering different symptoms (slowdown

and memory overuse). Perspect effectively locates the root

causes of these challenging issues. Notably, we applied Per-

spect to two open issues where developers failed to find the

root causes; Perspect successfully located the root causes of

both issues which are confirmed by the developers. For an

issue where the root cause is located outside the target pro-

gram (in the OS kernel), which took developers a long time

to debug, Perspect correctly excluded the root cause from

the application code, since it detects no significant relation

changes.

In summary, this paper makes the following contributions:

• We present relational debugging, a new technique that ana-

lyzes the relations between causally related events, seizing

the essence of performance debugging.

• We build Perspect, a practical tool that realizes relational

debugging for large, complex real-world systems. Perspect

directly operates on x86 binaries and accommodates real-

world diagnosis/debugging scenarios.

• We show that Perspect can effectively locate the root causes

of real performance problems, and can help resolve two

previously unresolved issues. The source code of Perspect

and the dataset are available at https://gitlab.dsrg.

utoronto.ca/dsrg/perspect.

2 Relational Debugging by Examples

We use two real-world examples to show how relational de-

bugging locates the root causes of challenging performance

problems in complex software systems. Both problems are

among the most challenging performance issues faced by

developers, who were unable to locate the root causes with

existing tools. Specifically, the Go runtime bug (§2.1) took

a year of investigation, and the MongoDB bug (§2.2) is an

open issue that developers failed to diagnose. Perspect auto-

matically pinpoints the root causes in the form of relations.

66 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://gitlab.dsrg.utoronto.ca/dsrg/perspect
https://gitlab.dsrg.utoronto.ca/dsrg/perspect

2.1 Go-909: A Memory Leak

Go-909 is among the most famous performance bugs in the

Go runtime. The developers reported that “garbage collection

is ineffective on 32-bit” systems, causing workloads to run

out of memory [2]. The same bug resulted in 9 other tickets

(which turned out to have the same root cause) and at least 2

extensive discussion threads on Golang’s email list.The bug

was also discussed in Hacker News with 147 comments [4].

2.1.1 Challenges of Debugging Go-909

Debugging Go-909 was very challenging not only for appli-

cation developers but also for developers of the Go runtime.

During the course, many wrong hypotheses, some of which

were wildly off, were developed. For example, a developer

believed that the bug was caused by the Go runtime forgetting

to munmap freed memory [1]. There are at least three other

bugs, of which developers could not agree on the root cause,

that were eventually attributed to Go-909. After more than a

year of investigations, the root cause was discovered through

a trial-and-error process: the bug can be worked around by

commenting out specific packages that contain a lot of static

constants.

Existing performance debugging techniques can hardly ad-

dress Go-909. First, Go-909 does not always cause a clear-cut

out-of-memory error; in fact, many developers reported the

bug simply after noticing their programs using more memory

than expected [1, 3]. Moreover, since the root cause is not in

program inputs, isolating faulty inputs using X-ray [15] or

delta debugging [48] does not help. The root cause also can

hardly be revealed by statistical debugging [32,39], because it

does not manifest in any abnormal predicates such as branch

targets, unexpected return values, or scalar-pairs [39]. In fact,

the memory leak also occurred in the reference executions

(64-bit systems), only affecting many fewer objects.

2.1.2 Root Cause

Figure 1 shows the simplified code snippet in the

buggy version of the Go runtime. Go programs invoke

runtime.malloc to allocate memory and the Go runtime

uses a mark-and-sweep garbage collector (GC). Once an

object is allocated (L2), runtime.malloc increments the

heap_size counter (L3).

The mark function looks for objects that are reachable

through variables on the stack and in the data segments. Un-

marked objects will later be reclaimed by sweep. During the

stack scan, mark takes the pointer to the start of the stack and

data segments (b), as well as the size of the respective regions

(n). For every word on the stack and data segments, it initially

assumes it to be a pointer and checks whether it points to an

address inside the heap’s range (L15). If so, mark sets the

“marked” bit in the metadata of the object (L18–19). Then,

mark uses an iterative worklist w to further scan the memory

based on the marked pointers. Later, sweep goes through each

span, a memory region containing same-sized blocks. The

1 void* runtime.malloc(unintptr size, ...) {
2 void *p = runtime.Alloc(...);
3 heap_size += size;
4 uintptr bits = get_metadata(p);
5 ...
6 set_metadata(p, bits);
7 return p;

8 }

9 // Mark objects reached by pointers
10 static void mark(byte *b, int64 n) {
11 void **w = get_buffer_head();
12 while(b != nil) { ...
13 for(i = 0; i < n; i++) {
14 byte *p = (byte*)b[i];
15 if(p < HEAD_START || p >= HEAD_USED)
16 continue;
17 uintptr bits = get_metadata(p);
18 bits |= BIT_MARKED; /* set mark bits */
19 set_metadata(p, bits);
20 *w++ = p;
21 }
22 b = *--w;
23 n = get_size(b);
24 }
25 }

26 // Reclaim unreachable objects
27 static void sweep(void) {
28 uintptr size = getsize(span);
29 for(byte *p = span->start; ... p += size) {
30 uintptr bits = get_metadata(p);
31 if((bits & BIT_MARKED) != 0) {
32 bits &= ~BIT_MARKED; /* clear mark bit */
33 continue;
34 }
35 set_metadata(p, bits);
36 runtime.Free(p, size, ...);
37 heap_size -= size;
38 }
39 }

./Perspect run_64 run_32

run_64: R<(L7|L18) = 0.99 // 64-bit (good run)
run_32: R<(L7|L18) = 0.01 // 32-bit (bad run)

GC

log

GC

log

heap_size

is logged

heap_size

is logged

Figure 1: Code snippets showing how Perspect locates the

root causes of Go-909 by pinpointing the changed relation

between L7 and L18 by comparing the two runs.

loop at L29 goes through each block, checks if the marked bit

is set, and if so, clears the mark bit (L32) and continue on to

the next block. Otherwise, it frees the object and decrements

the heap size (L37).

The implementation of mark suffers from fake pointers—

non-pointer variables that happen to have values within the

range of HEAP_START and HEAP_USED (L15). The objects

pointed to by those variables will not be reclaimed. 1 The

defect affects both 32- and 64-bit systems; however, fake

pointers occur orders of magnitude more frequently in 32-bit

systems than 64-bit systems due to data layouts differences.

1This is a known side effect of using a conservative garbage collector.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 67

2.1.3 Relational Debugging Go-909

Perspect takes as inputs a good run (which uses the 32-bit

Go runtime) and a bad run (which uses the 64-bit Go run-

time) of the Go program provided by the bug reporter, as well

as the symptom. Since the bug manifests in abnormal heap

sizes in the GC log, we (users) feed Perspect the heap_size

variable which records the heap size value printed in the log.

Perspect identifies the instructions that modify heap_size ,

i.e., L3 and L37 in the code of Figure 1, and Perspect treats

these instructions as symptom instructions. Perspect will

not only analyze what causes these symptom instructions to

execute, but also what prevents these symptom instructions

from executing; To do this, Perspect also identifies “negation”

symptoms which are instructions that directly prevent a symp-

tom instruction from executing, for example, L18, because

each time L18 executes which marks and object, it directly

prevents an instance of L37 which reclaims the object.

Perspect carries out relational debugging starting from in-

structions that directly determine the heap_size (L3, L37,

and L18). It builds relations between symptom instructions

and their causal predecessors. In this case, Perspect efficiently

locates the root cause to a single relation (see Table 1 for

notations):

R�(L7malloc.return � L18mark)

On 64-bit systems, the relation is expected to be 1 ∶ 1, in-

dicating that for every marked object on L18, there exists

a dependency on a pointer returned by malloc. Yet, on 32-

bit systems, the relation drops to 1 ∶ 0.01, i.e., only 1% of

the marked objects have a pointer returned by malloc. The

remainings are pointed to by fake pointers (constant values).

Note that the 1 ∶ 1 relation in the reference run on 64-bit

systems is not an invariant. Precisely, Perspect observed the

relation to be 1 ∶ 0.99, i.e., 99% of the marked objects are

pointed to by a pointer returned by malloc. This is because

the defect still exists in 64-bit systems, but only affecting 1%

of the objects in the reference run.

R�(L7|L18) is not the only relation built by Perspect. Tak-

ing L18 as an example, Perspect builds four relations w.r.t

L18’s causal predecessors L1 and L10:

• R � (L1�L18): the distribution of the number of marked

objects that depend on malloc;

• R� (L18�L1): the distribution of the number of times an

object (still reachable by real pointers) gets marked;

• R� (L10�L18): the distribution of the number of marked

objects that depend on mark;

• R� (L18�L10): the distribution of the number of objects

marked per mark call;

Perspect filters out R�(L18�L1) because the distribution

of the lifetimes of objects reachable by real pointers do not

change significantly between the good and bad run; and Per-

spect filters out R� (L10�L18) because each marked object

always depend on one invocation of mark. R�(L18�L10) is

Ln An static instruction at line n

eLni The i-th instance of Ln in the execution

S A symptom instruction

eSi A symptom event

P A static insn. & causal predecessor of S

P+ A static insn. & direct causal successor of P

R�(S �P) A forward relation between P and S

R�(P�S) A backward relation between P and S

R��(P,S) A pair of forward and backward relations

R?(P,S) A relation btw. P and S of unspecified direction

Table 1: Notations for relations.

changed across the runs, because fake pointers causes many

more objects to be marked during each mark call in the bad

run, but Perspect also excludes it because relational debug-

ging recognizes that the relation only reflects the effect of the

root cause, but is not the root cause. Finally, for R�(L1�L18),
Perspect refines it to the most specific variant, R�(L7�L18).
The other relations (e.g., those w.r.t symptom instructions

at L3 and L37) are handled in similar ways, and eventually

filtered out. We discuss Perspect’s filtering and refinement

techniques in §3.3.

