
Proceedings of Machine Learning Research vol 201:1–33, 2023 34th International Conference on Algorithmic Learning Theory

Online k-means Clustering on Arbitrary Data Streams

Robi Bhattacharjee RCBHATTA@ENG.UCSD.EDU
UCSD

Jacob John Imola JIMOLA@ENG.UCSD.EDU
UCSD

Michal Moshkovitz MICHAL.MOSHKOVITZ@MAIL.HUJI.AC.IL
Tel-Aviv University

Sanjoy Dasgupta DASGUPTA@ENG.UCSD.EDU

UCSD

Editors: Shipra Agrawal and Francesco Orabona

Abstract

We consider k-means clustering in an online setting where each new data point is assigned to its
closest cluster center and incurs a loss equal to the squared distance to that center, after which the
algorithm is allowed to update its centers. The goal over a data stream X is to achieve a total
loss that is not too much larger than L(X,OPTk), the best possible loss using k fixed centers in
hindsight.

We start by introducing a data parameter, ⇤(X), such that for any online algorithm that main-
tains O(k poly(log n)) centers after seeing n points, there exists a data stream X for which a
loss of ⌦(⇤(X)) is inevitable. Next, we give a randomized algorithm that achieves online loss
O(⇤(X) + L(X,OPTk)), while taking O(k poly(log n)) centers and additional memory. It has
an update time of O(k poly(log n)) and is the first algorithm to achieve polynomial space and time
complexity in the online setting.

We note that our results have implications to the related streaming setting, where one final
clustering is outputted, and the no-substitution setting, where center selections are permanent. We
show a general reduction between the no-substitution cost of a blackbox algorithm and its online
cost. Finally, we translate our algorithm to the no-substitution setting and streaming settings, and it
competes with and can outperform existing work in the areas.

1. Introduction

The online learning framework (Littlestone, 1987), first introduced in the context of classification,
is a model that does away with the benign (i.i.d.) statistical assumptions that underlie much of
learning theory, and instead deals with data that is arbitrary and possibly adversarial, and that arrives
one point at a time, indefinitely.

Here we consider clustering in an online setting. At every time t, the Learner announces a
clustering; then, Nature provides the next data point xt; finally, the Learner incurs a loss depending
on how well its clustering captures xt. There are no assumptions on the data.

Specifically, we look at online realizations of k-means clustering. For any data stream X =
{x1, . . . , } ⇢ Rd, the k-means cost of a set of centers S ⇢ Rd is L(X,S) =

P
x2X d(x, S)2 where

we define d(x, S) to be the Euclidean distance from x to its nearest neighbor in S.
In the (batch) k-means problem, the input is a full data stream X , and the goal is to find a set of

centers whose cost is close to that of the optimal k centers, denoted by Lk(X) = inf |S|=k L(X,S).

c� 2023 R. Bhattacharjee, J.J. Imola, M. Moshkovitz & S. Dasgupta.



ONLINE CLUSTERING

Finding the optimal clustering is NP-hard (Aloise et al., 2009; Dasgupta, 2008), but a variety of
constant-factor approximation algorithms are known (Kanungo et al., 2004; Ahmadian et al., 2020).

Batch k-means is the canonical method for vector quantization, in which training data X is
clustered to obtain a set of k codewords S, and any subsequent data point x is quantized by replacing
it by its nearest codeword s 2 S, at a quantization cost of d(x, s)2. It is well-known that if all
points (past and future) come from some fixed distribution, and if |X| is large enough, then good
codewords for X are also good codewords for this underlying distribution Pollard (1981, 1982). We
are interested in the more challenging setting of lifelong learning, where the data distribution can
change and thus codewords need to be updated from time to time.

We study the online k-means setting, in which the Learner maintains a set of centers St that it
updates as it sees more data. At each time t, three things occur.

• Nature provides a data point xt.

• Learner incurs loss d(xt, St�1)2.

• Learner announces an updated set of centers St.

The total loss incurred by the learner up to time t is then compared to the loss of the best k-means
solution in hindsight; that is, Lk({x1, . . . , xt}). A crucial difficulty is that the data xt are arbitrary:
Nature can choose a stream X with full knowledge of the Learner’s algorithm.

There has been a large body of work on the different, but related, streaming k-means problem.
In this setting, there is a finite data stream whose size n is typically known in advance. These
data are revealed one point at a time and the learner updates its model after seeing each successive
new data item. The key requirements are that the learner not use too much memory and that the
individual updates be efficient. Once the entire data stream has been processed in this way, the cost
of the Learner’s final model is compared to that of the optimal k-means clustering.

In contrast, for the online k-means problem, losses accumulate along the way, and crucially, the
loss of xt depends on a clustering that was produced before xt had been seen. The only work we are
aware of in this framework is that of Cohen-Addad et al. (2021). They show how the classical mul-
tiplicative weights strategy (Littlestone and Warmuth, 1994) can be used in this setting, with each
candidate clustering being an expert. This space of experts is continuous, but it can be discretized,
and the authors show how to do this in a way that leads to a strong performance guarantee: the
learner outputs exactly k centers at each time step and the total loss it accumulates at each time n is
at most (1 + ✏)Lk({x1, . . . , xn}). The downside, however, is that the algorithm requires resources
(space and time) that are exponential in k and d, making it impractical in many settings.

In this paper, we are interested in developing efficient algorithms for online k-means clustering.
Our solution strategy does not use multiplicative weights. Instead we rely upon three key ideas.

