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Abstract: We recapitulate the notion of phase change rate maximization and demonstrate the
usefulness of its solution on analyzing the robust instability of a cyclic network of multi-
agent systems subject to a homogenous multiplicative perturbation. Subsequently, we apply
the phase change rate maximization result to two practical applications. The first is a magnetic
levitation system, while the second is a repressilator with time-delay in synthetic biology.
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1. INTRODUCTION

Robustness against model uncertainties for feedback sys-
tems has been recognized as one of the important issues
in control theory from the practical application viewpoint
over forty years since the 1980s. The most typical and
successful theory is the H∞ control which includes robust
stability and robust stabilization against norm-bounded
dynamic uncertainties. See e.g., (Zhou, 1996) and the ref-
erences therein.

A counterpart of the robust stability analysis is the so-
called “robust instability analysis” for nominally unstable
feedback systems, and the problem is to find a stable per-
turbation with the smallest H∞-norm which stabilizes the
system. A practical motivation of the analysis is maintain-
ing nonlinear oscillations caused by instability of an equi-
librium point for dynamical systems arising in neuro-
science and synthetic biology. See (Hara, 2020) and (Hara,
2021) for applications to the FitzHugh-Nagumo neuron
model and repressilator model, respectively.

The instability analysis problem is closely related to the
strong stabilization, i.e., stabilization by a stable con-
troller (Youla, 1974; Zeren, 2000; Ohta, 2001). Actually,
it is equivalent to strong stabilization by a minimum-
norm controller. The problem is extremely difficult due
to the following two reasons: (i) non-convexity nature
of minimum-norm controller synthesis and (ii) no upper
bound on the order of stable stabilizing controllers. In
other words, the robust instability analysis is similar to
the robust stability analysis in terms of the problem for-
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mulation, but it is quite different technically and much
more challenging as optimization problems.

Recently, the authors proposed a new optimization prob-
lem, which we call the “Phase Change Rate Maximization
Problem” in order to provide an almost complete solution
to the small-gain-type condition for the robust instability
analysis for some classes of systems with one or two
unstable poles (Hara, 2022). The problem is to find a sta-
ble real-rational transfer function such that its peak gain
occurs at a given frequency ωp with a prescribed phase
value, and the phase change rate (PCR) at ωp is the max-
imum among those satisfying the constraints. The essen-
tial idea behind is the following. One of the key factors for
the difficulty of robust instability analysis is that we can-
not detect the transition from instability to stability by the
presence of a pole on the imaginary axis (which success-
fully characterizes the transition in the opposite direction,
making the robust stability analysis tractable). Hence we
need an additional criterion for the transition. It turned
out, roughly speaking, that the positivity of the PCR of
the loop transfer function at the peak gain frequency is
an indication of the instability-to-stability transition for
certain systems. The aforementioned paper showed that
the maximum PCR is attained by a first-order all-pass
function and derived conditions under which the exact
robust instability analysis is possible in terms of the PCR.

The purpose of this paper is twofold. The first purpose is
to supplement the theoretical results in (Hara, 2022) by a
more comprehensive example than those in the reference
and illustrate how the PCR plays an important role for the
exact robust instability analysis. The class of systems is
given as cyclic networks of homogeneous agents, where
by changing the number of agents we can treat a variety



of situations with respect to the location of stable and
unstable complex poles with relatively small dampings.
We focus especially on the relationship between the sign
of the PCR and the stable/unstable poles which are fairly
close to the imaginary axis and represent under what
situation we can get the exact result. The second purpose
is to show that the PCR condition derived in (Hara, 2022)
works well for two practical applications, namely (i) a
minimum-norm strong stabilization for magnetic levita-
tion systems and (ii) an exact robust instability analysis
for the repressilator with time delay. The target systems of
the former and the latter cases are in G0

1 (one unstable pole

with the peak gain attained at zero frequency) and G#
2

(two unstable poles with the peak gain attained at non-
zero frequency) , respectively, for which we can get the
exact results. This means that the theoretical foundation
in (Hara, 2022) can be practically useful although the class
of applicable systems may appear restricted.

The remainder of this paper is organized as follows. Sec-
tion 2 is devoted to a brief summary of the PCR max-
imization problem presented in (Hara, 2022) and an il-
lustrative example. Section 3 provides two practical ap-
plications. Section 4 summarizes the contributions of this
paper and addresses some future research directions.