2.2 MongoDB-57221: A Slowdown

“[Perspect’s result] ties all the pieces together into a nice

explanation. That explanation being, having some unnec-

essary cursors simply open on failed plans isn’t strictly the

problem. It’s that we’re paying the (also unnecessary) cost

to reposition them after every delete + restore.”

—MongoDB developer’s comment on Perspect’s result.

MongoDB-57221 is an open bug which developers were

unable to diagnose. It is triggered by executing a query that

deletes all the records in the table. The query could slow down

by 5x on the buggy version. During the deletion, MongoDB

uses a cursor, i.e., a pointer to a record in the table that indi-

cates the current position, to locate each record. It advances

the cursor to the next record after deleting the previous one;

this process is known as cursor restoration.

This bug is caused by maintaining unnecessary cursors on

multiple query plans. Before the query execution, MongoDB

generates multiple query plans, performs a sandboxed trial of

these plans, and chooses the best-performing plan. Different

query plans use different indexes, thereby deleting records in

different orders. The actual order of the deletion is determined

by the index of the winning plan. However, MongoDB still

keeps the rejected plans and their cursors. More importantly,

it restores the cursor of each rejected plan following the same

order as the winning plan. Whereas for the winning plan,

restoring the cursor means simply moving to the next position,

for the losing plan, restoring the cursor requires traversing

through many already deleted records. And if the number of

deleted records encountered exceeds a threshold, it flags the

page for eviction. The increase in unnecessary evictions leads

to the slowdown.

68 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Developers were unable to understand the root cause of

this bug, despite them quickly identifying evictions being the

bottleneck based on profiling and being aware of the existence

of multiple query plans. However, they could not explain why

excessive evictions occurred, because they could not establish

the causal link between evictions and the cursor restoration of

the rejected plans. This led to rounds of ping-pongs between

the Storage Engine team (responsible for the eviction) and the

Query Execution team (responsible for maintaining multiple

plans). The storage team suspected that the slowdown was

caused by maintaining multiple plans, but the query execution

developers believed that it was cheap to keep multiple plans

around. And they further suspected that the slowdown was

caused by the threshold misconfiguration that triggered the

eviction. In the end, seven different developers actively dis-

cussed this issue for over a month. The JIRA discussion has

over 3,000 words in 18 comments, with multiple rounds of

reproduction and profiling with multiple screenshots posted.

And the two teams had multiple off-line teleconference dis-

cussions. Still, they were unsure why the slowdown occurred.

Perspect pinpoints the root cause and explains the slow-

down. It captures that the costly evictions are causally depen-

dent on the restoration of multiple cursors. Figure 2 displays

a simplified version of static dependency graph for eviction.

Starting from eviction as the symptom, Perspect returns

the root cause candidate: (1) R�(cursor_search | restore),

where restore invokes cursor_search once in the good

run to restore one cursor, but twice in the bad run to restore

two cursors. Perspect infers that restoring an additional cursor

causes a significant increase in evictions in the bad run.

Moreover, Perspect specifically infers that during cur-

sor restoration, additional traversals through dead records

increased evictions. It returns (2) R � �(eviction |

search_forward) as a new pair of relations unique to the

bad run: search_forward is invoked by cursor_search

to search for the next cursor position by traversing forward

in the records. In the good run, search_forward almost al-

ways locates the next cursor position immediately, triggering

no evictions; whereas in the bad run, search_forward tra-

verses through many dead records and triggers additional

evictions. Perspect also returns (3) R�(search_backward

| cursor_search) as a root cause candidate. In the good

run, cursor_search invokes search_backward only 1%

of the time, because search_forward locates the next cur-

sor position most of the time; however, in the bad run,

cursor_search invokes search_backward half of the time.

The increased searches lead to additional evictions.

3 Perspect

Generally speaking, debugging a performance problem takes

three steps: 1) observing symptom(s), 2) capturing runtime

events that are causally related to the symptom(s), and 3)

locating the root cause. Perspect automates the last two steps,

taking the symptoms as its inputs. Perspect supports different

restore cursor_search

search_backward

eviction

search_forward

Figure 2: A simplified version of the static dependency

graph for eviction. Each edge with a single arrow repre-

sents a dependency. An edge with a double arrow repre-

sents a backedge in a loop. restore loops through ev-

ery cursor and restores each by invoking cursor_search.

cursor_search then invokes search_forward which looks

for the next record by iterating forward. If search_forward

returns without locating the next record, cursor_search

will then invoke search_backward. If search_backward

or search_forward encounters too many dead records, it

will trigger eviction.

Ranked list
Relation 1

Relation 2
Relation 3

...

Relation n

./good_run

./bad_run

insn 1

insn 2

insn 3
...

insn m

Dyninst

PINRR

Static
causality
analysis

Dynamic
causality
analysis

Relational
debugger

Compute

Filter

Refine

Input Output
Perspect

S
y
m
p
to
m

Figure 3: An overview of Perspect’s workflow

forms of symptoms, including: program variables that record

the symptoms (e.g., heap_size in Go-909), slow functions

(such as eviction in MongoDB-57221), and basic blocks

(captured by profilers like gprof [12]). Perspect automatically

identifies the instructions related to the input symptoms as the

starting points of its analysis (§3.1). Perspect outputs a list

of relations that explain the root cause in descending order

based on their impacts on the observed symptom.

Figure 3 shows the workflow of Perspect. Perspect uses

causality analysis to reduce the search space of relational

debugging to a small set of instructions and their runtime

instances that are causally related to the symptom (see §3.2).

Perspect then performs relational debugging to build relations

with regard to the symptom. It filters out relations that are

irrelevant to the symptom, refines relations to be specific to

the root cause, and ranks relations based on their impacts on

the observed symptom (see §3.3).

3.1 Bootstrapping with Symptoms

Perspect bootstraps itself by identifying the instructions that

reflect the observed symptoms. If the symptom is a per-

formance counter recorded in a program variable (such as

heap_size in Go-909), Perspect identifies the instructions

that use the variable as an operand. If the symptom is a func-

tion or a basic block (typically captured by profilers), Perspect

identifies the first instruction of the function or the first in-

struction in the basic block. Hence, Perspect converts different

types of symptom inputs to unified starting points in the form

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 69

of instructions, termed symptom instructions, denoted as S in

Table 1. A dynamic instance of the symptom instruction is a

symptom event.

Each symptom instruction is assigned a weight. The weight

can be the value of a variable in an instruction, such as size

in L3 or L37 in Go-909 (Figure 1), or the estimated time or

cycles taken by a code block (e.g., eviction).

Perspect also identifies instructions that prevent the occur-

rence of symptoms (i.e., the negation of a symptom) as a

special type of symptom instructions. An example is L18

in Go-909. Perspect searches every conditional branch that

dominates a symptom instruction, which could prevent the

symptom from occurring (e.g., L31 in Go-909 w.r.t L37). It

then identifies the instructions that determine the branch con-

ditions (e.g., L18 in Go-909). In practice, we find it suffices

to only include instructions of negation for the initial symp-

tom instructions. Therefore, in our current implementation,

Perspect does not recursively search for negation symptoms.

3.2 Causality Analysis

Perspect reduces the search space of relational debugging by

restricting the subsequent analysis to a small subset of instruc-

tions and their runtime instances that are causally related to

the symptoms. The high-level idea is to dynamically track

instructions that the symptoms are causally dependent on

through control- and data-flow (aka information flow) during

the execution of the good or bad reproduction runs. Specif-

ically, Perspect generates a dynamic program dependency

graph that contains instances of instructions that the symptom

is causally dependent on.

The causality tracking is done in two phases. Perspect first

generates the static program dependency graph (SDG) [25]

for all the symptom instructions from the program. In the

SDG, a node v is an instruction and an edge (u,v) represents

a causal dependence, either a data dependence (a data value

v depends on) or a control dependence (a control condition

on which v depends on). We call u a causal predecessor

of v and v a causal successor of u. To generate the SDG,

Perspect performs backward causality tracking: it starts from

each symptom instruction (including negation symptoms)

and recursively includes causal predecessor instructions by

tracking control or data flow.

Perspect then automatically instruments the instructions in

the program binary that belong to the SDG; it later generates

dynamic program dependency graphs (DDGs) by running the

program binary and monitoring the execution of each instru-

mented instruction. Different from the SDG, which consists

of static instructions, in a DDG, a node is a runtime event—an

instance of an instruction in the execution. Each instruction

in the SDG can correspond to multiple events in a DDG.