First, the adversarial nature of the data means that the scale of the clustering problem can in-
crease dramatically from time to time, for instance if the latest point xt is much farther away from
the rest of the data than the typical previous interpoint distance. Between such scale-changes, how-
ever, it turns out that algorithmic ideas from the streaming k-means literature are applicable.

Second, we make use of the availability of good algorithms for the streaming k-center problem.
For a data stream X and a set of centers S, the k-center cost of S is the maximum distance from a
point in X to its closest center in S. The algorithm of Charikar et al. (1997) for streaming k-center
takes one data point xt at a time and updates its set of k centers in O(kd) time. Its total space
requirement is just O(kd). And at any time n, this set of k centers has cost at most eight times that

2



ONLINE CLUSTERING

of the best k-center solution for Xn = {x1, . . . , xn}. This does not give us a solution for the k-
means problem, since the k-means and k-center cost functions can differ by a multiplicative factor
of ⌦(n) for n data points. However, the k-center cost is useful for gauging when there has been a
dramatic scale-change. We run the streaming k-center algorithm in the background, and whenever
the k-center cost increases sharply, we think of a new scale as having begun.

Third, it is necessary to periodically throw away centers when we have accumulated too many
of them. This is tricky because we must always ensure that the data points xt close to those centers
are still adequately covered. We introduce a novel way of handling this: we throw away all centers
from before the previous scale began, and replace them by the k-center solution so far. The nature
of scale-change means that quantization error can still be controlled. Our algorithm is shown in
Algorithm 1, and its performance is governed by our main result.

Theorem 1 (Upper Bound) Let X be an arbitrary data sequence, k be a positive integer, and �

satisfy 0 < � < 1. Suppose we run Online Cluster(X, k, �) (Algorithm 1). Let St denote the

centers outputted at time t and Mt denote the total amount of memory used at the end of time t.

Then with probability at least 1�� over the randomness of Online Cluster, for all integers n � 2,

the following hold:

1. (Approximation Factor)
P

n

t=2 d(xt, St�1)2 = O(Lk(Xn) + ⇤(Xn)).

2. (Center Complexity) |Sn| = O(k log6 n

�
).

3. (Memory and Time Complexity) Each step uses O(kd log6 n

�
) time and memory.

Here, Xn is a shorthand for the sequence x1, . . . , xn, Lk(Xn) is the optimal k-means cost in
hindsight, and the final term is

⇤(Xn) =
X

i

d(xi, Xi�1)
2
.

The last term, ⇤(Xn), can be seen as the loss we would incur, in the online setting, if we were
allowed to store all points seen so far. We complement this with a lower bound demonstrating a
broad class of data sequences for which at least ⌦(⇤(Xn)) loss must be paid over the first n points.

Theorem 2 (Lower Bound) Let X be any data sequence that contains infinitely many distinct

points. Let A be an online clustering algorithm such that its output satisfies |Sn|  n for all n

and for all input sequences. Then there exists a sequence X̃ = x̃1, x̃2, . . . such that the following

conditions hold.

1. X̃ is drawn from the closure of X , (i.e. X and its limit points). Thus all points in X̃ are

arbitrarily close to points in X .

2. For all n � 2, the expected loss over A satisfies EA

⇥P
n

s=2 d(x̃s, Ss�1)2
⇤
� ⌦(⇤(X̃n)).

Our lower bound does not construct a fixed sequence for which all algorithms incur a large
loss, for the simple reason that an algorithm may memorize an arbitrary number of the points in the
sequence. Thus the sequences achieving the lower bound do depend on the algorithm, but they are
not pathological in the sense that they can be constructed from any sequence X with infinitely many
distinct points.

3



ONLINE CLUSTERING

1.1. Connections to Other Clustering Settings

A key step in analyzing our algorithm is centered around reducing the online loss,
P

n

t=2 d(xt, St�1)2,
to the closely related no-substitution loss,

P
n

t=1 d(xt, St)2. This loss function comes from the no-
substitution setting (Liberty et al. (2016); Moshkovitz (2021)), which is a variant of the online
setting in which the centers are allowed to be updated after observing the latest point xt. For this
reason, the loss paid is with respect to St rather than St�1. In exchange for this advantage, the
no-substitution setting severely limits the types of updates that can be made to St; at each time we
can either include the newest point as a center, or reject it forever, with all decisions being final.
More precisely, for all times t, either St = St�1 or St = St�1 [ {xt}. No-substitution algorithms
balance both of these criteria by minimizing their loss function without selecting too many centers.

It turns out that for any no-substitution algorithm, its loss in the online setting,
P

n

t=2 d(xt, St�1)2,
can be bounded by its no-substitution loss,

P
n

t=1 d(xt, St)2 and the lower bound parameter, ⇤(Xn).
We express this in the following reduction result, which, in addition to being a key step of proving
Theorem 1, is also of independent interest.

Theorem 3 (Reduction to No-substitution) Let St denote the selected centers at the end of time t

of any no-substitution algorithm. Then at all times n, the online clustering loss,
P

n

t=2 d(xt, St�1)2

can be bounded by a constant factor of the no-substitution loss,
P

n

t=1 d(xt, St�1)2 and a corrective

term ⇤(Xn). That is,

nX

t=2

d(xt, St�1)
2  6

nX

t=1

d(xt, St)
2 + 6⇤(Xn)

It is important to note that although this result doesn’t directly apply to our algorithm (as it is not

a no-substitution algorithm as it periodically removes centers), a close variant of this result does. A
simple intuition for this is that our algorithm mimics no-substitution algorithms sufficiently well to
have a similar relation between its online loss and its no-substitution loss.

