Towards Usable Security Analysis Tools for Trigger-Action Programming

McKenna McCall! Eric Zeng!
mckennak @ cmu.edu ericzeng @cmu.edu
Lujo Bauer! Abhishek Bichhawat?
Ibauer@cmu.edu abhishek.b@iitgn.ac.in

Faysal Hossain Shezan?

Mitchell Yang!

fsSve@virginia.edu mfy @ andrew.cmu.edu

Camille Cobb*
camillec @illinois.edu

Limin Jia!
liminjia@ cmu.edu

Yuan Tian’
yuant@ucla.edu

' Carnegie Mellon University *University of Virginia 3IT Gandhinagar * University of Illinois Urbana-Champaign 3 University of California, Los Angeles

Abstract

Research has shown that trigger-action programming (TAP)
is an intuitive way to automate smart home IoT devices, but
can also lead to undesirable behaviors. For instance, if two
TAP rules have the same trigger condition, but one locks
a door while the other unlocks it, the user may believe the
door is locked when it is not. Researchers have developed
tools to identify buggy or undesirable TAP programs, but little
work investigates the usability of the different user-interaction
approaches implemented by the various tools.

This paper describes an exploratory study of the usability
and utility of techniques proposed by TAP security analysis
tools. We surveyed 447 Prolific users to evaluate their ability
to write declarative policies, identify undesirable patterns in
TAP rules (anti-patterns), and correct TAP program errors, as
well as to understand whether proposed tools align with users’
needs. We find considerable variation in participants’ success
rates writing policies and identifying anti-patterns. For some
scenarios over 90% of participants wrote an appropriate pol-
icy, while for others nobody was successful. We also find that
participants did not necessarily perceive the TAP anti-patterns
flagged by tools as undesirable. Our work provides insight into
real smart-home users’ goals, highlights the importance of
more rigorous evaluation of users’ needs and usability issues
when designing TAP security tools, and provides guidance to
future tool development and TAP research.

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.

USENIX Symposium on Usable Privacy and Security (SOUPS) 2023.
August 6-8, 2023, Anaheim, CA, USA

1 Introduction

Platforms like IFTTT [13], SmartThings [20], and Home As-
sistant [10] allow users to create home automations to config-
ure their smart homes. Home automations are often expressed
as trigger-action programming (TAP) rules, which are an ac-
cessible way for people without programming experience to
customize their smart-home devices [22]. A typical TAP rule
format is: “IF trigger THEN action”, where the trigger is an
event that causes the action. For example, “IF Alice leaves
home THEN lock door” locks the door whenever Alice leaves
her home. More complex TAP rules can include conditional
triggers or trigger multiple actions.

Users can accomplish more complex goals by writing mul-
tiple TAP rules, which we call TAP programs. When TAP
rules are executed, they can generate events or alter the home
environment, which may trigger other rules. For instance, con-
sider the rules: “IF the user nears home THEN unlock door”
and “TF door is unlocked THEN turn off security camera”.
Once the user reaches home, the first rule is triggered, and
the resulting action (unlock door) triggers the second rule,
causing the camera to stop recording.

Security and privacy risks of TAP Research has shown
that users struggle to write complex TAP programs [12,28]
and reason about their behavior [12,26], leading to problems
ranging from safety risks like leaving doors unlocked [4, 5]
to privacy risks like leaking sensitive data [3,21]. Consider
a situation where Bob has installed the rules “IF the time is
7PM THEN lock door” and “IF Bob arrives at home THEN
unlock door”. Here, Bob might mistakenly believe that the
first rule will re-lock his door after he comes home at 8PM,
a misunderstanding that could pose a safety risk. Further,
even if Bob realizes there is a problem, he might have trouble
finding a solution.

TAP security analysis tools To address these concerns, re-
searchers have proposed tools to diagnose TAP program prob-
lems. Some tools detect TAP anti-patterns: recurring struc-
tures of TAP rules that can lead to unexpected or problematic
behaviors [4,5,7, 16, 18,24,27]. Examples of anti-patterns

include rules that trigger conflicting behaviors in the same de-
vice, rules that might trigger each other (loops), and multiple
rules triggering the same action.

Other tools verify that TAP programs adhere to declarative
policies specified by users: the user specifies how they want
their smart home to behave, (e.g., the front door should be
locked at night), and the tool checks that no TAP rules violate
the policy [2,4, 5, 14, 15]. A proposed approach to specify
policies are fill-in-the-blanks policy templates [16,28]. For in-
stance, Bob might write the policy “Door is unlocked should
never be active while the time is after 7PM”, where “_ should
[always/never] be active while _” is the policy template.

However, there has been little work on whether these tools
are easy to use and whether they satisfy users’ actual needs.
For example, it is not known which of the TAP anti-patterns
identified by prior work are of concern to users, or which of
the proposed templates for specifying declarative policies are
easiest for users to understand and fill out correctly.

Research questions To gain insight into which TAP analysis
tool user-interface approaches work well and which may need
more refinement, we conducted an exploratory survey. We
recruited 447 smart-home users from Prolific to study their
perceptions of the problems that TAP security analysis tools
address and the usability of the approaches proposed by these
tools. In particular, we investigate the following questions:

o RQ1: What are smart-home users’ motivations and goals
for using TAP rules?

e RQ2: Can users successfully write declarative policies
using the templates proposed in prior work? Which tem-
plates do people use most successfully, and which ones
do people most prefer?

e RQ3: Given a TAP program, can users identify the TAP
anti-patterns from prior work? Do users perceive anti-
patterns as undesirable, and would they be interested in
using a tool to find them?

e RQ4: What information should a tool provide that would
be most helpful to aid users fixing policy violations or
removing anti-patterns found in their TAP programs?

Overall, we show that smart-home users have the necessary
skills to use TAP security analysis tools, but there is room
for improvement. Participants were moderately successful
at specifying declarative policies using templates, but strug-
gled with some template formats. Participants also varied
in their abilities to identify TAP anti-patterns. While some
anti-patterns were viewed as desirable, participants generally
agreed that it would be helpful to have a tool to identify them.
Participants were most successful at repairing buggy TAP pro-
grams and completing partial programs that violated declara-
tive policies when they were given some additional context
about the state of the home when the policy violation would
occur. Based on our results, some important shortcomings of
these tools include confusingly worded policy templates and

inconsistencies between user mental models of TAP rules and
how they are modeled in the tools. Our findings provide guid-
ance for both developers of TAP security analysis tools and
researchers investigating the security and usability of TAP.

2 Background and Related Work

We broadly categorize TAP tools as ones that verify custom
declarative policies, and ones that look for high-level TAP
anti-patterns; several tools do both [4,5, 16, 18,27].

Tools with declarative policies Tools such as SIFT [15],
Soteria [4], Salus [14], and AutoTap [28] typically require
the user to specify which devices and TAP rules they have in
their smart home, as well as how they want their devices to
behave (a policy). The tool then checks the policy against a
formal model of the user’s home setup. Some tools perform
this verification at run time [5], notifying users of potential
violations as they interact with devices and trigger TAP rules.
The interfaces to specify policies vary in complexity be-
tween tools. Some tools require policies to be specified in a
formal logic [4,18,27]. Others allow the user to write a policy
as a series of conditions that should never happen [15] or via
fill-in-the-blanks templates [16,28], which are then translated
to a more formal language. We focus on templates, as they
require less training than writing policies in formal logic.
Chaining together smart devices through TAP programs
leads to diverse and complex functionality, but also means
that finding the source of a problem with a TAP program can
be difficult [25]. Upon finding a policy violation, some tools
supply a counterexample to help with debugging [4]. Others
give hints about what led to the violation, like the rules re-
sponsible for the problem [16, 18]. In our study, we investigate
what type of feedback is most helpful to the user trying to fix
problems: identifying rules involved in the violation, supply-
ing a full trace leading up to the violation, or something in
between. Some tools go further and automatically synthesize
fixes to suggest to the user [14,28]. To narrow the scope of
our study, we don’t evaluate synthesis techniques but focus
instead on what information tools can give users to help them
understand the causes of violations and how to solve them.
For tools that automatically fix problems, our results could
still be relevant because users still need to specify a property
(RQ2) and may benefit from additional feedback to help them
understand what problem is being addressed (RQ4).

TAP anti-patterns Research has identified TAP anti-
patterns [7,11,24] that can lead to unsafe or unpredictable
behavior [1]. For instance, Bob’s program from Section |
exhibits an anti-pattern (Opposite Behaviors in Table 2) fre-
quently identified in TAP research as problematic: if two rules
trigger simultaneously with conflicting actions (door unlock
and door lock) the result becomes unclear, which could lead
to confusing or unsafe situations (such as Bob’s door being
unlocked when he believes it is locked). Other research iden-

tified potential confidentiality and integrity violations in TAP
programs [3,9,21] and anti-patterns that could be leveraged
in attacks to force devices into an insecure or unsafe state [6].
Research has also examined the prevalence of these po-
tentially harmful anti-patterns. Some examined random or
hand-crafted programs built from publicly available TAP
rules [9, 21, 24], while others set up real devices to evalu-
ate tools and test their attacks [6,7, 15,24]. Some prior work
collected TAP programs from a small number of real users
to evaluate [8, 11]. While many tools are capable of detect-
ing various patterns, it is unclear whether users would under-
stand what these patterns are, or if they find them undesirable.
Therefore, we design tasks to measure understanding and
perception of a selection of anti-patterns from prior work.

Usability of TAP tools The usability of a small number
of proposed TAP analysis tools has been evaluated individu-
ally [15,16,28]; in contrast, we compare fechniques employed
by various tools from the TAP literature, examining the poten-
tial utility and efficacy of different approaches to specifying
and debugging TAP programs and their properties.

3 Study Goals and Survey Design

We next describe the motivation for our study and how it
informed the design of our surveys. We describe the specific
procedures for administering the surveys in Section 4. Our
goal is to examine the user-interaction approaches suggested
by existing TAP analysis tools to determine what works well,
where refinement is needed, and how tools might better serve
users. To explore the breadth of the design space, we conduct
a survey-based user study. We divided our study into four
parts, which correspond to our research questions (Section 1).