We use eLni to denote an event of the i-th occurrence of the

instruction at line n (i.e., Ln) in the execution (see Table 1).

Section 4 describes the implementation details.

3.3 Relational Debugger

Within the scope of instructions that are causally related to

the symptom(s), Perspect computes the relations between the

symptom instructions and their causal predecessors in the

SDG, based on runtime dependencies derived from the DDGs

(§3.3.1). Perspect only considers relations that are changed

between the good and the bad executions as potential root

causes by filtering out unchanged relations (§3.3.2). Perspect

further refines each relation until it finds the specific relation

that captures a root cause of the change in the number of

symptom events between the good and the bad executions

(§3.3.3). The filtering and refinement steps are iterated repeat-

edly to select a minimal set of relations as the candidates of

the root cause (Figure 3). Lastly, Perspect ranks the root-cause

candidate relations based on their impact on the symptoms

(§3.3.4).

We use Go-909 (Figure 1) as a running example when

explaining the above components.

3.3.1 Computing Relations

For each symptom (including the negative symptoms), Per-

spect computes the relation between an instruction P, which

the symptom depends on causally, and the corresponding

symptom instruction S . Both P and S are nodes in the SDG

generated in §3.2. The relation is computed based on the

DDG (§3.2) which records runtime events of P and S during

the executions. Perspect computes relations for the good run

and the bad run, respectively.

Perspect starts by only considering the relation between

S and the root nodes of the SDG as P. These root nodes are

typically the entry point of a software module and the main

function. It gradually considers other events on the causal

dependency paths between the root node and S using a refine-

ment process described in §3.3.3.

Perspect computes both forward relations and backward

relations. A forward relation is defined as R�(S �P) = {ni},
where each element ni in the set, which corresponds to an

instance of instruction P (denoted as ePi) in the DDG, is the

number of causally dependent S instances (eS j, eSk ... eSm)

of ePi. Therefore, a relation can be viewed as a distribution;

We use the mean of the distribution to represent a relation for

simplicity. Here, P can be thought of as serving as a reference

point, and S as the object under observation.

For example, in Go-909, for the symptom instruction

L18mark (marking one object), Perspect constructs a relation

R� (L18mark�L1malloc.start), which represents the number of

times each allocated object got marked. If the first allocated

object gets marked (i.e., it results in an instance of L18) but the

second one does not, then R�(L18mark�L1malloc.start) would

be {1,0}. In practice, R�(L18�L1) has a much larger sample

size, because hundreds of objects are allocated and marked.

A backward relation is defined as R�(P�S) = {mi}, where

each element mi, which corresponds to an instance of S in the

DDG (eSi), is the number of causally dependent P instances

70 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(ePi, Pj ... ePk) of eSi. Opposite to a forward relation, for a

backward relation, the symptom serves as the reference point,

and the predecessor as the object under observation.

Regarding the example, R�(L1malloc.start �L18mark), which

contains, for each marked object (L18mark), the number of

causally connected malloc instances (L1malloc.start); each ob-

ject pointed to by real pointers is connected to 1 instance

of L1malloc.start whereas an object pointed to only by fake

pointers is connected to 0 instances.

Note that a backward and forward relation, R�(P�S) and

R�(S �P), complement each other. A forward relation tells:

“given the same unit of input, is the same number of symptom

events produced?”, whereas a backward relation tells: “given

the same symptom event, is it still produced by the same

units of input?” In Go-909, fake pointers introduce additional

causal paths through which the symptom at L18 (marking one

object) may occur. This is reflected in a change of the back-

ward relation R�(L1malloc.start �L18mark), from 100% to 1%

on average; the forward relation R�(L18mark�L1malloc.start),
reflecting the number of times each object (reachable from

real pointers) gets marked, does not change significantly.

3.3.2 Filtering Unchanged Relations

Perspect filters out a relation R?(P,S) if it has not changed

between the executions of the good and bad runs. Perspect

determines if a relation has changed based on its distribution

using the two-sample Kolmogorov-Smirnov test [27], with a

confidence interval of 95%. For example, in Go-909, the rela-

tion R�(L18mark�L1malloc.start) does not change, because, for

the objects still reachable from real pointers, the distribution

of object life-spans (the number of times they get marked)

does not change significantly; therefore, Perspect filters out

this relation.

Furthermore, if a relation R?(P,S) is unchanged across two

executions, it implies that the relations between any of P’s

causal successors—Q—and S have not changed. Perspect

skips the computation of these relations. In other words, if

there exists a causal successor Q where R?(Q,S) is changed,

then R?(P,S) would be changed. Intuitively, it means that

the same set of runtime events produces the same symptom

events (forward relation) or the same set of symptom events

is still produced by the same events (backward relation). This

optimization allows us to skip many unnecessary relation

computations.

In Go-909, Perspect filters out most of the relations at this

step, and only keeps three relations (which will be further

refined and filtered in §3.3.3):

• R�(L1malloc.start �L18mark): the number of marked objects

reachable from real pointers decreased;

• R�(L18mark�L10mark.start): the number of objects marked

per mark call increased;

• R�(L37sweep�L27sweep.start): the number of objects re-

claimed at L37 per sweep call (L27) decreased.

3.3.3 Relation Refinement

Perspect further refines the relations to replace a more “gen-

eral” relation with a more “specific” one. Refinement is anal-

ogous to moving the reference point closer to the object

under observation in relative motion. If a relation R?(P,S)
is deemed refinable, Perspect replaces the relation with its

child relations: R?(P
+

0 ,S), R?(P
+

1 ,S) ... R?(P
+

n ,S), where

{P+0 ,P
+

1 ...P
+

n } are the direct causal successors of P (i.e., chil-

dren of P). Perspect iteratively refines a relation until it is no

longer refinable or can be filtered out by §3.3.2.

Refinement aims to pinpoint the root cause(s). Without

refinement, Perspect only outputs relations between S and

root nodes R in the SDG, where R can be the entry point

of a module or the main function. But the root cause(s) are

often located at events on the causal paths connecting R and

S. Intuitively, the root cause are events which, if executed,

will inevitably cause the performance bug to manifest [50].

The refinement process aims to locate such events.2

We design the following two refinement rules:

Rule 1: A relation R?(P,S) is refinable, if there is no change in

any of the relations between P and its children {P+0 ,P
+

1 ...P
+

n }:

R?(P,P
+

0), R?(P,P
+

1), and R?(P,P
+

n).

Intuitively, this rule says P is not a root cause; the root

cause(s) is located further down the causal paths. Recall that

the root cause(s) are events which, once executed, the perfor-

mance bug will inevitably manifest. But now we have P+ that

occurred after P in both the good and bad run, and R?(P,P+)
does not change. This means that after P executes, the per-

formance bug may still be avoided when P+ executes. So we

should move one step forward on the causal chain to consider

whether P+ is the root cause.

With this rule, Perspect refines R�(L1malloc.start �L18mark)
to R�(L7malloc.return�L18mark) in Go-909, because R�(L1�L7)
is an invariant that does not change across executions. In the

actual code, the program logic between L1 and L7 is complex;

ruling out L1 and narrowing it down to L7 significantly helps

the developer to understand the root cause.

Figure 4 further shows the sequence of refinements per-

formed on R�(L37sweep�L27sweep.start). Based on rule 1

we can refine it twice to R�(L37�L31), because neither

R�(L29�L27) nor R�(L31�L29) changes.

Even if a relation is not deemed refinable by rule 1, we do

not give up—it can still be refined based on rule 2:

Rule 2: Even if there is a change in R?(P,P
+

i), R?(P,S) is still

refinable if the change in R?(P,P
+

i) is caused by the change

of R?(P
′
,P), where P′ is a predecessor of P+ and P′ ≠ P.

Rule 2 differentiates whether a changed relation is a true

root cause, or merely the effect (i.e., manifestation) of the root

2Zhang et al. defines the root cause as the inflection point: if we model
the execution as a sequence of instructions, the inflection point in a failure
execution F is the point of divergence with a non-failure execution N where
N is the non-failure execution that has the longest common prefix with F [50].
Perspect’s refinement essentially locates such inflection points.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 71

L1:malloc()

L5:clear marked

L18:set marked

L31:if (marked)

L32:clear marked

L37:heap_size-=size

L10:mark()

L27:sweep()

L29:for(byte *p=span-> ...)

L37:heap_size-=size

next invocation

R>(L37|L27)

R>(L37|L29)

R>(L37|L31)

R>(L37|L37)

!"#$%&'

!"#$%&'

!"#$%&(

!"#$%"&

Figure 4: An example to illustrate the refinement rules on Go-

909. On the right is (part of) the SDG; a solid edge indicates

a control-flow dependency, whereas dotted edges represent

dataflow dependencies.

cause. In the former case, we should not be able to find such

a P′, whereas in the latter case, we can.

Specifically, we consider two cases in our implementation.

The first is when P is a branch instruction, P+ is an instruction

in the branch target, and P′ is the dataflow direct predecessor

of P that defines the branch condition variable. In this case, the

change in R�(P+�P) is the effect of the change of R�(P′�P),
which affects the branch direction.

