
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

SHEPHERD: Serving DNNs in the Wild
Hong Zhang, University of Waterloo; Yupeng Tang and

Anurag Khandelwal, Yale University; Ion Stoica, UC Berkeley
https://www.usenix.org/conference/nsdi23/presentation/zhang-hong

SHEPHERD: Serving DNNs in the Wild

Hong Zhang
University of Waterloo

Yupeng Tang
Yale University

Anurag Khandelwal
Yale University

Ion Stoica
UC Berkeley

Abstract

Model serving systems observe massive volumes of infer-

ence requests for many emerging interactive web services.

These systems need to be scalable, guarantee high system

goodput and maximize resource utilization across compute

units. However, achieving all three goals simultaneously is

challenging since inference requests have very tight latency

constraints (10–500ms), and production workloads can be

extremely unpredictable at such small time granularities.

We present SHEPHERD, a model serving system that

achieves all three goals in the face of workload unpredictabil-

ity. SHEPHERD uses a two-level design that decouples model

serving into planning and serving modules. For planning,

SHEPHERD exploits the insight that while individual request

streams can be highly unpredictable, aggregating request

streams into moderately-sized groups greatly improves pre-

dictability, permitting high resource utilization as well as scal-

ability. For serving, SHEPHERD employs a novel online algo-

rithm that provides guaranteed goodput under workload un-

predictability by carefully leveraging preemptions and model-

specific batching properties. Evaluation results over produc-

tion workloads show that SHEPHERD achieves up to 18.1×
higher goodput and 1.8× better utilization compared to prior

state-of-the-art, while scaling to hundreds of workers.

1 Introduction
Model inference has grown to become a critical component of

many interactive applications [1–11]. Facebook, for instance,

serves tens of trillions of inference requests per day [12].

Compared to model training, model inference dominates pro-

duction costs: on AWS, inference accounts for over 90% of

the machine learning infrastructure cost [13]. This has driven

significant effort in the design of model serving systems to

serve inference requests from several applications with deep

neural network (DNN) architectures, often using hardware

accelerators like graphics processing units (GPUs) to meet

tight per-request latency service-level objectives (SLOs), e.g.,
50–500ms. These systems typically group requests with the

same SLO and target model into separate request streams, and

must make two types of scheduling decisions across them to

meet system goals. First, they make request serving decisions

to maximize system goodput, i.e., the number of requests that

meet their SLO deadlines per unit time. Second, they make

resource provisioning decisions in order to scale to a massive

number of request streams using large pools of GPUs, while

ensuring high utilization for the GPU pool for cost-efficiency.

We find that meeting these goals is challenging due to short-
term workload unpredictablity: our analysis of both synthetic

and production workloads (§2.2) indicates that while the aver-

age request arrival rates are predictable over longer timescales

(i.e., hours), they are bursty and unpredictable at smaller time

granularities (i.e., millisconds) that must be considered when

scheduling requests to meet their SLO deadlines. As such,

existing solutions [3–11] fail to meet one or more of the above

goals due to two key reasons.

First, existing systems expose a hard tradeoff between

resource utilization and scalability under short-term unpre-

dictability, as they typically employ one of two classes of

scheduling policies: (1) periodic per-stream policies [3–9],

which make scheduling decisions (i.e., resource provisioning,

batch sizing, load balancing, etc.) for each stream of requests

separately in a periodic manner, and (2) online global poli-

cies, which make scheduling decisions in an online manner

by time-multiplexing the entire pool of resources (e.g., GPUs)

across all request streams [10,11]. On one hand, while the pe-

riodic and per-stream nature of scheduling for the former per-

mit scaling to many request streams and compute resources,

these systems must over-provision resources to handle unpre-

dictable bursts of requests during each period, resulting in

poor resource utilization. On the other hand, online global

policies can achieve higher resource utilization by adapting

the amount of resources allocated to each stream in an online

fashion, but scale poorly with the number of request streams

and size of the resource pool due to the increased complexity

of online scheduling decisions.

Second, existing approaches are fundamentally unable to

provide any guarantees on system goodput under unpre-

dictable workloads. We establish several important theoretical

results to show why this is fundamental (§5). First, making

the optimal scheduling decisions (e.g., executing, deferring or

dropping a request) requires future knowledge of request ar-

rival patterns, and even with perfect knowledge, the problem is

NP-complete. Second, no online algorithm can achieve good-

put that is even within a constant factor of the optimal with

perfect knowledge without using preemption. Since existing

approaches [10] employ simple heuristics without consider-

ing preemption, their performance can be arbitrarily worse

than the optimal under unpredictable workloads (§2.2).

This raises the question: Is it possible to design a model

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 787

GPU Cluster
Model Serving System

Request streams

M1

Models in GPU mem

ra
te

time

timera
te

M2

Worker 1

Worker n

M3 M4

Model provision

Request Serving

Figure 1: High-level architecture of model serving system

serving system that is scalable, achieves high utilization, and
provides guaranteed high goodput under unpredictable serv-
ing workloads? In this paper, we answer the above question in

affirmative with SHEPHERD, a model serving system resilient

to workload unpredictability.

To break the utilization-scalability trade-off exposed by

existing solutions, we make an important observation: while

individual request streams can be highly unpredictable, aggre-

gating them into groups permits accurate resource provision-

ing. Moreover, our analysis show that even moderately-sized

groups comprising hundreds to thousands of streams can

already offer reasonable predictability (§3.1). SHEPHERD re-

alizes this insight into a two-level design that decouples model

serving into a periodic planning phase and an online serving
phase. For the planning phase, we introduce HERD, a planner

that periodically classifies inference request streams, DNN

models, and GPUs into several serving groups. Then based

on the planning results, the serving phase employs an online

algorithm FLEX to serve requests across streams within each

serving group independently. HERD solves an ILP to effi-

ciently balance utilization and scalability (§4): on one hand,

HERD limits the size of each group, restricting the online

scheduling algorithm’s decision space to a limited number

of streams and GPUs within each group. On the other hand,

HERD provisions a sufficient number of streams and GPU

workers for each serving group to maximize utilization.

To achieve guaranteed high goodput, we design FLEX (§5),

an online scheduling algorithm that leverages preemption and

model-specific batching properties. First, we note that while

preemption permits correcting for sub-optimal scheduling

decisions in the online setting, preempting too often can re-

sult in significant amount of wasted work. As such, FLEX

carefully weighs the utility of the currently running batch of

requests against pending candidate requests to decide whether

or not the running batch should be preempted. Second, FLEX

leverages a model-specific relationship between the batch size

in batched inference execution and its execution latency to

determine appropriate batch sizes and the order of execution

across request streams. We show that both techniques work

in concert to achieve SHEPHERD’s goodput guarantee.

We implement SHEPHERD (§6) and evaluate it using a com-

bination of testbed experiments and large-scale emulations

with both production and synthetic workloads (§7). Our re-

sults show that (1) SHEPHERD achieves up to 18.1× higher

goodput and 1.8× higher utilization than periodic per-stream

solutions, (2) SHEPHERD achieves up to 5.2× higher goodput

compared to heuristic-based online approaches, and (3) SHEP-

HERD’s goodput scales linearly with the number of workers.

2 Background and Motivation
We begin with an overview of model serving systems (§2.1)

and short-term workload unpredictability (§2.2).

2.1 System Model and Goals
We focus on Deep Neural Network (DNN) model serving

systems [3–11] deployed on GPU clusters (Figure 1). Users

issue inference requests, which the system must serve using

a specific DNN model on one of its GPU workers within a

latency SLO specified for the request, typically 10–500ms [6].

Requests for the same model and with the same latency SLO

are typically grouped into a request stream, with arbitrary

request arrival patterns within each stream. In serving these

streams, serving systems can benefit significantly by batching

requests on GPUs — on an NVIDIA GTX1080, batching to-

gether 32 inference requests improves model serving through-

put by 4.7–13.3× for VGG, ResNet and Inception models

relative to serving them individually [6]. Taking the above

constraints into account, the system makes two scheduling

decisions: model provisioning decisions to determine which

models should be loaded on which and how many GPUs, and

request serving decisions to determine:

• batch size: how many requests to be executed in a batch,

• batch priority: which batch should be executed first, and,

• target GPU: which GPU to execute the batch on.

Note that although multiple batches can be executed on one

GPU worker concurrently, their execution time becomes non-

deterministic due to poor performance isolation on GPUs. As

such, most model serving systems [3–11] execute one batch

at a time for performance predictability.

The key performance goal for a model serving system is

to maximize the system goodput, or the number of served

requests that meet their SLO requirements per unit time; re-

quests that fail to meet them often hold no utility for the user.

Since serving systems must cater to thousands of requests

streams [1, 12], the system should also scale to large clus-

ters with thousands of GPUs in order to serve them. Finally,

since inference pipelines comprise the majority of the ma-

chine learning infrastructure costs in production settings [13],

serving systems should target high resource utilization of the

GPU clusters to maximize cost-efficiency.

2.2 Short-term Workload Unpredictability
We find that a key challenge in achieving all three of the goals

outlined above is short-term workload unpredictability1 —

while the average request arrival rates are predictable over

longer timescales (e.g., hours), they can be quite unpredictable

at smaller time granularities (e.g., milliseconds) that must be

1Unpredictability in request arrival patterns is orthogonal to performance
predictability demonstrated in prior works [6,10], where the execution latency

for inference requests on GPUs is often quite predictable.

788 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

28 27 26 25 24 23 22 21 20

Time window size (τ , in minutes)

0

2

4

6

8

10

12

C
V

(a) Production workload

28 27 26 25 24 23 22 21 20

Time window size (τ , in minutes)

0

0.5

1

1.5

2

2.5

3

C
V

(b) Synthetic workload

Figure 2: The coefficient of variance (CV) over the number of
request in each time window vs window size (τ, in minutes). The

CV value increases dramatically as time window size decreases.

Solutions Utilization Scalability Goodput
Periodic, per-stream policies [3–9] � � �

Online, global policies [10, 11] � � �

SHEPHERD � � �

Table 1: Existing solutions under short-term unpredictability

considered to meet per-request SLO deadlines. Next, we show

the presence of short-term unpredictability and its impact for

both production and synthetic application workloads. Since

we are unaware of any publicly available production traces

for inference workloads, we use Microsoft’s recently released

traces for Azure Functions [14] for our production workload,

which is noted by recent work to be representative of real-

world inference workloads in terms of both diurnal patterns

and short-term burstiness [4, 10]. The trace contains the num-

ber of function invocations performed at minute granularities

across ∼ 46k applications over a two-week period. Our syn-

thetic workload simulates 1k user request streams as Poisson

processes with average arrival rate following an exponential

distribution, a commonly-used approach in approximating

human-generated invocations [3, 4, 14].

To study workload unpredictability, we divide the entire

time period into non-overlapping time windows of size τ, and

compute the number of requests rt,s in each time window t for

every stream s. We quantify unpredictability in each stream

using the coefficient of variance — the ratio of the standard

deviation to the mean across rt,s. Note that meeting 10–500ms

request SLOs requires optimizing scheduling decisions in

time window sizes (τ) of hundreds of milliseconds. Figure 2

shows the average coefficient of variance across all streams

for different values of τ: for both synthetic and production

workloads, coefficient of variance increases drastically as τ
decreases. Clearly, while statistical models may be able to

estimate average arrival patterns at hours time-scales, the high

coefficient of variance at even minute-granularity makes sub-

second request arrival patterns nearly impossible to predict.

Under short-term workload unpredictability, existing so-

lutions [3–11] are unable to meet one or more of the three

performance goals outlined in §2.1 (Table 1):

Poor resource utilization. Many existing approaches [3–9]

make periodic provisioning and serving decisions for each

user stream independently. Within each period (typically a

idle idleGPU 1:
idleGPU 2:
idleGPU 3:

idleGPU 4:
idleGPU 5:
idleGPU 6:

time(ms)0 50 100

Request: execution time: 10, deadline: 10

Stream 1:

idle idleGPU 1: Provision 1 GPU

Provision 6 GPUs

3 requests 1 request 6 requests

Figure 3: Periodic per-stream policies observe poor utilization.
Request arrival pattern is shown at the top, with each request’s exe-

cution time as well as latency SLO being 10ms. Provisioning one

GPU (top) based on average load causes 70% of the requests to miss

their deadline. Provisioning six GPUs (bottom) allows all requests

to meet their SLOs, but reduces resource utilization to 17%.

few minutes to hours), inference requests are served follow-

ing a fixed schedule determined at the beginning of the pe-

riod. Since scheduling decisions are computed per-stream

and updated only periodically, such approaches can scale to

many streams over massive pools of GPUs. However, these

approaches also tend to over-provisioning GPUs in order to

maximize the number of request SLOs met in the presence of

short-term burstiness, resulting in poor resource utilization.