Performance in other settings: Finally, although our paper is focused on the online clustering
setting, it is natural to consider our algorithm’s performance in the other clustering settings, such as
the streaming setting and the no-substitution setting. To this end, we show that our algorithm gives
a nearly identical performance in the streaming setting, with the streaming loss being reduced to
O(Lk(Xn)) and the center, memory, and time, complexity remaining the same.

Corollary 4 With probability 1� � over its randomness, Online Cluster(X, k, �) has streaming

loss,
P

n

t=1 d(xt, Sn)2  33Lk(Xn), and has center, memory, and time complexity as bounded in

Theorem 1.

Although our algorithm cannot be directly applied to the no-substitution setting as it deletes cen-
ters (thus violating the no-deletion policy), it can easily be transformed into a no-substitution setting
by simply removing all deletions, and forcing the algorithm to adhere to the rule that St = St�1 or
St = St�1 [ {xt}. After doing this, the resulting algorithm, denoted No Sub Cluster(X, k, �),
has performance as follows.

Corollary 5 Let X be an arbitrary data sequence, k be a positive integer, and � satisfy 0 < � < 1.

Suppose we run No Sub Cluster(X, k, �). Let St denote the centers outputted at time t and Mt

denote the total amount of memory used at the end of time t. Then with probability at least 1 � �

over the randomness of No Sub Cluster, for all integers n � 1, the following hold:

4



ONLINE CLUSTERING

1. (Approximation Factor)
P

n

t=2 d(xt, St)2 = O (Lk(Xn)).

2. (Center Complexity) |Sn| = O(kOCk+1(Xn) log
6 n

�
), where Online Clusterk(Xn) is the

lower bound parameter introduced in Bhattacharjee and Moshkovitz (2021).

3. (Memory and Time Complexity) Each step uses O(kdOCk+1 log
6 n

�
) time and memory.

The term, OCk+1, is a lower bound term introduced in Bhattacharjee and Moshkovitz (2021) that
characterizes the necessary center complexity for no substitution clustering. The resulting center
complexity of our algorithm is comparable to that of other algorithms in this setting (such as Liberty
et al. (2016) or Bhattacharjee and Moshkovitz (2021)), and the no-substitution loss guarantees is an
improvement over all known algorithms. We include a more detailed comparison between our
algorithm and existing work in Appendix C.2.

2. Related Work

In the offline (batch) k-means setting, all points are given simultaneously, and the goal is to find
a small subset of centers with a small approximation compared to the optimal k-means clustering.
Efficient algorithms returning poly(k) centers with a constant approximation are known (Kanungo
et al., 2004; Aggarwal et al., 2009; Ahmadian et al., 2020). On the negative side, it is NP-hard
to return the optimal k centers or even approximate it up to a small constant (Aloise et al., 2009;
Dasgupta, 2008).

In the online setting, points arrive one after another and not simultaneously. After each point,
the algorithm decides whether to take this point as a center. In Cohen-Addad et al. (2021) algorithms
for a similar setting as ours were proposed. The algorithms are inefficient and run in exponential
time in k and the dimension of the data. On the other hand, our algorithm runs in polynomial time.

Recently a popular variant of the online setting was explored, the no-substitution setting. In
this setting, decisions are irrevocable, and the loss is paid after the centers are updated (Liberty
et al. (2016)). Additionally, many other papers also consider the case where the cost is measured
only at the end (thus mimicking the streaming setting) (Hess and Sabato, 2020; Moshkovitz, 2021;
Bhattacharjee and Moshkovitz, 2021; Hess et al., 2021). In Liberty et al. (2016) an algorithm utiliz-
ing ideas from Meyerson (2001) was introduced. Unfortunately, the number of centers inherently
depends on the aspect ratio, which can be enormous. In this paper, the cost is incurred immedi-
ately after each point arrives. The number of centers our algorithm uses is only k logO(1)(n). No
assumptions on the input data are needed.

A closely related setting is the streaming model (Aggarwal, 2007; Guha et al., 2003; Braverman
et al., 2011; Shindler et al., 2011; Ailon et al., 2009). As in the online setting, points arrive one after
another, and the goal is the utilize a small memory while ensuring that the cost at the end is small.
Several passes over the data are allowed. In this paper, only one pass on the data is allowed, and
more importantly, the cost is incurred immediately and not at the end of the stream.

One other related setting is the k-servers problem (Koutsoupias, 2009). Here, at all times k

points (i.e. servers) are maintained in memory, and the loss incurred is the total distance that the
points are moved to include the newest point. Crucially, the learner is charged a penalty for moving
any of the k points, and is not allowed to add or delete points (unlike our setting).

5



ONLINE CLUSTERING

3. Preliminaries

Notation For the rest of this paper, we prefer referring to data streams as data sequences to em-
phasize their possibly infinite size. For a data sequence X ✓ Rd, the k-means cost of a set of centers
S ✓ Rd is given by L(X,S) =

P
x2X mins2S d(x, s)2, where d denotes the Euclidean distance.

Additionally, we let Lk(X) = min|S|=k L(X,S) denote the optimal k-means cost of clustering
data sequence X .

For a positive integer t, we write Xt = {x1, . . . , xt} to denote the first t elements of X . We
also let L(X) and L(X,x) denote L1(X) and L(X, {x}) respectively.