Notation and Terminology: The set of real numbers is
denoted by R. ℜ(s) and ℑ(s) denote the real and imag-
inary parts of a complex number s, respectively. The set
of proper real rational functions of one complex variable
s is denoted by Rp. Let L∞ denote the set of functions that
are bounded on the imaginary axis jR. The subset of L∞

which consists of real rational functions bounded on jR is
denoted by RL∞. The stable subsets of L∞ and RL∞ are
denoted by H∞ and RH∞, respectively. The norms in L∞

and H∞ are denoted by ∥ · ∥L∞
and ∥ · ∥H∞

, respectively.
The open (closed) left and right half complex planes are
abbreviated as OLHP (CLHP) and ORHP (CRHP), re-
spectively.

The following terminology will be used for a rational
function h ∈ Rp throughout the paper: h is called “stable”
(or “exponentially stable”) if all the poles of h are in the
OLHP; “marginally stable” if all the poles of h are in the
CLHP and any pole of h on the imaginary axis is simple;
“unstable” (or “exponentially unstable”) if at least one of
the poles of h is in the ORHP.

2. PHASE CHANGE RATE MAXIMIZATION

In this section, we introduce the PCR maximization prob-
lem, and motivate the problem by instability analysis and
strong stabilization.

2.1 Problem Formulation

Given ωp > 0 and θp ∈ [0, 2π), we consider the following
“phase change rate” maximization problem

sup
f∈RH∞

θ′f (ωp) s.t. ∥f∥H∞
= |f(jωp)|, θf (ωp) = θp, (1)

where θf (ω) denotes the phase angle of f(jω), and θ′f (ω)
is its derivative. In other words, we seek a function f from
RH∞, whose H∞-norm occurs at frequency ωp and phase
at ωp is constrained to be θp, and has the maximal “phase

change rate” among all functions which satisfy the same
constraints. Such problem arises from robust instability
analysis and minimum-norm strong stabilization as ex-
plained below.

Consider a positive feedback system with a loop-transfer
function g(s)δ(s); i.e., the characteristic equation of the
system is given by 1−g(s)δ(s) = 0, where g(s) denotes the
nominal part which belongs to a class of unstable systems
defined by

G := {g ∈ RL∞ | g is strictly proper and unstable}

and δ(s) represents a real-rational dynamic perturbation.
The robust instability radius (RIR) for g ∈ G with respect
to δ ∈ RH∞, denoted by ρ∗(g) ∈ R, is defined as the
smallest magnitude of the perturbation that internally
stabilizes the system:

ρ∗(g) := inf
δ∈S(g)

∥δ∥H∞
, (2)

where S(g) is the set of real-rational, proper, stable trans-
fer functions internally stabilizing g; i.e.,

S(g) := {δ ∈ RH∞ : δ(s)g(s) = 1 ⇒ ℜ(s) < 0,
δ(s) = 0, ℜ(s) > 0 ⇒ |g(s)| < ∞ }.

The optimization problem stated in (2) is identical to the
so-called “minimum-norm strong stabilization” problem
for a given (unstable) plant g, where the minimum-norm
controller sought is required to be stable itself. It is no-
ticed from the well known result on strong stabilizability
in (Youla, 1974) that ρ∗(g) is finite if and only if the Parity
Interlacing Property (PIP) is satisfied, i.e., the number of
unstable real poles of g between any pair of real zeros in
the closed right half complex plane (including zero at ∞)
is even. Consequently, the class of systems of our interest
is defined as

Gn := {g ∈ G | g has n unstable poles and

satisfies the PIP condition},

where n is a natural number. Let g ∈ G be given. We have
the following lower bound for ρ∗(g) (see (Hara, 2021))

ρ∗(g) ≥ 1/∥g∥L∞
, ∥g∥L∞

:= sup
ω∈R

|g(jω)|.