3.1 Part 1: Identifying user needs

What are users trying to accomplish with their TAP programs?
Since the space of tools and problems is large and varied,
knowledge of users’ goals can help inform priorities for tool
design. For instance, if users are generally installing TAP
rules without much consideration for what they expect their
devices to do (or not do), they might find writing declarative
policies difficult, and might instead benefit from a tool that
looks for programming patterns that may cause problems.

We asked users about their high-level priorities for their
TAP programs by rating the importance of several goals —
Home Safety, Home Security, Privacy, Comfort and Conve-
nience, Understanding Failures, and Fun — on a four-point
Likert scale. We also asked them to describe any goals they
had for their smart home in a free-response field.

3.2 Part 2: Writing declarative policies

Some tools allow users to specify how they want their devices
to operate and check for violations of these declarative poli-

cies. There are a few ways to specify policies; an approach
suggested by tools like AutoTap [28] and SafeTAP [16] is
fill-in-the-blanks policy templates. However, these templates
could be confusing to users, because they use complicated
constructions such as “[state] should [always/never] be active
while [state]” (see Table 1 for a full list).

So, we ask, can users correctly express their goals using
this kind of interface? And, if not, what factors might be
contributing to their problems? We break these questions
down into the following three survey tasks.

Task 2a: Picking templates Can users pick a template for-
mat that matches a high-level goal? There is some variation
between AutoTap [28] and SafeTAP [16] templates, but both
tools have multiple templates that users need to pick from
to specify their policies. While some templates are equiva-
lent (like AutoTap’s “_ should [always/never] be active” and
SafeTAP’s “I [always/never] want _”), there are important
differences between others, like whether the policy is con-
ditional or includes timing constraints, and other subtleties
between (instantaneous) events and (persistent) states.

To investigate this, we presented participants with a sce-
nario and goal, and asked them to choose which of the Auto-
Tap/SafeTAP templates were most appropriate for the goal.
Participants could choose any template from Table 1. Partici-
pants repeated this task for two scenarios.

Task 2b: Filling out templates Can users correctly fill out
a policy template, once one has been correctly selected? To
write policies understandable by a tool, a user may have to
think of the goals they have for their home in terms of spe-
cific device behaviors or conditions since the tool likely will
not understand what it means for a home to be “warm” or
“safe.” Some devices have simple boolean states, like “dryer
on” or “dryer off,” but others may require more specificity,
like temperature or time.

Participants were presented a scenario describing a goal
and a template, and their task was to fill in the blanks for
template using drop-down menus of states or events. This
task was repeated three times, for the following scenarios:
closing the windows when it rains, setting the thermostat at
night, and keeping the dryer off during work hours.

Task 2¢: Clarity of templates Because there may be several
equivalent ways to write a policy, we want to know which
templates make most sense to users.

Policy templates themselves might be logically equivalent,
like “_ should [always/never] be active” and “I [always/never]
want _”, or people might prefer one way of filling out a par-
ticular template over another, like “Dryer on should never
be active” and “Dryer off should always be active.” We are
interested to know whether there are any templates that are
especially popular, or if our participants tend to prefer equiva-
lent AutoTap templates or SafeTAP templates, or the positive
(“always”) or negative (‘“never”’) form of the templates.

In this task, participants were shown a goal and four poli-

Name Template

One-State Unconditional
One-State Duration
Multi-State Unconditional

—r———— .

state] should [always/never] be active
state] should [always/never] be active for more than [duration]
state] and [state] should [always/never] occur together

AutoTap [28] State-State Conditional state] should [always/never] be active while [state]
Event-State Conditional event] should [only/never] happen when [state]
Event-Event Conditional event] should [always/never] happen within [duration] after [event]
‘Whenever Whenever [event] make sure that [state]
SafeTAP [16] Only When [event] only when [state]
Always/Never I [always/never] want [state]

Table 1: Name and format of each policy template evaluated in the study.

cies describing the goal and were asked to pick the policy
they felt was most natural. Participants were randomly shown
three of five possible scenarios.

3.3 Part 3: Identifying TAP anti-patterns

Another class of TAP security analysis tools check for anti-
patterns in TAP programs. An example of an anti-pattern is a
loop, where one rule triggers a second rule, the second rule
triggers the first, and so on.

We ask: Would users find these tools useful? How well
can users identify anti-patterns on their own? Do they want
assistance from a tool? And are there situations where users
actually want to use these patterns, despite researchers having
identified them as undesirable?

In this survey component, we investigate users’ perceptions
of anti-patterns identified by prior work, which we define in
Table 2. We selected 12 anti-patterns from prior work and
re-named them to reduce any bias the names and descriptions
might introduce when evaluating their desirability (e.g., from
“Action Conflict” [24] to “Opposite Behaviors”). We also
added one that looks for any rules with different triggers and
different actions (we call this “Different Triggers, Different
Behaviors”) to have something benign to compare against the
anti-patterns identified by prior work as undesirable.

Participants were randomly assigned four anti-patterns. For
each anti-pattern, we first provided participants with a def-
inition and an example of the anti-pattern. Then, we asked
participants to complete the following three tasks.

Task 3a: Identifying anti-patterns First, can users under-
stand anti-patterns well enough to identify them in a TAP pro-
gram, and do they have a good sense of which anti-patterns
are more difficult to understand? In this task, we presented
participants with four TAP programs, and asked them to select
the program that was an instance of their assigned anti-pattern.
We also asked them to rate the difficulty of understanding the
anti-pattern on a five-point scale (Very Difficult, Difficult,
Neither Difficult Nor Easy, Easy, Very Easy).

Task 3b: Perceptions of anti-patterns Do users believe anti-
patterns to be problematic? Or, do they think there might be
situations where people would want anti-patterns in their TAP
programs? In this task, we asked participants four questions
about their assigned anti-pattern: if they think their own TAP
rules would contain the anti-pattern, if they would want the
anti-pattern in their TAP rules, if they think others would
want to use the anti-pattern, and if they want to avoid the anti-
pattern. Participants responded on a four-point scale (Never,
Rarely, Sometimes, Always).

Task 3c: Perceptions of tools for anti-patterns Would tools
that detect anti-patterns be useful to users? We asked partici-
pants four questions about their assigned anti-pattern: whether
they need help identifying it, whether they want help identify-
ing it, whether they would use a tool that finds it, and whether
they would be annoyed by a tool looking for the anti-pattern.
Participants responded on a four-point scale (Definitely not,
Probably not, Probably, Definitely).

3.4 Part 4: TAP program repair

TAP security analysis tools typically notify users of bugs or
potential problems, but don’t necessarily tell them how to fix
them. Some tools describe the trace of events leading to the
problem (e.g., Soteria [4]), others report only which rules are
involved in the violation [16, 18], and yet others synthesize
patches to suggest to the user [14,28].

We ask, what types of information provided by analysis
tools about an error or policy violation are most helpful for
users trying to understand and correct the issue? In this survey
component, we compare three forms of feedback.

Task 4a: Fixing a buggy rule Here we asked participants
to fix a policy violation caused by a buggy rule. First, we
showed participants a scenario and goal, and set of TAP rules,
and asked them to pretend that a tool found a problem. In one
scenario, the participants were told the user wants their door
to be locked when they aren’t home (“‘door lock™ scenario),
in another the user wants their lights to blink only to indicate
that there is smoke in their home (“smoke”, which is based on

Anti-Pattern Name

Description

Different Triggers, Same
Behavior [4]

Same Except No Condition [24]

Same Triggers, Different

Behavior & Conditions [6,7,24,27]
Chains with Opposite

Behaviors [7,24]

Chain [6,7,9,19,27]

Different Triggers, Different Behaviors

Loops [1,5,7,16,24]

Opposite Behaviors
[1,4,5,7,15,18,19,24,27]
Same Behaviors [4,5,18,24,27]

Un-Paired Rules [1,12,19]

Extended Behavior [1,12,27]

Privacy [3,5,11,18,19,21]
Trust [5,11,18,19,21]

This pattern looks for rules that are triggered by different events, but lead to the
same action.

This pattern looks for rules that are identical except that one has the WHILE
condition and the other one doesn’t.

This pattern looks for two rules that are triggered by the same event and one rule
has a WHILE condition and the other rule turns off the WHILE condition.

This pattern looks for rules that trigger other rules (i.e., form chains) and have
different behaviors.

This pattern looks for rules that may trigger other rules (i.e., form chains).

This pattern looks for rules with different triggers and different behaviors.
Triggering any rule in the loop will cause another rule to be triggered, which then
causes the first rule to trigger again, leading to a loop.

This pattern looks for rules that may trigger at the same time and cause opposite
behaviors.

This pattern looks for situations where multiple rules trigger the same behavior.
Some rules form pairs (one rule might turn a device "on", while another turns it
"off"). This pattern looks for rules that are missing their natural pair.

This pattern looks for rules that do not account for behaviors that do not happen
instantaneously, i.e., they are "extended" over a period of time.

This pattern looks for rules that may allow people to learn private things about you.
This pattern looks for rules that do things that require your trust.

Table 2: TAP anti-patterns included in S2, how we described them to participants, and the prior work inspiring them.

prior work [16]), and in the last scenario, the user never wants
their house to be warmer than 72 degrees (“temperature”).

Participants were randomly assigned to one of three con-
ditions that determines how much additional information the
“tool” gives them: a) which rule is involved, b) which rule is
involved and the state of the home when the bug occurs, and
c) a full trace that describes the series of events leading to the
violation, including the initial state of all of the devices.

We then asked participants three questions to emulate the
debugging process: (1) whether the problem is due to a miss-
ing rule, a (single) misbehaving rule, or interactions between
multiple rules; (2) if the fix involves adding, modifying, or
deleting a rule; and (3) to perform the fix, which involved
writing a new TAP rule using an If-Then or If-While-Then
template and drop-down menus, or choosing a rule to edit or
delete (depending on their answer to the previous question).
Participants repeated this task twice for two different scenar-
ios, which were randomly assigned from three scenarios.

