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Abstract
Iterative relational algebra (RA kernels in a fixed-point loop)
enables bottom-up logic programming languages such as Dat-
alog. Such declarative languages are attractive targets for high-
performance implementations of relational data analytics in
fields such as graph mining, program analysis, and social-
media analytics. Language-level constructs are implemented
via high-performance relational algebra primitives (e.g., pro-
jections, reorderings, and joins). Such primitives would appear
a natural target for GPUs, obtaining high throughput on large
datasets. However, state-of-the-art Datalog engines are still
CPU-based, scaling best between 8–16 threads. While much
has explored standalone RA operations on the GPU, relatively
less work focuses on iterative RA, which exposes new chal-
lenges (e.g., deduplication and memory management). In this
short paper, we present a GPU-based hash-join implementa-
tion, leveraging (a) a novel open-addressing-based hash table
implementation, (b) operator fusing to optimize memory ac-
cess and (c) two variant implementations of deduplication. To
evaluate our work, we implement transitive closure using our
hash-join-based CUDA library and compared its performance
against cuDF (GPU-based) and Soufflé (CPU-based). We
show favorable results against both, with gains up to 10.8×
against cuDF and 3.9× against Soufflé.

1 Introduction

High-performance iterative relational algebra (RA) has the po-
tential to automatically extract massive data-parallelism from
applications built on top of bottom-up logic programming
languages such as Datalog [2,6,9,21,38]. Datalog is a declar-
ative logic programming language that has been applied to a
wide variety of applications such as big-data analytics [17],
graph mining [26, 33], and program analysis [5, 34]. The goal
of declarative languages is for a user to provide a few under-
standable and compact rules that define a solution while the
language automatically extracts an operational approach for
computing the solution. Standard bottom-up Datalog solvers

do just this: rules are implemented via standard RA opera-
tions and combined into kernels that infer new facts from
discovered facts in a fixed-point loop.

Modern Datalog applications scale to extreme input-
relation sizes (billions of rows/facts, tens of gigabytes of
data), and thus highly parallel implementations are increas-
ingly valuable. Unfortunately, however, modern CPU-based
Datalog implementations have hit scalability walls due to
their use of locking shared-memory data-structures—in our
experiments, scalability for Soufflé (a best-in-class solver)
peaks at roughly 16 threads. By contrast, modern GPUs offer
(tens of) thousands of data-threads of computation in their
high-throughput SIMD architecture. While there has been a
plethora of work discussing implementation of standalone
joins [20, 24, 30–32, 36] on the GPU, not much work tackles
the problem of iterative joins, especially in the context of the
modern GPU architectures. Iterative joins, fused with other
relational operations such as union and projection, needed in
the context of Datalog engines, add extra layers of complexity
such as having to deal with low-level memory management,
performing deduplication and mantainance for index data
structures.

In this paper, we present key innovations which have al-
lowed us to build scalable GPU-based implementations of
Datalog-style declarative programs. Specifically, we imple-
ment the classic Datalog problem of finding all reachable
paths (i.e., transitive closure) of a graph—a simple case of
feature extraction. This problem entails implementing joins
along with other RA operations like union and projection
iteratively in a fixed-point loop. With this work, we make
an important first step towards developing a complete GPU
based datalog engine. Specifically, we make the following
novel contributions to literature:

1. Developed a high-performance GPU-based hash table
tailored to relational data; the hash table is used to ac-
complish binary hash joins between relations.

2. Implemented RA-operation fusion (e.g. join and projec-
tion) to improve memory and computation footprint.

3. Implemented deduplication using two techniques (a) sort



and unique (using thrust [4]), and (b) merge (two sorted
lists) and unique. Both, key in facilitating iterative RA.

4. Evaluated our performance by comparing it against state
of art openMP-based implementation, Soufflé and a
cuDF implementation. We outperform both for almost
all graphs and achieve speedups up to 3.9× over Soufflé
and up to 10.8× over cuDF.