Setting Our input is an infinite sequence X = {x1, . . .} ⇢ Rd which is given to the algorithm
one point at a time. At each time t, the algorithm observes a new point xt and then outputs a set of
cluster centers, St. The algorithm incurs loss at xt based on how well the previous clustering, St�1,
captures xt. Thus, the total loss of the algorithm is

nX

t=2

d(xt, St�1)
2
.

Here, the index begins at t = 2 because the algorithm is allowed to see the initial point, x1 without
incurring a loss.

There are no restrictions on the sequence X . It can even be chosen by an adversary that has
knowledge of our algorithm ahead of time. The only restriction is that X cannot be changed after

observing the output of our algorithm, St – the adversary (or nature) must decide on X before the
algorithm starts running.

4. The Lower Bound Parameter, ⇤

Typically, the goal of most online or streaming clustering problems is to achieve a loss at time n

on the order of O(Lk(Xn)), where k is a pre-specified parameter denoting the optimal number of
centers. However, in this setting, this is not always possible.

Consider the data sequence {1,↵,↵2
,↵

3
, . . . } ⇢ R for some constant ↵ > 1. For ↵ sufficiently

large, the point ↵n will be extremely far away from all the points preceding it, and consequently
will be very likely to incur a large loss, d(xn, Sn�1)2. The only way d(xn, Sn�1)2 will be small is if
the algorithm is somehow able to “guess” its location. By contrast, the optimal k-means clustering
of {1, . . . ,↵n} will include some cluster center that is reasonably close to ↵

n, and as a result will
incur a significantly smaller loss.

To generalize this example to arbitrary data sequences, the key insight is that the distance from
a given point to the set of points preceding it serves as a baseline for its incurred loss unless the
algorithm makes a lucky guess. This leads us to our lower bound parameter.

Definition 6 (Lower Bound Parameter) For an ordered sequence of points Xn = {x1, x2, . . . , xn},

define ⇤(Xn) =
P

n

t=2 d(xt, Xt�1)2.

The quantity ⇤(Xn) can be interpreted as the loss incurred by an online algorithm whose cluster
centers at any time t consist of all points seen so far. One can view this as the best possible algorithm
that makes no guesses about locations of future points.

6



ONLINE CLUSTERING

We now formalize the intuition that ⇤(Xn) is a lower bound on the online loss at time n. With
no assumptions, the algorithm may make an arbitrary number of guesses about the data sequence,
or even memorize Xn, and defeat the lower bound of ⇤(Xn). To control this behavior, we assume
that at time n, the number of centers outputted by the algorithm is bounded by an integer, bn.

The most standard way to prove a lower bound would be to show that for any algorithm A,
there exists a data sequence X for which A pays loss bounded by ⌦(⇤(Xn)) at time n. However,
the lower bound would then only be tight for pathological choices of Xn (such as {1,↵,↵2

, . . . }).
Instead, we show a stronger result— that for any algorithm A and data sequence X , there exists a
data sequence X̃ that can be constructed from X for which A pays loss at least ⌦(⇤(X̃n)). The
strength of this stricter approach is that even for extremely limited sets of data sequences (say sets
where “pathological” examples are excluded), our lower bound ⇤(Xn) maintains relevance. Our
lower bound appears in Theorem 2, and is proved in section A.

5. A No-Substitution Approach to Online Clustering

We now turn our attention towards finding efficient algorithms for the online clustering setting. A
natural starting point is to consider the vast literature of streaming k-means algorithms. Recall
that streaming algorithms maintain an output St for which the loss Lk(Xt, St) is small (typically
O(Lk(Xt)). We might conjecture that such algorithms have an online loss bounded by O(⇤(Xn)+
Lk(Xn)) for the following reason. When xt is far from previously encountered points, the incurred
loss d(xt, St�1)2 can be absorbed by ⇤(Xn), and when xt is near previous data, the maintained set
of centers St�1 serves as a good representation of all data including xt. Unfortunately, the following
example illustrates that that this conjecture is not true for all streaming algorithms, highlighting the
need for a more sophisticated approach.

Let X be a sequence that cycles through a set of k + 1 points with pairwise distances all equal
to 1 embedded in Rk. Let A be the algorithm that always outputs the last k points that it has
encountered, that is St = {xt, xt�1, . . . , xt�k+1}. A achieves a good streaming loss over X —
at the end of any time n, A clearly outputs a 2-approximation to the optimal k-means loss, and
consequently achieves a low streaming loss.

Conversely, A does poorly on X in the online setting. On each subsequent point, A pays a loss
of exactly 1, meaning that our online loss at time n is ⌦(n). By contrast, ⇤(Xn) = k, as we only
have k + 1 distinct points, and Lk(Xn)  n

2(k+1) . It follows that A pays online loss that is a factor
of ⌦(k) larger than the combination of ⇤(Xn) and Lk(Xn).

This example highlights that more structure is needed on the set of centers St beyond simply
having a low streaming loss. In the example above, at every single time, A removes from S precisely
the new point xt, and thus incurs loss. To circumvent this issue, a natural idea is to consider clus-
tering algorithms that are unlikely to remove points from St. This idea is the defining characteristic
of the no-substitution setting.

5.1. A Reduction to the No-Substitution Setting

Recall that no-substitution clustering can be thought of as a variant of the online clustering setting in
which two things are changed. First, rather than incur loss before updating our centers, this setting
reverses the order, and the algorithm incurs loss after it has a chance to update its centers. We can
thus write the cumulative loss at time n as

P
n

t=1 d(xt, St)2.

7



ONLINE CLUSTERING

Figure 1: An illustration de-
picting u(t), p(t) on a sample
dataset.