As a concrete example, Figure 3 shows a user stream with

average arrival rate of 1 request every 10ms, with each re-

quest’s execution time and latency SLO being 10ms as well.

The bursty nature of the workload causes three requests to

arrive at t=0ms, one at t=40ms and six at t=80ms. Provision-

ing one GPU for the stream based on the average load would

cause 7 out of 10 requests to miss their SLO deadlines —

two from the first burst and five from the last. Provisioning

six GPUs permits all request latency SLOs to be met, but

reduces the resource utilization to 17%, since the GPUs are

collectively idle for 500ms out of 600ms cumulative runtime.

Poor scalability. An alternate approach employed by other

serving systems is to time-multiplex the GPU cluster across

different user streams to achieve better resource utiliza-

tion [10, 11]. Instead of provisioning and scheduling request

for each stream independently and periodically, the system

scales the number of GPUs allocated to each stream in an on-

line manner in response to workload fluctuations. While this

results in better resource utilization, it also limits system scal-

ability — scheduling decisions to maximize system goodput

grow super-linearly in computational complexity with both

the number of request streams as well as the number of GPUs

they are served over. Our scalability evaluation of Clock-

work [10], a recent model serving system that employs such

an approach, shows that its goodput does not scale beyond

a hundred GPU workers, saturating at ∼ 50k requests/sec-

ond (§7.1). In contrast, real-world inference serving load at

Facebook can be as high as 2.3 billion requests/second [12].

Lack of goodput guarantees. Maximizing goodput is chal-

lenging under short-term unpredictability. To see why, con-

sider the example in Figure 4, where a request r with an exe-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 789

time time

request r a burst of K requests

Execute r

0 10
Execute batch of K

0 10

request r

(a) Scenario A (b) Scenario B

Execute r ? Throughput
Yes 1
No 0

Execute r ? Throughput
Yes 1
No K

Figure 4: Example highlighting challenges in online scheduling
with short-term unpredictability. The optimal scheduling decision

for request r at time t = 0 depends on future arrivals: the performance

can be far from optimal depending on the scenario and the scheduling

decision to either execute request r or to drop it.

cution duration of 10ms arrives at time t = 0. The request has

a tight SLO deadline that necessitates its immediate execution

for the deadline to be satisfied. The scheduling algorithm has

two choices: to schedule the request, or drop it. Unfortunately,

the optimal decision to maximize system goodput depends on

the future arrival pattern. Specifically, in Scenario A, since no

other request arrives during r’s execution, the optimal choice

is to serve the request. In scenario B, however, where a large

burst of K requests with equally tight deadlines arrive at time

t = 5, the optimal decision is drop r, since it would prevent K
request SLOs from being satisfied in favor of one. Note that if

the SLO deadline for r was not as tight, the scheduler would

have yet another choice to consider — whether or not to defer

r’s execution so that it may be batched with future requests.

Since future arrival patterns cannot be accurately predicted

in the short-term, making the right scheduling choice is in-

herently hard. Existing solutions rely on simple heuristics,

which provides no guarantees on how far the performance

could be from the optimal. While they perform well on certain

workloads, their performance can be arbitrarily worse than the

optimal under unpredictable workloads, similar to the above

example. We validate this observation experimentally in §7.2.

3 SHEPHERD Design
We now outline SHEPHERD’s key design elements.

3.1 Overcoming Short-term Unpredictability
We leverage three key observations to overcome the chal-

lenges introduced by short-term unpredictability (§2.2):

Group-level predictability and group multiplexing. We

observe that while the short-term arrival pattern for individual

request streams are hard to predict, the aggregated arrival

pattern across a group of request streams tends to be much

more predictable. We validate this observation by considering

the same workloads in Figure 2, but randomly classifying

the request streams into serving groups of different sizes and

measuring the coefficient of variance per-group instead of

per-stream. Figure 5 shows that increasing the group sizes

drastically reduces the coefficient of variance even at smaller

window sizes. Note that the networking community has long

made similar observations for bursty network flows, where

statistical multiplexing can drastically improve utilization

28 27 26 25 24 23 22 21 20

Time window size (τ , in minutes)

0

2

4

6

8

10

12

C
V

Group size

1

10

100

1000

(a) Production workload

28 27 26 25 24 23 22 21 20

Time window size (τ , in minutes)

0

0.5

1

1.5

2

2.5

3

C
V

Group size

1

10

100

1000

(b) Synthetic workload

Figure 5: Coefficient of variance (CV) for groups of streams vs
window size (τ, in minutes). The CV increase with decreasing

window sizes is much slower for larger group sizes.

by dynamically sharing a network link across network flows

based on their instantaneous demands [15–18].

However, unlike multiplexing a network link across a few

flows, multiplexing thousands of GPU workers across tens of

thousands of SLO-bound request streams in real time presents

a significant scalability challenge. To address it, we observe

that even at moderate group sizes (100–1000), the per-group

coefficient of variance is small enough to make its arrival

pattern highly predictable (Figure 5). This motives a group
multiplexing approach that first partitions the GPU cluster and

request streams into moderately-sized serving groups (§4),

then applies statistical multiplexing per-group to perform

online scheduling (§5). This approach offers a means to break

the tradeoff between resource utilization and scalability faced

by existing systems: moderately sized groups are predictable

enough even in the short-term to accurately provision their

resources for high resource utilization. At the same time,

restricting the online scheduling algorithm’s decision space

to streams and GPUs assigned to each group drastically limits

its computational complexity, allowing the system to scale to

much larger number of request streams and GPUs.

Preemption to correct for scheduling errors. As noted in

the example from Figure 4, the optimal scheduling decision

often depends on future arrival patterns, which can be hard

to predict. As such, any non-clairvoyant online algorithm is

bound to occasionally make sub-optimal scheduling decisions.

We find that the ability to correct such decisions when its sub-

optimality becomes apparent via preemptions is necessary
for achieving performance guarantees for an online schedul-

ing algorithm. For instance, in the example of Figure 4, a

solution can correct for a sub-optimal scheduling decision in

both scenarios by simply preempting r if a burst of requests

arrives later. Preemptions in online scheduling algorithms

are not a new concept; they have been used in a variety of

scheduling contexts [19, 20] to achieve bounds on the algo-

rithm’s competitive ratio — the ratio between its performance

and that of an optimal offline algorithm. Leveraging insights

from recent work on context switching for DNN training on

GPUs [21] allows us to realize preemptions efficiently for in-

ference workloads (§6), and combining it with model-specific

batch-latency relationships (described next) permits bounding

790 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

GPU Cluster

Request
Router

Worker

Request
streams

Online Scheduler
(FLEX)

Online Scheduler
(FLEX)

Worker

Worker

Worker

Worker

Worker

Group 1

Group 2

Group g

Periodic Planner
(HERD)

traffic statistics

Online Scheduler
(FLEX)Plans

Figure 6: Overview of SHEPHERD design

the competitive ratio for online model serving.

Model-specific batch-latency relationships. Empirical mea-

surements in prior work [6] indicate that a simple linear model

can accurately describe the execution latency for varying re-

quest batch sizes in model serving workloads. In particular,

for a batch B of size |B| being executed on a model m, the

execution latency �m(B) is given by:

�m(B) = αm · |B|+βm (1)

where βm is the baseline execution latency for executing an
empty batch on the model, while αm is the latency for each

additional request in the batch.

We find exploiting this relationship helps make better

scheduling and stream grouping decisions. First, larger

batches help amortize the fixed cost βm and achieve higher

throughput, but too large a batch may miss the SLO dead-

line altogether. As such, making scheduling and preemption

decisions that leverage the batch-latency relationship to prior-

itize appropriately large batches that are likely to meet their

deadline, permit better performance guarantees for the on-

line scheduling algorithm. Second, when scheduling requests

across streams in a serving group of certain models, we find

that the online algorithm can achieve better performance guar-

antees if the models have similar α and β values (§5.2).

We next describe how SHEPHERD incorporates all of these

insights into an end-to-end design.

3.2 Design Overview
SHEPHERD leverages group-level predictability in a two-level

design that comprises a periodic planning and an online serv-

ing component. At a high-level, the periodic planning compo-

nent leverages long-term load statistics to partition the entire

GPU cluster into several serving groups, and determines how

models and request streams querying them are mapped to

these groups to optimize both resource utilization and system

scalability. The online serving component, on the other hand,

schedules requests from streams in each serving group across

the group’s allocated GPUs, and ensures that its goodput is

always within a constant factor of the optimal schedule.

SHEPHERD’s architecture (Figure 6) comprises four key

components: a planner (HERD), a request router, a scheduler

(FLEX) per serving group and multiple GPU workers. HERD

executes periodic planning, and informs each GPU worker

which serving group it belongs to and which models it must

serve. HERD also assigns a group-level scheduler to each serv-

ing group — the total number of group-level schedulers can

be scaled based on the number of models being served by the

system and the aggregate load across them. The request router

forwards client inference requests to group-level schedulers

based on their target model, and collects statistics regarding

their arrival patterns that HERD employs to compute group-

level mappings. The group-level schedulers, in turn, execute

our online scheduling algorithm, FLEX, to schedule inference

requests across GPU workers in their own serving group.

HERD (§4). While even random assignment of models and

GPU workers to serving groups can achieve decent workload

predictability (§3.1), achieving high utilization and guaran-

teed goodput requires considering a number of additional

constraints. To this end, HERD formulates this assignment

problem as an Integer Linear Program (ILP) incorporating all

such constraints. In particular, as noted in §3.1, colocating

models with similar α, β values (Eq. 1) in the same serv-

ing group yields better goodput guarantees in FLEX. Conse-

quently, HERD also incorporates model-affinity — a measure

of similarity across α, β values — in its ILP.

FLEX (§5). FLEX’s goal is to provide guaranteed high good-

put for each group under short-term unpredictability. To this

end, we answer three key theoretical and practical questions:

• What performance guarantees are possible? We first es-

tablish two impossibility results. We show that determining

an optimal solution is NP-hard, even in the offline setting.

In the online setting, we show that no online algorithm can

achieve performance competitive with the optimal offline so-

lution without using preemption. Since prior model serving

systems do not employ preemption, they are fundamentally

unable to provide any performance guarantees.

• What performance guarantees can FLEX provide? FLEX

ensures that for each serving group, the aggregated goodput

achieved is guaranteed to be at most 12.62 ·K× worse than

the optimal offline schedule with complete knowledge of

the future. K is a model-affinity parameter that reduces to

one if all models in the serving group have the same α and

β, and increases if they diverge (§5.2).

• How does FLEX achieve this guarantee? FLEX leverages

two key insights outlined in §3.1: preemption to correct

for scheduling errors, and model-specific batch-latency re-

lationships. First, preempting a scheduled batch requires

carefully weighing the utility brought by the scheduled

batch of requests against the utility of the new batch to be

scheduled — the threshold beyond which preemption is per-

formed significantly impacts the performance bound FLEX

can achieve. Second, FLEX leverages the model-specific

relationship in Eq. 1 to determine appropriate batch sizes

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 791

Decision variables Definition
xi j ∈ {0,1} Is stream i mapped to group j?
yc j ∈ {0,1} Is affinity-set c mapped to group j?
zk j ∈ {0,1} Is model k mapped to group j?
size j ∈N+ # of GPUs allocated to group j

Input parameters Definition
mem GPU memory capacity

G Scalability limit for # of GPUs per group

N # of GPUs in cluster

hki ∈ {0,1} Does stream i use model k?

qck ∈ {0,1} Does affinity-set c include model k?

Optimization goal Definition
bt(i) The burst tolerance metric for stream i

Table 2: Variables used in HERD’s ILP.

and their order of execution across request streams.

4 Periodic Planner: HERD

HERD operates in two steps. It first determines the number

of GPUs ni that would be needed to sustain the average load

ratei for each request stream separately. To do so, HERD

empirically measures the maximum goodput Ti each stream

i can achieve on a single GPU, and uses it to compute ni as
ratei

Ti
. It uses ni to define a new burst tolerance metric (bt) that

captures the increase in load that the stream can tolerate if

assigned to a particular serving group relative to the average-

load based assignment of GPUs. More formally,

bt(i) =
GPUs i can use for its peak load

GPUs i needs for its average load
= ∑

j

size j · xi j

ni

where xi j is 1 if stream i is assigned to group j (0 otherwise),

and size j is the number of GPUs assigned to group j.
Second, HERD uses an Integer Linear Program (ILP) to

combine streams into serving groups to maximize the min-
imum burst tolerance across all streams; this captures the

goal of ensuring every stream can tolerate as heavy a burst as

possible, subject to a certain set of constraints:

(a) Cluster-size limit ensures that the total number of GPUs

assigned across all serving groups is no larger than the

cluster-size N (in number of GPUs).