Consider R�(L37sweep�L31sweep.test). Here, P and P+ are

L31 and L37, respectively. This relation decreased in the bad

run since fewer objects are deemed reclaimable by L31, and

is therefore no longer refinable according to Rule 1, as illus-

trated by Figure 4. However, L31’s direct dataflow predeces-

sors include L18, which sets the mark bit (L18 is the P′ in

this case). The decrease in R�(L37�L31) is merely caused

by the increase in R�(L18�L31), i.e., more objects are being

marked at L18 before L31 checks the marked bit. Therefore,

according to Rule 2, R�(L37�L31) is still refinable, and we

refine it to R�(L37�L37) (because L37 is L31’s direct succes-

sor). It can be subsequently filtered based on §3.3.2 since a

relation between two identical events doesn’t change between

runs.This is shown in Figure 4.

Note that we do not need to compute relations on this newly

discovered P′ separately, because our algorithm guarantees

that this relation is computed through other causal paths from

the root. For example, after Perspect found L18 is the P′ in

the above example, it does not go on to compute relations

between L18 and its predecessors, because these relations are

already computed through the causal path starting from mark.

The second case involves loops, when P+ is a loop head and

P′ is the loop tail. Consider R�(L12mark.loop�L10mark.start). In

this case, P is L10 and P+ is L12 (which is a loop head). This

relation increased in the bad run because more objects are

getting marked. However, this is caused by L12’s backedge

from L24 (loop tail, which is P′) executing more often, i.e.,

R�(L24�L10) also increased by the same amount.

As a result, even though R�(L12mark.loop�L10mark.start)
has changed, R�(L18mark�L10) can be further refined to

R�(L18�L12). Eventually, R�(L18�L12) will be filtered out

because by further analyzing the dataflow predecessor of L12

under Rule 2, Perspect finds that the number of times L12 ex-

ecutes is controlled by the size of w, which in turn is dataflow-

dependent on L18 itself (i.e., each time an object is marked,

it is pushed onto the queue w and popped from the queue

later into b so mark can further scan the content of the object

for more pointers). So the relation is refined to R�(L18�L18)
eventually.

By applying the two refinement rules iteratively,

Perspect filters both R�(L37sweep�L27sweep.start) and R �

(L18mark�L10mark.start). Therefore, Perspect only reports

one relation at the end of the filter-refine iterations:

R�(L7malloc.return�L18mark).

3.3.4 Ranking Root-Cause Candidates

After the iterative compute-filter-refine process, the remaining

relations are the ones that have not been filtered and are not

refinable anymore. We call them root cause candidates.

Perspect ranks the root-cause candidates based on their

estimated contributions to performance, in terms of the dif-

ference in performance relative to the predecessor P. Specif-

ically, for a forward relation R�(S �P) = {ni}, where each ni

is the number of symptom instances that causally depend on

ePi (the i-th instance of P), Perspect computes a weighted

sum: ∑wi × ni, where wi is the average weight of the ni

symptom events; ∑w′i ×n′i is the weighted sum for the good

run. Then the contribution to performance is estimated by

∑wi×ni−(∑w′i ×n′i)×
cP

c′
P

, where cP and c′P are the number

of times P occurred in the bad and good run, respectively.

Note that Perspect normalizes ∑w′i ×n′i with cP�c
′

P to obtain

the performance relative to P in scenarios where the number

of times P occurred has changed between the executions. (Say

the change in P’s occurrences is caused by relation R�(S �P′),
where P′ is a predecessor of P, the normalization helps cor-

rectly attribute performance impact between R�(S �P) and

R�(S �P′).)

In a backward relation R�(P�S) = {mi}, Perspect computes

weighted sums: ∑wi, ∑w j where wi is the weight of the i-th

instance of the symptom, and w j is the weight of the j-th in-

stance of P that can reach a symptom event; And ∑w′i , ∑w′j
are the weighted sums for the good run. Then the contribu-

tion to performance is estimated by∑wi−∑w j�(∑w′i�∑w′j),

where∑w j�(∑w′i�∑w′j) estimates the total number of symp-

tom events, had the same number of symptom events been

reachable from P instances in the good run; This formula also

handles when the total number of reachable P instances from

the symptom differs in the two executions. If the symptom has

a negative polarity, as in the case of L37sweep, which reduces

the heap size as opposed to increasing it, Perspect multiplies

its performance impact with −1.

72 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4 Implementation

Perspect is implemented in 10,199 lines of C++ and 14,006

lines of Python. It is built on top of three tools, Dyninst [8]

(a binary-level static analysis tool), RR [7] (a deterministic

record-and-replay tool), and PIN [11] (a binary instrumenta-

tion tool). Perspect operates on application binaries directly.

A key challenge in our implementation is to scale Perspect

to the real, complex systems software. This section describes

a number of techniques we use for scalability.

4.1 Building Static Dependency Graph (SDG)

Perspect generates the SDG by recursively identifying instruc-

tions that are causal predecessors of the symptom instructions

via control and data flow. (Figure 4 shows a snippet of the

SDG on Go-909.) This is done by three components: 1) a

static analysis (SA) process running Dyninst, 2) 64 dynamic

dataflow analysis (DDA) processes running RR (across 4

servers), and 3) a controller. These components form a dis-

tributed system that parallelizes computation to scale to real-

world systems.

The SA process iteratively infers the instructions on which

the symptom instruction S is control-flow dependent. It ana-

lyzes the control-flow graph provided by Dyninst, and only

keeps those instructions that S actually depends on. This anal-

ysis is first performed in the function (f) that contains S; it is

then repeated iteratively in the caller functions by tracing the

call-sites starting from f.

To obtain dataflow dependencies, Perspect uses a combi-

nation of static and dynamic analysis. Perspect only uses

Dyninst to obtain the dataflow dependencies of local vari-

ables stored in registers or on the stack with static offsets.

On the other hand, when a variable is read from other mem-

ory locations, i.e. the heap or stack locations with non-static

offsets, Perspect does not analyze them statically through

pointer analysis, because precise pointer analysis can be hard

to scale [31]. Instead, Perspect uses the DDA processes to

dynamically identify such data dependencies in parallel.

For example, say S is dominated by an if statement: if

(*p || *q); at this point, Perspect needs to infer the dataflow

of both *p and *p, and Dyninst cannot infer the source of

the dataflow precisely. Therefore, the SA process sends this

request to the controller, which forwards it to a (pre-forked)

DDA process to run the RR-guided reproduction. The DDA

process first sets breakpoints at the if statement to deter-

mine the addresses of *p and *q. It then sets watchpoints at

these two addresses and re-run the RR-guided reproduction.
3 (Since execution through RR is deterministic, addresses

stay the same across multiple runs.) And via the watchpoints,

Perspect locates the store instructions that defined *p and *q.

The DDA process then sends these newly located store in-

3 If a breakpoint or watchpoint is not hit in the RR-guided reproduction,
Perspect will deem them causally irrelevant to the symptom events and ignore
them.

eL15
0

eL18
0

eL15
1

eL18
1

eL10
0

eL12
0

eL1
0

eL7
0

{eL18
0
} {eL18

1
}

{eL18
0
}

{eL18
0
,eL18

1
}

{eL18
1
}

{eL18
0
,eL18

1
}

{eL18
0
}

{eL18
0
}

Figure 5: A simplified version of the Dynamic Dependency

Graph (DDG) for the symptom instruction at L18 from Go-

909. The red colour represents the malloc function, and the

grey colour represents the mark function. Solid and dotted

edges represent control and data flow. The set next to each

event is the S-set.

structions back to the SA process (via the controller). This

causes the SA process to restart the analysis with these two

instructions as the new starting points.

In practice, the SA is orders of magnitude faster than the

DDA. Yet, the DDA can be parallelized: for example, the

analysis of the dataflow source of *p and *q can be done in

parallel. We create 64 DDA processes, each of which can set

at most 4 watchpoints in each run (limited by the number of

hardware watchpoints).

4.2 Building Relations

Once the SDG is obtained, Perspect instruments the program

at each instruction in the SDG using PIN, and runs the in-

strumented program to obtain a trace of the good and the bad

run, respectively. Perspect builds one DDG for each unique

symptom instruction. Each vertex in the DDG is an event,

and an edge is a control- or data-flow dependency. Figure 5

shows a simplified version of the DDG for the symptom in-

struction at L18 from Go-909. There are two objects in the

DDG: The first one is reachable from a real-pointer, which

means it’s dependent on malloc (eL10,eL70), and the object

gets marked (eL100,eL120,eL150,eL180). The second object

is from a fake pointer; it also gets marked once in the same

loop iteration as the first object (eL100,eL120,eL151,eL181),

but has no dependencies on malloc.