Task 4b: Fixing an incomplete program We test whether
participants can fix a violation caused by a missing rule. Like
the previous task, we showed participants a scenario, goal,
and a set of TAP rules. Participants were randomly assigned
to one of three conditions that determines how much addi-
tional information the “tool” gives them: a) a rule is missing;
b) a rule is missing, and the state in which the missing rule
is needed; and c) a full trace of events leading to the state
in which the missing rule is needed. We then asked partici-

pants to write a TAP rule to fix the error, using an If-Then
or If-While-Then template and drop-down menus. Everyone
repeated this task for the same two scenarios.

4 Methodology

In this section, we describe the specific methods and proce-
dures for conducting the study.

Survey structure Because of the length of the survey ques-
tions, we split our survey components across two different
surveys to reduce the amount of time it took for individual par-
ticipants to complete the study (see Figure | for an overview).
Both surveys were implemented in Qualtrics.

Both surveys begin by asking participants to read and ac-
cept a consent form; then proceed to Part 1 (Identifying User
Needs), which asks participants about their smart-home usage
and their TAP goals. Then, to ensure that all participants have
a baseline understanding of TAP, we give participants two
practice exercises where we present them with a smart-home
scenario, set a goal for them to achieve using home automa-
tions, and ask them to pick the appropriate TAP rule from
a list of rules. They receive feedback explaining why their
selection was or was not correct.

At this point, the survey flows diverge: Survey 1 (S1), pro-
ceeds to Tasks 2a-c (Writing Declarative Policies), while Sur-
vey 2 (S2) proceeds to Tasks 3a-c (Identifying TAP Anti-
Patterns) followed by Tasks 4a-b (TAP Program Repair).

Survey 1 Survey 2

Part 1: Goals for Home Automation

| |

Part 3:
Part 2: Anti-Patterns
Writing : i
Declarative
Policies Part 4: TAP

Program Repair

! !

Demographics

Figure 1: Diagram of the survey structure. Parts 2-4 were split
across two surveys to shorten survey length.

At the end of both surveys, we collect participant demo-
graphics: age, gender, highest level of education achieved, and
whether they have experience in a computing field. Lastly,
we asked the participants for permission to publish their
anonymized responses (available online [17]). We included
two attention-check questions in each survey and discarded
responses where both were answered incorrectly.

We revised the surveys over several pilot studies, which
involved participants from varied technical backgrounds to
help tune the difficulty of the tasks. The study was approved
by the IRB at Carnegie Mellon University. Participants who
completed a survey and passed at least one attention check re-
ceived $10.00. The full text of both surveys is in Appendix B.

Recruitment We recruited participants with Prolific. Based
on a rule-of-thumb sample-size estimation for an ordinal lo-
gistic regression we planned to conduct [23], we estimated
we needed 175 participants for S1 and 275 for S2. Partici-
pants had to be 18 years or older, located in the US, fluent
in English, and have experience with smart-home devices.
Participants were only allowed to take one of the two surveys.
We used Prolific’s gender-balanced sample. S1 was published
in October and S2 in November 2022. The median time to
complete S1 was around 17 minutes, and 23 minutes for S2.
We received 176 complete responses for S1 and 278 re-
sponses for S2. We excluded responses that failed both at-
tention check questions (1 for S1 and 3 for S2) as well as
people who skipped more than 2 background questions about
their smart-home experiences (1 for each survey). Responses
were also evaluated for internal consistency (e.g., did any par-
ticipants report no smart-home experience after passing the
pre-screens?) and nonsensical text responses (1 for S2). In the
end, we had 174 usable responses for S1 and 273 for S2.

Participant demographics Table 3 shows participant demo-
graphics for both surveys. Participants were balanced across
gender, but skewed younger (only 16% and 18% were 46+
years old in S1 and S2, respectively). Most were educated,

Survey 1 Survey 2

n % n %
Gender
Female 84 483% 131 48.0%
Male 87 50.0% 136 49.8%
Non-binary 3 1.7% 5 1.8%
Prefer to self-describe 0 0.0% 1 0.4%
Age
18-25 39 224% 64 23.4%
26-35 63 362% 99 36.3%
36-45 44 253% 62 22.7%
46+ 28 16.1% 48 17.6%

Highest Education Achieved
Have not completed high school 0 0.0% 1 04%

High school or equivalent 68 39.1% 108 39.6%
Bachelor or associate degree 81 46.6% 130 47.6%
Graduate degree 24 13.8% 32 11.7%
Other 1 0.6% 2 07%
Experience in Computing?

Yes 28 16.1% 47 172%
No 146 839% 226 82.8%
Experience with TAP?

Yes 109 62.6% 164 60.1%
No 65 374% 109 39.9%
Total 174 100% 273 100%

Table 3: Demographics of study participants for both surveys.

with 60% holding at least a 2-year degree across both surveys.
Most participants did not have experience in a computing
field (83%), and had used some form of automation in their
own homes (61%).

We also collected data on the devices participants used in
their homes. Almost all participants owned or used smart TVs
(88%) and voice assistants (86%), but less than half owned
non-entertainment-related devices like smart lights (50%) or
thermostats (14%). The full list is available in Appendix C.

5 Results

This section presents our study results. The organization re-
flects the research questions and tasks from Sections | and 3.

5.1 RQ1: Users’ Goals for TAP Rules

First, we present results on the goals that smart home users
seek to accomplish with home automation.

Home safety and security are the most important high-
level goals We asked participants to rate the importance of
each of the following high-level goals for home automations:
home safety, home security, comfort and convenience, under-
standing failures, privacy, and “just for fun”, rating each on a
four-point Likert scale. Figure 2 summarizes the responses.

Home Safety 10 28 93 316

Home Security 14 32 100
Privacy 14 56 17
Comfort and Convenience 12 53 168
Understanding Failures {18 56 176
Fun 159 186
0 50 100 150 200 250

Number of Participants

260

Importance of Goal
| don't care about goals like this
Goals like this are only a little important to me
Goals like this are (somewhat) important to me

Goals like this are very important to me
214
197
80 22
350 400

Figure 2: Importance of home automation goals. Safety and security were top goals, while fun was relatively unimportant. Each
category included an example, like “Whenever my security camera turns off, I want to know why it happened” for Home Safety.

We found that the goals were divided into three tiers of im-
portance: Home safety and security were the most important,
with 92% and 90% of participants rating them as “(some-
what) important” or “very important”. Privacy, comfort and
convenience, and understanding failures were of secondary
importance, with 84%, 86%, and 83% of participants rating
them as (very) important. Notably, fun was not a strong moti-
vation for using home automation, with 77% of participants
reporting they don’t care or that it is only a little important.

There were also 17 participants who described additional
goals in a free response field. Some responses rephrased
one of the above goals, but other goals included saving
money/energy (5), accessibility (1), and health and safety (1).

Users’ interest in TAP is primarily for comfort and con-
venience, home security We also asked participants in S1
to describe, in their own words, the purpose of the TAP pro-
grams in their home, or if they didn’t have experience with
TAP, what they hypothetically would do with TAP programs.
We labeled their responses by the categories of goals iden-
tified above, and the level of specificity (at the whole home
level vs. individual devices).

Contrary to the high-level self-reported goals, we found that
the most common use-case for participants’ TAP programs
was comfort and convenience (mentioned in 69% of the re-
sponses) followed by home security (54%). Others mentioned
saving money or energy (21%). Home safety, fun, privacy,
and health appeared in fewer than 6% of the responses.

The difference between the importance of high-level goals
and the actual programs that people write suggests that users
want privacy and safety as an implicit property of their smart
home, and will automate comfort/convenience or security
related functionality using TAP.

Users goals for automation range in sophistication Re-
sponses ranged in specificity, indicating that users have dif-
ferent mental models for goals. Some responses (24%) were
extremely broad, such as:

I want my home to be comfortable and secure. (P130)

Many (59%) were specific to particular devices:

I would want my doors to be locked whenever I am
not home. [...] certain devices to be turned on at cer-
tain times of the day with smart plugs, like my coffee
machine for example. (P1)

A few participants (16%) described both high-level goals
and specific behaviors:

My goals are to keep my home safe and secure when I
leave/while I am sleeping, so I want my doors locked
and secure during these situations. I also love being
able to control my thermostat from my phone. I also
love using smart lights to help make my apartment
look better and feel more like home. (P113)

5.2 RQ2: Usability of Declarative Policies

Next, we explore the usability of template-based interfaces
for specifying declarative policies about the desired state of
the home, such as those proposed by AutoTap [28] and Safe-
TAP [16]. We evaluate whether users can a) pick a correct
template format to achieve a goal and b) correctly fill out the
fields of a template. We also investigate c) which templates
seem most natural to users.

Task 2a: Participants can usually select a suitable tem-
plate In this task, participants were presented two scenarios,
and asked to pick a template that was appropriate for the
scenario. In the smoke detector scenario, the home’s lights
should blink only when the smoke detector is triggered. In the
second, neighbors, some automations cause the home’s lights
to blink, and the goal is that they should blink for at most 30
minutes to avoid annoying the neighbors. Participants chose
from all nine SafeTAP and AutoTAP templates (Table 1).

In the smoke detector scenario, 91% of participants se-
lected a valid template while 71% did likewise in the neigh-
bors scenario. The correct templates for the first scenario
included Only When (selected by 51%), Event-State Condi-
tional (24%), Whenever (12%), or Multi-State Unconditional

(4%). Meanwhile, only One-State Duration (62%) or Event-
Event Conditional (9%) could be used to write a policy for
the neighbors scenario. The one-sample Pearson Chi-Squared
tests indicated that the differences in the number of partici-
pants who picked each template were significantly different
from chance (smoke detector: x*(8, N=174) = 290.37, p <
.0001, neighbors: *(8, N=174) = 420.67, p < .0001).

In general, it appears that participants can match a template
to a high-level goal, but their success likely depends on the
goal or situation: the more-complex neighbors scenario in-
volved duration and had much lower success rates than the
simpler smoke detector scenario.