(b) Group-worker limit ensures that the total number of

GPUs size j assigned to each group j does not exceed the

maximum scalability limit G of the online algorithm.

(c) GPU-memory limit ensures that the sum of model sizes

assigned a serving group j does not exceed the GPU

memory capacity mem.

(d) Group surjectivity ensures that every stream i is as-

signed to a single group j, and only if its associated

model is also assigned to group j.

(e) Affinity-set surjectivty ensures that models assigned to

the same group j have similar α, β values (as defined in

Eq. 1) to ensure better performance guarantees in FLEX.

We capture the divergence in model α, β values as K
(defined in §5), and pre-compute affinity-sets c1,c2, ...
as a partitioning of models such that K between any two

models in an affinity set is ≤ K; this simplifies our ILP

constraint to only picking models from the same cluster.

Our ILP is presented below, with variables listed in Table 2:

maximize min
i
{bt(i)} (2)

s.t. ∑
j

size j ≤ N, ((a) Cluster-size limit)

size j ≤ G, ∀ j ((b) Group-worker limit)

∑
k

zk j · |mk| ≤ mem, ∀ j ((c) Memory limit)

∑
j

xi j = 1, ∀i

hki · xi j ≤ zk j, ∀i, j,k

}
((d) Group surjectivity)

∑
c

yc j = 1, ∀ j

qck · zk j ≤ yc j, ∀i, j,k

}
((e) Affinity-set surjectivity)

Note that the above formulation is not linear due to the non-

linear optimization goal, which contains: (1) a max-min term,

and, (2) a product between binary and non-negative variables

(xi j · size j). However, both can be linearized using standard

techniques [22] — we omit the linearized ILP for brevity.

Similar to prior work [6], HERD ensures that all models to

be served by a worker in the subsequent online serving phase

are present in GPU memory, with some memory set aside

for the operation of the online algorithm, FLEX. We discuss

additional challenges due to memory constraints in §8.

HERD complexity and periodicity. Since solving HERD’s

ILP is NP-hard, and we must scale to millions of streams

and thousands of workers, we first aggregate streams using

the same model into a single “model-stream”, then apply the

ILP to optimize the burst tolerance metric across the model-

streams. The burst tolerance metric of the model-stream the

lower bound of the burst tolerance metric for each stream

in it. Note that different streams in the model-stream may

have different SLOs, but this will not affect the correctness

of our ILP, since none of the constraints (a) – (e) depend on

per-stream SLO. Instead, FLEX incorporates the impact of

SLOs across different streams during online serving.

Also, note that we only need to ensure that the ILP solver

is much faster than HERD’s periodicity, which, in turn, de-

pends on how frequently the workload characteristics change

enough to require recomputing group assignments. Fortu-

nately, our analysis of Microsoft’s Azure Function trace [14]

shows that the workloads within moderately-sized serving

groups remain stable for tens of minutes or more, while our

solver can compute a plan within a few seconds (§7.3).

792 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Input variables Definition
S = {r1,r2, ...} A request stream from one application.

ar,dr,mr Arrival time, deadline, model for request r.

a(B),d(B),m(B) Arrival time, deadline and model for batch B.

B= {B1,B2, ...} Set of all possible batches.

Decision variables Definition
I(B, t,n) ∈ {0,1} Is batch B is executed at time t on GPU n?

Table 3: Notations for online batch scheduling.

5 Online Serving Algorithm: FLEX
We first formulate the online serving problem (§5.1) and then

present the FLEX algorithm to provide guaranteed goodput

under short-term unpredictability (§5.2).

5.1 Problem Formulation
Our online serving setting focuses on scheduling inference

requests across models and GPUs assigned to a single serving

group. Requests within each stream query the same model

with the same latency SLO. Each request r has an arrival time

ar, deadline dr and queries model mr. Requests are served in

batches; for a batch B, arrival time a(B) is the arrival time of

the most recent request in B, and deadline d(B) is the earliest

deadline of all requests in B. Let B be the set of all possible

batches of requests; the online serving algorithm decides

whether to execute batch B ∈ B at time t on GPU n, which

we capture as the decision variable I(B, t,n) ∈ {0,1}. The

goal of online serving is to maximize the overall goodput: the

number of requests that meet their SLOs per second. Table 3

summarizes the notations for our problem formulation.

Optimal offline serving algorithm. We find that the of-

fline serving problem where the scheduler has access to the

complete future can be formulated as the following Zero-one

Integer Linear Program (ZILP):

maximize∑
t

∑
n

∑
B∈B

|B| · I(B, t,n) (3)

s.t. ∑
t

∑
n

∑
{B|r∈B}

I(B, t,n)≤ 1, ∀r (a)

∑
B∈B

∑
{t ′|t ′≤t≤t ′+�mB (B)}

I(B, t ′,n)≤ 1, ∀t,n (b)

a(B) · I(B, t,n)≤ t, ∀B, t,n (c)

(�mB(B)+ t) · I(B, t,n)≤ d(B), ∀B, t,n (d)

I(B, t,n) ∈ {0,1}, ∀B, t,n (e)

Intuitively, the ZILP maximizes the total number of requests

that meet their latency SLOs across all selected batches

(I(B, t,n) = 1), which in turn maximizes the total goodput.

The ZILP constraints correspond to:

(a) Each request can be executed in at most one batch,

(b) A GPU can only execute one batch at a time,

(c) No selected batch can start before its arrival time,

Algorithm 1 FLEX Algorithm

1: Initialize:
2: for each model m do
3: Qm ← Priority queue of m’s requests sorted by deadlines.

4: Event: On completion of a batch on any GPU n:
5: Bg,n ←BATCHGEN(n) # Largest feasible batch across all Qm
6: Execute Bg,n and dequeue requests in Bg,n from model queue

7: for each GPU n do
8: Bg,n ←BATCHGEN(n) # Update candidate batch

9: Event: On arrival of request r:
10: Enqueue r to corresponding queue

11: for each GPU n do
12: Bc,n ← The batch currently being executed on GPU n
13: Bg,n ←BATCHGEN(n)

14: if Bc = /0 then
15: Execute Bg,n and dequeue requests in Bg,n
16: else if |Bg,n| ≥ λ×|Bc,n| then # Preemption rule

17: Preempt Bc,n
18: Execute Bg,n and dequeue requests in Bg,n
19: Treat requests in Bc,n as new arrivals (go to Line 11)

(d) Every selected batch must finish before its deadline, and

(e) The decision variable I(B, t,n) must either be 1 or 0.

Clearly, the optimal solution to the above ZILP is also the

optimal offline schedule. Obtaining such an optimal is un-

realistic — not only is it impractical to have access to the

complete future (or even a reasonable prediction of it, §2),

computing the optimal solution to the ZILP is NP-hard [23].

Achievable guarantees. However, the optimal offline sched-

ule provides us with a baseline of the best schedule possible,

and permits us to reason about how close an online algorithm

can get to such a solution. More formally, the performance

guarantee an online algorithm can achieve is typically cap-

tured by the competitive ratio: the worst-case ratio of the

ZILP’s goodput to the online algorithm’s goodput over all

possible inputs. Note that our focus is on online request serv-

ing decisions, so we assume both algorithms have the same

resources provisioned to them. We establish the following

important result regarding the competitive ratio:

Theorem 5.1 No non-preemptive, deterministic algorithm
can achieve a bounded competitive ratio for online serving.
We defer the proof to Appendix A, but note that since existing

online serving algorithms [6, 10, 11] are non-preemptive, they

are incapable of achieving a bounded competitive ratio.

5.2 FLEX Algorithm
Algorithm 1 presents our FLEX algorithm that achieves a

bounded competitive ratio for online serving. During initial-

ization, FLEX creates a priority queue Qm for each model m,

which holds requests sorted by tightness of their deadlines.

The algorithm reacts to two key events: (1) completion event
of a batch on any GPU, and, (2) arrival event of a new request.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 793

For a completion event, FLEX simply generates a new batch

Bg and executes it; all requests in Bg are dequeued from

corresponding model queue Qm. To generate the new batch,

FLEX finds the largest feasible batch across all queues, such

that all requests in the batch can meet their latency SLOs.

For an arrival event, FLEX generates a candidate batch for

each GPU as outlined above, and compares it with the cur-

rently running batch. If the generated batch is λ times larger

than currently running batch, the current batch is preempted.

If preemption occurs, requests in preempted batch that can

still meet their SLOs are re-enqueued to their corresponding

priority queues. The re-enqueued requests will be treated as

newly arrived requests so they can be scheduled again.

We now dive deeper into salient features of the algorithm.

Choice of λ. The preemption threshold λ plays a crucial role

in bounding FLEX’s competitive ratio. A conservative pre-

emption policy with larger λ can result in a poor competitive

ratio, while an aggressive preemption policy with smaller λ
can waste GPU resources, since the preempted work does

not contribute to system goodput. As such, we express the

competitive ratio in terms of λ, and formulate the problem

of finding the optimal competitive ratio as an optimization

problem. Solving this problem yields the optimal value of

λ ≈ 3.03 (Theorem 5.2). Note that while a worker may expe-

rience cascading preemptions if batches keep arriving with

sizes λ× than the currently executing batch, our choice of λ
ensures that the total wasted work is always much less than

the additional useful work performed post-preemption. In

practice, the effect of cascading preemptions is bounded due

to our maximum batch size limit (128 by default). We defer

the description of our preemption implementation to §6.

Prioritizing batches for a single model. Online job schedul-

ing algorithms [19, 20, 24–27] tend to consider one of two

key metrics as optimization goals: a job’s value, and its value
density. In the online model serving context, the value of a

job (batch) corresponds to the number of requests it contains

(i.e., its batch size), while the value density corresponds to

its contribution to system goodput (i.e., batch size
batch latency). Tradi-

tional online job scheduling algorithms often fail to achieve a

bounded competitive ratio since optimizing these two goals

are often at odds with each other, i.e., optimizing total value

density comes at the cost of optimizing total value across jobs,

and vice versa. Fortunately, Eq. 1 establishes a linear relation-

ship between value density and value for batches of inference

requests: for a single model, larger batches always contribute
more to system goodput. As such, our preemption and batch

generation criteria always favor larger batches to maximize to-

tal value and value density simultaneously, enabling FLEX to

achieve a bounded competitive ratio. In contrast, prior slack-

based prioritization schemes (e.g., tightest deadline first [10])

are unable to provide such guarantees. In fact, our evaluation

(§7) shows that prioritizing larger batches over those with

tigher deadlines leads to higher goodput under high load.

Extending FLEX to multiple models. While the above pri-

oritization scheme is straightforward when a single model

is involved, extending FLEX’s competitive ratio analysis to

a multi-model scenario is challenging, since the linear rela-

tionship between batch value and value density no longer

holds across models. However, the batch-latency relationship

in Eq. 1 still allows us to bound the batch value and value

density across models using the model-specific parameters α
and β. More precisely, we define an affinity metric A(mi,m j)
between two models mi and m j as:

A(mi,m j) =

{αi+βi
α j

, if α j +β j −βi ≤ 0

min(αi+βi
α j

,max(αi
α j+β j−βi

, αi
α j
)), otherwise

where αi,α j,βi and βi are the model-specific parameters for

models mi and m j respectively. While its specific formula-

tion is devised to establish FLEX’s competitive ratio (Theo-

rem 5.2), we note that A(mi,m j) is close to 1 if mi and m j have

similar α and β, and deviates from 1 as the α and β values for

the models diverge. For a set of models M, we show that the

competitive ratio is a multiple of K, the largest affinity value

A(mi,m j) across all pairs of models (mi, m j) in M, i.e.,

K = max
i, j∈M

A(mi,m j) (4)

FLEX properties. Our analysis in Appendix B shows that:

Theorem 5.2 Algorithm 1 is 12.62 ·K-competitive with pre-
emption threshold λ ≈ 3.03, with K defined in Eq. 4.
We note that FLEX is the first algorithm that achieves guar-

anteed performance for online model serving to the best of

our knowledge. We validate FLEX’s performance empirically

over a wide range of representative workloads in §7. Finally,

while we defer the complexity analysis to Appendix C the

following result establishes FLEX’s complexity:

Theorem 5.3 FLEX has a worst-case complexity of O(G),
where G is the number of GPUs in the serving group.