2 Related Work and Background

RA on GPUs Previous efforts in parallelizing RA have
mostly focused on stand-alone implementations of select few
RA primitives, such as join. Join is the most complex primi-
tive to implement as its output size is not known in advance
and depends on the characteristics of the input data and rela-
tions must be sorted, or stored in an index, for efficient joins to
be possible. The most common algorithms for implementing
joins are hash-joins and merge-sort join [3]. These algorithms
have been extensively studied for shared memory systems, be-
ing parallelized for both GPUs [16, 19, 20, 24, 30–32, 36] and
multi-core CPUs using openMP [23]. MPI-based distributed
join operations have also shown promise in several recent
studies [10, 13, 14, 25, 26]. However, unlike distributed join
implementations, most extant GPU-based implementations
do not maintain an order in their relations [39]. This poses a
problem in some iterated relational algebra algorithms (such
as transitive closure computation) as they require the join re-
sults to be sorted. If join results are sorted by default, we can
avoid costly operations like sorting the entire result at each
iteration of the algorithm, which impacts the overall perfor-
mance of all iterations and compounds across the fixed-point
loop. Additionally, off-the-shelf Python libraries also provide
RA primitives to perform iterated join operations [35], but
using the predefined methods does not allow fusing RA oper-
ations and creates memory overhead storing all intermediate
results during iterated RA operations.

Datalog and iterated RA In Datalog, rules can be provided
to define relations (tables) in terms of others. The following
Datalog program inductively defines the transitive closure, T ,
of an input graph G using two rules: T (x,y) :– G(x,y). and
T (x,z) :– T (x,y),G(y,z). The first rule represents a base case
that says: every x-to-y edge in G implies an immediate x-to-y
path in T . The second rule says: every x-to-y path in T that
can be extended with a y-to-z edge in G, implies an extended
x-to-z path. The second rule is recursive and must be iterated
repeatedly until stabilizing at a value for T that is consistent
with all rules.

The first rule can be implemented by inserting every el-
ement of G into T , a simple copy or union operation. The
second rule can be implemented by iteration of a kernel func-
tion, composed of several RA operations, iterated to a least-
fixed-point. One iteration of this function would join T on its

second column with G on its first column, yielding all triples
(x,y,z) where (x,y) can be drawn from T and (y,z) can be
drawn from G. Projection to the set of unique (x,z) tuples,
removing the middle column (as a graph, this is removing the
intermediate vertex in the discovered path), and unioning this
set of tuples with those in T completes one iteration of the
second rule. The output (newly discovered facts) acts as the
input for the following iteration, and the process continues
till all reachable paths are discovered (see Figure 1).

3 Standalone Join

We first implement a standalone join operation between two
input relations. A low-level programming model such as
CUDA allows us to control the memory hierarchy and fuse
operations together. We create a static hash table on the input
relation and then use a hash-join-based approach to join the
relations.

Representation We have developed a novel GPU-based
hash table from scratch to meet requirements pertinent to our
system. We extend the hash-join-based approach to support
the relational data type specific to our application (2-ary col-
umn). This is done by implementing an efficient hash table
that effectively supports search and can be easily linearized
to a compact 1D array (required for deduplication)– both
essential in implementing iterative joins.

To facilitate seamless hash-joins between relations, we use
the entries of the join column of every relation as the key of
the hash table. In particular, the join column of a relation is
used as the key, which maps to a set of values (corresponding
to the non-join column values). For example, for a relation
that is hashed on the first column, with tuples (1,2), (1,3),
and (1,4) the key corresponds to 1 and the set of values would
correspond to 2,3,4. Note that, our hash-table uses only the
join column as the key for hashing– making it easy to facili-
tate fast look-ups, needed for joins. Furthermore, to simplify
our development (targeting graph analytic applications), we
assume all base values are 32 bits wide.

All hash tables must support collision resolution. Two pop-
ular schemes include separate chaining and open address-
ing. However, GPUs face intrinsic difficulties in dealing with
linked data, and we instead use an open-addressing-based
hash table consisting of a fixed-size buffer. In our design, col-
lision resolution is accomplished via linear probing, which
(in our experiments) shows better cache performance than
quadratic and double-hashing techniques. Our implementa-
tion uses the Murmur3 hash, a popular implementation that
performs well on open-source benchmarks [22]. The hash is
calculated using a combination of bit shifts, multiplications,
and XOR operations. We obtain a hash-table build rate of 4
billion keys per second for a string graph and 400 million
keys per sec for a random graph (see Sec. 5 for more details).



Algorithm 1 Hashjoin based transitive closure computation
algorithm. Blue boxes indicate join, orange indicates union,
green indicates deduplication, and red indicates clearing.