Figure 2: A naive appli-
cation of the triangle in-
equality, which results in a
d(xu(t), St�1)2 term (see (1)).
This produces too many terms
involving xu(t).

Figure 3: A double applica-
tion of the triangle inequality
produces d(xp(t), St�1)2 and
d(xp(t), xu(t))

2 terms, which
involves each point a constant
number of times (see (2)).

This setting is clearly trivial if no restrictions are placed on St, as otherwise can simply set St =
{xt} thus having perfect loss and using only 1 center at all times. This leads to the second difference
from the online setting; once a center is chosen, it can never be removed. That is, S1 ✓ S2 ✓ . . . .
This restriction prevents the trivial solution given above, as although it still obtains 0 loss, it now
has unacceptable center complexity as it would require |St| = t for all times t.

This restriction of no deletions precisely circumvents the counterexample of the previous sec-
tion. Using this idea, we are able to prove Theorem 3, which reduces the online clustering loss to
the loss of any no-substitution algorithm.

Before going to the proof, we introduce a special way of indexing that will make our inequalities
more intuitive. Consider the following functions:

Definition 7 Let Xn be a data sequence. For t � 2, define the previous nearest neighbor of the

point with index t by u(t) = argmini=1,...,t�1 d(xi, xt); i.e. the index i such that xi 2 Xt�1 is the

closest to xt. Consider the tree induced by u(t) where the parent of t is given by u(t). Denote the

previous sibling in the tree of the point with index t as p(t) : N ! N. In other words, p(t) is the

greatest index s such that xs 2 Xt�1 satisfies u(s) = u(t)—i.e. s is the greatest sibling less than t.

If t has no previous siblings, then set p(t) = u(t).

For an illustration of these functions, see Figure 1. Notice that ⇤(X) =
P

n

t=2 d(xt, xu(t))
2. It

is easy to see that both p(t) < t and u(t) < t for all t. Furthermore, for any index s, there can be at
most two distinct indices t, t0 such that p(t) = p(t0) = s, namely, the very next sibling of s and the
smallest child of s. We call this property 2-injectivity of p(t). We are now prove Theorem 3.
Proof (Of Theorem 3): Our goal is to upper bound

P
n

t=2 d(xt, St�1)2. Let l be such that ⌧l+1 
n < ⌧l+2. We begin with a straightforward application of the triangle inequality,

d(xt, St�1)  d(xt, xu(t)) + d(xu(t), St�1)

 d(xt, xu(t)) + d(xu(t), Su(t)) + d(xp(t), Su(t)) (1)

with the last inequality holding because Sp(t) ⇢ St�1 since the algorithm is in the no-substitution
setting. Each d(xt, xu(t)) term is how far xt is from all other points. Each d(xu(t), Su(t)) term
represents how well Su(t) represents the points xu(t), which is simply the part of Xt�1 that is closest

8



ONLINE CLUSTERING

to xt. Squaring and summing (1) over all times t, we could obtain a bound for the online loss in
terms of how far new points are from previous points, plus how well St represents Xt over time.

However, examining (1), a problematic term is
P

n

t=2 d(xu(t), Su(t))
2, which results in a sum of

d(xu, Su)2 for all t such that u(t) = u. Since u(t) need not be injective, this could produce n copies
of d(xu, Su)2. To circumvent this problem, we apply the triangle inequality twice and involve p(t).
This will let us leverage the fact that for any s, there are at most two distinct indices t, t0 for which
p(t) = p(t0) = s. We have,

d(xt, St�1)  d(xt, xu(t)) + d(xu(t), xp(t)) + d(xp(t), St�1)

 d(xt, xu(t)) + d(xu(t), xp(t)) + d(xp(t), Sp(t)). (2)

Our first, naive application of the triangle inequality appears in Figure 2 and our double application
appears in Figure 3. This double application results in terms of the form d(xp(t), Sp(t))

2, which
when summed over all points, can be upper bounded by the new loss function

P
n

t=1 d(xt, St)2

because p is 2-injective.
By squaring (2) and applying Cauchy Schwartz, we have

d(xt, St�1)
2  3d(xt, xu(t))

2 + 3d(xu(t), xp(t))
2 + 3d(xp(t), Sp(t))

2
.

Substituting this, we form an upper bound on the loss as follows:

nX

t=2

d(xt, St�1)
2  3

nX

t=2

d(xt, xu(t))
2

| {z }
=3⇤(Xn)

+3
nX

t=2

d(xu(t), xp(t))
2

| {z }
3⇤(Xn)

+3
nX

t=2

d(xp(t), Sp(t))
2

| {z }
6

Pn
t=1 d(xt,St)2

.

Here, the first equality holds by definition, the second because u(t) is the nearest neighbor of p(t)
in Xp(t)�1 (otherwise p(t) = u(t)), and the third holds from the 2-injectivity of p(t). Substituting
these gives the desired bound,

P
n

t=2 d(xs, St�1)2  6⇤(Xn) + 6
P

n

t=1 d(xt, St)2.