When ρ∗(g) is exactly equal to its lower bound 1/∥g∥L∞
,

we say g has the exact RIR. It has been shown in (Hara,
2021) that, if f with ∥f∥H∞

= 1/∥g∥L∞
marginally stabi-

lizes g with a single pair of poles on the imaginary axis,
then g has the exact RIR. Moreover, based on an extended
version of the Nyquist criteria, necessary and sufficient
conditions were derived in (Hara, 2022) for marginal sta-
bilization of g, which in turn are sufficient conditions for
obtaining the exact RIR of g. As a part of the necessary
and sufficient condition for f with ∥f∥H∞

= 1/∥g∥L∞
to

marginally stabilize g, the open-loop transfer function gf
must satisfy the following loop-gain and PCR conditions:

g(jωp)f(jωp) = 1, θ′gf (ωp) = θ′g(ωp) + θ′f (ωp) > 0,

where ωp is the frequency where the L∞-gain of g oc-
curs. Searching for such an f boils down to solving a
PCR optimization problem of the form described in (1),
where the phase θf (ωp) is constrained to −θg(ωp) (and
the magnitude of f at ωp is irrelevant to PCR optimiza-
tion, as positive scaling of f will not change its phase or
phase change rate). The solution of the problem provides



a tight condition for g to be marginally stabilizable. In
the next subsection, we summarize the theoretical foun-
dation in (Hara, 2022).

2.2 The Solution and its Application to Instability Analysis

The PCR optimization in (1) can be solved by first nar-
rowing down the feasible set using the following sets of
functions:

RFωp,θp := {f ∈ RH∞ : 1 = ∥f∥H∞
= |f(ωp)|,

θf (ωp) = θp}.

Oωp,θp := {f ∈ RH∞ : f is minimum phase,

|f(jωp)| = ∥f∥H∞
, and θf (ωp) = θp}.

APωp,θp := {f ∈ RH∞ : |f(jω)| = 1, ∀ω,

|f(jωp)| = ∥f∥H∞
, and θf (ωp) = θp}.

Note that the constraint on the magnitude of the H∞-
norm of functions in RF•,• and AP •,• bears no signifi-
cance as explained previously. The constraint is placed for
convenience only. The first result gives an upper bound
on the PCR for functions in Oωp,θp .

Proposition 1. Let θp ∈ (−π, π] and f ∈ Oωp,θp be given. If
ωp ̸= 0, then θ′f (ωp) ≤ − |θp/ωp|. Moreover, if ωp = 0, then

θ′f (ωp) ≤ 0.

Proposition 1 establishes that, for a stable minimum-
phase system, its PCR at the peak-frequency (i.e., where
the H∞-norm occurs) is always non-positive. Since any
RH∞ function can be factorized as multiplication of an
all-pass function and a minimum-phase function, Propo-
sition 1 suggests that the PCR maximization problem
over the set RF•,• boils down to the problem over the
set AP •,•. This is indeed the case, as the following propo-
sition states.

Proposition 2. Given ωp ̸= 0 and θp ∈ (−π, π] (mod 2π),
we have

sup
f∈RFωp,θp

θ′f (ωp) = sup
f∈APωp,θp

θ′f (ωp) = − |sin(θp)/ωp| .

Moreover, when θp ̸∈ {0, π}, the supremum is attained by
the first-order all-pass function of the form f(s) = a−s

a+s
or

f(s) = s−a
a+s

. When θp ∈ {0, π}, the supremum is attained

by a zeroth-order all-pass functions; i.e., f(s) = 1 or
f(s) = −1. For ωp = 0, the only feasible phase angles
are θp ∈ {0, π} (mod 2π). In this case,

sup
f∈RF0,θp

θ′f (0) = sup
f∈AP 0,θp

θ′f (0) = 0.

The supremum is attained by f(s) = 1 or f(s) = −1.

Using the solutions stated in Proposition 2, the following
results were derived for two subclasses of Gn defined by

G0
n := {g ∈ Gn | ∥g∥L∞

= |g(0)| > |g(jω)| ∀ω ̸= 0},

G#
n := {g ∈ Gn | ∃ ωp > 0 such that

∥g∥L∞
= |g(jωp)| > |g(jω)| ∀ω ̸= ±ωp}

based on an extended Nyquist criterion (Hara, 2022).

Theorem 1.

(I) Given g ∈ G0
n, g can be marginally stabilized by a

stable system f with ∥f∥H∞
= 1/∥g∥L∞

= 1/|g(0)| if
and only if n = 1 and θ′g(0) > 0.

(II) Given g ∈ G#
n for which the peak gain occurs at ωp,

g can be marginally stabilized by a stable system f
with ∥f∥H∞

= 1/∥g∥L∞
= 1/|g(jωp)| if and only if

n = 2 and θ′g(ωp) > |sin(θg(ωp))/ωp|.

Note that the marginally stabilizing controllers for cases
(I) and (II) can be taken as the zeroth-order and the first-
order all-pass functions, respectively, as suggested by
Proposition 2.