Instead of traversing the DDG each time it needs to com-

pute a relation, Perspect only carries out a one-pass traversal

of the DDG to compute all the forward and backward rela-

tions. To compute forward relations, each node in the DDG

keeps an S-set, which is the set of all unique reachable symp-

tom events. We initialize the S-set of the symptom nodes

to the symptom event itself. In Figure 5, eL180 and eL181’s

S-sets are initialized with themselves. Perspect then traverses

the DDG in post-order to iteratively compute the S-sets. For

each node N, its S-set is the union of the S-sets of all its chil-

dren nodes. (Post-order traversal guarantees that N’s children

are visited before N.) But keeping the S-set of each node

consumes too much memory. As an optimization, we replace

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 73

node N’s S-set with its cardinality (i.e., number of elements

or �S − set �) as soon as its S-set is propagated to all of N’s

parent nodes. For a forward relation R�(S �P) = {ni}, each ni

is simply the �S − set � of each event of P. For example, in Fig-

ure 5, R�(L18�L10) = {2}, where 2 is the �S − set � of eL100;

and R�(L18�L15) = {1,1}, where the two 1s come from the

�S − set � of eL180 and eL181.

To compute backward relations, Perspect keeps a hashmap

H for each symptom event. Each H keeps the number of reach-

able predecessor events for every corresponding predecessor

instruction. For example, in Figure 5, Perspect keeps two Hs,

one for eL180 and one for eL181. The H for eL180 contains

5 entries: {L15,L12,L10,L7,L1}, and the count for each key

is 1. H for eL181 only contains 3 entries: {L15,L12,L10},
where the count for each key is also 1. A backward relation

R�(L1�L18) is simply the set containing the count kept for

L1 in each H, which is {1,0}.

Optimization: two-phase analysis. As an optimization, we

perform our analysis in two phases. The first phase, or the

“sketch” phase, only performs the analysis on the call graph.

Specifically, each node in the SDG in this phase is a function,

and each edge is a function invocation. The exceptions are

functions that contain the symptom instructions: we directly

connect the symptom instructions to the entry of these func-

tions. We do not perform the expensive data-flow analysis in

the sketch phase. Given this SDG, we build relations using the

same algorithm: first obtain the DDG from the sketch SDG,

and perform the relation analysis on this DDG. So, the P in

the relations R?(P,S) we obtained is a function. For P whose

relation changes, we zoom into P and perform the full data-

and control-flow analysis described in §4.1. This optimization

allows us to avoid the expensive dependency computations

on functions that are not relevant to the root cause; it is par-

ticularly effective in large code bases like MongoDB where

the symptom often has a deep call stack. In practice, this

optimization reduces Perspect’s static analysis time by 10

times.

4.3 Handling Binary Difference

Perspect is able to compare relations generated from different

binaries by matching each binary instruction to its correspond-

ing one in the other binary, or between different binaries gen-

erated from the same source code (i.e., compiled for the 64-

and 32-bit machines). Perspect first performs the source-level

diff to establish the file and line number mapping between

two versions. However, a line in the source code often com-

piles to multiple binary instructions, sometimes even multiple

basic blocks of binary instructions. So we cannot only rely on

source-level line number mapping to map binary instructions.

Instead, for two binary instructions to be considered as the

same between two version, they have to have 1) the mapping

source-level line number, and 2) the same binary basic block

number, assigned according to the postorder traversal of all

the basic blocks of the same source code line, and 3) the same

offset within the basic block. If the instruction is not found at

the same offset, Perspect also searches for nearby instructions.

5 Experimental Evaluation

Perspect’s premise is that relational debugging can automat-

ically and effectively locate the root causes of real-world

performance problems that are hard to diagnose by existing

tools. We validate these hypotheses with three evaluation

questions: 1) Can Perspect effectively locate the root cause of

challenging performance problems? 2) Can Perspect’s output,

in the form of relations, help users understand root causes? 3)

What is the analysis time of Perspect?

• §5.1: Perspect effectively locates root causes of evaluated

performance problems in Go runtime, MongoDB, Redis,

and Coreutils. Perspect also correctly excludes a root cause

from application code when it is in the OS kernel.

• §5.2: The output of Perspect, in the form of relations, can

speed up debugging time by at least 10.87 times.

• §5.3: Perspect diagnoses 10/12 of the issues in 8 minutes

on average, and diagnoses the other two in a few hours.

Target applications and performance problems. We eval-

uate Perspect on twelve real-world performance issues of four

applications: the Go runtime, MongoDB, Redis, and Core-

utils. All three are complex software systems, consisting of

more than 220K, 6,955K, 37K, and 456K lines of code, re-

spectively. The performance problems are collected from the

issue trackers of the target applications, based on keywords

like “performance”, “slow”, “degrade”, etc. Where possible,

we focus on high-priority issues that cannot be simply an-

swered by using a profiler but take significant human time

and effort, as those are the problems that need advanced tools

like Perspect.

We then try to reproduce these issues based on the steps

described in the issue reports. Reproducing performance prob-

lems is nontrivial and time-consuming—many of the issues

are imprecisely described (e.g., no version information or

reproduction steps) and are hard to reproduce. In total, it

took several person-months for us to prepare the dataset. We

realize that our dataset has several “famous” bugs (e.g., Go-

909 in §2) because they have more detailed information for

reproduction.

As shown in Table 2, the twelve issues cover different

symptoms and use cases. In terms of symptoms, nine caused

slowdown; three caused memory overuse, including bloated

heap size and resident set size (the amount of memory used by

the process). There are three different types of performance

baselines: five are from a different version, one from different

hardware architecture, and the other five are from different

inputs. Notably, we evaluated two open issues where devel-

opers were unable to diagnose them (MongoDB-56274 and

-57221).

Inputs. Perspect takes as inputs of the reproduction of the per-

formance problems. We directly used reproduction programs

74 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Issue Description Metric
Succ?

Rank
Abs.

pred.?

Cand.

relns.

SDG

size

DDG

size

G
o

ru
n

ti
m

e

909 Fake pointers stops GC from freeing dead objects heap Yes 1st No 1 16054 516k

7330 Performance of operator += is worse than single + time Yes 1st Yes 1 26 200k

8832 Hugepage promotion causes memory bloat RSS Partial - - - 3140 6851

11068 Printing is very slow for large Floats time Yes 1st Yes 1 10650 1409k

12228 More aggressive GC degrades performance time Partial - Yes - 9886 39745

13552 Not recycling large stack spans leaks memory RSS Yes 1st No 1 18060 55580

M
o

n
g

o 44991 Erroneous cache clear for common prefixed keys time Yes 1st Yes 1 2109 461k

56274 Slow when deleting opposite to search order time Yes 1st No 3 56 6132

57221 Slow due to moving cursor of obsolete query plan time Yes 1st No 3 5100 268k

Redis 7595 performance downgrade after enabling TLS time Yes 1st Yes 1 35 801

C
o

re 930965 seq 84x slower with –equal-width time Yes 1st Yes 1 668 20002

1014738 du –exclude 4x slower when given a trivial string time Yes 1st Yes 1 7563 20784

Table 2: Perspect’s result on 12 real-world performance issues across 4 systems: Go runtime, MongoDB (“Mongo”),

Redis, and Coreutils (“Core”). Mongo-56274 and -57221 are two open bugs. “Metric” shows the type of performance metric

that describes the symptoms. “Succ?” shows whether Perspect successfully locates the root cause. “Rank” shows the ranking of

root-cause relations. “Abs. pred?” tells whether the root-cause relations break any absolute predicates. “Cand. relns.” shows the

number of root-cause candidate relations. Where Perspect returns a pair of forward and backward relations, it is counted as one

root cause candidate. “SDG size” and “DDG size” show the average SDG and DDG size from the good and bad runs, in terms of

the number of instructions and their runtime instances, respectively.

attached in the reports, or created reproductions by closely

following the descriptions in the reports. We find that except

for Go-909, which provided three similar reproductions, all

issues describe at most one good and one bad execution. Per-

spect is able to exploit high repetitiveness of runtime events

within one execution, and works with two executions as is.

5.1 Effectiveness

Table 2 shows the effectiveness of Perspect in diagnosing

the twelve performance bugs. The overall results are very

positive. Perspect successfully locates the root causes for ten

performance problems, and ranks the root-cause relation as

the highest (or the only) suspect. Eight of them are closed

issues and we use the criteria that the reported root cause

has to be captured by the output relations of Perspect. For

the two open bugs, the relations output by Perspect provided

explanations of the root causes that were confirmed by the

developers.

Perspect partially locates the root causes of the other two

issues (Go-8832 and Go-12228). For Go-8832, Perspect cor-

rectly excludes the root cause (which lies in Linux) from

the Go runtime. For Go-12228, the source codes changed

significantly; Perspect is unable to map the relations across

the executions. In this case, Perspect outputs the relations be-

tween the symptoms and causal predecessors so that a human

developer can complete the rest of the debugging process.

As shown in Table 2, Perspect is able to effectively nail

down a very small set of root-cause candidate relations. This

is attributed to its iterative filtering (§3.3.2) and refinement

(§3.3.3); Our experiments confirm that the relations between

most events and their direct successors do not change across

executions. Perspect also filters out most causally related

events with low contributions to the symptoms.