6 SHEPHERD Implementation
Our SHEPHERD implementation follows the architecture de-

scribed in Figure 6. The periodic planner (HERD), request

router and online scheduler are implemented as C++ pro-

cesses, while the GPU workers support configurable model

execution runtimes like PyTorch [28] and Apache TVM [29].

Supporting preemptions. While recent hardware-based pre-

emptions on newer GPUs [31] may enable better perfor-

mance, we opt for software-based preemptions adapted from

Pipeswitch [21] in SHEPHERD due to its general applicabil-

ity to commodity GPUs. Pipeswitch supports preemption of

DNN training tasks by inserting exit points between the train-

ing phases of different DNN layers: when a preemption is

requested, the execution of the current training task can be

terminated at the next exit point. Since PipeSwitch currently

supports preemptions for PyTorch only, we use the PyTorch

794 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Model α (ms) β (ms) # Exit points
ResNet18 (RN18) 0.22 3.74 40
ResNet34 (RN34) 0.38 5.78 46
ResNet50 (RN50) 0.75 7.96 46
ResNet101 (RN101) 1.25 13.57 39
ResNet152 (RN152) 1.77 18.98 84
ResNeSt50 (RS50) 1.18 15.39 78
ResNeSt101 (RS101) 1.91 29.21 57
ResNeSt200 (RS200) 3.35 45.43 96
ResNeSt269 (RS269) 4.37 74.20 128
DenseNet121 (DN121) 0.69 19.96 129
DenseNet161 (DN161) 1.74 23.10 171
DenseNet169 (DN169) 0.83 27.47 120
DenseNet201 (DN201) 1.12 32.33 142
GoogLeNet (GN) 0.25 8.41 44
Inception v3 (I3) 0.96 11.77 122
R-CNN (RCNN) 2.59 14.90 51
BERT (BERT) 40.98 5.67 43

Table 4: DNN Models evaluated in SHEPHERD. BERT [30] is a

popular NLP model, while the rest are popular CV models from six

different model families.

runtime by default in our implementation, although the same

approach could be implemented for Apache TVM as well.

Adapting the preemption approach from training to infer-

ence pipelines introduces a key challenge: while the over-

head for preemption is not a major concern for long-running

model training tasks, it is quite crucial to minimize preemp-

tion overheads for model inference. On one hand, adding too

few exit points to an inference task introduces unacceptable

preemption delay — the time between from the preemption

being requested and actually being completed — since the

preempted task may still execute for tens of milliseconds be-

fore the reaching next exit point. On the other hand, adding

too many exit points slows down the normal execution of

inference tasks, as each exit point introduces non-negligible

execution delay. To better navigate the trade-off, we evaluate

the preemption and execution delay overheads with different

number of exit points for different DNN models via com-

prehensive profiling, and determine the optimal number of

exit points for each individual model (§7.3). Table 4 shows

the DNN models used in SHEPHERD, with their α, β values

(Eq. 1) and the number of exit points. Note that adding exit

points incurs a one-time offline profiling cost during model

registration; this can be implemented as a part of the DNN

framework, making it completely transparent to users.

7 Evaluation

We evaluate SHEPHERD to answer the following questions:

• How does SHEPHERD compare against state-of-the-art

schemes for real-world workloads? (§7.1)

• How does each design component in SHEPHERD contribute

to its performance gains? (§7.2)

• What overheads do SHEPHERD’s preemption and periodic

planning components introduce? (§7.3)

Setup. All our experiments were run on Amazon EC2. For

GPU workers, our testbed experiments use 12 p3.2xlarge

instances each with 8 vCPUs, 61GB RAM, and one NVIDIA

Tesla v100 GPU with 16GB memory, while our large-scale

emulations use m4.16xlarge instances with 64 vCPUs and

256GB RAM. The request router, periodic planner, and online

schedulers are deployed on separate m4.16xlarge instances.

Metrics. We focus on goodput, utilization and scalability as

our key metrics. Goodput and utilization values are averaged

over 5 runs, while scalability is measured as the increase in

system goodput on increasing the number of workers.

Compared schemes. We compare SHEPHERD against Clock-

work [10] and Nexus [6]. Clockwork is representative of

online global scheduling policies, while Nexus is a represen-

tative of the periodic per-stream approach (§1). We implement

all evaluated policies in our SHEPHERD prototype and use a

PyTorch-based runtime to ensure that the performance differ-

ences are solely due to the scheduling decisions rather than

choices in system implementation or the underlying runtime.

For Nexus, we set the reconfiguration period to 60 seconds

as recommended in [6]. Moreover, since Nexus is designed

for predictable workloads, we adapt their algorithm to pro-

vision for the peak demand in every 60-second window of

the workload to ensure it can sustain the provided load. For

SHEPHERD, we set the GPU group-worker limit to 12, since

we found it to be large enough to ensure workload predictabil-

ity (due to a large enough group size) while being well within

our scheduler’s scalability limit. The GPU memory limit for

p3.2xlarge instances is large enough to fit all 13 DNN models.

Finally, we place all the models in a single affinity-set.

DNN Models. We evaluate SHEPHERD with 17 DNN models

widely used for model inference (Table 4), taken from Py-

Torch Hub [32]. For Clockwork and Nexus, we use models

without any exit points (needed for preemption in SHEPHERD,

§6) to ensure they do not suffer any performance penalties

for execution delays. We ensure the models remain in GPU

memory for the duration of all our experiments to eliminate

performance impacts of loading models into GPU memory.

Workloads. Similar to prior work [10], we use the Microsoft’s

publicly-released production traces from Azure Functions

(MAF) [14] as a representative production model serving

workload. MAF interleaves a wide range of workloads, includ-

ing heavy-sustained, low-utilization, bursty and fluctuating

workloads. For our 13 profiled DNN models, we assign the

46,000 streams from MAF to models in a round-robin man-

ner, and configure all streams with a default SLO of 250ms2,

unless otherwise specified. The MAF trace only contains the

aggregated number of requests per one-minute interval for

each request stream. Therefore, we generate two request ar-

2We use a relatively relaxed SLO compared to [10] since the PyTorch

runtime used in our implementation observes longer inference latencies

compared to the TVM runtime used in [10].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 795

4k 8k 16k 32k 64k
Load (req/s)

3k

9k

15k

21k

27k

33k

G
o
o
dp

ut
(r
eq
/s
) Shepherd

Clockwork

Nexus

(a) Goodput (MAF-stable)

4k 8k 16k 32k 64k
Load (req/s)

40

60

80

100

U
ti
liz
at
io
n(
%
)

Shepherd

Clockwork

Nexus

(b) Utilization (MAF-stable)

4k 8k 16k 32k 64k
Load (req/s)

3k

9k

15k

21k

27k

33k

G
o
o
dp

ut
(r
eq
/s
) Shepherd

Clockwork

Nexus

(c) Goodput (MAF-bursty)

4k 8k 16k 32k 64k
Load (req/s)

40

60

80

100

U
ti
liz
at
io
n(
%
)

Shepherd

Clockwork

Nexus

(d) Utilization (MAF-bursty)

Figure 7: Performance variation with load. Under high load, SHEPHERD achieves 4.6 (5.2)× and 7.1 (18.1)× higher goodput than Clockwork

and Nexus under the MAF-stable (MAF-bursty) workload, respectively. SHEPHERD and Clockwork achieve high system utilization while

Nexus’s utilization remains under 89% (55%) across different arrival rates under the MAF-stable (MAF-bursty) workload.

0 50 100 150 200 250
Latency (ms)

0

0.25

0.5

0.75

1

C
D
F

Shepherd

Clockwork

Nexus

(a) Low load (3k req/s)

0 50 100 150 200 250
Latency (ms)

0

0.25

0.5

0.75

1

C
D
F

Shepherd

Clockwork

Nexus

(b) High load (144k req/s)

Figure 8: Latency CDFs for MAF-stable workload with 250ms
SLO. The latency CDF is presented for the set of requests admitted

by each approach. At high load, large portions of Clockwork and

Nexus request latencies are close to the SLO, while SHEPHERD’s

request latencies are distributed more evenly. See §7.1 for details.

rival patterns within each one-minute interval: (1) a Poisson

process to model stable workloads, similar to [10] (“MAF-

stable”), and (2) a more bursty Markov-modulated Poisson

process (MMPP) similar to [9] (“MAF-bursty”).

7.1 SHEPHERD in the Wild
We first evaluate the compared systems for real-world work-

loads on a testbed comprising 12 GPU workers and large-scale

emulations that mimic work done by a GPU on CPU cores.

Performance variation with load (Figure 7). For the MAF-

stable workload, with a low request arrival rate (e.g., at ∼ 3k
requests/second), all systems can meet the SLO deadlines for

most requests in the workload. As such, both SHEPHERD and

Clockwork achieve high system utilization (over 95%) and

high goodput. At higher loads, while both systems are consis-

tently busy serving requests (resulting in high utilization) nei-

ther SHEPHERD nor Clockwork can satisfy all request dead-

lines; however, since Clockwork prioritizes requests based on

how close their deadline is, it greedily schedules many small

batches of requests with tight deadlines, resulting in a reduced

goodput. In contrast, SHEPHERD always prioritizes execution

of larger batches, while the use of preemption ensures that

large batches never get blocked by small batches scheduled

before them. SHEPHERD can therefore efficiently utilize lim-

ited GPU resources to maximize goodput under high load,

and while Clockwork’s goodput starts to saturate beyond a

load of 6k requests/second, SHEPHERD’s goodput keeps in-

creasing, outperforming Clockwork by up to 4.6× at 144k
requests/second. We confirm that SHEPHERD’s gains stem

from its preemption and prioritization design choices in §7.2.

We observe similar trends for Clockwork and SHEPHERD

under the MAF-bursty workload.

For Nexus, we find that the goodput largely remains the

same as we increase the load under both MAF-stable and

MAF-bursty workloads, with a goodput that is up to 7.1× and

18.1× lower than SHEPHERD. Moreover, Nexus’s utilization

remains under 89% for the MAF-stable workload and 55%

for the MAF-bursty workload — even under high load. These

observations can largely be attributed to Nexus’s offline ap-

proach — during its periodic planning phase, Nexus takes the

arrival rate as input and calculates the number of GPU work-

ers required along with an offline schedule for each worker.

With a fixed number of workers, Nexus can only make its

planning decision assuming a specific arrival rate that it can

completely satisfy, which ends up being much lower than the

applied load. Moreover, during online serving phase, Nexus is

unable to adjust its planning decisions dynamically based on

the increased arrival rates. This impact is even more severe for

the MAF-bursty workload, where predetermined execution

plan is unable to adapt to periodic bursts of requests, resulting

in even lower utilization (1.8× worse than SHEPHERD) and

goodput relative to the MAF-stable workload.

Figure 8 plots per-request latency CDFs for SHEPHERD,

Clockwork, and Nexus at low (3k requests/second) and high

load (144k requests/second) for the MAF-stable workload.

Note that while Figure 7(a) shows the proportion of requests

admitted by each system, the CDF only depicts the latency

of requests admitted by each solution. All systems observe

similar latency distributions at low load (Figure 8(a)). At

high load, however, a large portion of requests in Clockwork

observe latency close to the SLO, since Clockwork prioritizes

serving requests closer to their deadlines. Nexus also shares a

similar CDF pattern, as its periodic scheduler tries to batch

together as many requests as it can based on request deadlines.

In contrast, SHEPHERD’s request latencies are distributed

more evenly; this is because SHEPHERD priortizes requests

based on their batch sizes rather than their deadlines, and

the evaluated workload results in batches of widely varying

sizes at different times. We observe similar trends under the

796 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

500 250 100 50
SLO (ms)

1k

2k

3k

4k

G
o
o
dp

ut
(r
eq
/s
)

Shepherd

Clockwork

Nexus

(a) MAF-stable

500 250 100 50
SLO (ms)

1k

2k

3k

4k

G
o
o
dp

ut
(r
eq
/s
)

Shepherd

Clockwork

Nexus

(b) MAF-bursty

Figure 9: Goodput with varying request SLOs. SHEPHERD outper-

forms Nexus and Clockwork by up to 38× and 1.3×, respectively,

under tight SLOs. We omit SLOs ≤ 10ms since some of our evalu-

ated models have higher execution latencies (Table 4).

0 100 200 300 400
Workers

25k

50k

75k

100k

G
o
o
dp

ut
(r
eq
/s
) Shepherd

Clockwork

Nexus

(a) MAF-stable

0 100 200 300 400
Workers

25k

50k

75k

100k

G
o
o
dp

ut
(r
eq
/s
) Shepherd

Clockwork

Nexus

(b) MAF-bursty

Figure 10: Scheduler scalability with emulated workers. For both

workloads, Clockwork does not scale beyond 200 workers; Nexus

scales linearly but observes 40–50% lower goodput than SHEPHERD.