1: procedure TRANSITIVECLOSURE(Graph G)
2: R← HashTable(G)
3: result← Sort(G)
4: T∆← G
5: repeat
6: joinSizePerRow← JoinSize(R, T∆)
7: joinOffset← Scan(joinSizePerRow)
8: Initialize(joinResult, totalJoinSize)
9: joinResult← Join((R, T∆), joinOffset)

10: joinResult← Sort( joinResult)
11: joinResult← RemoveDuplicates( joinResult)
12: totalUniqueJoinSize← Size( joinResult)
13: FreeMemory(T∆)
14: T∆← Copy( joinResult, totalUniqueJoinSize)
15: unionSize← resultSize + totalUniqueJoinSize
16: Initialize(unionResult, unionSize)
17: unionResult←MergeSortedArrays(result, joinResult)
18: unionResult← RemoveDuplicates(unionResult)
19: uniqueUnionSize← Size(unionResult)
20: oldUnionSize← Size(result)
21: FreeMemory(result)
22: result← Copy(unionResult, uniqueUnionSize)
23: FreeMemory(joinOffset)
24: FreeMemory(joinResult)
25: FreeMemory(unionResult)
26: until oldUnionSize ̸= uniqueUnionSize
27: FreeMemory(R)
28: FreeMemory(result)
29: FreeMemory(T∆)
30: return result
31: end procedure

In an open-addressing-based hash table, the load
factor measures a table’s sparsity, Load factor(α) =
size(input)/size(hashTableSize) ≤ 1. Intuitively, a lower
load will yield fewer collisions (and thus higher perfor-
mance) [11]. In experiments, we use load factors 0.1 and 0.4
to pre-allocate our hash table as the nearest (larger) power
of two (called hashTableSize); this permits us to replace the
more expensive modulo operation in our hash function with
an efficient binary AND operation. We create the hash table
as a strided array of structures (Entity) with 32-bit integers
Key and Value as fields. The hash table is initialized with a
sentinel value (−1) to indicate an empty value. While doing
bulk insertions in the hash table, CUDA threads search for the
index of each tuple they are assigned, using the hash function.
If the position is available (i.e., −1), we insert the tuple in
the hash table using CUDA’s atomic compare-and-swap
operation (atomicCAS). If the position is already occupied,
we search for the next available position using linear probing.
In CUDA, if each thread only operates on one element of
the input array, it can lead to problems if the input is larger
than the number of available threads. To address this, we use
a grid-stride loop, which allows a single thread to traverse
multiple elements of the input array by incrementing its
index by a stride value that is determined by the grid size and
block size. Each CUDA thread performs build hash table
computation on one grid size (blockDim.x∗gridDim.x) at a
time to provide maximum memory coalescing.

1

2

3

4 5

T
G

1 2
1 3
2 4
3 4
4 5

TΔ

2 1
3 1
4 2
4 3
5 4

Join

2 4 1
3 4 1
4 5 2
4 5 3

Projection

1 4
1 4
2 5
3 5

Tnew
1 4
2 5
3 5

1 2
1 3
1 4
2 4
2 5
3 4
3 5
4 5

T

1 2
1 3
1 4
2 4
2 5
3 4
3 5
4 5

1 2
1 3
2 4
3 4
4 5

4 1
5 2
5 3

4 5 1 1 5 1 5 1 2
1 3
1 4
1 5
2 4
2 5
3 4
3 5
4 5

1 2
1 3
1 4
1 5
2 4
2 5
3 4
3 5
4 5

1 2
1 3
2 4
3 4
4 5

5 1

First Iteration

Second Iteration

Third Iteration

⨝ =

1

2

3

4 5

T

2

3

4 5

T

1

Tfull

Figure 1: An example of the iterated joins on transitive closure
computation of a graph

Hash-Join Phases We perform a join operation to get the
join result of the hash table and input relation of Entity struc-
ture element with two 32-bit integers (Key and Value as struc-
ture members). We use two passes to compute the join result.
These two passes are carried out by two CUDA kernels. First,
we initialize an array (offset) with the size equal to the input
relation. In the first phase, each CUDA threads searches for
a total of n keys of the input relation in the hash table where
n is the size of one grid(blockDim.x * gridDim.x). If it finds
a matching key in the hashtable, it increases the counter of
the offset array for that input element. Thus, we calculate the
number of matches for each key of the input relation using
this CUDA kernel. We use thrust library’s reduce and exclu-
sive_scan APIs with device execution policy to get the total
amount of matches and the exclusive prefix sum of the off-
set array. As the offset array reveals the size of the matches
for each key of the input relation, the second pass inserts the
joined columns to the join result array using another CUDA
kernel. In the second pass, we do not insert the join column to
fuse the join and projection operation in one kernel invocation.
Both of these kernels use offset-based calculation without us-
ing any atomic operations or barrier synchronization, which
are computationally costly. On top of that, our kernels use
grid-stride loops to distribute the workload equally to the
available CUDA threads. It also eliminates the branch diver-
gence problem, where some CUDA threads could have more
workloads than others.