Task 2b: Participants’ success at filling out templates
varies based on complexity of template and goal In this
task, participants were assigned a scenario and a template,
and were asked to correctly fill-in-the-blanks of the template
to describe the goal. In the window scenario, the goal is to
ensure the windows are closed when it rains; in temperature,
that the room is cooler than 73F at night; and in dryer, that
the dryer cannot run until after SPM. In Table 4 we show
participants’ success at filling out their assigned templates.

We found that template filling success rates varied widely
across scenarios and templates. For window, 74% of partic-
ipants correctly filled out templates, compared to 28% for
temperature, and 51% for dryer. Within each scenario, par-
ticipants found more success with some templates than oth-
ers. For example, 98% of participants assigned to the Al-
ways/Never template for window filled it out correctly, while
only 37% were able to correctly complete the Multi-State
Unconditional template for the same scenario. An analy-
sis of variance based on mixed binomial logistic regres-
sion indicates a significant effect of scenario on correctness
((*(2,N = 522) =47.9, p < 0.001) and template on correct-
ness (x(6,N = 522) =79.1,p < 0.001).

We also observed that specific templates may be misinter-
preted in certain situations. For temperature, no participants
filled out the Whenever template correctly, which indicates
that this template may be too confusing to use for duration
conditions, even though it is technically adequate for the goal.
There is also variation between the “always” and “never”
forms of the same template. For instance, participants were
more successful at filling out the One-State Unconditional
template when they picked the “always” form (76% correct)
than the “never” form (27%). In another case, some partici-
pants chose the “always” form of the Multi-State Uncondi-
tional template, even though it is not possible to correctly
write the template in that form, meaning that 100% failed.
This is consistent with prior work that observed that users
tend to misinterpret the meaning of this template [28].

Task 2c: Template preferences vary Lastly, we investigated
which templates participants preferred. We created five sce-
narios; in each we presented four sets of filled-in templates
that satisfied a goal, and asked the participant to pick the one
that sounded most natural to them. Within each scenario, we

varied several factors, including the use of SafeTAP vs. Au-
toTap templates; always vs. never forms of templates; and
whether multiple conditions were fulfilled via multiple tem-
plates or via one template using an AND or OR clause. The
templates, their attributes, and the percentage of participants
that chose each option are shown in Appendix E.

In each scenario, participants had somewhat clear prefer-
ences: the top two choices in each comprised over 75% of the
votes. One-sample Pearson Chi-Squared tests confirmed that
participants’ choices were significantly different from chance.

The specific forms and attributes associated with the more
popular templates varied from scenario to scenario. In 3 of 5
scenarios, SafeTAP templates were preferred over AutoTap.
The Whenever template was relatively popular in each of the
scenarios it appeared in (most popular in security camera
and forecast, 2nd most popular in smoke), and the Multi-State
Unconditional template was the least popular in both scenar-
ios it appeared in. Participants did not prefer having fewer
templates to more templates, nor was it clear if they preferred
the “always” or “never” forms of templates.

5.3 RQ3: Understanding Anti-Patterns

Here, we report whether participants could identify TAP anti-
patterns in S2 and whether they perceived them as undesirable.
We see a large variation in participants’ ability to identify anti-
patterns and, surprisingly, that a substantial number of people
may actually want to use anti-patterns in their programs.

Task 3a/b: Some anti-patterns are easy to spot, others are
hard In this task, we showed participants the definition of an
anti-pattern, and asked them to choose which of four example
TAP programs contained that anti-pattern. Table 5 summa-
rizes the results.

Overall, participants’ success at identifying anti-patterns
varies substantially between anti-patterns. Anti-patterns that
most participants correctly identified typically involve redun-
dant rules that share a trigger or action: Same Behaviors
(75% correct), Different Triggers, Same Behavior (83%), and
Same Except No Condition (83%). The anti-patterns partici-
pants had the most trouble identifying required understanding
how long an action takes to complete (Extended Behavior,
34%), whether one rule can trigger another (Chains, 37%; and
Chains with Opposite Behaviors, 31%), and other nuanced
concepts, like the integrity of a trigger/action (Trust, 26%).

We also asked participants how difficult they found it to
understand the anti-pattern they were tasked to look for. Fig-
ure 3 shows participants’ responses. We again found a wide
spread depending on the template. The easiest anti-pattern
to understand was Different Triggers, Same Behavior, where
69% reported it was “easy” or “very easy” to understand, and
the hardest was Chains with Opposite Behaviors, which 48%
of people found “very difficult” or “difficult.”

Participants’ self-reported understanding of anti-patterns
roughly correlates with their performance identifying the

Scenario Template Name Template Overall “Always” “Never”
% Correct % Correct % Correct

Always/Never I [always/never] want __ 98 97 100

Window One-State Unconditional __ should [always/never] be active 91 97 71
State-State Conditional __should [always/never] be active while __ 67 64 86

Multi-State Unconditional __and __ should [always/never] occur together 37 0 89

One-State Unconditional __ should [always/never] be active 62 76 27

Temperature State-State Conditional __ should [always/never] be active while __ 39 41 29
Multi-State Unconditional __ and __ should [always/never] occur together 7 0 21

Whenever Whenever __ make sure that __ 0 N/A N/A

State-State Conditional __should [always/never] be active while __ 75 76 74

Dryer Event-State Conditional __should [only/never] happen when __ 63 0 96
Whenever Whenever __ make sure that __ 57 N/A N/A

Event-Event Conditional ~ __ should [always/never] happen within __ after 12 0 63

Table 4: Percent of participant responses that correctly filled out the blanks in a declarative policy template, across three scenarios.
We also report the proportion of correct responses for the always/never form of each template, where applicable (the “only”
form of event-state conditional is included under “always”). Success rates varied across scenarios and templates, indicating that
people’s ability to fill out policy templates is extremely context-specific.

. Very difficult

Different Triggers, Same Behavior
Same Behaviors

Different Triggers, Different Behaviors
Trust

Loops

Privacy

Chain

Same Except No Condition

Opposite Behaviors

Un-Paired Automations

Same Triggers, Different Behavior & Conditions
Extended Behavior

Chains with Opposite Behaviors —

9 80 70 60 50 40 30 20 10 O

| find it to understand this TAP pattern
Difficult Neither easy nor difficult Easy

BN \/ery easy
—
I
I |
I
—
I
| |
|
- —

10 20 30 40 50 60 70 80 90
Percent of Responses

Figure 3: Perceived difficulty of identifying problematic TAP anti-patterns, sorted by average response score for each anti-pattern

when converted to numerical values.

anti-pattern: an analysis of variance based on a mixed logis-
tic regression indicated a significant effect of a participants’
self-reported understanding of the anti-pattern and whether
they correctly identified the template (x%(4,N=1683)=19.1,
p<0.001). However, for some specific anti-patterns, under-
standing and identification rates don’t appear to align: for
example, 58% of people thought that Chain was “easy” or
“very easy” to understand, but only 37% of participants cor-
rectly identified the set of TAP rules exhibited that pattern.

Task 3b/c: Participants would accept a tool to find anti-
patterns, but also want to use TAP anti-patterns We find
that across anti-patterns, a majority of participants would
“sometimes” or “always” like help identifying them (ranging
from 57% to 78%) and would use a tool that helped them
(66% to 89%). These responses (summarized in Appendix F)

also roughly align with the perceived difficulty.

Surprisingly, participants did not find the anti-patterns uni-
versally undesirable. Figure 4 shows participants’ perceptions
of the desirability each anti-pattern. For all anti-patterns, many
said they would “rarely” or “sometimes” like to have the anti-
pattern in their home (at least 49% for each anti-pattern) and
would want to avoid the anti-pattern “rarely” or “sometimes’
(at least 51%). A majority also reported that their rules may
“sometimes” or “rarely”” have the anti-patterns (at least 67%).

However, a few anti-patterns were more undesirable than
others: 41% of people always wanted to avoid Opposite Be-
haviors, 40% for Chains with Opposite Behaviors , and 31%
for Loops. This suggests the TAP anti-patterns that researchers
have identified as problematic might somehow be useful for
people, or at least that people may not recognize them as
problematic based on the description and example alone.

i

My rules have this pattern

Opposite Behaviors

Chains with Opposite Behaviors
Loops

Extended Behavior

Un-Paired Automations

Trust

Privacy

Pattern

Same Tniggers, Different Behavior & Conditions
Same Behaviors

Chain

Same Except No Condition

Different Triggers, Same Behavior

Different Triggers, Different Behaviors

o

25 50 75
Percent of Responses

100

o

| want this pattern | want to avoid this pattern

|] |] EEN Never
I _—— 1 I Rarely
- _— - —— Sometimes
n - . fro— . Always
| - | L]
|] | |
|| | | |
| u |]
[|] | (—
| | | -
| | | -
| 1 |]
| | | 1
25 50 75 00 0 25 50 75 100

Percent of Responses Percent of Responses

Figure 4: Participants’ perceptions of the desirability of TAP patterns.

% Correctly Identified

TAP Pattern Name Round 1 Round 2
Loops 81% 47%
Same Behaviors 71% 80%
Privacy 67% 71%
Extended Behavior 52% 15%
Opposite Behaviors 51% 48%
Trust 48% 4%
Un-Paired Automations 30% 46%
Different Triggers, Same Behavior 83% —
Same Except No Condition 83% —
Different Triggers, Different Behaviors 53% —
Same Triggers, Different Behavior 57% —
& Conditions
Chain 37% —
Chains with Opposite Behaviors 31% —

Table 5: Percent of participants that were able to identify the
program that exhibited a TAP anti-pattern. For half of the anti-
patterns, we tested participants a second time on an additional
set of programs, shown in the rightmost column.

5.4 RQ4: Fixing TAP Programs

Many security tools, regardless of the types of properties
they check, help users identify problems but do not fix them.
Rather, tools typically generate some feedback, like a coun-
terexample, to help the user in their efforts to make a fix. In
this set of tasks, participants are asked to pretend a tool has
identified some problem and they need to repair the program.
In Task 4a, participants must identify and make modifications
to fix a misbehaving rule, while in Task 4b, participants must
add a missing rule. We vary the type of information the “tool”
provides, showing either 1) which rule is misbehaving/that
a rule is missing, 2) the rule and the state causing the issue,
or 3) a full execution trace leading to the error, to investigate
which form of feedback is mostly likely to help users.