6. An Online Clustering Algorithm

Unfortunately, directly applying a no-substitution algorithm to the online clustering setting is not
sufficient. First, although Theorem 3 implies that they would achieve a cost of O(⇤(Xn)) +
O(
P

n

t=1 d(xt, St)2), it turns out that most existing no-substitution algorithms give a slightly weaker
guarantee where they instead show that for all times n,

P
n

t=1 d(xt, Sn)2 = O(Lk(Xn). Here, note
that the centers at Sn are used in retrospect for all 1  t  n rather than directly using St. The only
algorithm that directly bounds

P
n

t=1 d(xt, St)2 is that of Liberty, Sriharsha, and Sviridenko Liberty
et al. (2016), but their bound includes a log factor in the approximation factor as they show thatP

n

t=1 d(xt, St)2  O(log nLk(Xn)).
Second, and perhaps more importantly, all no-substitution algorithms potentially incur signif-

icantly more than poly(log n, k) centers at time n. As a simple example, observe that for the se-
quence considered earlier (Section 4) {1,↵,↵,↵2

, . . . }, any no-substitution algorithm will be forced
to select every point, as failing to select a point would incur a very large clustering cost at that time.
This idea is formalized in Bhattacharjee and Moshkovitz (2021), which introduces a lower bound

9



ONLINE CLUSTERING

parameter, OC(Xn), that gives a lower bound on the number of centers any no-substitution algo-
rithm must select to achieve loss O(Lk(Xn)). Although selecting OC(Xn) centers is acceptable
(and unavoidable) in the no-substitution setting, this is far from desirable in the online setting as
OC(Xn) can be potentially as large as ⌦(n). To address these issues, we propose a new algorithm.

6.1. Our Algorithm

Algorithm 1: The main algorithm, Online Cluster(X, k, �).
1 Sk  {x1, . . . , xk} Initial set of centers
2 Rk, F  0
3 ⌧1  k + 1, i 2
4 (Zk, wk) online k centers update(Xk)
5 for t = k + 1, k + 2, . . . do

6 (Zt, wt) online k centers update(xt) Scale approximation
7 time(z) = t for z 2 Zt

8 if wt > 16w⌧i�1

p
t then Scale change detected

9 ⌧i  t

10 St  St�1 \ {x 2 St�1 : time(x)  ⌧i�1} Remove old centers from S

11 St  St [ Z⌧i�1 Replace with k-centers

12 Rt  w
2
t

128k , F  0
13 i i+ 1

14 else

15 St  St�1, Rt  Rt�1

16 With probability min
n
1,

d(xt,St)2 log4
2t
�

Rt

o
, St = St [ {xt} Center selection

17 F  F + 1xt is selected

18 if F > 25k log5 2t
�

then

19 Rt  2Rt, F  0

20 end

Online Cluster, with probability 1 � �, achieves online loss
P

n

t=2 d(xt, St�1)2 bounded by a
combination of ⇤(Xn) and Lk(Xn) for all times n � 2. The pseudocode for the algorithm appears
in Algorithm 1. On a high level, the algorithm adds centers to S probabilistically and removes older
centers when it detects that the scale of the data changes. Specifically, this process involves three
ideas: scale approximation, center deletion, and center selection. We now outline these ideas.

Scale Approximation: Online Cluster approximates the scale of the data, or how spread out the
data is, by running a k-centers algorithm in the background at all times. Recall that for a data
sequence X and a set of centers S, the k-center cost of S is maxx2X d(x, S). The algorithm of
Charikar et al. (1997) is an online k-center algorithm that at any time n outputs a set of k centers
Zn = {z1n, z2n, . . . , zkn} with k-centers loss at most 8 times the optimal loss. Furthermore, this
algorithm enjoys space and time complexity O(k). While it may seem odd to use a streaming k-
centers algorithm as opposed to k-means, we use k-centers because unconditional approximation

10



ONLINE CLUSTERING

algorithms exist. We will let wn denote loss outputted by Charikar et al. (1997)’s algorithm when
applied to x1, . . . , xn.

Scale approximation using k-centers is useful for two reasons. First, it enables us to approximate
the k-means cluster cost Lk(Xn) at time n up to a factor of O(n). In particular, the k-centers clus-
tering outputted by Charikar et al. (1997)’s algorithm can be simply applied as a k-means clustering,
with the k-means loss being bounded by noting that each point incurs loss at most w2

n. Formally,
we have the following (proved in Appendix B):

Proposition 8 For all data sequences X and all n,
w

2
n

128  Lk(Xn)  nw
2
n.

We will see in the later that despite w
2
n being a loose approximation for Lk(Xn) (with a gap of

up to O(n)), it can nevertheless be used to set the center selection rate and prevent too many centers
from being selected. Additionally, scale approximation enables the algorithm to remove selected
centers from smaller scales, which brings us to our next key idea.

Removing centers: As we observed earlier, removing centers is essential to avoid the lower
bounds that the no-substitution setting faces. To this end, Online Cluster uses scale increases to
decide when to remove centers it has previously selected. The key insight is that when the scale,
tracked by wn, drastically increases, we have that all previous points can be clustered in “relatively
small” clusters. Because of this, clustering the previous points using their k-centers approxima-

tion provides a sufficient summary. Although the k-centers clustering can incur k-means loss up to
nwn�1, the nature of the scale increase implies that even this total cost is still small compared to
the k-means cost at time n. We will refer to times during which these large scale increases occur as
scale changes, and denote them as ⌧1, ⌧2, . . . . They have the following formal definition.

Definition 9 (scale changes) Let ⌧1 = k + 1, and let ⌧i = min{t : t > ⌧i�1, wt > 16
p
tw⌧i�1}. If

no such ⌧i exists, then we set ⌧i = 1 and terminate the sequence. Each ⌧i is referred to as a scale
change.