4 Iterated Joins on the GPU

Implementing iterated joins requires the allocation of extra
buffers to materialize intermediate results. Additionally, these
intermediate results must be deduplicated between each RA
iteration to ensure tractability. In this section, we demonstrate
our approach to efficient iterated joins, using transitive closure
as an illustrative example; our techniques generalize to other
problems using finite-domain Datalog.



Transitive closure: Transitive closure is operationalized as
iterated joins between a monotonically-growing set of transi-
tive edges, T , and an extensional database of edges, G. With
each iteration, new paths of increasing lengths are discov-
ered (monotonically extending T ) until all reachable paths
are found and execution terminates. In practice, efficient im-
plementations of Datalog employ semi-naïve evaluation [1],
tracking a frontier of new facts rather than all-yet-seen facts.
This is implemented by distinguishing multiple run-time ta-
bles for each syntactic relation: T∆, Tfull, and Tnew. T∆ tracks
the most-recently-discovered (last iteration’s) transitive edges
in T —T∆ is merged into Tfull after each iteration. Facts discov-
ered during the current iteration are accumulated into Tnew,
which is swapped into T∆ between iterations.

Figure 1 visualizes the execution of transitive closure on
a line graph consisting of five nodes. As a preparatory step
before the first iteration, T∆ is populated by G. The first it-
eration joins G and T∆, yielding four (intermediate) triples.
This is followed by projection of the join column, which re-
sults in a duplicate edge (1,4). We deduplicate by sorting
the results and applying consecutive deduplication (Thrust’s
unique, which required a preceding stable sort) to produce
unique inferred paths in Tnew. As a data-structure invariant,
tuples are sorted (using the natural lexicographic sort): this
enables merging Tnew into T using a single scan of Tnew. Next,
we union the merged relation and generate the union result in
Tfull. This graph is visualized in the middle left side of Figure
1, where blue edges indicate the new unique paths found from
the first iteration. We update the graph relation T∆ with Tnew
for the next iteration. We continue this iterated join operations
until we cannot find any new path or the size of T does not
change after the deduplication of the merged relation.

Algorithm 1 formalizes our implementation of transitive
closure in CUDA. This algorithm uses a combination of li-
brary functions illustrating the cruxes of Datalog on the GPU:
joins (boxed in blue), union (orange), deduplication (green),
and clearing (red). We begin by establishing the initial invari-
ants: building an initial result by sorting G, and copying G
into T∆. Next, we iterate until we reach a fixed-point; at the
end of each iteration we compare the number facts in the next
T with the number in the current T —when no new facts are
added, the algorithm terminates at a fixed-point.

Join operation in transitive closure The join operation
uses the single hash-join operation in a fixed-point iteration
described in Section 3. We create the hash table (R in Al-
gorithm 1) only once and repeatedly use it in the iterated
hash join. The relation T∆ is initialized with input relation
G. The two-pass approach (Sec. 3) calculates the join result
size (joinOffset) for each record of T∆ and then inserts the
join result in the joinResult array. Our algorithm fuses the
join and projection operations together and thus reduces time
and memory consumption for the iterated join (by up to 5%).
This optimization is novel from an iterated join on the GPU

Figure 2: Time comparison between CUDA’s pinned memory and
unified memory model for hash join based TC computation. (log-
scale for Y-axis)

perspective.

Deduplication of the join result and merged result We
use the key insight that some relational data can be perma-
nently maintained in sorted order while some cannot and use
this information to implement two kinds of deduplication
techniques. Duplicate tuples are generated in two segments;
after the join and projection operation and after the union
operation. We use thrust library’s sort and unique API to
remove duplicates from the join result. The sort API first
sorts the join results, and then the unique API removes the
consecutive duplicate elements from the array. To deduplicate
the union result, we initialize the result array with the input
graph G and sort it. To remove duplicates from the union
result (result ∪T∆), we merge the sorted arrays (result, T∆).
Then we apply the thrust’s unique API to remove the consec-
utive duplicates from the merged result. This merging step
eliminates the requirement of sorting the large result array
before applying the deduplication process.