SHEPHERD observes both high goodput and linear scaling.

MAF-bursty workload.

Goodput with varying request SLOs (Figure 9). To under-

stand the impact of request SLOs, we fix the arrival rate to

∼ 3k requests/second and measure the goodput for the com-

pared approaches with varying SLO values. All approaches

achieve high goodput with 500ms SLO, since almost all re-

quest deadlines can be met with a relaxed SLO. On reducing

SLO from 500ms to 50ms, all approaches observe reduced

goodput; Clockwork’s reduction is smaller due to its online al-

gorithm that prioritizes requests with tighter deadlines, while

Nexus observes higher reduction, especially for the MAF-

bursty workload. This is because its periodically computed

static execution plan is unable to adapt to small bursts of

requests, resulting in even fewer requests meeting their dead-

lines. However, SHEPHERD’s online FLEX algorithm is able

leverage prioritization and preemption to maximize the num-

ber requests that meet the stringent SLOs, outperforming both

Clockwork and Nexus by up to 1.3× and 38× respectively.

Scheduler scalability (Figure 10). Due to the limited num-

ber of GPUs in our testbed, we were unable to evaluate the

scalability of SHEPHERD and existing systems beyond a point.

We therefore complement our testbed experiments with large-

scale emulations with up to 400 emulated workers. As in

prior work [10], an emulated worker is identical to a real

SHEPHERD worker, except an inference request triggers no

meaningful work; instead, they wait for a period of time de-

termined by the corresponding model’s batch-latency charac-

teristics (Table 4), before returning a response. We run the

250ms 90ms
SLO (ms)

1k

2k

3k

4k

G
o
o
dp

ut
(r
eq
/s
) Shepherd

Shepherd-NP

Clockwork

(a) Benefits of FLEX

0 100 200 300 400
Workers

25k

50k

75k

100k

G
o
o
dp

ut
(r
eq
/s
) Group(1)

Shepherd

Group(∞)

(b) Benefits of HERD

Figure 11: Understanding SHEPHERD benefits. (a) Prioritiza-

tion and preemption in SHEPHERD results in 3.7× and 6.2× im-

provement in goodput, respectively; SHEPHERD-NP refers to a non-

preemptive variant of SHEPHERD. (b) SHEPHERD achieves both

high goodput and scalability with group-worker limit G = 12.

MAF-stable and bursty workloads with varying number of

emulated workers (N), scaling up the total load applied to the

system with the number of workers. We apply a low enough

load per worker to ensure any requests dropped in SHEPHERD

and Clockwork are solely due to the scheduler’s failure to

scale to large number of workers.

Clockwork’s goodput scales linearly with smaller N, slows

down around N = 150, and saturates at 50k request/second

around N = 200 since its centralized scheduler becomes the

bottleneck3 (Figure 10(a)). Nexus goodput, on the other hand,

scales almost linearly with N; this is expected since Nexus’s

scheduling decisions are computed per-stream and updated

only periodically. However, its periodically computed sched-

ule results in ∼ 40% lower goodput than SHEPHERD. This

is because Nexus’s computed schedule conservatively pro-

visions for a load that a given number of workers can sus-

tain without adapting to any changes due to workload unpre-

dictability, as discussed in the results for Figure 7. Finally,

SHEPHERD observes both consistently high goodput and lin-

ear scaling. The linear scaling is attributed to SHEPHERD

dividing its workers into groups, each with a group-worker

count of 12, which is below the scalability limit of our online

scheduler. The high goodput, on the other hand, is attributed

to each group being large enough for efficient multiplexing

across request streams. As such, SHEPHERD outperforms

Clockwork and Nexus by 2.5× and 1.8× respectively in

terms of goodput at N = 400 workers. We note, however, that

SHEPHERD employs multiple schedulers — specifically, � N
12�

schedulers for N workers — in contrast to Clockwork’s single

centralized scheduler to achieve its linear scaling. We observe

similar trends with the MAF-bursty workload in Figure 10(b).

7.2 Understanding SHEPHERD Benefits
We now dig deeper into how each design component in SHEP-

HERD contributes to its overall performance gains.

Benefits of FLEX (Figure 11(a)). To demonstrate the effec-

3This trend is consistent with the scalability results reported in the Clock-

work paper [10] albeit with a higher peak goodput due to differences in the

system implementation and execution runtime.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 797

tiveness of batch prioritization and preemption in FLEX, we

create a synthetic workload with two streams. Stream A is

bursty and issues requests to the low-latency model ResNet18

(∼ 4ms for batch size = 1, ∼ 32ms for batch size = 128).

Requests in stream A arrive periodically in bursts of 1024

requests at t = 5ms, 125ms, 245ms, ..., i.e., with a period of

120ms. Stream B is stable and issues requests to the high-

latency model ResNet269 (79ms for batch size = 1), and has

individual requests arriving at t = 0ms, 1ms, 2ms ...; note that

in the absence of other queued requests from stream B, any

approach would schedule batches of size 1 for it every 1ms.

We provision one GPU worker for both streams, and com-

pare the performance for SHEPHERD and Clockwork for this

workload. To decouple the contributions of preemption from

prioritization, we also evaluate a non-preemptive variant of

SHEPHERD that retains all the properties of FLEX except pre-

emption. We run the experiments under two different SLOs

(250ms and 90ms) to separate the contributions of prioritiza-

tion and preemption in SHEPHERD, as described next.

For 250ms SLO, both SHEPHERD and non-preemptive

SHEPHERD outperform Clockwork by 3.7×. Since Clock-

work prioritizes requests with tighter deadlines, it always ends

up prioritizing high-latency requests of stream B over low-

latency requests of stream A. In contrast, SHEPHERD’s batch

generation prioritizes larger batches — since stream A’s low-

latency requests can accumulate much larger batches under

the 250ms SLO (e.g., 128 sized batches with 32ms latency)

and achieve much higher goodput. Prioritizing stream A’s

requests allows SHEPHERD to leverage the limited GPU re-

source to complete more requests in the same time span. In

more detail, after a batch of stream B (comprising a single

request) scheduled at time t = 1ms completes after 79ms,

SHEPHERD prioritizes stream A’s queued requests over the

remaining requests of stream B. With an SLO of 250ms, most

requests in stream A can meet their SLO deadlines, permitting

SHEPHERD to achieve high goodput even without preemption.

However, with a reduced SLO of 90ms, non-preemptive

SHEPHERD cannot complete executing larger batches of

stream A’s requests within their SLO deadline since it waits
for stream B’s batch to finish (i.e., at t = 80ms). Thus, the per-

formance for non-preemptive SHEPHERD is similar to Clock-

work — most of stream A’s requests fail to meet their dead-

line. With preemption, a large batch of stream A’s requests

preempts the scheduled (much smaller) batch of stream B’s

requests, allowing most requests of stream A to finish within

the deadline. As such, SHEPHERD outperforms both its non-

preemptive variant and Clockwork by 6.2×. Note that the per-

formance for heuristic-driven and non-preemptive approaches

can be made arbitrarily worse than SHEPHERD by increas-

ing stream A’s burst size and reducing its request execution

latency, as discussed in §2.2 and Theorem 5.1, respectively.

Benefits of HERD (Figure 11(b)). We use the same setting

as the large-scale emulation in §7.1 and vary the number of

group-worker limit G for HERD (§4). With a group-worker

R
N
18

R
S
26
9

R
N
50

R
N
34

R
N
10
1

R
N
15
2

D
N
12
1

D
N
16
9

D
N
20
1

D
N
16
1

R
S
50

R
S
10
1

R
S
26
9

B
E
R
T

G
N I3

R
C
N
N

DNN Model

0

2.5

5

7.5

10

P
er
ce
nt
ag
e(
%
) Execution delay

Preemption delay

Figure 12: Preemption overheads. The preemption delay and ad-

ditional execution delay relative to the normal batch executions for

most of our evaluated models remains below 5%.

streams # models # workers solver network loading
200,000 200 200 0.55 0.19 0.71

400,000 400 400 2.51 0.35 1.23

600,000 600 600 4.28 0.51 1.84

800,000 800 800 8.53 0.62 2.41

1,000,000 1,000 1,000 13.26 0.90 3.14

Table 5: Components of the periodic planning latency (in seconds).

limit of G = ∞, SHEPHERD always chooses a group size

equal to the number of workers. As such, it reduces to the

online global approach, observing the same scalability limit

as Clockwork (Figure 10). With a group-worker limit of G =
1, SHEPHERD cannot efficiently multiplex across streams,

leading to constantly lower goodput compared to SHEPHERD

with multiple workers. As such, HERD allows SHEPHERD to

achieve a goodput that is 2.5× and 1.7× higher than the two

grouping alternatives, respectively, at 400 workers.

7.3 Understanding SHEPHERD Overheads
Finally, we evaluate the preemption and periodic planning

overheads in SHEPHERD to show that neither impact SHEP-

HERD’s performance benefits in any significant manner.

Preemption overheads (Figure 12). As discussed in §6,

efficient preemption should minimize two overheads: (1) pre-
emption delay, or the time between from the preemption being

requested and actually being completed, and (2) execution
delay, the additional latency introduced by exit points for

normal batch execution. We achieve a reasonable trade-off

between these two overheads by specifically tailoring appro-

priate number of exit points for each model listed in Table 4.

We measure the relative preemption overheads introduced

by SHEPHERD, i.e., the preemption and execution delay rela-

tive to normal batch execution time, averaged over batch sizes

1–128. For most models, both the preemption delay and the

extra execution delay are well below 5%.

Periodic planning overheads in HERD (Table 5). The pe-

riodic planning latency in HERD consists of three parts: (1)

the solver latency for solving the ILP (Eq. 2), (2) the network

latency for broadcasting the plan to schedulers and workers,

and, (3) the loading latency for loading the models from CPU

memory to GPU on each worker. We run large-scale emula-

798 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tion to divide the system into 10 serving groups, and measure

these latencies with different number of streams, models, and

emulated workers. The solver latency accounts for most of

the planning time, taking 13.26 seconds for 1 million streams

and 1k workers. Network latency is always less than a sec-

ond, while model loading time increases with the number of

models. Even so, the total planning latency is always much

smaller than HERD’s scheduling period, which is tens of min-

utes. Moreover, the solver and network latency for the next

planning phase can be pipelined with the current online serv-

ing phase, ensuring that planning is never a bottleneck.

8 Discussion and Caveat
We now outline avenues of future research in SHEPHERD.

Group predictablility under different workloads. Al-

though we have demonstrated group predictability using two

representative workloads, we note that the number of streams

(i.e., group size) to achieve sufficient group predictability may

be different for real-world workloads. With insufficient pre-

dictability, HERD may under or overprovision resources for

some groups, although FLEX would still provide the same

performance guarrantee within each group since it does not

rely on predictability. Moreover, group predictability itself

is rooted in statistical multiplexing theory, and holds when

a large enough number of request streams in the workload

have statistical independence [33–35]. While well-exploited

in the networking community to achieve high utilization under

bursty network traffic patterns [15–18], more in-depth quanti-

tive analysis of group predictability for real-world inference

serving workloads is important future work.

Model affinity vs. degree of multiplexing. Recall from

§4 that HERD includes an affinity-set surjectivty constraint,

which requires that models assigned to the same group j have

divergence less than K. With a small K, HERD will break mod-

els into more groups, with each group containing fewer but

more similar models, i.e., models with similar model affinity

values. While this enables tighter performance guarantees in

FLEX, it also reduces the degree of multiplexing within each

group, since GPU workers in each group can serve streams

across a smaller set of models. Although a single affinity

group (i.e., K=∞) yields a looser competitive ratio, our evalu-

ation shows that it still results in high empirical performance

for the MAF workload. Finding an optimal value of K is

promising future work.

Fairness across request streams. Similar to prior serving

system designs [6, 10], we focus on the isolated GPU cluster

settings where fairness across request streams and models is

not a major concern. Fairness can be an important metric to

extend our design to multi-user or cloud scenarios.

Dynamic model swapping. Similar to prior work [6], SHEP-

HERD only loads models onto GPU memory at the start of

a planning period. An alternative solution is to dynamically

swap models between GPU and CPU memory on-demand dur-

ing online serving [10]. However, since such swaps are likely

to take much longer than serving a request, its cost must be

weighed against the potential performance gains from swap-

ping in a new model. We leave incorporating this decision as

a part of online serving as future work.

Large DNN models. If a DNN model is so large that it

cannot be co-located with other models in GPU memory,

HERD must place it in an isolated group with reduced degree

of multiplexing. It is possible, however, to break such large

models into smaller partitions [36] to group them with other

models for better multiplexing.