Task 4a: Multiple types of feedback can help users repair
broken rules We created three scenarios (lock, temperature,
and smoke) where there is a violation of a declarative policy
(worded like the goals in Section 5.2). In all of them, the
error is caused by one incorrect rule and can be fixed by
modifying or deleting it. We measure three stages of fixing
the bug: identifying the problem, identifying how to fix it, and
implementing the fix by writing a new rule or choosing the
rule to modify/delete. Table 6 shows success rate of each fix
stage for the feedback conditions across all three scenarios.
We found that the type of feedback had no effect on par-
ticipants’ ability to identify and fix bugs. For identifying the
cause of the error, the difference in success rates ranged from
4-9% across conditions. The difference between conditions
were also small for identifying how to fix (1-5%), and slightly
larger for implementing a fix (9-15%). Analyses of variance
based on mixed logistic regressions found no significant effect
of condition on any of the three metrics (x2(2, N=546)=2.47,
n.s., x>(2, N=546)=0.22, n.s., x>(2, N=546)=5.54, n.s.).
However, the scenario did affect the success rate; namely,
the temperature scenario was harder than the others. Across
conditions, only 53% of participants successfully imple-
mented a fix for temperature, versus 80% and 84% in for lock
and smoke. The previous regressions indicated that scenario
had a significant effect on success rates for all three metrics,
(x%(2, N=546)=30.8, p<0.001, x*(2, N=546)=41.2, p<0.001,
X2(2, N=546)=52.4, p<0.001) and pairwise comparisons us-
ing Z-tests between scenarios in all three metrics showed
temperature was significantly different from the others.
These results suggest that when a program is broken due
to a single buggy rule, it is equally effective for tools to either
indicate the rule causing the error (with or without additional
information about the state of the home), or provide an execu-
tion trace of the error. They also suggest that some errors may
be harder to fix than others, regardless of feedback provided.

Task 4b: State information helped participants write
missing rules Unlike fixing bugs, we find that the type of

Identified Problem Identified Fix Implemented Fix
Condition Lock Smoke Temp Lock Smoke Temp Lock Smoke Temp
Rule 84% 8% T1% = 91% 95% T4% 84% 89% 63%

Rule w/State = 86% 89% 68% | 92%
Full Trace 82% 8% T1% 92%

93% 5% T5% 86% 48%
0% T71% 82% T7% 48%

Table 6: Percentage of participants that identified and implemented fixes successfully, across each scenario and tool condition.
Different types of feedback did not have an effect on fix rates, but the temperature scenario was more difficult.

feedback does affect participants’ success rate for adding
missing rules. For both scenarios, participants were more
likely to write the correct TAP rule when told that a rule is
missing, and the state in which the program fails, (73% for
temperature, 50% for window), rather only being told that a
rule is missing (62% and 19%, respectively), or being given a
full trace (57% and 20%).

An analysis of variance based on a mixed logistic regres-
sion found a significant effect of condition on success rate
(xZ(Z,N:546)=23.5, p<0.001) and scenario on success rate
(x*(2,N=546)=54.7, p<0.001). Post-hoc Z-tests indicate that
the Missing Rule with State condition was significantly dif-
ferent from the other two conditions.

These results suggest that for the case where an error is
caused by a missing rule, identifying the state which causes
the issue makes it more obvious what rule to add, perhaps
because it provides the user with a starting point.

5.5 Effect of TAP Experience

Surprisingly, we found that previous experience with TAP or
computing, the number of smart home devices owned, and
demographic factors had little correlation with participants’
performance on the above tasks.

For Tasks 2b, 3a, 3b, 3c, 4a, and 4b, we conducted mixed
logistic regressions to test if prior experience or demographics
were correlated with the correctness of participants’ answers
or perceptions of the difficulty of a task. In each regression, we
modeled the experimental conditions, participants’ experience
with TAP, experience with computing, number of devices
owned, and demographic factors as predictors.

We only found a statistically significant effect for expe-
rience or demographics in three cases: In Task 4a, the suc-
cess rate for implementing fixes to a template was 10 per-
centage points higher for participants with TAP experience
(x*(1,N=546)=7.52,p=0.006), and the success rate for identi-
fying fixes was 11 percentage points higher for male partici-
pants (x2(1,N=546)=5.61,p=0.017). In Task 2b, counterintu-
itively, the success rate for picking templates decreased by 4
percentage points for each smart home device a participant
owned (xz(l,N=348)=4.61 ,p=0.032). The lack of consistent
findings across tasks suggests that users that lack expertise in
smart homes will not necessarily find security analysis tools

harder to use, and that improving the usability of such tools
is important even for expert users.

6 Discussion

Our study shows that trigger-action programming and security
analysis tools for TAP have promise to be broadly accessible:
participants worked with abstractions proposed in prior work
successfully, e.g., to specify declarative policies for desired
smart-home states and to identify anti-patterns in TAP pro-
grams. We also found that a high level of expertise in TAP
or technology generally was not required to perform well at
these tasks. At the same time, the results also suggest the need
for more research: the features of some proposed tools were
much less approachable than others (e.g., confusing declara-
tive policy templates), and some of users’ preferences clash
with researchers’ expectations (e.g., some users wanting to
use anti-patterns). In this section, we make concrete recom-
mendations based on our results, both for building tools and
for future research.

6.1 Recommendations for Tool Developers

Templates are a promising approach for writing policies
Encouragingly, participants were generally able to pick ap-
propriate policy templates and fill them out, at least for some
template formats in some scenarios (Section 5.2). This sug-
gests that these template-based approaches to writing policies
will work well for tools. The greatest confusion seems related
to particularly confusing template formats or tricky scenar-
ios, rather than to any fundamental misunderstanding of the
interface, suggesting that with some refinement, these fill-in-
the-blanks templates might be approachable to most users.

Policy tools should use context to guide users through
template selection and filling Some of the more spectacular
failures in the template-based tasks (Section 5.2) occurred
when the template was not the most suitable choice for the
context of the scenario, e.g., when non-duration based tem-
plates were assigned for duration-based scenarios. Though,
more general-purpose templates technically can be used to sat-
isfy duration-based goals, participants struggled with filling
those templates. Thus, tools of this category could interac-

tively guide people into selecting more appropriate templates
based on some contextual clues.

Analysis tools should provide specific information for de-
bugging In many cases, participants were able to fix bugs
in TAP programs when given sufficient information (Sec-
tion 5.4). When a rule was broken, simply highlighting that
specific rule was sufficient, but if a rule was missing, it was
most helpful to also provide some context about when the
rule would be needed. For security analysis tools, if automati-
cally synthesizing a fix to a problem is not possible, providing
information about the specific states and rules relating to the
problem appears to be the best approach.

Tools should indicate how rules are modeled Some of the
more confusing anti-patterns from Section 5.3, like Extended
Behavior, require users to understand how TAP rules will be-
have in the real world. These results are consistent with prior
work that identifies gaps in users’ mental models of TAP pro-
grams and rules, especially when distinguishing instant (e.g.,
send email), extended (e.g., brew coffee), and sustained (e.g.,
turn lights on) behaviors [12]. In these cases, tools may need
to provide more information about how the rule is modeled or
interactivity to help people understand and fix the problem.

6.2 Recommendations for Researchers

Policy templates need refinement for comprehension In
Section 5.2, we found several examples where specific tem-
plates had confusing wordings that negatively affected partic-
ipants’ ability to use them correctly. Among the most chal-
lenging to use templates are the “always” form of the “_
and _ should [always/never] occur together” template and
the “Whenever _ make sure that _” template. The first was
often used when it wasn’t appropriate (which is consistent
with prior findings [28]), and the confusion seemed to come
from a mismatch between how the template is phrased (people
appear to read it as “if-then”) and the underlying formalism
(“if-and-only-if”). Adjusting the wording of this template
would likely improve its performance. On the other hand, the
Whenever template is so popular (Table 13) and so frequently
misused (Table 4), that it may be worth avoiding altogether.

Researchers developing tools to enforce declarative policy
should carefully test the usability of the templates that they
provide as an interface to users. It would also be helpful to
dedicate some research to identify common characteristics
of the most (and least) usable policy templates and develop
guidelines for writing new policy templates. We can addition-
ally leverage some of the insights from Section 5.1 to identify
scenarios that research participants are more likely to find
relevant and useful.

Users have an uneven grasp of anti-patterns, and tools
could help TAP anti-patterns were tricky for people to un-
derstand and identify. Some were relatively simple and easy

for people to understand, like Different Triggers, Same Be-
havior, which simply compare triggers an actions. In these
cases, warnings with simple definitions and examples of the
anti-pattern, like in our survey, could be sufficient.
Surprisingly, we also found that even anti-patterns which
seem objectively undesirable (like Loops or Conflicting Ac-
tions, described in Section 1) were considered desirable (at
least “sometimes”’) by many of our participants. This high-
lights the need for more research about how to communicate
the threats posed by these anti-patterns, especially when users
may overestimate their understanding of these anti-patterns.

6.3 Limitations

Our survey primarily used quantitative measures of usability,
like task performance or rating scales for ease of use. We
did not capture qualitative feedback on the usability of policy
templates, anti-patterns, or template repair tools, which we
leave to future work. We used vignettes to enable a controlled
evaluation of templates and anti-patterns. However, the sce-
narios varied in difficulty and may not have been familiar to
all participants, which could have contributed to participants’
poor performance on some tasks. Because these tasks were
presented as vignettes in a survey interface, the findings may
not generalize to a live smart-home setting, due to differences
in the user interfaces and the scenarios in which users would
encounter anti-patterns or create templates in practice. Not all
participants in our study had prior experience with TAP (39%
did not), and for those that did, we did not characterize their
level of expertise with TAP. Though we did not find an effect
of prior experience on most tasks, in real deployments famil-
iarity with smart-home configuration and TAP may impact
the usability of security analysis tools.