When a scale change ⌧i is detected, the algorithm is able to replace all selected centers x that
were streamed as inputs before ⌧i�1 with the set of k centers from that time, denoted by Z⌧i�1 . To
this end, we implicitly assume that the algorithm timestamps each point it selects as a center; this
costs a trivial amount of additional time and memory. After removing the desired centers, the only
points that will remain in memory are those centers taken after time ⌧i�1 and Z⌧i�1 . This prevents
the number of selected centers from accumulating over increasing scales.

Center Selection: The algorithm selects centers using existing ideas from the streaming setting
with one important change. Our method resembles that of Liberty et al. (2016) which is the follow-
ing: for each subsequent point, select it with probability O(d(xt,St�1)2

Rt
), where Rt is a dynamically

adjusted parameter governing the rate of selections. Use a counter F to keep track of the number
of centers selected since Rt was previously changed. When F � O(k log t), this indicates that
the value of Rt is too small, and consequently double Rt so as to discourage further center se-
lection. When Rt reaches a value of O(Lk(Xt)

k
), we can prove the desired center complexity and

approximation ratio bounds.
Unfortunately, the previous method is incapable of dealing with data that exhibits many scale

changes. Consider again the data sequence {1,↵,↵2
, . . . }. In this sequence, naively applying the

11



ONLINE CLUSTERING

above center selection criteria would result in every point being selected. This is because each
point xt is far from all previous points, so necessarily d(xt, St�1)2 > Rt is true, resulting in the
point being taken. Thus, algorithms using this method (e.g., (Liberty et al., 2016; Bhaskara and
Rwanpathirana, 2020)) have center complexities depending on the aspect ratio, the ratio between
the distances between the furthest two and closest two points in the input sequence. Although
subsequent work (Bhattacharjee and Moshkovitz, 2021) has managed to reduce the dependence on
the aspect ratio to a dependence on a tighter lower bound parameter, OC, it still remains the case
that data sequences with many scale changes are provably difficult in the no-substitution setting,
and are unable to be effectively clustered by a direct application of no-substitution clustering.

Our important change to overcome the above issue is to use wt to track the scale. Specifically,
during a scale change, we set Rt =

w
2
t

128k . By Proposition 8, this guarantees that the current value of
Rt is at most a factor of O(n) from the optimal value of Lk(Xt)

k
. While O(n) seems like a relatively

poor approximation, only O(log n) doublings of Rt are required to increase it to the optimal value,
and just poly log n centers are taken to do this.

Putting it all together: Combining our three main ideas, our algorithm consists of the following:
At the start, in lines 1- 4, initialize Sk, Rk, wk, ⌧1 by selecting the first k points and considering

the k+1th point as the first scale change. Also, initialize the k-centers algorithm, which we assume
can be given a set of points with the method online k centers update(x) and will return (Z,w):
the centers and the cost of the k-centers clustering it has computed on all points it has seen so far.

Each time a new point is encountered, update the scale approximation (line 6) and decide if the
new point produces a scale change (line 8). If a scale change is detected, then remove centers that
were streamed before the previous scale change and replace them with their corresponding k-centers
summary (lines 10,11). In the algorithm, we assume that every point streamed has a timestamp that
can be accessed with a function denoted as time. We emphasize that when we add Z⌧i�1 to St, the
timestamps of the points in Z⌧i�1 are from before ⌧i�1, and thus they will be removed when the next
scale change happens. Furthermore, during a scale change we reset the values of Rt and F (line 12)
to keep these parameters updated for the new scale.

Finally, perform center selection using the parameters Rt, F in lines 16-19.
While the algorithm appears to require us to remember the parameters Rt, Zt, wt, St for all t

and ⌧i for all i, we may implement it by simply remembering Rt, wt, St at the most recent time, as
well as ⌧i�1, ⌧i, and Z⌧i�1 where i is the index of the most recent scale change. This allows us to
achieve the desired memory bounds.

7. Analysis of Algorithm 1

The performance of Algorithm 1 is given in Theorem 1, with its performance in the streaming and
no-substitution settings given in Corollaries 4 and 5. We defer a discussion of these alternate settings
to Appendix C, and focus on Theorem 1.

Observe that the approximation factor is bounded both in terms of Lk(Xn), the optimal k-
centers loss and ⇤(Xn), our lower bound parameter. The center and memory complexity are both
bounded by O(k poly(log n)), and consequently the time complexity of the algorithm is the same.
This makes our algorithm the first O(1)-approximation in this setting with efficient time and mem-
ory complexity. We devote the remainder of our paper to proving Theorem 1.

12



ONLINE CLUSTERING

Our proof is based on three key steps. First, we use a refinement of Theorem 3 to bound the
online loss

P
n

t=2 d(xt, St�1)2 with three terms: Lk(Xn), the desired k-means loss, ⇤(Xn), our
unavoidable lower bound term, and

P
n

t=1 d(xt, St)2, the no-substitution loss function. Because our
algorithm no longer adheres to the no-substitution rule, that centers are never removed, we need
to refine our analysis to handle cases in which centers disappear. It turns out that because we only
remove centers after the scale increases, the deletions only have a small effect. Formally, we have
the following proposition (proved in Section B.2).

Proposition 10 Suppose we run Online Cluster(X, k, �). Then at all times n we have

nX

t=2

d(xt, St�1)
2  8⇤(Xn) + 8

nX

t=1

d(xs, St)
2 + 4Lk(Xn).

Our second step is to bound the loss
P

n

t=1 d(xt, St)2 under the assumption that Rt is sufficiently
small for all t. This assumption allows us to circumvent the complex way in which the value of R is
intertwined with whether or not selections have been made. As a result, we can cleanly divide our
analysis into handling the loss, d(xt, St)2 and handling Rt separately. We do so with the following
proposition (proved in Appendix B.3).