9 Related Work
We discussed existing model serving systems in §2; we now

discuss prior work related to SHEPHERD in other areas.

Preemption for ML workloads. PipeSwitch [21] allows

preempting a training tasks to execute an inference task.

Irina [11] applies preemption to improve average latency for

inference tasks. LazyBatching [8] is an inference system that

can preempt and stall the currently ongoing batch. SHEPHERD

leverages preemption approaches outlined in these works to

achieve guaranteed high goodput. Concurrent to our work,

REEF [31] leverages ISA support for preemptions [37, 38]

in recent AMD GPUs to enable μs-scale preemptions. While

our current implementation still implements preemptions in

software, it can readily incorporate hardware-based preemp-

tions. Future improvements in this space will only improve

SHEPHERD’s performance further.

Online job scheduling. The theory community has long

considered issues of prioritization and preemption in online

job scheduling [19, 20, 24–27]. Its adaptation to model serv-

ing, however, has a few nuances — the scheduler for model

serving must also decide how to optimally execute requests

across batches while taking into account model-specific batch-

latency relationships. Our scheduling algorithm exploits both

to achieve strong performance guarantees.

10 Conclusion
We have presented SHEPHERD, a distributed a DNN model

serving system. SHEPHERD employs a periodic planner that

aggregates request streams into moderately-sized groups for

high utilization and scalability, and an online scheduler that

employs a novel online algorithm to provide guaranteed good-

put. Evaluation over production workloads shows that SHEP-

HERD achieves 17.2× higher goodput and 1.8× higher utiliza-

tion than prior approaches and scales to hundreds of workers.

Acknowledgement
We thank our shepherd Ravi Netravali and the anonymous

NSDI reviewers for their insightful feedback. This research is

supported by NSF Awards 2112562, 2047220, 1730628 and

gifts from AWS, Ant Group, Ericsson, Futurewei, Google,

Intel, Meta, Microsoft, NetApp, Scotiabank, and VMware.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 799

References
[1] Kim Hazelwood, Sarah Bird, David Brooks, Soumith

Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed

Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. Ap-

plied machine learning at facebook: A datacenter infras-

tructure perspective. In HPCA, 2018.

[2] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas

Chen, Sy Choudhury, Marat Dukhan, Kim Hazelwood,

Eldad Isaac, Yangqing Jia, Bill Jia, et al. Machine learn-

ing at facebook: Understanding inference at the edge.

In 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 331–344.

IEEE, 2019.

[3] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey

Zumar, Ion Stoica, Joseph Gonzalez, and Alexey Tu-

manov. InferLine: latency-aware provisioning and scal-

ing for prediction serving pipelines. In SoCC, pages

477–491, 2020.

[4] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and

Christos Kozyrakis. INFaaS: Automated Model-less

Inference Serving. In ATC, pages 397–411, 2021.

[5] Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S

McKinley, and Björn B Brandenburg. Swayam: dis-

tributed autoscaling to meet slas of machine learning

inference services with resource efficiency. In Middle-
ware, pages 109–120, 2017.

[6] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,

Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,

and Ravi Sundaram. Nexus: a gpu cluster engine for

accelerating dnn-based video analysis. In Proceedings
of the 27th ACM Symposium on Operating Systems Prin-
ciples, pages 322–337, 2019.

[7] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia

Smirni. Batch: machine learning inference serving on

serverless platforms with adaptive batching. In SC:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–15.

IEEE, 2020.

[8] Yujeong Choi, Yunseong Kim, and Minsoo Rhu. Lazy

Batching: An SLA-aware Batching System for Cloud

Machine Learning Inference. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer Ar-
chitecture (HPCA), pages 493–506. IEEE, 2021.

[9] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng

Yan. Mark: Exploiting cloud services for cost-effective,

slo-aware machine learning inference serving. In ATC,

pages 1049–1062, 2019.

[10] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,

Antoine Kaufmann, Ymir Vigfusson, and Jonathan

Mace. Serving dnns like clockwork: Performance pre-

dictability from the bottom up. In 14th {USENIX}
Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 20), pages 443–462, 2020.

[11] Xiaorui Wu, Hong Xu, and Yi Wang. Irina: Accelerating

DNN Inference with Efficient Online Scheduling. In

4th Asia-Pacific Workshop on Networking, pages 36–43,

2020.

[12] Peter Mattson, Vijay Janapa Reddi, Christine Cheng,

Cody Coleman, Greg Diamos, David Kanter, Paulius

Micikevicius, David Patterson, Guenther Schmuelling,

Hanlin Tang, et al. Mlperf: An industry standard bench-

mark suite for machine learning performance. IEEE
Micro, 40(2):8–16, 2020.

[13] AWS. Deliver high performance ML inference with

AWS Inferentia. https://d1.awsstatic.com/
events / reinvent / 2019 / REPEAT _ 1 _ Deliver _
high_performance_ML_inference_with_AWS_
Inferentia_CMP324-R1.pdf., 2019.

[14] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Go-

har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-

reano, Colby Tresness, Mark Russinovich, and Ricardo

Bianchini. Serverless in the wild: Characterizing and

optimizing the serverless workload at a large cloud

provider. In ATC, pages 205–218, 2020.

[15] Ravi R Mazumdar. Performance modeling, stochastic

networks, and statistical multiplexing. Synthesis Lec-
tures on Communication Networks, 6(2):1–211, 2013.

[16] Basil Maglaris, Dimitris Anastassiou, Prodip Sen, Gun-

nar Karlsson, and John D Robbins. Performance models

of statistical multiplexing in packet video communica-

tions. IEEE transactions on communications, 36(7):834–

844, 1988.

[17] Kavitha Chandra. Statistical multiplexing. Wiley Ency-
clopedia of Telecommunications, 5:2420–2432, 2003.

[18] Hiroshi Saito, Masatoshi Kawarasaki, and Hiroshi Ya-

mada. An analysis of statistical multiplexing in an atm

transport network. IEEE Journal on Selected Areas in
Communications, 9(3):359–367, 1991.

[19] S. Goldman, Jyoti Parwatikar, and S. Suri. Online

scheduling with hard deadlines. J. Algorithms, 34:370–

389, 2000.

[20] Richard J. Lipton and Andrew Tomkins. Online interval

scheduling. In In Proceedings of the Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 302–

311, 1994.

800 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[21] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin.

Pipeswitch: Fast pipelined context switching for deep

learning applications. In 14th {USENIX} Sympo-
sium on Operating Systems Design and Implementation
({OSDI} 20), pages 499–514, 2020.

[22] Boris N Pshenichnyj. The linearization method for
constrained optimization, volume 22. Springer Science

and Business Media, 2012.

[23] Christos H Papadimitriou and Kenneth Steiglitz. Com-
binatorial optimization: algorithms and complexity.

Courier Corporation, 1998.

[24] Ran Canetti and Sandy Irani. Bounding the power of

preemption in randomized scheduling. SIAM Journal
on Computing, 27(4):993–1015, 1998.

[25] Xujin Chen, Xiaodong Hu, Tie-Yan Liu, Weidong

Ma, Tao Qin, Pingzhong Tang, Changjun Wang, and

Bo Zheng. Efficient mechanism design for online

scheduling. Journal of Artificial Intelligence Research,

56:429–461, 2016.

[26] Sanjoy Baruah, Gilad Koren, Decao Mao, Bhubaneswar

Mishra, Arvind Raghunathan, Louis Rosier, Dennis

Shasha, and Fuxing Wang. On the competitiveness of

on-line real-time task scheduling. Real-Time Systems,

4(2):125–144, 1992.

[27] Sally A Goldman, Jyoti Parwatikar, and Subhash Suri.

Online scheduling with hard deadlines. Journal of Algo-
rithms, 34(2):370–389, 2000.

[28] Pytorch. https://pytorch.org/.

[29] Apache tvm: An end to end machine learning compiler

framework for cpus, gpus and accelerators. https://
tvm.apache.org/.

[30] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. Bert: Pre-training of deep bidirec-

tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[31] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo

Chen. Microsecond-scale preemption for concurrent

{GPU-accelerated}{DNN} inferences. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 539–558, 2022.

[32] Pytorch hub. https://pytorch.org/hub/.

[33] Kavitha Chandra. Statistical multiplexing. Wiley Ency-
clopedia of Telecommunications, 5:2420–2432, 2003.

[34] Basil Maglaris, Dimitris Anastassiou, Prodip Sen, Gun-

nar Karlsson, and John D Robbins. Performance models

of statistical multiplexing in packet video communica-

tions. IEEE transactions on communications, 36(7):834–

844, 1988.

[35] Ward Whitt. Tail probabilities with statistical multi-

plexing and effective bandwidths in multi-class queues.

Telecommunication Systems, 2(1):71–107, 1993.

[36] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao

Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,

Yuanzhong Xu, Danyang Zhuo, Joseph E Gonzalez,

et al. Alpa: Automating inter-and intra-operator par-

allelism for distributed deep learning. arXiv preprint
arXiv:2201.12023 (OSDI), 2022.

[37] GPUOpen. Amd gpu isa documentation.

https : / / gpuopen . com / documentation /
amd-isa-documentation, 2021.

[38] Nathan Otterness and James H Anderson. Amd gpus as

an alternative to nvidia for supporting real-time work-

loads. In 32nd Euromicro Conference on Real-Time Sys-
tems (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum

für Informatik, 2020.

[39] Richard Hamming. Numerical methods for scientists
and engineers. Courier Corporation, 2012.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 801

A Competitive Ratio without Preemption
Theorem A.1 No non-preemptive, deterministic algorithm
can achieve a bounded competitive ratio for online serving.
Proof Consider a batch X1 with |X1|= 1, �X1

= 1 and dX1
= 1

that arrives at time t = 0. A deterministic non-preemptive al-

gorithm B serves X1 with probability p = {0,1}. We consider

two scenarios after the scheduling decision at t = 0: (A) no

request arrives afterwards, and therefore, the optimal solution

has a total value of 1, and algorithm B has a total value of p;

(B) another batch X2 arrives at time t = ε with |X2|= ω → ∞,

�X2
= 1 and dX2

= 1+ ε: the optimal solution can achieve a

total value of ω by ignoring X1, and algorithm B has a total

value of p+(1− p) ·ω, since it is non-preemptive.

Note that the competitive ratio should be no less than the

ratio between the optimal solution over algorithm B in either

scenario. As such, by combining both cases we show the

competitive ratio c of algorithm B should be no less than:

c ≥ max
p={0,1}

(
1

p
,

ω
p+(1− p) ·ω)→ ∞ (5)

which completes the proof �

B Competitive Ratio Analysis for FLEX

We define a schedule σ to be a sequence of batch executions

(B, tB), where tB is the start time of batch B in the schedule σ.

Note that since we allow preemption, some batches may get

preempted and never complete; we use σc ⊂ σ to denote the

set of completed batches in σ and σp ⊂ σ to denote the set

of preempted batches. We say a schedule σ is feasible if (1)

at any time, at most one batch B ∈ σ is executing, and, (2) a

request is completed (i.e., executed without being preempted)

in at most one batch B ∈ σc. Let v(σ) = ∑
B∈σ

v(B, t) denote the

aggregated value of all batches in σ. We have,

v(σ) = v(σc)+ v(σp) (6)

We use standard competitive analysis to evaluate our algo-

rithm. We denote the schedule due to an algorithm A as σA,

and the optimal schedule constructed by a computationally

unbounded offline algorithm as σ∗. We say that algorithm A

is c-competitive if for any request stream we have:

c · v(σc
A)≥ v(σ∗) (7)

To better differentiate batch sequences (B, t) between

schedule σA and σ∗, we denote the batch sequences in σA

as (I, tI) and batch sequences in σ∗ as (J, tJ). Moreover, for

a batch I ∈ σA, we denote its (1) start time as tI ; (2) value

(batch size) as |I|; and (3) duration as �I . The same notation

rules apply to J ∈ σ∗.

We prove our main result in Theorem 5.2 in three steps.

First, we consider a simplification of the online batch schedul-

ing algorithm that only considers online batch scheduling for

Figure 13: The value assignment rule from one I ∈ σA to Js ∈ σ∗.

Figure 14: The block and cover relationship between batches in
σA and σ∗. Note that if J is identical to I then J is covered by I (by

our definition of blocking).

a single model running on a single GPU (§B.1). We then

extend the setting to include multiple models deployed on a

single GPU (§B.2), and finally consider the general case of

multiple models deployed across multiple GPUs (§B.3).

