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Abstract

A fully occluded object cannot be perceived directly, but
we can still infer its existence from the effect it has on the
motion and behavior of other, visible objects. Here we
report the results of a behavioral experiment designed
to elicit these sorts of inferences and quantify their re-
liability. Our experiment leverages videos of real-world
objects interacting under real-world physics (specifically,
interrupted pendulum motion). We propose a preliminary
model for how the mind might efficiently infer the position
and number of occluded objects simply from the effect
they have on the visible physics of a scene.
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Introduction

In order to navigate an environment full of occlusions, shad-
ows, and overlapping sounds, the mind must integrate noisy
observations with a great deal of prior knowledge—possibly
using a form of Bayesian inference (Kersten, Mamassian,
& Yuille, 2004; Mansinghka, Kulkarni, Perov, & Tenenbaum,
2013; Pouget, Beck, Ma, & Latham, 2013). An important tool
enabling this inference is our ability to construct a detailed
physical model of the objects around us and predict their prop-
erties and future behavior (Battaglia, Hamrick, & Tenenbaum,
2013; Ullman, Stuhlmüller, Goodman, & Tenenbaum, 2018).

Perhaps even more impressive than accurately extrapolat-
ing from noisy observations of visible objects is our ability to
infer the existence of objects that we cannot directly perceive
at all. Consider a pedestrian who, while putting on her slip-
pers, notices her neighbor slipping and sliding on the side-
walk. There must be ice on the ground, she realizes, and so
reaches for her boots instead. More than simply predicting
the behavior of objects in view, she is able to discover a hid-
den substance solely on the basis of its physical interactions
(Carroll & Kemp, 2015).

We sought to bring these sorts of inferences into the labora-
tory with a novel behavioral task in which participants inferred
the existence and position of an unknown number of hidden
objects from a video of a real-world scene. Making such
inferences required them to integrate perceptual information
over time and then generate plausible hypotheses (Dasgupta,
Schulz, & Gershman, 2017) to ultimately determine the true
latent properties of the scene. In addition to our behavioral re-
sults, we describe a preliminary model for how an appropriate
hypothesis might be efficiently selected.

Figure 1: The experimental setup. Each video looped contin-
uously as participants made their response.

Methods
Behavioral Experiment
Stimuli were 1080p videos of a pendulum swinging in front of
a partially occluded pegboard (see Figure 1). In each video,
either one or two pegs were inserted into the board behind an
occluding rectangle such that they were not directly visible but
still made contact with the string during part of its motion. Par-
ticipants (N=450) recruited from Prolific were asked to select
the holes which they thought contained pegs.

The task took approximately 8 minutes and participants
were paid $2, with a potential $1 bonus for performance. Af-
ter an instruction phase, participants were shown videos like
the one depicted in Figure 1, and selected peg locations by
clicking on the corresponding hole in the pegboard (without
time pressure). Each participant completed 26 trials, in ad-
dition to two catch trials where the occluder was absent (so
the task became trivial). Participants were excluded if they did
not complete the task and correctly answer both catch trials,
or if they responded too quickly (within four seconds), leaving
N=367 after exclusions.

Computational Model
Visual processing makes use of sophisticated kinematic cues
(Palmer, Kellman, & Shipley, 2006), which may even involve
limited forms of physical inference (Firestone & Scholl, 2017;
Little & Firestone, 2021). Our model assumes that a similar
perceptual cue is at work when participants observe scenes
like that shown in Figure 1. In particular, we suggest that the
two visible segments of string are extrapolated to find their
point of intersection. This “where would the lines meet?” cue
is imperfect (the string bends slightly around the pegs, for ex-
ample), but it is sufficient to approximate the true peg location.
Future iterations of this model will compare alternative cues
(e.g., the center of the arc traced out by the path of the ball).