Note that 10/12 of the evaluated issues have no clear-cut

failures—they are reported because the programs ran slower

or consumed more memory than their respective baselines;

the remaining two only occasionally result in out-of-memory

errors (Go-909 and Go-13552). Hence, those issues can hardly

be diagnosed by tools for functional failures. In at least four

issues, the root causes do not manifest in any absolute predi-

cate changes—the relations captured by Perspect show that

the root causes exist in both executions, only their distribu-

tions differ. Lastly, as shown by the sizes of SDGs and DDGs,

there are too many causally related instructions and runtime

events—causality analysis alone can hardly pinpoint the root

cause in code.

We discussed how Perspect locates the root causes of Go-

909 and MongoDB-57221 in §2. We briefly present a few

more.

Mongodb-44991. Mongodb-44991 is major performance

regression introduced in v4.2.1 and took developers several

days to diagnose. Figure 6 shows the simplified code con-

taining the root cause. As a memory optimization, Mongodb

stores key prefixes only once per page [5]; hence, it needs

to decompress a key before evicting it back to disk. If the

same key has been decompressed before, Mongodb copies

the cached data directly (L4) to avoid building the key from

scratch (L6). In v4.2.1, L11 was erroneously added, which

clears the size variable, effectively invalidating cached data

(L4).

Perspect takes the inputs of two executions from the good

version (v4.0.13) and the buggy version (v4.2.1) as reported

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 75

1 void convert(void *key) {...

2 get_key_info(key, &data, &size);
3 if (... && size > 0)

4 memcopy(key, data, size); // fast path

5 else
6 build_key(entry, key); // slow path

7 }

8 void get_key_info(void *key, void *data, int *size) {

9 data = get_data(key);

10 ...
11 size = 0;

12 }

Invalidated the condition of using cached data (fast path);

Erroneously introduced in v4.2.1.

Figure 6: The root cause of MongoDB-44991 (used in §5.2).

in the issue. Perspect locates a pair of relations in the bad run:

R��(L6,L11) and reports it as the highest-ranked root cause.

Go-13552. Developers noticed that the RSS slowly creeped

over to 1GB, even though the actual heap usage stayed below

4MB [6]. Diagnosing this bug took 5 days, and the developers

eliminated several wrong guesses before nailing down the

root cause. First, they had a hard time deciding whether the

problem came from the heap or the stack. Once they focused

on the stack, they further thought that the memory bloat was

due to normal stack spans not being recycled fast enough.

Finally, they found the root cause to be a special type of large

stack spans which were not recycled at all.

Perspect ranks a relation R�(sysMmap�allocLarge) the

highest, indicating that the increased mmap allocations are

for large-sized stack spans. This connects the two essential

pieces of information together to pinpoint the bug.

MongoDB-56274 (open issue). MongoDB-56274 is another

open issue we diagnosed using Perspect, and the root cause

has been confirmed by developers. The developers noticed

that deleting records in descending order was twice as slow

as in ascending order. MongoDB deletes records iteratively:

after it deletes the record, it searches for the next record

to delete. The search function has a hard-coded order: it

always looks for the next record in ascending order first

(search_forward); if no record is found, it searches back-

wards in descending order (search_backward). Hence, when

the deletion order is the same as the search order, the next

record is always found immediately; but, when the deletion or-

der is the opposite, MongoDB traverses through many deleted

records, then searches in the opposite direction, causing the

slowdown.

Perspect locates the root cause to the hard-coded

search order logic; In particular, it identifies three

relations that increased significantly in the bad run:

1) R�(search_backward�search): in the good run,

search_backward is rarely invoked, as the next record

is always immediately located by search_forward;

2) R�(prev_record�search_backward) and 3)

R�(next_record�search_forward) indicates increased

number of records traversed in both directions of search.

Go-8832. Developers observed unexpected memory bloat

and mistakenly thought it was caused by bugs from Go’s

GC code. In fact, the root cause was Linux’s promotion of

huge pages in the background, which bloated the resident set

size (RSS) since the distribution of the base 4KB pages was

sparse. The developers spent a lot of time examining incorrect

hypotheses about bugs in the GC logic, making it one of the

most discussed Go performance issues.

While the current implementation of Perspect cannot an-

alyze the OS kernel, it can help rule out wrongly suspected

buggy behaviors of the Go runtime. Specifically, after compar-

ing relations associated with the symptoms mmap and munmap,

Perspect outputs no root cause candidate relations.

5.2 Usability

We evaluated the usability of Perspect with a controlled user

study. We tested on 20 programmers (who are not co-author of

this paper) who indicated extensive experience in debugging

and GDB.

We used Go-909 and MongoDB-44991 in the study to

represent resource issues and slowdowns. Each participant

was asked to debug one case without any help and a different

case with Perspect; so each bug has two controlled groups for

comparison. For each participant, we first described the bugs

and helped reproduce them. We chose one of the two cases

randomly and asked the participant to diagnose it without

Perspect; then for the second case, we introduced relational

debugging and allowed them to use Perspect. We limited the

debugging session to two hours for each bug (not including

setup or reproduction time). If the time was exceeded, we

considered the bug unsolved.

For Go-909, we considered a participant to have caught

the root cause if they concluded that unreachable objects got

marked and prevented reclamations. For MongoDB-44991,

we used the criteria that the participant had to locate the

instruction that clears the size variable eroneously (L11 in

Figure 6).

Our results show that when using Perspect, participants

concluded the root cause at least 10.87 times faster than when

not using Perspect. With the help of Perspect, all participants

successfully located the root causes of both issues, with an

average of 10 minutes; much of the time was spent on navi-

gating code and understanding instructions pointed to by the

relations. Without Perspect, only 5/10 of the participants con-

cluded the root causes within two hours, with an average of

one hour and 47 minutes.

Interestingly, we observed that without Perspect many par-

ticipants had manual practices like relational debugging: they

printed out counters to compare occurrences of functions or

instructions in the good and bad runs, and ruled out ones that

did not change. However, we observed that such manual effort

was neither rigorous nor systematic. For example, for Go-909,

many participants examined if GC happened less often, but

did not realize objects reclaimed per GC cycle changed.

76 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

We interviewed participants after the debugging session.

The most overwhelming feedback is that the relation seman-

tic is intuitive and easy to understand. One suggestion is to

visualize SDGs and DDGs alongside the changed relations,

which we consider implementing via GUI support.

5.3 Analysis Time

For the twelve performance issues, Perspect takes an average

of under one hour to output the results. For 10/12 issues, Per-

spect finishes under 20 minutes, with an average of 8 minutes.

The other two take an average of 5.3 hours. Most of the anal-

ysis time was spent on static and dynamic causality analysis

(§3.2); the relational debugger (§3.3) takes a small fraction of

the total analysis time.

Static causality analysis takes 24 minutes on average. It is

bottlenecked by repeatedly invoking RR to build non-local

dataflow dependencies (§4). The worst-case complexity of

static causality analysis is O(n∗m), where n is the number of

dynamic instructions executed during each RR run, and m is

the number of static instructions that are causally related to the

symptom instructions. The two-phase optimization described

in §4.2 reduces m significantly. We can further speed up static

analysis by adding more servers to parallelize the invocation

of RR runs (§4.1).

Dynamic causality analysis is bottlenecked by running the

instrumented program in PIN. It takes on average 35 minutes

across the 12 issues (<20 minutes for 10/12 issues). Perspect

effectively reduces the DDGs’s sizes by sampling one symp-

tom event out of N, while keeping a large number of symptom

events to maintain statistical significance.

In comparison, the relational debugger only takes a small

fraction of the total dynamic analysis time, typically a few

minutes. Reducing the size of the DDG also effectively re-

duces the average complexity of the relational debugger,

which has a worst-case complexity of O(p2), where p is the

number of instructions executed that are causally relevant to

the symptom events.

6 Discussion and Limitations

Relational debugging provides a new way of understanding

performance problems. We find it generally applicable to

many challenging performance problems that do no manifest

via clear-cut predicates. Relational debugging assumes that

the relations in the executions are statistically significant.

It is possible that an execution is too short. On the other

hand, our evaluation shows that the executions based on the

reproduction steps documented in real-world issue reports

are mostly sufficient—there are enough repetitive patterns for

Perspect to be effective. It is straightforward to apply Perspect

to multiple runs if one is too short.

Our current implementation of Perspect shares some lim-

itations of its building blocks. Specifically, Perspect cannot

debug performance problems that are non-deterministic (e.g.,

they depend on the scheduling and timing of events), because

Perspect uses deterministic replay (RR [7]) and its dynamic

instrumentation could change the timing. Please note: this

does not mean that Perspect cannot debug multi-threaded

systems—all the evaluated systems (except Coreutils) are

multi-threaded. In fact, it is reported that the vast majority

(>90%) of real-world performance problems are determinis-

tic [28].

Perspect currently only supports native code. We plan to

implement relational debugging for applications in managed

languages like Java. We believe the implementation can be

built on the JVM Tool Interface. Perspect can be easily ex-

tended to handle additional language constructs like exception

handling etc. 4 We will also explore how to apply relational

debugging to performance problems of distributed systems

by analyzing relations of distributed events. Perspect can be

extended to support metrics such as P95 latency etc. 5

7 Related Work

Performance debugging with Perspect takes three steps: 1)

identifying symptoms, 2) causality analysis, and 3) relational

debugging for automatically pinpointing root causes. We dis-

cuss related work based on the three components.