B.1 Single-GPU Single-Model Setting (sgsm)
For the single GPU, single model setting our key result is:

Theorem B.1 Algorithm 1 is 10.81-competitive with a single
model on a single GPU with preemption threshold λ ≈ 2.38.
Proof To prove the above theorem, we bound the value of

batches in the optimal schedule (σ∗) by the value of completed

batches in A’s schedule (σc
A). To this end, our analysis builds

on the value assignment approach employed in [19, 20]. This

approach operates in two steps:

1. Mapping. First, we map each batch in σA to a set of

batches in σ∗ in a manner that ensures each batch in σ∗ is

matched to at least one batch in σA. This mapping identifies

batches in σ∗ that are related to batches in σA, either be-

cause they overlap in their execution durations, or the batches

contain common requests. More formally we define three

relationships to compare a batch J ∈ σ∗ with a batch I ∈ σA

(Figure 14):

M1. J is blocked by I if tI ≤ tJ < tI + �I ≤ tJ + �J .

M2. J is covered by I if tI < tJ and tI + �I > tJ + �J .

M3. J is intersected by I if neither R1 or R2 hold, and ∃r
such that, r ∈ I and r ∈ J.

We say J is temporally related to I if either R1 or R2 holds,

and spatially related if R3 holds.

2. Assignment. We assign values from each batch I ∈ σA to

its mapped batches J ∈ σ∗, which we denote as va(I,J). This

assignment must satisfy two properties. First, it should be

feasible, i.e., for any I ∈ σA its total assignment to all batches

in σ∗ should be equal to the value of I:

∑
J∈σ∗

va(I,J) = |I|, ∀I ∈ σA (8)

802 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Second, the assignment should be bounded, i.e., the total value

assigned from all I ∈ σc
A to to all J ∈ σ∗ must be greater

than or equal to a constant portion of the aggregated value of

J ∈ σ∗:

∑
J∈σ∗

∑
I∈σc

A

va(I,J)≥ r · ∑
J∈σ∗

|J| (9)

where r ∈ [0,1] is a constant. Note that for an assignment that

is both feasible and bounded, we have:

v(σc
A) = ∑

I∈σc
A

|I|

= ∑
I∈σc

A

∑
J∈σ∗

va(I,J)

= ∑
J∈σ∗

∑
I∈σc

A

va(I,J)

≥ ∑
J∈σ∗

r · |J|

≥ r · v(σ∗)

(10)

Based on the definition of competitive ratio in Eq. 7, Eq.

10 suggests a competitive ratio of c = 1
r .

The key tasks that remain are defining a feasible and

bounded assignment va, and quantifying the bound r achieved

by this assignment.

Defining the value assignment va: We are now ready to define

our value assignment; as Figure 13 shows, a batch I in σA

may cover n batches Jc1 to Jcn (see M2), block at most one

batch Jb (see M1) and intersect m batches Ji1 to Jim (see M3).

Our value assignment rules are as follows:

• A1. For a batch Jb that I blocks, va(I,Jb) = x1 · |I|.
• A2. For a batch Jc that I covers, va(I,Jc) = x2 · |I| · �Jc

�I
, i.e.,

the assigned value is proportional to the duration of Jc.

Moreover, since the total duration of all covered batches

Jc1 to Jcn is no more than �I , the total assignment across

Jc1, ..., Jcn is no more than x2 · |I|.
• A3. For a batch Ji that I intersects, we assign a value of x3

to Ji for every request that is common between I and Ji, i.e.,

va(I,Ji) = x3 · |I ∩ Ji|. Since each request will be executed

at most once in σ∗, the total assigned value from I across

all Ji is no larger than x3 · |I|.
• A4. If the total assigned value from I is less than |I|, we

assign the residual value of I to any arbitrary J ∈ σ∗.

It is clear to see that the above assignment ensures that the

total assignment from any batch I ∈σA to all J ∈σ∗ equals |I|,
i.e., satisfies the feasibility constraint Eq. 8, if (x1+x2+x3)≤
1. Next, we quantify for each batch J ∈ σ∗, the lower-bound

r to satisfy the boundedness constraint (Eq. 9).

3. Determining the bound r: A key challenge in determining

the bound r for value |J| relative to the value assigned to

it, as per the boundedness constraint Eq. 9, is that a batch

I ∈ σA and a batch J ∈ σ∗ can be related both temporally and

spatially as outlined in our mapping step. As such, each such

case requires analysis for the bound. As a concrete example,

consider a batch J blocked by a batch I (as per M1). One

possible reason J is not executed in σA is because a subset

JE ⊂ J of requests may already have been dequeued from

Qm in σA and thus will not be executed again. Based on the

dequeue condition in Algorithm 1, JE is the subset of all

requests in J that have already completed in σA at time tJ . On

the other hand, it may be the case that J is not executed in σA,

because the value added by subset of requests JR ⊂ J that still

remain to be executed (i.e., JR = J \ JE) is less than twice the

value of the batch executed by σA in its place, namely I.

To accurately capture the impact of both of the above ef-

fects in determining the bound r, we define virtual batches
JR and JE for each batch J ∈ σ∗ as above (see Figure 15). We

denote the fraction of requests in J which belong to JR as p,

so that JE contains the remaining 1− p fraction of requests.

Note that p can take different values in [0,1] for different J in

σ∗. Since the value of a batch equals batch size, we have:

|JR|= p · |J|
|JE |= (1− p) · |J| (11)

Our next step is to determine the bound r based on JR and

JE independently (rR and rE , respectively), and take the tighter

of the two as our final lower bound, i.e., r = max(rR,rE).

Determining rR based on JR: We first consider the lower-

bound bound imposed on the value of J by only considering

the virtual batches JR. To this end, we confine ourselves to

assignment rules A1 and A2 corresponding to blocked and

covered batches, respectively.

• Case 1: I ∈ σA blocks JR. Since JR is blocked by I, it

must be the case that |JR| ≤ λ · |I|; otherwise JR would

have preempted I in σA at time tJ . Combined with the

assignment rule A1, this gives us:

∑
I∈σA

va(I,J)≥ x1 · |I|

≥ x1 · (1

λ
· |JR|)

= x1 · 1

λ
· p · |J|

(12)

• Case 2: I ∈ σA covers JR. To determine the lower bound

in this case, we exploit two properties. First, since I covers

JR, �I > �JR , i.e.,

�I > �JR (13)

Second, we exploit the property that a given model can al-

ways execute larger batches with smaller latency per record.

Since I covers JR,

|I|
�I

>
|JR|
�JR

(14)

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 803

Figure 15: All possible conditions in σA for a batch J ∈ σ∗. Here schedule σ∗(R) denotes the batch sequence of (J(R), tJ).

Finally, as Figure 15(b)-(c) shows, this case can be further

broken down into the following two sub-cases based on the

relation between I and the real batch J:

– Case 2a: I blocks J. Assignment A1 gives us:

∑
I∈σA

va(I,J)≥ x1 · |I|

> x1 · |J
R|

�JR
· �I

= x1 · p · |J|
�JR

· �I

> x1 · p · |J|

(15)

– Case 2b: I covers J: Assignment A2 combined with

Eqs. 13 and 14 applied to J gives us:

∑
I∈σA

va(I,J)≥ x2 · |I| · �J

�I

> x2 · |J|
�J

· �I · �J

�I

> x2 · |J|

(16)

Note that in this case we do not need consider JR to

determine the bound since I directly covers J.

• Case 3: If neither of the above cases occur, then σA must be

idle at time tJ . This implies that JR must have been empty

(i.e., p = 0), otherwise JR would have been scheduled in

σA. Therefore, the following trivial bound holds:

∑
I∈σA

va(I,J)≥ p · |J|= 0 (17)

Combining all the cases (Eq. 12, Eq. 15, Eq. 16 and Eq. 17),

we have for any J ∈ σ∗:

∑
I∈σA

va(I,J)≥ min(
p · x1

λ
,x2) · |J| (18)

Note that we omit the term from Case 3, since the corre-

sponding inequality is dominated by 1
2 · x1 · p with x1 ≤ 1.

Similarly, the term from Case 2a is also omitted since it is

dominated by Case 1.

Aggregating both sides of Eq. 18 over all J ∈ σ∗, we get:

min(
p · x1

λ
,x2) · ∑

J∈σ∗
|J| ≤ ∑

J∈σ∗
∑

I∈σA

va(I,J)

= ∑
I∈σA

∑
J∈σ∗

va(I,J)

= ∑
I∈σA

|I|

= v(σA)

(19)

Next, we show how we can upper-bound v(σA) by v(σc
A).

Note that batches in σA can form a chain based on the pre-

emption relation. For each chain, the next batch on the chain

preempts the previous one, and each chain must ended with a

batch in σc
A. We denote the chain which ends with batch |I|

as chain(I). Denote v(chain(I)) as the value of all the batches

in chain(I), since each batch in σA will be covered by exactly

one chain, we have

∑
I∈σc

A

v(chain(I)) = ∑
I∈σA

|I|= v(σA)
(20)

Moreover, based on the preemption rule we have that for each

chain, the value of the ith batch in the chain must be no less

than λ× the value of the i−1th batch. As such, v(chain(I))
must be no higher than λ

λ−1
×|I|, which indicates that:

v(σc
A) = ∑

I∈σc
A

|I|

≥ ∑
I∈σc

A

λ−1

λ
· v(chain(I))

=
λ−1

λ
· ∑

I∈σA

|I|

=
λ−1

λ
· v(σA)

(21)

Combined with Eq. 6, we have,

v(σA)≤ λ
λ−1

· v(σc
A)

=
λ

λ−1
· ∑

I∈σc
A

|I|

=
λ

λ−1
· ∑

J∈σ∗
∑

I∈σA

va(I,J)

(22)

804 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Combining Eqs. 19 and 22, we get:

∑
J∈σ∗

∑
I∈σA

va(I,J)≥ λ−1

λ
·min(

p · x1

λ
,x2) · ∑

J∈σ∗
|J| (23)

This gives us a bound rR = λ−1
λ ·min(p·x1

λ ,x2).

Determining rE based on JE: Note that all requests in JE must

have been completed in σA. So based on our assignment rule

A3, any request in JE must have been assigned a value of

x3 from one completed batch from σC
A (the set of completed

batches in σA). The above observation permits bounding |J|
based on JE as follows:

∑
I∈σc

A

va(I,J)≥ ∑
I∈σc

A

x3 · |I ∩ J|

≥ x3 · |JE |
= (1− p) · x3 · |J|

(24)

Aggregating both sides of Eq. 24 over all J ∈ σ∗, we get

rE = (1− p) · x3.

4. Determining the optimal competitive ratio: Combining

the bounds rR and rE , we get the final competitive ratio:

csgsm =
1

max(rR,rE)

=
1

min
p∈[0,1]

{max{λ−1
λ ·min{ p·x1

λ ,x2},(1− p) · x3}}
(25)

To minimize the value of csgsm, we can select appropriate

values of x1, x2 and x3 subject to the feasibility constraint

x1 + x2 + x3 ≤ 1, and select appropriate value of λ ∈ (1,∞).
Note, however, that we cannot select p — it can take arbitrary

values in [0,1]; as such, we have to consider the worst-case

value for p to compute the competitive ratio. This provides

us the following optimization problem:

min
x1,x2,x3,λ

csgsm

s.t. x1 + x2 + x3 ≤ 1

1 < λ < ∞

(26)

Solving the above optimization problem (via numerical

methods [39]) yields the minimal value for csgsm =∼ 10.81

with preemption threshold λ ≈ 2.38. �

B.2 Single-GPU Multi-Model Setting (sgmm)
We now extend our analysis to the setting with k models

{m1, ...,mk} deployed on a single GPU. The competitive anal-

ysis for the multi-model case also leverages the linear rela-

tionship between batch size and batch execution latency: for

model mi, the execution latency for a batch B is αi · |B|+βi,

where αi and βi are model-specific constants

Theorem B.2 Algorithm 1 is 10.81 ·K-competitive with mul-
tiple models on a single GPU, with preemption threshold
λ ≈ 2.38 and K defined in Eq. 4

Proof The proof shares a similar structure with the single-

GPU, single-model case, and is identical until we determine rR
based on JR. Even so, the analysis for Case 1 is still the same,

since the preemption rule remains unchanged. For Case 2,

however, Eq. 14 no longer holds, since with multiple models,

a batch with larger length may have a smaller value density

than a batch for a different model. However, with Eq. 1 we

can replace Eq. 14 with:

K · |I|
�I

>
|JR|
�JR

(27)

Now we show why Eq. 27 always holds. Assume I and J
are batches for models m1 and m2 respectively. We have

|JR|
�JR

· �I

|I| =
|JR|

α2 · |JR|+β2
· (α1 +

β1

|I|)

≤ |JR|
α2 · |JR|+β2

· (α1 +β1)

=
|JR| · (α1 +β1)

α2 · |JR|+β2

≤ K

(28)

Note that Line 1 to Line 2 is based on the implicit constraint

that |I| ≥ 1 since it can only take integer values.