Extrapolating the string segments gives a reasonable guess
for each of the frames in which the ball was visible and the line
segments non-colinear, but these guesses do not by them-
selves determine the number and location of distinct pegs.
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Figure 2: (a) Heat map of participants’ responses for the trial depicted in Figure 1. (b) Comparison of model and human
performance. Each dot indicates performance for a single video. Distances are scaled so that two adjacent holes in the pegboard
are one unit apart. Human means are computed across participants, and model means across 100 runs. (c) Proportion of trials
where the precisely correct peg(s) were selected, split into trials with one peg or two. Dashed lines show chance level, error bars
are 95% CI.

The relevant physical dynamics of the ball and string are
subtle (the length of the lower string segment, for example,
changes slightly as the string wraps around a peg), but we can
simplify the situation substantially by treating it as a clustering
problem over an unknown number of clusters: given a string-
extrapolation point from each frame, what are the clusters of
points, and where? A natural choice for this type of problem is
a Dirichlet process mixture model, which has a history of suc-
cessful applications in category learning (Griffiths, Navarro, &
Sanborn, 2006; Gershman, Blei, & Niv, 2010). Importantly,
these models are non-parametric, in that the number of clus-
ters does not need to be specified in advance.

In our case, we first extrapolated the line segments on each
frame, adding perceptual noise in proportion to the length of
the visible line (note: this is an imperfect approximation; see
Morgan, 1999). This yielded an estimated peg position for
each eligible frame. We then approximated the posterior of
the infinite Gaussian mixture, with each cluster mean repre-
senting an inferred peg position. To compare these continu-
ous inferences to human responses (which were discretized
by the pegboard grid), we first assigned each of the model’s
inferred cluster means to the nearest valid peg location, and
then calculated the mean distance between these and the true
peg locations for both the model and the participants.

Results
Participants performed reliably above chance (see Figure 2b).
While absolute accuracy was low, success on a trial required
selecting the one correct location out of 165 options—a high
bar, and made even higher when there were two pegs. The re-
sults for the 40 participants (after exclusions) who completed
one example trial are shown in Figure 2a, where the larger
circles are locations that participants selected more often. We
also measured participants’ mean distance from the correct
peg location(s), scaled so that selecting the peg immediately
adjacent to the correct peg would be a distance of one. The
correlation between human and model performance on this
measure is depicted in Figure 2c. This preliminary model fit
suggests that we are capturing some aspects of the variation

in difficulty between trials, but a more thorough model eval-
uation is needed before any substantive conclusions can be
drawn.

Discussion

Object discovery can take many forms, from recognizing an
object covered by a cloth (Yildirim, Siegel, & Tenenbaum,
2016) to discovering a previously-unknown planet (Galle,
1846). Our work describes an simple and intuitive paradigm
for examining these types of inductive causal inferences. An
important feature of this project is the use of videos of real-
world physical events. In contrast, much of the work in the
psychology of intuitive physics employs artificial renderings of
objects in simulation software (Battaglia et al., 2013; Smith,
Battaglia, & Vul, 2013; Ullman et al., 2018). In physics sim-
ulators, the “ground truth” position of each object can usually
be read out directly and passed into an inference model (with
added perceptual noise). Here, our estimates of the proper-
ties of the scene were limited to what could be extracted from
a video. This keeps us honest—our model has to make do
with the same imperfect recordings that the participants saw.
Similarly, the physical dynamics of our videos necessarily in-
cluded all the nuisance factors (e.g., friction, slipping, air cur-
rents, manufacturing imperfections) that are often ignored by
physics simulators.

Inferring the existence of hidden objects is difficult because
of the sheer number of latent causes that could plausibly be
operating in our physical environments. Considering all these
possibilities—the problem of hypothesis generation—can be
the primary computational challenge for making accurate in-
ferences (Dasgupta et al., 2017; Phillips, Morris, & Cushman,
2019). Our approach leveraging Bayesian non-parametric
models enables us to explain how people flexibly adapt the
complexity of their hypothesis to the structure of the physical
scene.
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