7 Conclusion

In this paper, we presented the results of our exploratory sur-
vey of TAP security analysis approaches. We found consider-
able variation in the success and perceived utility of various
approaches. Participants were generally capable of picking
the correct templates for implementing specified high-level
policies; however, while they generally filled out some tem-
plates very accurately, there were other templates where al-
most all participants struggled. We found that participants
were more successful at debugging TAP programs when they
knew some of the relevant state conditions involved in the vio-
lation, compared to only telling them which rule was involved
or sharing all of the events leading up to the violation. Partici-
pants had more difficulty identifying some anti-patterns than
others, didn’t always seem to realize when they were having
difficulty understanding them, and didn’t find any of them
wholly undesirable. More research is needed to determine
how to best describe anti-patterns to facilitate understanding
and communicate the threats they pose.

Acknowledgments We would like to express our gratitude to
the numerous students, staff, faculty, and friends who helped
pilot our studies and offered helpful feedback to improve their
design. This work was supported in part by Carnegie Mellon
CyLab, Cisco Research through the Carnegie Mellon CyLab
partnership program, NSF award CNS2114148, and a CyLab
Presidential Fellowship.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

Will Brackenbury, Abhimanyu Deora, Jillian Ritchey, Ja-
son Vallee, Weijia He, Guan Wang, Michael L. Littman,
and Blase Ur. How users interpret bugs in trigger-action
programming. In Proc. of CHI, 2019.

Lei Bu, Wen Xiong, Chieh-Jan Mike Liang, Shi Han,
Dongmei Zhang, Shan Lin, and Xuandong Li. System-
atically ensuring the confidence of real-time home au-
tomation IoT systems. ACM Trans. on Cyber-Physical
Systems, 2, 2018.

Z. Berkay Celik, Leonardo Babun, Amit K. Sikder, Hi-
dayet Aksu, Gang Tan, Patrick McDaniel, and A. Selcuk
Uluagac. Sensitive information tracking in commodity
IoT. In Proc. of USENIX Security, 2018.

Z. Berkay Celik, Patrick McDaniel, and Gang Tan. SO-
TERIA: Automated IoT safety and security analysis. In
Proc. of USENIX ATC, 2018.

Z Berkay Celik, Gang Tan, and Patrick D McDaniel.
IoTGuard: Dynamic enforcement of security and safety
policy in commodity IoT. In Proc. of NDSS, 2019.

Haotian Chi, Chenglong Fu, Qiang Zeng, and Xiaojiang
Du. Delay wreaks havoc on your smart home: Delay-
based automation interference attacks. In Proc. of IEEE
SP, 2022.

Haotian Chi, Qiang Zeng, Xiaojiang Du, and Jiaping Yu.
Cross-app interference threats in smart homes: Catego-
rization, detection and handling. In Proc. of IEEE/IFIP
DSN, 2020.

Camille Cobb, Milijana Surbatovich, Anna Kawakami,
Mahmood Sharif, Lujo Bauer, Anupam Das, and Limin
Jia. How risky are real users’ IFTTT applets? In Proc.
of USENIX SOUPS, 2020.

Wenbo Ding and Hongxin Hu. On the safety of IoT
device physical interaction control. In Proc. of ACM
CCS, 2018.

Home Assistant. Home Assistant: Awaken your home.
https://www.home-assistant.io, 2023.

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

Kai-Hsiang Hsu, Yu-Hsi Chiang, and Hsu-Chun Hsiao.
SafeChain: Securing trigger-action programming from
attack chains. IEEE Transactions on Information Foren-
sics and Security, 14(10), 2019.

Justin Huang and Maya Cakmak. Supporting mental
model accuracy in trigger-action programming. In Proc.
of ACM UbiComp, 2015.

IFTTT. IFTTT: Every thing works better together.
https://ifttt.com, 2023.

Chieh-Jan Mike Liang, Lei Bu, Zhao Li, Junbei Zhang,
Shi Han, Borje F. Karlsson, Dongmei Zhang, and Feng
Zhao. Systematically debugging IoT control system
correctness for building automation. In Proc. of ACM
BuildSys, 2016.

Chieh-Jan Mike Liang, Borje F. Karlsson, Nicholas D.
Lane, Feng Zhao, Junbei Zhang, Zheyi Pan, Zhao Li,
and Yong Yu. SIFT: Building an internet of safe things.
In Proc. of IPSN, 2015.

McKenna McCall, Faysal Hossain Shezan, Abhishek
Bichhawat, Camille Cobb, Limin Jia, Yuan Tian, Cooper
Grace, and Mitchell Yang. SafeTAP: An efficient in-
cremental analyzer for trigger-action programs, 2021.
CMU Technical Report.

McKenna McCall, Eric Zeng, Faysal Hossain Shezan,
Mitchell Yang, Lujo Bauer, Abhishek Bichhawat,
Camille Cobb, Limin Jia, and Yuan Tian. Supplementary
material. https://kilthub.cmu.edu/articles/
dataset/Towards_Usable_Security_Analysis_
Tools_for_Trigger-Action_Programming —-_
Dataset /23100482, 2023.

Dang Tu Nguyen, Chengyu Song, Zhiyun Qian,
Srikanth V. Krishnamurthy, Edward J. M. Colbert, and
Patrick McDaniel. TotSan: Fortifying the Safety of IoT
Systems. In Proc. of CoONEXT, 2018.

Mitali Palekar, Earlence Fernandes, and Franziska Roes-
ner. Analysis of the susceptibility of smart home pro-
gramming interfaces to end user error. In Proc. of IEEE
SPW, 2019.

SmartThings Inc. SmartThings: One simple home
system. A world of possibilities. https://www.
smartthings.com, 2023.

Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer,
Anupam Das, and Limin Jia. Some Recipes Can Do
More Than Spoil Your Appetite: Analyzing the Security
and Privacy Risks of IFTTT Recipes. In Proc. of WWW,
2017.

https://www.home-assistant.io
https://ifttt.com
https://kilthub.cmu.edu/articles/dataset/Towards_Usable_Security_Analysis_Tools_for_Trigger-Action_Programming_--_Dataset/23100482
https://kilthub.cmu.edu/articles/dataset/Towards_Usable_Security_Analysis_Tools_for_Trigger-Action_Programming_--_Dataset/23100482
https://kilthub.cmu.edu/articles/dataset/Towards_Usable_Security_Analysis_Tools_for_Trigger-Action_Programming_--_Dataset/23100482
https://kilthub.cmu.edu/articles/dataset/Towards_Usable_Security_Analysis_Tools_for_Trigger-Action_Programming_--_Dataset/23100482
https://www.smartthings.com
https://www.smartthings.com

[22] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and
Michael L. Littman. Practical trigger-action program-
ming in the smart home. In Proc. of SIGCHI, 2014.

[23] Maarten van Smeden, Karel GM Moons, Joris AH
de Groot, Gary S Collins, Douglas G Altman, Mari-
nus JC Eijkemans, and Johannes B Reitsma. Sample
size for binary logistic prediction models: Beyond events
per variable criteria. Statistical Methods in Medical Re-
search, 28(8), 2019.

[24] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates,
and Carl A. Gunter. Charting the attack surface of
trigger-action IoT platforms. In Proc. of ACM CCS,
2019.

[25] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl
Gunter. Fear and logging in the internet of things. In
Proc. of NDSS, 2018.

[26] Svetlana Yarosh and Pamela Zave. Locked or not? men-
tal models of IoT feature interaction. In Proc. of CHI,
2017.

[27] Yinbo Yu and Jiajia Liu. TAPInspector: Safety and
liveness verification of concurrent trigger-action IoT
systems. [EEE Trans. on Information Forensics and
Security, 17,2022,

[28] Lefan Zhang, Weijia He, Jesse Martinez, Noah Bracken-
bury, Shan Lu, and Blase Ur. AutoTap: Synthesizing and
repairing trigger-action programs using LTL properties.
In Proc. of IEEE/ACM ICSE, 2019.

A Terminology

The terminology differs slightly between our paper and the
surveys. We summarize the relevant terminology in Table 7.

B Survey Instrument

This section includes the survey instrument for both S1 and
S2. Both surveys include the following sections:

e Consent form, pre-screen questions, and Prolific ID col-
lection

e Background questions on smart home devices; warm-up
exercises introducing TAP rules; home automation goals

e Main survey tasks
e Demographic and other wrap-up questions

The surveys are the same except where indicated. We in-
clude question text (shortened for brevity) and describe the

survey flow decisions and other details about the survey us-
ing italics, fields from tables using bold text, and list answer
choices next to circles: o

Background and warm-up (RQ1) Introduction to the back-
ground questions.

1. For each of the following categories, tell us if you have
used and/or have heard of the device. If you own or have
set up a device not listed here, you can use the box at
the bottom to describe the device. Device categories are
shown in Figure 12
oI have used smart features on one of these oI have used
one of these, but not the smart features oI have heard of
these, but never used one ol have never heard of these

2. For the devices the participant reports they have
used/heard of in Question 1: For each of the follow-
ing categories, tell us if you own and/or have set up the
device. If you own or have set up a device not listed here,
you can use the box at the bottom to describe the device.
ol own and have set up one of oI own one of these, but
have not set it up oI do not own one of these but I have
set one up ol do not own, nor have I set up one of these

Practice exercises to introduce home automations

3. Have you ever tried to use home automations with your
own smart home devices? (Please select "yes" even if
you tried to set up home automations without success.)
Allows multiple answers
o Yes, using a platform like IFTTT, SmartThings, Home-
Kit, or openHAB o Yes, using built-in settings like sched-
ules or based on my location oNo

4. Which of the following reasons stop you from using
more smart home devices than you currently do? (either
installing more home automations with your current de-
vices, buying more devices, or using more features on
your current devices).

o This is not a factor o This is somewhat a factor o This
is definitely a factor

(a) Learning to use a new device/feature/home automa-
tion is too difficult

(b) Cost is too high
(c) Not interesting to me
(d) Privacy and/or security concerns

(e) Other (please describe below) Free response

5. S1 only. Wording depends on whether the participant
indicated they have used home automations before in
Question 3. Which of the following describes your goals
for your home automation? If you have different goals
for different types of home automation, you can select
multiple options. Allows multiple answers

Term Survey term Definition
TAP rule Home automation | Trigger-action programming (TAP) rules allow users to customize their smart
home devices. A simple TAP rule format is “IF trigger THEN action” which
causes action to happen in response to the trigger. In the surveys, we often
use the word behavior instead of action.
TAP program Multiple A set of TAP rules which may (or may not) interact with each other when one
home automations | rule triggers another rule.
(Declarative) Template Tools which allow users to check that their smart homes perform specific
policy template behaviors use policy templates to help the user communicate their goals to
the tool.
TAP patterns Patterns Tools which look for trigger-action programming patterns are checking for
potentially dangerous/undesirable interactions between TAP rules rather than
asking users to specify their own custom property.