To further improve the bound, we notice that as �I > �JR

always holds in Case 2, with Eq. 1 we have

α1 · |I|+β1 > α2 · |JR|+β2

→ |I|> α2 · |JR|+β2 −β1

α1

(29)

On one hand, if α2 +β2 −β1 > 0, we have α2 · |JR|+β2 −
β1 > 0. Then we can replace I in the first line of Eq. 28 with

Eq. 29:

|JR|
�JR

· �I

|I| =
|JR|

α2 · |JR|+β2
· (α1 +

β1

|I|)

<
|JR|

α2 · |JR|+β2
· (α1 +

β1 ·α1

α2 · |JR|+β2 −β1
)

=
|JR|

α2 · |JR|+β2
· (α1 · (α2 · |JR|+β2 −β1)+β1 ·α1

α2 · |JR|+β2 −β1
)

=
|JR|

α2 · |JR|+β2
· (α1 ·α2 · |JR|+α1 ·β2

α2 · |JR|+β2 −β1
)

=
|JR|

α2 · |JR|+β2
· (α1 · (α2 · |JR|+β2)

α2 · |JR|+β2 −β1
)

=
α1 · |JR|

α2 · |JR|+β2 −β1

≤ K

(30)

Then for Case 2a we will have:

∑
I∈σA

va(I,J)≥ x1 · |I|

>
x1 · p · |J|

K

(31)

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 805

For Case 2b we have:

∑
I∈σA

va(I,J)≥ x2 · |I| · �J

�I

>
x2 · |J|

K

(32)

The analysis for Case 3 and JE is the same as the single

model case. Similar to Eq. 25, by combining all cases we can

calculate the competitive ratio csgmm for the multi-model case:

csgmm =
1

min
p∈[0,1]

(max(λ−1
λ ·min(p·x1

λ , p·x1
K , x2

K),(1− p) · x3))

(33)

Since K ≥ 1, combining Eqs. 33 and 25 gives us:

csgmm ≤ K · csgsm ∀x1,x2,x3, p,λ (34)

As such, Algorithm 1 can always achieve a competitive ratio

of 10.81 ·K for the single-GPU, multi-model setting. �

B.3 Multi-GPU Multi-Model Setting (mgmm)
Finally, we extend our analysis to the general case with k
models {m1, ...,mk} and N GPUs. The major difference lies

in the per-GPU preemption rule for the request arrival event —

the new preemption rule ensures that at any time, no available

batch will have a value λ× higher than the value of the cur-

rently running batches on any GPU. Moreover, the modified

dequeue rule ensures that in the multi-GPU case, a request is

completed in at most one batch in σA.

We have the following theorem for the general case.

Theorem B.3 For the multi-GPU, multi-model case, Algo-
rithm 1 is 12.62 ·K-competitive with preemption threshold
λ ≈ 3.03, with K defined in Eq. 4.
Proof The proof follows the same structure as the single-

GPU, single-model setting as well. Define the schedule σA(u)
as the schedule of Algorithm A on GPU u ∈ [1,N] and σ∗(v)
as the optimal schedule on GPU v ∈ [1,N]. We have σA =
⋃

u σA(u) and σ∗ =
⋃

v σ∗(v). Moreover, we define (u,v) as

a GPU pair between the schedule σA(u) and σ∗(v).
Value assignment rule between GPU pair (u,v) We apply

a similar value assignment rule in the basic case for each
GPU pair (u,v) in the general case. The major difference lies

in assignment rules A1 and A2, where we evenly spread the

value for I from each σA(u) to all σ∗(v) with different v.

• A1. For a batch Jb ∈ σ∗(v) that I ∈ σA(u) blocks,

va(I,Jb) =
x1
N · |I|.

• A2. For a batch Jc ∈ σ∗(v) that I ∈ σA(u) covers,

va(I,Jc) =
x2
N · |I| · �Jc

�I
.

• A3. For a batch Ji ∈ σ∗(v) that I ∈ σA(u) intersects, we

assign a value of x3 to Ji for every request that is common

between I and Ji, i.e., va(I,Ji) = x3 · |I ∩ Ji|.

• A4. If the total assigned value from I ∈ σA(u) is less than

|I|, we assign the residual value of I to a random J ∈ σ∗(v).
Similar to the basic case, the above pair-wise assignment

rule ensures the following property:

Feasibility: For any GPU u ∈ [1,N], with (x1 + x2 + x3)≤ 1,

the total assignment from any batch I ∈ σA(u) to all J in all

σ∗(v) equals |I|. That is:

∑
v∈[1,N]

∑
J∈σ∗(v)

va(I,J) = |I|, ∀I ∈ σA(u) (35)

Boundedness: Similar to the basic case (Eq. 9), the assignment

should be bounded. Here we want to show that the total value

assigned from all I in all σc
A(u) to all batches J in all σ∗(v)

must be greater than or equal to a constant portion of the

aggregated value of J in all σ∗(v). That is:

∑
v∈[1,N]

∑
J∈σ∗(v)

∑
u∈[1,N]

∑
I∈σc

A
(u)

va(I,J)≥ r ∑
v∈[1,N]

∑
J∈σ∗(v)

·|J|

(36)

where r ∈ [0,1] is a constant. Note that similar to the basic

case (Eq. 10), for an assignment that is both feasible and

bounded, we have:

v(σc
A) = ∑

u∈[1,N]
∑

I∈σc
A
(u)

|I|

= ∑
v∈[1,N]

∑
J∈σ∗(v)

∑
u∈[1,N]

∑
I∈σc

A
(u)

va(I,J)

≥ ∑
v∈[1,N]

∑
J∈σ∗(v)

r · |J|

≥ r · v(σ∗)

(37)

Eq. 37 suggests a competitive ratio of c = 1
r .

Determining the bound r: The key task that remains is to

quantify the bound r achieved by the assignment. Similar to

the basic case, this is done by bounding the values of J for

each σ∗(v) by values of I for each σA(u), based on both the

JE and JR parts.

Determining rR based on JR: We can apply the same analysis

as in the basic case for each GPU pair (u,v). Note that for

Case 1, the modified preemption rule ensures that at any time,

no available batch in σA will have a value λ× higher than the

value of the currently running batches on any GPU. As such,

the JR from any GPU u must have a value no higher than λ×
the value of the I blocks it in any u, which indicates:

∑
I∈σA(u)

va(I,J)≥ x1

N
· |I|

≥ x1

N
· (1

λ
· |JR|)

=
x1

N
· 1

λ
· p · |J|

(38)

806 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Moreover, the analysis for Case 2 and Case 3 follows the

same logic. Formally, for any u and J ∈ σ∗(v) we have:

∑
I∈σA(u)

va(I,J)≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1·p
λ · |J|N , Case 1

x1·p·|J|
K·N , Case 2a

x2·|J|
K·N , Case 2b

p · |J|, Case 3

(39)

Since the above equation holds for each σA(u), we have:

∑
u∈[1,N]

∑
I∈σA(u)

va(I,J)≥ min(
x1 · p

λ
,

x1 · p
K

,
x2

K
) · |J| (40)

Aggregating both sides of Eq. 39 over all J in all σ∗(v), we

get:

min(
x1 · p

λ
,

x1 · p
K

,
x2

K
) · ∑

v∈[1,N]
∑

J∈σ∗(v)
|J|

≤ ∑
v∈[1,N]

∑
J∈σ∗(v)

∑
u∈[1,N]

∑
I∈σA(u)

va(I,J)

= ∑
u∈[1,N]

∑
I∈σA(u)

|I|

= v(σA)

(41)

Next, we bound v(σA) by v(σc
A). We apply the same chain

analysis as we did for the basic case for each σA(u). More

specifically we have:

∑
I∈σc

A
(u)

v(chain(I)) = ∑
I∈σA(u)

|I| ∀u ∈ [1,N]
(42)

Then based on the preemption rule we have:

v(σc
A) = ∑

u∈[1,N]
∑

I∈σc
A
(u)

|I|

≥ ∑
u∈[1,N]

∑
I∈σc

A
(u)

λ−1

λ
· v(chain(I))

=
λ−1

λ
· ∑

u∈[1,N]
∑

I∈σA(u)
|I|

=
λ−1

λ
· v(σA)

(43)

Combining Eqs. 41 and 43, we get:

∑
v∈[1,N]

∑
J∈σ∗(v)

∑
u∈[1,N]

∑
I∈σc

A
(u)

va(I,J)

≥λ−1

λ
min(

x1 · p
λ

,
x1 · p

K
,

x2

K
) ∑

v∈[1,N]
∑

J∈σ∗(v)
·|J|

(44)

This gives us a bound rR = λ−1
λ min(x1·p

λ , x1·p
K , x2

K).

Determining rE based on JE: Note that based on the dequeue

and preemption rule in Algorithm 1, some request in JE may

not have been completed in σA. Instead, it only ensures that

for any J ∈ σ∗(v), all requests in the corresponding JE must

have been (or being) executed in some σA(u). Since each of

the requests in JE gets assigned a value of x3 (based on A3),

we have the following bound:

∑
u∈[1,N]

∑
I∈σA(u)

va(I,J)≥ ∑
u∈[1,N]

∑
I∈σA(u)

|I ∩ Ji|

≥ x3 · |JE |
= (1− p) · x3 · |J|

(45)

Note that Eq. 45 is in the exact same form as Eq. 40. So

following the same procedure from Eq. 41 to Eq. 44 we can

get:

∑
v∈[1,N]

∑
J∈σ∗(v)

∑
u∈[1,N]

∑
I∈σc

A
(u)

va(I,J)

≥λ−1

λ
(1− p) · x3 ∑

v∈[1,N]
∑

J∈σ∗(v)
·|J|

(46)

This gives us a bound rE = λ−1
λ (1− p) · x3.

Determining the optimal competitive ratio cmgmm: Com-

bining the bounds rR and rE , we get the final competitive ratio:

csgsm =
1

max(rR,rE)

=
1

λ−1
λ · min

p∈[0,1]
{max{min(p·x1

λ , p·x1
K , x2

K),(1− p) · x3}}
(47)

Similar to the basic case, we can select appropriate values

of x1, x2, x3 and λ to minimize cmgmm.

min
x1,x2,x3,λ

cmgmm

s.t. x1 + x2 + x3 ≤ 1

1 < λ < ∞

�

Solving the above optimization problem yields the maximal

value for cmgmm =∼ 12.62×K with preemption threshold

λ ≈ 3.03.

C Complexity Analysis for FLEX

Theorem C.1 FLEX has a worst-case complexity of O(G),
where G is the number of GPUs in the serving group.
Proof Batch generation (Algorithm 2) has a complexity of

O(|M| · |Q|) where |M| is the number of models queues with

newly enqueued requests since last update, and |Q| is the

largest queue size among these model queues. For each re-

quest arrival event, batch generation is triggered O(G) times.

Moreover, between every two invocations, at most one model

queue changes. Therefore, |M| is at most 2 for each invocation

(Line 2 in Algorithm 2). In addition, since each preemption

will increase the size for the running batch by at least λ×, each

GPU can only be preempted by at most O(logλ(|Q|)) times.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 807

Algorithm 2 Batch generation algorithm in FLEX

1: procedure BATCHGEN(n)

2: M ← models with newly enqueued requests or currently

running on GPU n
3: for each model m ∈M do
4: Dequeue requests passing their deadlines from Q(m)

Line 5-13: Find largest feasible batch Bg(n,m) for model m

5: Candidate request set S← Q(m)
6: if Bc(n) uses model m then
7: S← Q(m)

⋃
Bc(n)

8: Bg(n,m)← /0
9: for request r in S with ascending deadline do

10: if r can meet SLO with batch size |Bg(n,m))| then
11: Add r to Bg(n,m)
12: else
13: Break

14: Bg(n)← Bg(n,m) with largest batch size among all models

15: Return Bg(n)

As such, the re-enqueue event (Line 19 and 11) will be trig-

gered by at most O(logλ(|Q|)) times for each GPU. The com-

plexity of enqueue operation is O(log(|Q|)) (Line 10), and

the complexity of re-enqueue operation is O(|Q|+ |Bc(n)|)
(Line 19). Note that |Bc(n)| can never be larger than |Q| by

definition. Note that |Q| and λ are constants. Based on the

above analysis, the total complexity for each request arrival

event and batch completion event is O(G). Similar analysis

applies for each batch completion event. Taken together, FLEX

has an overall complexity of O(G). �

808 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