As marginal stabilization of a system guarantees the exact
RIR for the system, Theorem 1 immediately leads to
sufficient conditions for attaining the exact RIR of systems
in G1 and G2. Furthermore, necessary conditions can also
be derived based on the following result, which gives a
PCR condition on the loop-transfer function at the peak
frequency when the closed-loop system has all its pole in
the closed left half plane.

Lemma 1. (Hara, 2022, Lemma 5) Given ωc ≥ 0, an
integer n ≥ 1, and a transfer function L ∈ Gn, consider
the positive feedback system with loop transfer function
L satisfying the following condition

1 = |L(jωp)| = ∥L∥L∞
,

|L(jω)| < |L(jωp)|, ∀ω ̸= ±ωp.

If the feedback system has all its poles in the CLHP, then
θ′L(ωp) ≥ 0.

Based on Theorem 1 and Lemma 1, we have necessary
conditions and sufficient conditions for the exact RIR as
follows.

Theorem 2. Let g ∈ G be given. Suppose g(jω) takes the
peak gain at ωp and consider the exact RIR condition

ρ∗(g) = 1/∥g∥L∞
= 1/|g(jωp)|. (3)

(I) Suppose g ∈ G0
1 and ωp = 0. Then

θ′g(ωp) > 0 ⇒ (3) ⇒ θ′g(ωp) ≥ 0.

(II) Suppose g ∈ G#
2 and ωp > 0. Then

θ′g(ωp) > ϱ(ωp) ⇒ (3) ⇒ θ′g(ωp) ≥ ϱ(ωp),

where ϱ(ω) := |sin(θg(ω))/ω|.

(III) For any g ∈ G#
1 , we have ρ∗(g) > 1/∥g∥L∞

.

For the proofs of these results, readers are referred to
Section 4 of (Hara, 2022). Also note that, the necessary
conditions in statements (I) and (II) hold in fact for sys-
tems in G0

n and G#
n , respectively, for any n.

2.3 An Illustrative Example

In this subsection we illustrate, by a numerical example,
how the PCR condition effectively works for the robust
instability analysis. Consider a class of positive feedback
systems of which the loop transfer functions are repre-
sented by h(s) = −k/(s + 1)2m+1, m = 1, 2, . . . , where
we assume that the loop-gain k > 0 is large enough
so that the closed-loop system is exponentially unstable.
Our interest here is to assess robust instability against
a ball type multiplicative stable perturbation; in other

words, the perturbed system h̃ has the form h̃(s) = (1 +
δ(s))h(s), δ(s) ∈ RH∞. Such a setting may arise when one
considers a cyclic network with 2m + 1 identical agents



Table 1. Summary of the numbers of peak-gains, satisfaction of the PCR conditions, whether
exact RIR occurs, etc. among different cases.

m
1− 4 5 6− 7 8− 13 14− 16 17− 20

# of unstable poles 2 2 2 4 4 4
# of peak-gains 1 2 2 2 3 3
# of unstable peak-gains 1 1 1 2 2 2
# of stable peak-gains 0 1 1 0 1 1
global peak-gain is (s./us.)? us us s us us s
PCR holds at global peak? y y n y y n
PCR holds at a local peak? n/a n y y y y
RIR = 1/∥gm∥L∞

? y y n inc inc n
RIR > 1/∥gm∥L∞

? n n y inc inc y
Abbreviation: ’s.’ – stable; ’us.’ – unstable; ’y’ – yes; ’n’ – no; ’n/a’ – not applicable; ’inc’ – inconclusive

Fig. 1. Magnitude profile of gm for m = 4, 5, 6, 8, 16, 17. For m = 4 to 6, gm has one pair of unstable poles, while it has
two pairs for the other three cases. The red color indicates the frequency ranges where the PCR condition holds.
A gain-peak where the PCR condition does not hold appears to be caused by a pair of stable poles.

with a multiplicative uncertainty present for the loop. The
corresponding characteristic equation of the closed-loop
system is given by 1 − gm(s)δ(s) = 0, where gm(s) :=
h(s)/(1 − h(s)) = −k/

(

(s+ 1)2m+1 + k
)

. For k = 20, we

observe that gm ∈ G#
2 for 1 ≤ m ≤ 7, and gm ∈ G#

4 when
8 ≤ m ≤ 20. The unstable poles of gm increases further
when m becomes bigger. Table 1 summarizes the findings
for m = 1 to 20.