Table 7: Terms used in this paper and their survey counterparts.

oI have goals which some of my home automations work
together to achieve ol have independent goals which
my home automations would achieve independently ol
have no specific goals in mind for some of my home
automations

6. S1 only. Can you describe the goals you had in mind (if
any) when you were answering the last question? Free
response

7. Please select from the choices below to tell us how im-
portant these goal categories are to you.
oGoals like this are very important to me o Goals like
this are (somewhat)' important to me o Goals like this
are only a little important to me oI don’t care about goals
like this
Categories are listed in Figure 2

8. Did you think of any other goal(s) which did not fit into
the categories we identified, but would be important to
you?
oYes oNo

9. If the participant answered “Yes” in Question 8. How
would you describe the goal(s)? Free response

S1 tasks (RQ2)

We introduce the concept of declarative policies and the
templates used to write them. Policy templates and the work
they come from are shown in Table 1. We write templates with
bold text and underline fields in the templates. Fields which
have not been filled are written __. For each task we specify
whether the participant chooses a template (which may be
filled or unfilled), or fill out the template using a drill-down
interface.

Farticipants are randomly assigned a survey flow to ac-
count for the learning effect of SI Task 1: half are shown Task
1 first and the rest are shown Task I last.

I'The choice was “somewhat important” in S1 and “important” in S2. The
choices were otherwise the same between the surveys.

Fill out the template(s) for the following goal: / want my
windows to be closed while it is raining.

| always §

window is closed
window is open

temperature < 73F
temperature > 72F

v

Figure 5: Screenshot of the interface for Task 2a, where the
participants are asked to fill out the “I always/never want __~
policy template for the “windows” scenario.

S1 Task 1: Template preference In this task, we want to
know which goal formats are the most natural to use.

In the following questions, please select the option which
best describes the goal, in your opinion. If none of the choices
seem natural, please select the last option and briefly explain
why. Participants are shown 3 of the 5 questions in this sec-
tion. Full question text may be found in our supplementary
material [17].

S1 Task 2: Template picking Participants are shown both
of the following questions and pick from one of the unfilled
templates shown in Figure |

15. Pick one template for the following goal: I want my
lights to blink to tell me that smoke has been detected.
If the lights are blinking, I will assume there is a fire, so
I don’t want them to blink for any other reason.

16. Pick one template for the following goal: I have some
automations to cause my lights to blink, but I am worried
they might blink all night long and disturb my neighbors
while I am out of town. I want to know that when they
blink, they never blink for more than half an hour.

S1 Task 3: Template filling Participants are shown each of
the following questions and one of the templates (randomly

selected), which they fill via a drill-down interface (shown in
Figure 5). The participant also picks between the underlined
choices shown in brackets.

17. Fill out the template(s) for the following goal: I want my
windows to be closed while it is raining.

(a) I [always/never| want __

(b) __and __ should [always/never] occur together
(c) __should [always/never] be active

(d) __ should [always/never] be active while __

18. Fill out the template(s) for the following goal: I am wor-
ried my baby will overheat at night. I read that they
should sleep in rooms cooler than 73F.

(a) Whenever __ make sure that __

(b) _and __ should [always/never] occur together
(c) __should [always/never] be active

(d) __ should [always/never] be active while __

19. My dryer is disrupting my Zoom meetings. I don’t want
it to run during business hours. My meetings are always
finished by SPM.

(a) Whenever __ make sure that __
(b) __should [always/never] be active while __
(c) __ should [only/never] happen when __

(d) __ should [always/never] happen within __
[minutes/hours] after __

S2 tasks (RQ3 & RQ4)
Introduction to general properties, which we refer to as
“patterns” in the survey.

TAP Pattern task 1 Each participant answers the following
questions for 2 properties, randomly selected from Table 8.
The section begins with an explanation of [Pattern], including
an example. Half of the participants are asked to identify the
example of [Pattern] first, the other half are asked the Likert
questions first.

10. Please select the example of automations with the
"[Pattern]" pattern. (Exactly 1 will fit the pattern.)
Participants choose from 4 simple programs, the correct
response is shown in Table §.

11. How difficult do you think it is to understand what the
"[Pattern]" pattern is, as a concept?
o Very easy o Easy o Neither easy nor difficult o Difficult
o Very difficult

(a) I find understanding [Pattern] to be...

(b) Technical people would find understanding [Pat-
tern] to be...

(c) Most people would find understanding [Pattern]
to be...

(d) Finding [Pattern] in my home automations would
be...

12. How often would people have the "[Pattern]" pattern in
their home automations? How often would people want
to have the "[Pattern]" pattern in their home automa-
tions?

o Always o Sometimes o Rarely o Never

(a) I think my home automations would have [Pat-
tern]...

(b) I would want [Pattern] in my home automations...

(c) T would want to avoid [Pattern] in my home au-
tomations...

(d) Ithink other people would want [Pattern] in their
home automations...

13. Would people want help from a tool to find the
"[Pattern]" pattern in their home automations?
oDefinitely o Probably o Probably Not o Definitely Not

(a) I would need help finding [Pattern] in my home
automations...

(b) I would want help finding [Pattern] in my home
automations...

(¢) I would use a tool if it looked for [Pattern]...

(d) It would be annoying if the tool looked for [Pat-
tern]...

TAP Pattern task 2 This task is similar to the previous one
except that the participant is asked to identify 2 examples
of each [Pattern]. Each participant is shown 2 properties,
randomly selected from Table 9. The section begins with an
explanation of [Pattern], including an example. Half of the
participants are asked to identify the example of [Pattern]
first, the other half are shown the Likert questions first.

Bug fixing task

For this task, participants are randomly assigned to one of
three groups which determines how much feedback they get to
help them repair the bugs in this task: rule only, rule and state,
or a full trace evets leading to the bug. Each participant is
given 2 programs to fix. The scenario, program, and feedback
given to each group is shown in Table 10.

Next, we are going to ask questions about what actions
you would take if a tool reported possible problems with
your home automations. Suppose you told a tool that your
goal is [Scenario]. You have the following home automations
installed: [Buggy program].

14. What problem is happening here?
o A home automation is missing o A home automation is

Property Program

Different Triggers, “IF user arrives at home THEN lock door”
Same Behavior [4] “IF user leaves home THEN lock door”
Same Except No Condition [24] "IF it begins raining THEN close window"
"IF window is opened WHILE it is raining THEN close window"
Same Triggers, Different “IF the temperature is >74F WHILE the A/C is off THEN turn on A/C”

Behavior & Conditions [6,7,24,27] “IF the temperature is >72F THEN turn on A/C”
Chains with Opposite Behaviors [7,24] “IF temperature <74F THEN turn off A/C”
“IF temperature >78F THEN turn on A/C”

Chain [6,7,9,19,27] "IF temperature >78F THEN turn on A/C"
"IF temperature <73F THEN turn off A/C"
Different Triggers, "IF it begins raining THEN set light color to blue"
Different Behaviors "IF it becomes sunny THEN set light color to yellow"

Table 8: Example of each pattern for S2. We include citations for patterns which are inspired by prior work.

Anti-Pattern Name Program

Loops [1,5,7,16,24] (1) "IF I post a new Facebook status THEN post a new tweet"
"IF I post a new tweet THEN post a new Facebook status"
(2) "IF temperature >70F WHILE A/C is off THEN turn on A/C"
"IF temperature <73F WHILE A/C is on THEN turn off A/C"
Opposite Behaviors [1,4,5,7,15,18,19,24,27] (1) "IF motion is detected THEN turn on security camera”
"IF the time is 6AM THEN turn off security camera"
(2) "IF temperature >70 THEN turn on A/C"
"IF temperature <73 THEN turn off A/C"
Same Behaviors [4,5, 18,24,27] (1) "IF temperature >74F THEN turn on A/C"
"IF humidity >80% THEN turn on A/C"
(2) "IF it begins raining THEN close window"
"IF window is opened WHILE it is raining THEN close window"
Un-Paired Automations [1,12,19] (1) "IF it begins raining THEN close window"
"IF window is opened WHILE it is raining THEN close window"
(2) "IF apresence is detected THEN turn on security camera"
"IF new reminder added THEN send notification”
Extended Behavior [1,12,27] (1) “IF the time is 7AM THEN begin brewing coffee”
“IF user arrives at home THEN begin brewing coffee”
(2) "IF email is received THEN turn on light sequence"
"IF user leaves work THEN turn off light"
Privacy [3,5,11,18,19,21] (1) “IF user leaves home THEN turn on porch light”
“IF user arrives at home THEN unlock door”
(2) "IF the time is 7AM THEN post a new tweet"
"IF I post a new status on Facebook THEN post a new tweet"
Trust [5,11,18,19,21] (1) "IF someone I follow tags me THEN re-tweet their post”
"IF I post a new status on Facebook THEN post a new tweet"
(2) "IF an email is received THEN flash lights"
"IF new reminder added THEN send notification"

Table 9: Example of each pattern for S2. Participants are asked to identify the example of [Pattern] twice for this task. We
include citations for patterns which are inspired by prior work.