Automatic performance debugging/diagnosis. The closest

related work (in terms of locating root causes in code) is [39],

which applies statistical debugging [32] to performance prob-

lems. The essential idea of statistical debugging is to identify

predicates that have strong correlations with the failure. How-

ever, as we have shown in this paper, it is fundamentally

limited to performance problems that manifest via absolute

predicates. Moreover, since statistical debugging in [39] does

not take causality into consideration, many of the observed

predicates could be irrelevant to the symptom; To compensate,

it requires a large number of highly variable good and bad

executions. Another related work is X-ray [15] which sum-

marizes performance costs of runtime events and attributes

them to input and configuration values w.r.t the symptom.

Different from Perspect, X-ray is designed for end users (e.g.,

sysadmins) and does not target root causes in the code. X-ray

uses differential performance summarization which identifies

branches where execution paths diverge and reasons about the

performance difference between the two branch outcomes. In

this sense, it also focuses on divergence of predicates between

executions.

There are tools for debugging special types of performance

problems with predefined patterns, such as loops [35, 40, 44],

4 When Perspect detects a symptom instruction is causally related to
an exception handler, it can perform the analysis at instructions that can
potentially throw an exception that is caught by this handler, treating these
instructions as symptom instructions.

5 Instead of calculating weighted sums, Perspect can perform the z-test on
the weight of each symptom event against the distribution of weights of all
symptom events (symptom events with a z-test score of 1.645 corresponds to
the 95th percentile). The rank of each relation can be the number of causally
related outlier symptom events.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 77

memory leaks [41], and data locality [30]. Differently, Per-

spect is designed to be a general debugging/diagnosis tool.

Automatic functional failure debugging/diagnosis. Prior

studies developed techniques to pinpoint the root causes of

functional failures in code, based on invariant analysis [24,26,

38], log analysis [50] and statistical debugging [32]. Perspect

focuses primarily on performance problems which have very

different characteristics from function failures.

Causality analysis. Perspect applies relational debugging to

instructions and their runtime events that are causally related

to the symptoms. Many advanced techniques have been devel-

oped for causality analysis [16,22,29,34,37,42,45–47,49,53].

Perspect can potentially use them to enhance its causality anal-

ysis (§3.2). For example, we can further accelerate the causal-

ity analysis, learning from failure sketching [29], REPT [22]

and ER [53] that use Intel PT to efficiently trace causally

dependent instructions and augment the trace with symbolic

execution [18, 21]. Argus [42] developed a way to annotate

causality graphs with strong and weak edges, which can prior-

itize relational analysis of Perspect. SherLog [45], lprof [52],

and Pensieve [49] show that runtime logs can be used with

static analysis to guide the reconstruction of causal paths.

Our work is complementary to causality analysis for dis-

tributed systems (many targeting performance problems [14,

17, 20, 34, 43, 51]). Relational debugging for distributed sys-

tems based on distributed causality is our future work (§6).

Profilers. Profilers [9, 10, 12, 13, 19, 23, 36] are impor-

tant utilities for performance debugging. Advanced profilers

like [23, 36] can effectively identify true bottlenecks. They

provide effective inputs for Perspect to locate root causes.

8 Conclusion

Debugging performance problems is (still) among the most

challenging, time-consuming tasks. We presented relational

debugging as a new way of understanding performance prob-

lems and locating their root causes in the code. Our key insight

is that the root causes of performance bugs can be generalized

to changes in relations between fine-grained runtime events,

and by using relations, we capture root causes of performance

bug existing semantics (such as invariants or predicates etc.)

fail to capture. We developed Perspect to automate relational

debugging. Perspect takes a minimal of just two executions (a

good and bad run), and pinpoints the root causes of complex

real-world bugs to a small number of root cause relations

using an effective “filter-and-refine” algorithm. We further

demonstrate Perspect’s effectiveness by diagnosing two open

issues which developers were unable to diagnose using exist-

ing tools. Finally, we deploy a number of carefully designed

optimizations to scale Perspect to large-scale code-bases. We

open-sourced Perspect and will continue improving it towards

a common toolkit for performance debugging.

Acknowledgement

We thank our shepherd, Jason Flinn, and the anonymous re-

viewers for their feedback and comments on our work. We

also thank Serguei Makarov for the suggestion to output bi-

nary instead of plain-text PIN logs for optimized performance.

This work was supported by the Canada Research Chair fund,

an NSERC Discovery grant, an NSERC Alliance Mission

grant, and an NSF grant CNS-2130560.

References

[1] Go-1091: runtime: gob leaks memory for larger objects (above

MMAP_THRESHHOLD?). https://github.com/golang/

go/issues/1091, Sept. 2010.

[2] Go-909: runtime: garbage collection ineffective on 32-bit.

https://github.com/golang/go/issues/909, July 2010.

[3] memory leak on 8g. https://github.com/golang/go/

issues/1210, Oct. 2010.

[4] Go: Severe memory problems on 32bit Linux. https://news.

ycombinator.com/item?id=3805302, 2012.

[5] File formats and compression . http://source.wiredtiger.

com/2.3.0/file_formats.html, 2014.

[6] Go-13552: runtime: RSS creeps over 1GB even though heap

is 4MB. https://github.com/golang/go/issues/13552,

2015.

[7] rr: lightweight recording and deterministic debugging. https:

//rr-project.org/, 2017.

[8] Paradyn/Dyninst - Welcome | Putting the Performance in High

Performance Computing. https://www.dyninst.org/,

2021.

[9] perf: Linux profiling with performance counters. https://

perf.wiki.kernel.org/index.php/Main_Page, 2021.

[10] SystemTap. https://sourceware.org/systemtap/, 2021.

[11] Pin: A Dynamic Binary Instrumentation

Tool. https://software.intel.com/

content/www/us/en/develop/articles/

pin-a-dynamic-binary-instrumentation-tool.html,

2022.

[12] The GNU Profiler. https://ftp.gnu.org/old-gnu/

Manuals/gprof-2.9.1/html_mono/gprof.html, 2022.

[13] Valgrind: a memory profiling and debugging tool. https:

//valgrind.org/, 2022.

[14] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L.,

REYNOLDS, P., AND MUTHITACHAROEN, A. Performance

Debugging for Distributed Systems of Black Boxes. In Pro-

ceedings of the 19th ACM Symposium on Operating Systems

Principles (SOSP’03) (Oct. 2003).

[15] ATTARIYAN, M., CHOW, M., AND FLINN, J. X-ray: Au-

tomating Root-Cause Diagnosis of Performance Anomalies

in Production Software. In Proceedings of the 10th USENIX

Symposium on Operating Systems Design and Implementation

(OSDI’12) (Oct. 2012).

78 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/golang/go/issues/1091
https://github.com/golang/go/issues/1091
https://github.com/golang/go/issues/909
https://github.com/golang/go/issues/1210
https://github.com/golang/go/issues/1210
https://news.ycombinator.com/item?id=3805302
https://news.ycombinator.com/item?id=3805302
http://source.wiredtiger.com/2.3.0/file_formats.html
http://source.wiredtiger.com/2.3.0/file_formats.html
https://github.com/golang/go/issues/13552
https://rr-project.org/
https://rr-project.org/
https://www.dyninst.org/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://sourceware.org/systemtap/
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://valgrind.org/
https://valgrind.org/

[16] ATTARIYAN, M., AND FLINN, J. Automating Configuration

Troubleshooting with Dynamic Information Flow Analysis.

In Proceedings of the 9th USENIX Conference on Operating

Systems Design and Implementation (OSDI’10) (Oct. 2010).

[17] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER,

R. Using Magpie for Request Extraction and Workload Mod-

elling. In Proceedings of the 6th Conference on Symposium

on Operating Systems Design and Implementation (OSDI’04)

(Dec. 2004).

[18] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unas-

sisted and Automatic Generation of High-Coverage Tests

for Complex Systems Programs. In Proceedings of the 8th

USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI’08) (Dec. 2008).

[19] CANTRILL, B. M., SHAPIRO, M. W., AND LEVENTHAL,

A. H. Dynamic Instrumentation of Production Systems. In

Proceedings of the 2004 USENIX Annual Technical Conference

(USENIX ATC’04) (June 2004).

[20] CHEN, A., WU, Y., HAEBERLEN, A., ZHOU, W., AND LOO,

B. T. The Good, the Bad, and the Differences: Better Network

Diagnostics with Differential Provenance. In Proceedings of

the 2016 ACM SIGCOMM Conference (SIGCOMM’16) (Aug.

2016).

[21] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E: A

Platform for in-Vivo Multi-Path Analysis of Software Systems.

In Proceedings of the 16th International Conference on Archi-

tectural Support for Programming Languages and Operating

Systems (ASPLOS-XVI) (Mar. 2011).

[22] CUI, W., GE, X., KASIKCI, B., NIU, B., SHARMA, U.,

WANG, R., AND YUN, I. REPT: Reverse Debugging of Fail-

ures in Deployed Software. In Proceedings of the 13th USENIX

Symposium on Operating Systems Design and Implementation

(OSDI’18) (Oct. 2018).