For 1 ≤ m ≤ 4, gm has one peak gain, while g5 has
two peak gains. In all these cases, the PCR condition
stated in Theorem 1 holds at the global peak frequencies.
See Fig. 1(a) and 1(b) for an illustration of the magni-
tude profiles of g4 and g5. For g5, applying Proposition 2
we obtain the first-order all-pass function of the form

δgl,5(s) = 1
1.0896

(

s−24.426
s+24.426

)

, which marginally stabilizes

g5 and the closed-loop system has a pair of poles at
±jωp = ±j(0.322). In this case, we conclude that g5 has
the exact RIR equal to 1/|g5(j(0.322))| = 1/1.0896.

For m = 6, 7, the PCR condition fails at the global peak
frequencies for gm. However for each case, there is a local
peak frequency where the PCR holds. See Fig. 1(c) for
an illustration of the magnitude profile of g6. Further

examination reveals that the global peak-gain is due to a
pair of dominating stable poles, while the local peak-gain
is the result of a pair of unstable poles which is further
away from the imaginary axis compared to the dominat-
ing stable poles. Take g6 for example. Applying Proposi-
tion 2 at the global and local peak frequencies, we obtain

first-order all-pass functions δgl,6(s) =
1

1.3976

(

−s+1.2522
s+1.2522

)

and δlc,6(s) = 1
1.0811

(

s−18.02
s+18.02

)

, respectively. The closed-

loop system with δgl,6 is exponentially unstable, which
has two unstable poles and two imaginary-axis poles. It
appears that δgl,6 pushes the dominating stable poles to
the imaginary axis while leaving the unstable poles in
the ORHP. On the other hand, the closed-loop system
with δlc,6 is marginally stable with a pair of poles at
±jωp = ±j(0.276). In this case, g6 does not have exact
RIR, and ρ∗(g6) ∈ (1/1.3976, 1/1.0811]. Note that ρ∗(g6) is
strictly larger than 1/∥g6∥L∞

= 1/1.3976, as the necessary
condition stated in statement (II) of Theorem 2 is violated.

For 8 ≤ m ≤ 13, gm has two peak-gains and both are
caused by unstable poles. The PCR condition holds at
both peak frequencies. For 14 ≤ m ≤ 16, a third peak
is formed, which is caused by a pair of stable poles.



The PCR of gm is negative at this peak (let’s call it a
“stable peak”). For 17 ≤ m ≤ 20, the stable peak over-
takes the other two peaks and becomes the global peak.
See Fig. 1(d) to 1(f) for an illustration of the magnitude
profiles of g8, g16 and g17. Now consider g8. The first-
order all-pass functions obtained by the global and lo-

cal peak frequencies are δgl,8(s) = 1
5.4116

(

s−2.749
s+2.749

)

and

δlc,8(s) = 1
1.073

(

s−29.498
s+29.498

)

, respectively. The closed-loop

system with δgl,8 is exponentially unstable; apparently
δgl,8 pushes a pair of unstable poles to the imaginary axis
while leaving the other pair in the ORHP. Similar to g6,
δlc,8 is able to marginally stabilize g8, and therefore we
have ρ∗(g8) ∈ [1/5.4116, 1/1.073]. Note that we cannot
yet exclude the possibility that ρ∗(g8) = 1/5.4116 since
no necessary condition is violated. For g9 to g16, we have
similar results, where the inverse of the L∞-gain of gm
gives a lower bound and the second peak-gain of gm gives
an upper bound. For g17 to g20, the situation is slightly
different. For those systems, their PCRs at the global peak
frequencies violate the necessary condition for having
exact RIR’s. Therefore, we know that ρ∗(gm) is strictly
larger than 1/∥gm∥L∞

, for m = 17, · · · , 20. For each of
these system, an upper bound for ρ∗ is obtained using
their respective third peak-gains.

3. PRACTICAL APPLICATIONS

In this section, we apply our main results to analyze
(in)stability properties of system models that are derived
from real-world applications. In Section 3.1 we consider
linearized models for magnetic levitation systems. These
models belong to the class G0

1 . In Section 3.2 we consider
linearized models for a certain gene regulatory network
called “repressilator”. These models belong to the class

G#
2 . The goal is to illustrate that our results are applicable

to real applications to provide useful information.