Scenario text Buggy program
S1 | Whenever I am not "TF the time is 7AM THEN unlock door"
at home, I want my door | "IF the user leaves home THEN lock door"
to be locked "IF the temperature is above 75 THEN turn on A/C"
"IF the temperature is below 68F THEN turn off the A/C"

S2 | I want my lights to "IF new email received THEN blink lights"

blink only when smoke | "IF smoke detected THEN blink lights"

has been detected "IF the time is 7AM THEN unlock door"
"IF the user leaves home THEN lock door"

S3 | Temperature above 72 "IF window opened THEN turn off the A/C"

should never happen "IF the time is 7AM THEN unlock door"
"IF the temperature is below 68F THEN turn off the A/C"
"IF the temperature is 71F THEN turn on the A/C"

State Full trace

S1 | the time is 7AM Initially, the time is 6AM, the user is at home, the door is unlocked, the temperature is
70F, and the A/C is off. Next, the time is 6:30AM and the user leaves home. An
automation is triggered and the door is locked. Finally, the time is 7AM. An automation
is triggered and the door is unlocked.

S2 | new email received Initially, the time is 6AM, the user is at home, the door is unlocked, the lights are not
blinking, and no smoke is detected. Next, the time is 6:30AM and an email is received.
An automation is triggered and the lights begin blinking.

S3 | window opened Initially, the time is 10AM, the window is closed, the door is unlocked, the temperature
is 70F, and the A/C is off. The temperature is rising. Next, the time is 10:30AM, the
temperature is 71F, and the user opens the window. An automation is triggered and the
A/C turns on. The temperature begins falling. An automation is triggered and the A/C is
turned off. The temperature begins rising. The time is 1 1AM and the temperature is 72F.
Finally, the time is 11:30AM and the temperature is 73F.

Table 10: Bug-fixing task for S2. For each scenario we show the full program, and the feedback given to the participant to help
them make a fix. The rule shown in bold text is the one shown to participants as feedback.

Scenario text Partial program
S1 | The window should never | "IF the user leaves home THEN lock door"
be open while it is raining | "IF it begins raining THEN close window"
"IF temp > 75 WHILE it is not raining THEN open window"
"IF temp > 75 WHILE it is raining THEN turn on A/C"
S2 | The temperature should "IF it begins raining THEN close window"
never be above 75F for "IF the user leaves home THEN lock door"
more than 1 hour "IF smoke detected THEN blink lights"
"IF the time is 7AM THEN unlock door"
State Full trace
S1 | user opens window and Initially, the temperature is 70F, the window is open, and it is not raining. Next, it
it is raining begins raining. An automation is triggered, closing the window. Finally, the user opens
the window.
S2 | the temperature increases | Initially, the time is I0AM, the temperature is 75F, the window is open, and it is not
above 75F raining. The temperature is rising. Next, the time is 10:30AM and the temperature is
76F. Next, the time is 1 1AM and the temperature is 77F. Finally, the time is 11:30AM
and the temperature is 78F.

Table 11: Program writing task for S2. For each scenario we show the partial program, and the feedback given to the participant
to help them complete the program.

doing something I don’t want o Multiple home automa-
tions are interacting to do something I don’t want ol
don’t know o Something else Free response

15. What action would you take?
o Add another home automation o Modify a home au-
tomation oDelete a home automation oDo nothing/I
don’t know o Something else Free response

16. If “Add another home automation” was selected for
Question 15 Which format would the new home automa-
tion take?
oIf-then oIf-while-then

17. Wording depends on whether “If-then” or “If-while-then”
was selected for Question 16 Please enter the missing
fields for the “if-then” home automation, below. Drill-
down format

18. Wording depends on whether “Modify a home automa-
tion” or “Delete a home automation” was selected for
Question 15 Which home automation would you mod-
ify? Participant selects one of the TAP rules in [Buggy
program]

TAP program completion task For this task, participants
are assigned to a group which determines how much feedback
they get to help them complete the partial TAP program. They
are assigned to the same group as the previous task. Each
participant is given the same 2 programs to complete. The
scenario, program, and feedback given to each group is shown
in Table 11.

Suppose you told a tool that your goal is [Scenario]. You
have the following home automations installed: [Partial pro-
gram].

If the participant is given a rule as feedback: If the tool
told you there was a missing home automation, what home
automation would you add?

If the participant is given a rule and state as feedback: If
the tool told you there was a missing home automation when:
[State] What home automation would you add?

If the participant is given a full trace as feedback: 1If the
tool told you there was a missing home automation after
the following sequence of events: [Full trace] What home
automation would you add?

19. Would you like to add a home automation in the "if-then"
or the "If-while-then" format?
olIf-then o If-while-then

20. Wording depends on whether “If-then” or “if-while-then”
was selected for Question 19 Please enter the missing
fields for the “if-then” home automation, below. Drill-
down format

Smart Devices Owned S1 S2
Voice Assistant 81.6% 78.8%
Smart TV 78.7% 83.5%
Smart Lightbulb or Switch 36.2% 44.7%
Doorbell Camera 282% 35.9%
Security Camera 27.6% 39.2%
Smart Thermostat or A/C 26.4% 23.8%
Smart Vacuum or Mop 12.6% 17.9%
Smart Lock 9.8% 8.8%
Baby Monitor 9.2% 13.2%
Other 7.5% 8.8%
Smart Smoke or CO Detector 5.7% 5.1%
Smart Lawn Mower or Sprinkler 0.6% 2.9%

Table 12: Percent of participants that own smart home devices
from various categories.

C Device Background and Experience

Table 12 shows the percent of participants that own each type
of smart home device. Most participants have a smart TV or
smart speaker. Other device types are less common.

D Statistical Results for TAP Goals (RQ1)

To determine which goals for TAP were most important to
participants, we conducted 15 pairwise Wilcoxon signed-rank
tests, corrected with Holm’s sequential Bonferroni procedure,
between each pair of goals. In each test, we paired each partici-
pants’ responses to one goal to their response in the other goal.
The tests indicated significant differences in the proportion of
responses for every pair of goals except for (Home Security,
Home Safety), (Comfort and Convenience, Understanding
Failures), and (Comfort and Convenience, Privacy).

E Template Preferences (RQ2)

Table 13 shows the proportion of responses for each of the
policies in the template preferences task as well as the tem-
plates involved in each policy and their attributes.

F Anti-pattern preferences (RQ3)

Table 14 shows the proportion of participants who report
needing/wanting help identifying TAP anti-patterns, as well
as how many would use a tool that looks for the anti-patterns
or would be annoyed by a tool looking for the anti-patterns.

Scenario Tool Template(s) Policy Structure Sentiment % Preferred
AutoTap State-State Conditional 2 Templates Negative 42%
SafeTAP Always/Never 1 Template With And Positive 38%
Temperature SafeTAP Always/Never 1 Template With Negation + Or Negative 13%
N/A None of the Above N/A N/A 5%
AutoTap One-State Duration 2 Templates Negative 2%
AutoTAP Event-State Conditional 1 Template Positive 50%
SafeTAP ~ Whenever 2 Templates Positive 24%
Smoke SafeTAP Only When 1 Template Positive 21%
AutoTap Multi-State Unconditional 2 Templates Negative 4%
N/A None of the Above N/A N/A 1%
SafeTAP Whenever 2 Templates Positive 67%
Both Whenever, Event-State Conditional 3 Templates Negative 16%
Security Camera AutoTap State-State Conditional 1 Template With Or Positive 11%
AutoTap ~ Multi-State Unconditional 2 Templates Negative 5%
N/A None of the Above N/A N/A 1%
SafeTAP Always/Never 1 Template With And Positive 46%
SafeTAP Always/Never 2 Templates Negative 29%
Humidity AutoTap One-State Unconditional 1 Template With And Positive 14%
AutoTap One-State Unconditional 2 Templates Negative 9%
N/A None of the Above N/A N/A 2%
SafeTAP ~ Whenever Consistent Conjunctions Positive 42%
SafeTAP ~ Only When, Whenever Mixed Conjunctions Positive 25%
Forecast Both Whenever, Event-Event Conditional Mixed Conjunctions Positive 17%
Both Only When, Event-Event Conditional =~ Consistent Conjunctions Positive 11%
N/A None of the Above N/A N/A 5%
Table 13: Proportion of survey responses for most natural-sounding policies across five scenarios.
Pattern Percent of Participants Who...
Need Help Want Help Would Use Tool Would Be Annoyed by Tool
Different Triggers, Same Behavior 41.1% 65.6% 23.3%
Same Behaviors 43.6% 73.1% 24.4%
Different Triggers, Different Behaviors 47.3% 71.4% 22.0%
Trust 68.8% 25.0%
Loops 75.6% 25.6%
Privacy 75.0% 15.8%
Chain 78.7% 18.1%
Same Except No Condition 76.4% 23.6%
Opposite Behaviors 68.4% 31.6%
Un-Paired Automations 76.3% 25.0%
Same Triggers, Different Behavior & Conditions 89.0% 26.4%
Extended Behavior 69.6% 25.3%
Chains with Opposite Behaviors 70.3% 23.1%

Table 14: Percent of participants who need/want help identifying TAP anti-patterns, whether they would use a tool to help identify
such anti-patterns, and whether a tool would be annoying. Anti-patterns are sorted in order of easiest to understand to hardest to
understand, based on participants responses in Figure 3.

	Introduction
	Background and Related Work
	Study Goals and Survey Design
	Part 1: Identifying user needs
	Part 2: Writing declarative policies
	Part 3: Identifying TAP anti-patterns
	Part 4: TAP program repair

	Methodology
	Results
	RQ1: Users' Goals for TAP Rules
	RQ2: Usability of Declarative Policies
	RQ3: Understanding Anti-Patterns
	RQ4: Fixing TAP Programs
	Effect of TAP Experience

	Discussion
	Recommendations for Tool Developers
	Recommendations for Researchers
	Limitations

	Conclusion
	Terminology
	Survey Instrument
	Device Background and Experience
	Statistical Results for TAP Goals (RQ1)
	Template Preferences (RQ2)
	Anti-pattern preferences (RQ3)