Memory management The CUDA programming model
provides four memory allocation schemes: pageable memory,
pinned memory, mapped memory, and unified memory [7].
Pageable memory involves two transfers: from host pageable
memory to temporary pinned memory on the host, and then to
device memory. Pinned memory initializes data on the host’s
pinned memory, requiring only one transfer to send it to de-
vice memory [18]. Mapped memory maps pinned memory
in the device address space, avoiding host-to-device mem-
ory copying but increasing program processing time. Unified
memory creates a managed memory pool for accessing data
from both host and device using the same address, but intro-
duces supplementary operations for memory management.
For both the single join operations (Sec. 3) and iterated join
operations (Sec. 4), we utilize the CUDA pinned memory
model. We keep only two arrays (input relation and the final
result) in the host memory, and all intermediate buffers are
kept in the device memory without any need for data transfer



Figure 3: Time comparison between single join operation using
CUDA and cuDF. R indicates Random, and S indicates String graph.
(log-scale for Y-axis)

between the host and device memory for intermediate results.
We ensure the implementations have no memory leakage us-
ing cuda-memcheck and compute-sanitizer API provided by
CUDA library.

5 Evaluation

We perform a series of experiments to evaluate the perfor-
mance of our iterative hash-based join implementation. We
begin by evaluating the performance tradeoffs offered by
using different memory management schemes of CUDA. Fol-
lowing which, we study the performance of a hash-join in
isolation, comparing it against state-of-art join implementa-
tion of the cuDF library – part of NVIDIA’s rapids framework
that uses NVIDIA CUDA programming model for GPU par-
allelism [12, 15, 37]. Finally, we evaluate the performance of
our iterative joins, by computing the transitive closure of a
range of graphs. We compare our performance against Souffle,
a state of art openMP-based library for performing iterated
joins, and our cuDF-based implementation.

Experiment platform and datasets We conduct our exper-
iments on the ThetaGPU supercomputer of Argonne National
lab [27]. It has 24 NVIDIA DGX A100 nodes with eight
NVIDIA A100 Tensor Core GPUs per node. Each node fea-
tures two AMD EPYC 7742 processors with 3.31GHz clock
speed and a total of 128 cores.

cuDF package was installed on a Python conda environ-
ment, and we developed our code using CUDA version 11.4.
We use Souffle version 2.3 with 128 threads in ThetaGPU.
As cuDF and our CUDA experiments use only one GPU de-
vice (single-gpu benchmark) we use a single GPU node from
ThetaGPU. The single GPU node has 108 multiprocessors on
device (SM) and we use 3,456 (32 × 108) blocks per grid
and 512 threads per block for each of the CUDA kernels.

To evaluate the experiments, we use real-world and syn-
thetic graph datasets from the Stanford large network dataset

Figure 4: Our time breakdown for fe_ocean graph (CUDA outper-
forms Soufflé by 3.9×)

collection, SuiteSparse matrix collection, and road network
real datasets collection [8,28,29]. Table 1 shows all our graphs
used along with performance results.

Memory optimization We evaluated the pinned memory,
and unified memory as memory allocation schemes for transi-
tive closure computation for several real-world graphs men-
tioned in Table 1 [7]. Figure 2 shows the time comparison
between these two memory allocation schemes for directed
and undirected graphs. We observe 2.6× to 4.1× speedup for
transitive closure computation using the pinned memory over
the unified memory model. However, we see that the unified
memory model can handle graphs with larger TC size (e.g.
dataset p2p−Gnutella31 from Table 1) without getting a run
time error (out of memory error) as unified memory can over-
subscribe the GPU global memory since CUDA version 8.
Therefore, the graph p2p−Gnutella31, which has a higher
workload per iteration overflows the GPU global memory
(with pinned memory). For a single GPU-based implementa-
tion, this is an expected result.

Single hash-join performance To benchmark the single
hash-join implementation (described in Sec. 3), we use two
types of synthetic datasets; random graphs (numbers in the
range of 0 to 32,767) and string graphs (e.g. (1→ 2),(2→
3),(3→ 4)). Both types of graphs have edges between 1
million to 5 million. Figure 3 shows the time performance
comparison between cuDF and our standalone join.