3.1 Strong Stabilization for Magnetic Levitation Systems

A typical linearized model for the magnetic levitation
system (Namerikawa, 2001) at an equilibrium is a third-
order system of the following form

g(s) = k/
(

(−s2 + p2)(τs+ 1)
)

,

where the pair of poles at ±p is due to the mechanical
aspect of the system while the stable pole at −τ−1 comes
from the electrical part. Typically, we have τ−1 ≫ p,
and if this is the case one may assume that the factor
(τs + 1) can be neglected from the dynamical model for
control design purpose. Here we will show that, however,
there is a fundamental difference between the second-
and the third-order models in terms of minimum-norm
strong stabilization. First, consider the reduced second-
order model gr(s) = k/(−s2 + p2). One can readily verify
that gr ∈ G1

0 with θ′gr (0) = 0. Despite that gr does not
satisfy the sufficient PCR condition stated in Theorem 2,
we have

inf
c∈S(gr)

∥c∥H∞
= p2/k = 1/|gr(0)| = 1/∥gr∥L∞

, (4)

The infimum in (4) is obtained by the stabilizing con-
troller cϵ(s) = p2/k + ϵ(s + z)/(s + d) with 0 < z < d
and arbitrarily small positive ϵ.

On the other hand, for the third-order model g, we have

inf
c∈S(g)

∥c∥H∞
> p2/k = 1/|g(0)| = 1/∥g∥L∞

. (5)

The strict inequality in (5) is due to the fact that g ∈ G0
1

and θ′g(0) = −τ < 0, and thus g violate the necessary
condition for having the RIR by Theorem 2.

For obtaining an upper bound of the infimum, let us in-
troduce a phase-lead compensator to raise the PCR of g at
the zero frequency. Consider f(s) = ((τc + τ)s+ 1) /(τcs+
1) and gc(s) = g(s)f(s). The compensated plant gc satis-
fies θ′gc(0) = 0 for any τc > 0. This can be readily verified

by checking the imaginary part of d
dω

log(gc(jω)) at the
zero frequency. Furthermore, we have gc ∈ G0

1 if and only
if τc ≤ 1/(p2τ). This can be shown by computing the real
part of d

dω
log(gc(jω)), which reveals that

• Real
(

d
dω

log(gc(jω))|ω=0

)

= 0;

• when τc ≤ 1/(p2τ), d
dω

log |gc(jω)| < 0 for any ω > 0;

• when τc > 1/(p2τ), d
dω

log |gc(jω)| > 0 for ω → 0+.

and hence the claim. Setting τc = 1/(p2τ), we have the
following result.

Proposition 3. The compensated plant gc satisfies

inf
c∈S(gc)

∥c∥H∞
= 1/|gc(0)| = 1/∥gc∥L∞

= p2/k, (6)

which in turn implies

1 < inf
c∈S(g)

∥c∥H∞

p2/k
≤ (1 + p2τ2). (7)

Proof. The infimum in (6) is obtained by the stabilizing
controller cϵ(s) = p2/k + ϵ(s + ϵ2)/ (s+ q/(τc + τ)). One
can verify that the characteristic equation of the closed-
loop system [gc, cϵ] has the form s5+[(q+1)d]s4+[qd2]s3+

[kϵd]s2+[kϵ(d̂+ϵ2d)]s+[kϵ3d̂], where d := (τ+τc)/(ττc) =

τ−1+p2τ , and d̂ := 1/(ττc) = p2. The goal here is to select
parameters ϵ > 0 and q > 0 such that the roots of the
polynomial are all in the open left-half plane. Applying
the Routh-Hurwitz stability criterion, one concludes that
it is so when ϵ is sufficiently small and, corresponding
to an ϵ, q is chosen sufficiently large. The infimum in (6)
is obtained by taking ϵ → 0. Furthermore, the analysis
implies that fcϵ is a stabilizing controller for g. Since
∥fcϵ∥H∞

→ p2(1 + p2τ2)/k as ϵ → 0, it implies p2(1 +
p2τ2)/k is an upper bound for infc∈S(g) ∥c∥H∞

. With (5),
we hence conclude the inequalities in (7).

Remark 1. Since τ−1 ≫ p, we have 1 + p2τ2 ≈ 1. That
is, the upper bound on the norm of the minimum-norm
strong stabilizing controller is very close to the lower
bound p2/k.