[23] CURTSINGER, C., AND BERGER, E. D. COZ: Finding Code

that Counts with Causal Profiling. In Proceedings of the 25th

ACM Symposium on Operating Systems Principles (SOSP’15)

(Oct. 2015).

[24] ERNST, M. D., COCKRELL, J., GRISWOLD, W. G., AND

NOTKIN, D. Dynamically Discovering Likely Program In-

variants to Support Program Evolution. In Proceedings of

the 21st International Conference on Software Engineering

(ICSE’99) (May 1999).

[25] FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D.

The Program Dependence Graph and Its Use in Optimization.

ACM Trans. Program. Lang. Syst. 9, 3 (July 1987), 319–349.

[26] HANGAL, S., AND LAM, M. S. Tracking Down Software

Bugs Using Automatic Anomaly Detection. In Proceedings

of the 22rd International Conference on Software Engineering

(ICSE’02) (May 2002).

[27] HODGES, J. J. The significance probability of the smirnov

two-sample test. Arkiv fiur Matematik, 3 (1958), 469–486.

[28] JIN, G., SONG, L., SHI, X., SCHERPELZ, J., AND LU, S. Un-

derstanding and Detecting Real-World Performance Bugs. In

Proceedings of the 33rd ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI’12)

(June 2012).

[29] KASIKCI, B., SCHUBERT, B., PEREIRA, C., POKAM, G., AND

CANDEA, G. Failure Sketching: A Technique for Automated

Root Cause Diagnosis of In-production Failures. In Proceed-

ings of the 25th Symposium on Operating Systems Principles

(SOSP’15) (Oct. 2015).

[30] KHAN, T. A., NEAL, I., POKAM, G., MOZAFARI, B., AND

KASIKCI, B. DMon: Efficient Detection and Correction of

Data Locality Problems Using Selective Profiling. In Proceed-

ings of the 15th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’21) (July 2021).

[31] LI, Y., TAN, T., MØLLER, A., AND SMARAGDAKIS, Y.

Scalability-First Pointer Analysis with Self-Tuning Context-

Sensitivity. In Proceedings of the 26th ACM Joint Meeting on

European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE’18)

(Nov. 2018).

[32] LIBLIT, B., NAIK, M., ZHENG, A. X., AIKEN, A., AND JOR-

DAN, M. I. Scalable Statistical Bug Isolation. In Proceedings

of the 2005 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI’05) (June 2005).

[33] LINDEN, G. Marissa Mayer at Web 2.0. http://glinden.

blogspot.com/2006/11/marissa-mayer-at-web-20.

html, Nov. 2017.

[34] MACE, J., ROELKE, R., AND FONSECA, R. Pivot Tracing: Dy-

namic Causal Monitoring for Distributed Systems. In Proceed-

ings of the 25th Symposium on Operating Systems Principles

(SOSP’15) (Oct. 2015).

[35] NISTOR, A., SONG, L., MARINOV, D., AND LU, S. Toddler:

Detecting Performance Problems via Similar Memory-Access

Patterns. In Proceedings of the 35th International Conference

on Software Engineering (ICSE’13) (May 2013).

[36] OUSTERHOUT, K., RASTI, R., RATNASAMY, S., SHENKER,

S., AND CHUN, B.-G. Making Sense of Performance in Data

Analytics Frameworks. In Proceedings of the 12th USENIX

Symposium on Networked Systems Design and Implementation

(NSDI’15) (May 2015).

[37] RAVINDRANATH, L., PADHYE, J., AGARWAL, S., MAHAJAN,

R., OBERMILLER, I., AND SHAYANDEH, S. AppInsight: Mo-

bile App Performance Monitoring in the Wild. In Proceedings

of the 10th USENIX Symposium on Operating Systems Design

and Implementation (OSDI’12) (Oct. 2012).

[38] SAHOO, S. K., CRISWELL, J., GEIGLE, C., AND ADVE, V.

Using Likely Invariants for Automated Software Fault Local-

ization. In Proceedings of the 18th Conference on Architectural

Support for Programming Languages and Operating Systems

(ASPLOS’13) (Mar. 2013).

[39] SONG, L., AND LU, S. Statistical Debugging for Real-World

Performance Problems. In Proceedings of the 2014 ACM

International Conference on Object Oriented Programming

Systems Languages & Applications (OOPSLA’14) (Oct. 2014).

[40] SONG, L., AND LU, S. Performance Diagnosis for Inefficient

Loops. In Proceedings of the 39th IEEE/ACM International

Conference on Software Engineering (ICSE’17) (May 2017).

[41] VILK, J., AND BERGER, E. D. BLeak: Automatically Debug-

ging Memory Leaks in Web Applications. In Proceedings of

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 79

http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

the 39th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI’18) (June 2018).

[42] WENG, L., HUANG, P., NIEH, J., AND YANG, J. Argus: De-

bugging Performance Issues in Modern Desktop Applications

with Annotated Causal Tracing. In Proceedings of the 2021

USENIX Annual Technical Conference (USENIX ATC’21) (July

2021).

[43] WU, Y., ZHAO, M., HAEBERLEN, A., ZHOU, W., AND LOO,

B. T. Diagnosing Missing Events in Distributed Systems

with Negative Provenance. In Proceedings of the 2014 ACM

SIGCOMM Conference (SIGCOMM’14) (Oct. 2014).

[44] XIAO, X., HAN, S., ZHANG, D., AND XIE, T. Context-

Sensitive Delta Inference for Identifying Workload-Dependent

Performance Bottlenecks. In Proceedings of the 2013 Interna-

tional Symposium on Software Testing and Analysis (ISSTA’13)

(July 2013).

[45] YUAN, D., MAI, H., XIONG, W., TAN, L., ZHOU, Y., AND

PASUPATHY, S. SherLog: Error Diagnosis by Connecting

Clues from Run-time Logs. In Proceedings of the 15th In-

ternational Conference on Architecture Support for Program-

ming Languages and Operating Systems (ASPLOS-XV) (March

2010).

[46] ZAMFIR, C., AND CANDEA, G. Execution Synthesis: A Tech-

nique for Automated Software Debugging. In Proceedings

of the 5th ACM European Conference on Computer Systems

(EuroSys’10) (Apr. 2012).

[47] ZAMFIR, C., KASIKCI, B., KINDER, J., BUGNION, E., AND

CANDEA, G. Automated Debugging for Arbitrarily Long

Executions. In Proceedings of the 14th Workshop on Operating

Systems (HotOS-XIV) (May 2013).

[48] ZELLER, A., AND HILDEBRANDT, R. Simplifying and isolat-

ing failure-inducing input. IEEE Trans. Softw. Eng. 28, 2 (Feb.

2002), 183–200.

[49] ZHANG, Y., MAKAROV, S., REN, X., LION, D., AND YUAN,

D. Pensieve: Non-Intrusive Failure Reproduction for Dis-

tributed Systems Using the Event Chaining Approach. In

Proceedings of the 26th Symposium on Operating Systems

Principles (SOSP’17) (Oct. 2017).

[50] ZHANG, Y., RODRIGUES, K., LUO, Y., STUMM, M., AND

YUAN, D. The Inflection Point Hypothesis: A Principled

Debugging Approach for Locating the Root Cause of a Failure.

In Proceedings of the 27th ACM Symposium on Operating

Systems Principles (SOSP’19) (Oct. 2019).

[51] ZHAO, X., RODRIGUES, K., LUO, Y., YUAN, D., AND

STUMM, M. Non-intrusive Performance Profiling for Entire

Software Stacks Based on the Flow Reconstruction Principle.

In Proceedings of the 12th Conference on Operating Systems

Design and Implementation (OSDI’16) (Nov. 2016).

[52] ZHAO, X., ZHANG, Y., LION, D., ULLAH, M. F., LUO, Y.,

YUAN, D., AND STUMM, M. Lprof: A Non-intrusive Request

Flow Profiler for Distributed Systems. In Proceedings of the

11th Conference on Operating Systems Design and Implemen-

tation (OSDI’14) (Oct. 2014).

[53] ZUO, G., MA, J., QUINN, A., BHATOTIA, P., FONSECA, P.,

AND KASIKCI, B. Execution Reconstruction: Harnessing Fail-

ure Reoccurrences for Failure Reproduction. In Proceedings

of the 42nd ACM SIGPLAN International Conference on Pro-

gramming Language Design and Implementation (PLDI’21)

(June 2021).

80 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Relational Debugging by Examples
	Go-909: A Memory Leak
	Challenges of Debugging Go-909
	Root Cause
	Relational Debugging Go-909

	MongoDB-57221: A Slowdown

	Perspect
	Bootstrapping with Symptoms
	Causality Analysis
	Relational Debugger
	Computing Relations
	Filtering Unchanged Relations
	Relation Refinement
	Ranking Root-Cause Candidates

	Implementation
	Building Static Dependency Graph (SDG)
	Building Relations
	Handling Binary Difference

	Experimental Evaluation
	Effectiveness
	Usability
	Analysis Time

	Discussion and Limitations
	Related Work
	Conclusion