For a random synthetic graph, we can build a hash table at
a rate of 400 million keys per second. For the string graph,
the build rate goes up to 4 billion keys per second. These two
graph types invoke the two ends of the performance spectrum,
with the random graph leading to tons of inefficient matches
(worst case) and the string graph leading to perfectly aligned
matches (best case). We observe up to 21× speedup for single
hash-join computation for the string graph using our CUDA-
based implementation over the cuDF join implementation.
We notice that the increase in speedup is directly related to
the size of the input relation for string graphs. For the random
graph, we see 7.6× to 8.4× speedup using the CUDA-based



Table 1: Transitive closure performance using Hashjoin based CUDA, Souffle, and cuDF implementation. CUDA implementation uses 3,456
blocks and 512 threads per block. The Soufflé implementation uses 128 threads. Type U and D indicate undirected and directed graphs.

Dataset Type Rows TC size Iterations CUDA Hashjoin(s) Soufflé(s) cuDF(s)
fe_ocean U 409,593 1,669,750,513 247 138.237 536.233 Out of Memory

p2p-Gnutella31 D 147,892 884,179,859 31 Out of Memory 128.917 Out of memory
usroads U 165,435 871,365,688 606 364.554 222.761 Out of Memory
fe_body U 163,734 156,120,489 188 47.758 29.070 Out of Memory

loc-Brightkite U 214,078 138,269,412 24 15.880 29.184 Out of Memory
SF.cedge U 223,001 80,498,014 287 11.274 17.073 64.417
fe_sphere U 49,152 78,557,912 188 13.159 20.008 80.077

CA-HepTh D 51,971 74,619,885 18 4.318 15.206 26.115
p2p-Gnutella04 D 39,994 47,059,527 26 2.092 7.537 14.005
p2p-Gnutella09 D 26,013 21,402,960 20 0.720 3.094 3.906

wiki-Vote D 103,689 11,947,132 10 1.137 3.172 6.841
cti U 48,232 6,859,653 53 0.295 1.496 3.181

delaunay_n16 U 196,575 6,137,959 101 1.137 1.612 5.596
luxembourg_osm U 119,666 5,022,084 426 1.322 2.548 8.194

ego-Facebook U 88,234 2,508,102 17 0.544 0.606 3.719
cal.cedge U 21,693 501,755 195 0.489 0.455 2.756
TG.cedge U 23,874 481,121 58 0.198 0.219 0.857

wing U 121,544 329,438 11 0.085 0.193 0.905
OL.cedge U 7,035 146,120 64 0.148 0.181 0.523

implementation over the cuDF based implementation.

Iterated hash-join We compare our iterated hash-join-
based transitive closure computation with state-of-the-art
Souffle and Nvidia’s cuDF library in Table 1. The bench-
mark results are based on multiple runs (at least 10), with
the average being reported. The variance between runs was
negligible (maximum standard deviation is <1%). For 15
out of 19 graphs, our CUDA-based implementation outper-
forms Souffle’s implementation (128 threads). For the graph
with the largest TC (fe_ocean, 1.6 billion edges), we observe
a speedup of 3.9× over Souffle. We observe a speedup of
10.8× over cuDF implementation. Moreover, the cuDF im-
plementation gets out of memory error several times where
the CUDA based implementation is able to compute the tran-
sitive closure of those graphs using the same experimental
setup. Additionally, we fused the projection operation with
join operation in CUDA implementation, which is not possi-
ble in cuDF-based implementation. Thus, it shows both time
and space performance enhancement of our iterated hash-join-
based transitive closure computation. To better understand
the time consumption for each of the individual operations
(mainly join, union, deduplication, and memory clear) at the
iteration level, we break down the operations at the granular
level. One such granular benchmark is shown in Figure 4. We
notice that the deduplication and union operation takes more
time than the other operations. Also, as the number of join re-
sults is smaller in the first few iterations, it takes significantly
less time in those iterations. For the graph (usroads), where
we under-perform compared to souffle, our hypothesis is that
we are not saturating the GPU as this graph has an increasing

number of iterations (606) and less work per iteration.

6 Conclusion

We explored the issues for iterated operations such as ineffi-
cient operation fusion, GPU memory management, and facts
deduplication while implementing the RA primitives which
are necessary for developing Datalog applications. Our sys-
tem is limited to a single GPU, and thus there are inherent
scaling walls dictated by available VRAM on the GPU–by
contrast, the largest unified nodes offer orders-of-magnitude
more available RAM, supporting larger graphs. We view this
work as a step towards multi-GPU joins across a cluster to
develop a scalable backend for Datalog.
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