3.2 Robust Instability Analysis for Repressilator

Consider a biological network oscillator called the repres-
silator with three dynamical units in a cyclic loop (Elowitz,
2000). Its linearized model is the positive feedback system
with a loop transfer function h(s) represented by

h(s) = −k/ ((s+ α1)(s+ α2)(s+ α3)) ,

where k > 0 For more details about the repressilator
model, see (Hara, 2021). Here we are interested in as-
sessing robust instability against a ball type multiplica-



tive stable perturbation when the nominal dynamics are
further complicated by time-delay. We use the fifth-order
Padé approximation for the time-delay in order to keep
the model rational. Let Dτ (s) denote the Padé approxi-
mation of the time-delay transfer function e−τs. The cor-
responding characteristic equation is 1 − δ(s)g(s) = 0,
where

g(s) = h(s)Dτ (s)/ (1− h(s)Dτ (s))

and the nominal system with the characteristic equation
1 = h(s)Dτ (s) is exponentially unstable.

We consider the case where the parameters are α1 =
0.4621, α2 = 0.5545, α3 = 0.3697, and k = 2.216. We as-
sume that the gain k does not depend on the equilibrium
state of the original nonlinear system. In other words, the
DC-gain of the perturbation is assumed to be zero. For
this case, the exact RIR was calculated when τ = 0 in Hara
(2021). Hence, in what follows, we examine the effect of
the time-delay on the exact RIR.

Numerical computations show that g ∈ G#
2 for τ ∈

[0, 4.771]. The PCR condition holds at the peak-gain fre-
quency of g up to τ = 3.481, and ceases to hold when
τ = 3.482. Thus, g has exact RIR for τ ∈ [0, 3.481]. Fur-
thermore, one can verify that when τ is large enough, a
pair of stable poles of g creates a gain-peak. When τ =
3.482, this “stable peak” becomes dominant and the PCR
condition ceases to hold at the global peak frequency.
However, the condition holds at the local (second) peak
frequency. More specifically, when τ = 3.482, ∥g∥L∞

=
|g(j1.5009)| = 1.10273, while a local peak occurs at ω =
0.396 with |g(j0.396)| = 1.10268. The first-order all-pass

function 1
1.10268

(

s−18.8246
s+18.8246

)

, obtained by applying Propo-

sition 2 to the local peak frequency, marginally stabilizes
g. Thus, we conclude that 1/1.10273 < ρ∗(g) ≤ 1/1.10268
when τ = 3.482.

For τ = 3.4, a marginally stabilizing perturbation with

norm equal to 1/∥g∥L∞
is 1

1.1044

(

s−18.4747
s+18.4747

)

. This pertur-

bation is further multiplied by a high-pass filter to make
the DC-gain of δ(s) equal to zero. Specifically, δ(s) is de-
fined by

δ(s) =
s

s+ 0.01
· (1 + ϵ)

1

1.1044

(

s− 18.4747

s+ 18.4747

)

,

where ϵ is a real number. The closed-loop systems of
g is marginally stabilized with ϵ = 0. The nonlinear
repressilator models with ϵ = −0.05 and ϵ = 0.05 were
simulated, and the results are shown in Fig. 2 (left and
right figures, respectively). Clearly, δ(s) with ϵ = −0.05 is
not able to stabilize g and the closed-loop system exhibits
oscillatory behavior. On the other hand, δ(s) with ϵ = 0.05
stabilizes g and the oscillatory behavior ceases to exist.

Remark 2. In E. coli cells, the delay factor mainly repre-
sents the protein maturation time, which is usually 6 to 60
minutes. For the repressilator model presented in this sec-
tion, the unit of time is “hour”; therefore, the delay time
τ of the range [0.1, 1] corresponds to realistic scenarios.
Our analysis shows that the L∞-norm of g gives the exact
RIR for τ ∈ [0, 3.481] , which indicates that it is a useful
metric for determining the instability (i.e., oscillation) of
practical repressilators.

Fig. 2. Time-course simulations of the closed-loop sys-
tems. Left: g and δ(s) with ϵ = −0.05. Right: g and
δ(s) with ϵ = 0.05.

4. CONCLUDING REMARKS

We recalled the phase change rate maximization problem
and solution from Hara (2022) and illustrated the latter’s
utility in the robust instability analysis of a cyclic network
of homogenous multi-agent systems subject to an identi-
cal multiplicative stable perturbation on each agent. We
also applied the result to two practical applications —
magnetic levitation systems and repressilators with time-
delay. An interesting future research direction involves
examining the robust instability of a cyclic network sub-
ject to heterogeneous multiplicative perturbations on the
agents.
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