Proposition 11 With probability at least 1� �

2 over the randomness of Online Cluster, the follow-

ing holds simultaneously for all n � 1:

nX

t=1

d(xt, St)
2

✓
Rt 

Lk(Xt)

k

◆
 33Lk(Xn).

Our third step, is to show that Rt is bounded as indicated in the previous step. We have the
following proposition (proved in Appendix B.4).

Proposition 12 With probability at least 1 � �

100 over the randomness of Online Cluster, the fol-

lowing holds simultaneously for all n � k:

Rn 
Lk(Xn)

k
.

Armed with these three propositions, we have all the ingredients necessary to prove Theorem 1.
First, a straightforward combination of the three propositions gives us the desired approximation
factor of Theorem 1. Propositions 12 and 11 imply that

P
n

t=1 d(xt, St)2 is highly likely to be at
most O(Lk(Xn)), and Proposition 10 implies that our online loss consequently satisfies the desired
bound.

For the center complexity, memory, and time complexity guarantees of Theorem 1, we directly
derive them from our bound on R, Proposition 12. The argument is simple: selecting too many
points (or equivalently, holding too many points in memory) necessarily increases the value of R,
which will eventually force the bound in 12 to be violated. Given that our total number of point
selections is small, it also follows that our memory and computation time must be small as well. We
now give our proof of Theorem 1.
Proof We will show that part 1 of Theorem 1 holds with probability at least 1 � 3�

4 , and parts 2
and 3 of Theorem 1 hold with probability at least 1 � �

4 . Theorem 1 will then follow from a union
bound.

13



ONLINE CLUSTERING

Approximation Factor: By a union bound, with probability at least 1� 3�
4 , the bounds in Propo-

sitions 12 and Proposition 11 both hold. It thus suffices to show that these conditions are sufficient
for bounding

P
n

t=2 d(xt, St�1)2. We have,

nX

t=2

d(xt, St�1)
2  8⇤(Xn) + 8

nX

t=1

d(xt, St)
2 + 4Lk(Xn)

= 8⇤(Xn) + 8
nX

t=1

d(xt, St)
2

✓
Rt 

Lk(Xt)

k

◆
+ 4Lk(Xn)

 8⇤(Xn) + 264Lk(Xn) + 4Lk(Xn)

= O(⇤(Xn) + Lk(Xn)),

where the first inequality holds by Proposition 10, the second by Proposition 12, and the third by
Proposition 11.

Center Complexity and Memory: For any time n, let Un be those points added to S after time ⌧i
and up to time n, where ⌧i  n < ⌧i+1. Namely, Un = Sn \ {x⌧i , . . . , xn}. Because Algorithm 1
deletes no points from S between ⌧i and ⌧i+1, we have Sn = (S⌧i \ {x⌧i}) [ Un. At the time of
the last scale change ⌧i, just before Line 16 is executed, observe that (S⌧i \ {x⌧i}) = U(⌧i)�1 [
{z1⌧(i�1)

, . . . , z
k
⌧(i�1)

}. Thus, Sn = U(⌧i)�1 [ Un [ {z1⌧(i�1)
, . . . , z

k
⌧(i�1)

}.
Now, we will focus on bounding maxn>k |Un|. Suppose there were a time n � k such that

|Un| � 375k log6(2n
�
). Let ⌧i satisfy ⌧i  n  ⌧i+1. By the definition of scale changes and by

using Proposition 8, we know 256nw2
⌧i
� w

2
n �

Lk(Xn)
n

. Therefore, R⌧i , which is set to be
w

2
⌧i

128k

during the last scale change of Algorithm 1, satisfies R⌧i �
Lk(Xn)
215n2k

.
Let f be the number of times that R is doubled from times ⌧i to n—because no scale changes

occur in this time interval, we have that Rn = R⌧i2
f . Every point in Un comes from points chosen

between times ⌧i and n, and R is doubled at least every 25k log5(2n
�
) points that are chosen. Thus,

f � |Un|
25k log5( 2n� )

� 15 log(2n
�
). However, this implies that Rn = R⌧i2

15 log( 2n� ) � n
13

�15
Lk(Xn)

k
�

Lk(Xn)
k

. By Proposition 12, this event occurs with probability at most �

4 . Thus, the probability that
there exists n such that |Un| � 375k log6 2n

�
is at at most �

4 .
Thus, |Un|  O(k log6(n

�
)) for all n with probability at least 1 � �

4 , and this implies |Sn| 
O(k log6(n

�
)) with the same probability. The memory of Algorithm 1 involves storing Sn and

just O(k) additional points for the k centers and O(k) additional natural numbers bounded by n.
Thus, the memory requirement is dominated by |Sn| = O(k log6(n

�
)). Finally, it is clear from our

algorithm that time time complexity is directly proportional to our memory, which completes the
proof.

Acknowledgments

Robi Bhattacharjee thanks NSF under CNS 1804829 for research support. Jacob Imola would like to
thank ONR under N00014-20-1-2334 and UC Lab Fees under LFR 18-548554 for research support.

14



ONLINE CLUSTERING

References

Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means clustering.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 15–28. Springer, 2009.

Charu C Aggarwal. Data streams: models and algorithms, volume 31. Springer Science & Business
Media, 2007.

S. Ahmadian, A. Norouzi-Fard, O. Svensson, and J. Ward. Better guarantees for k-means and
euclidean k-median by primal-dual algorithms. SIAM Journal on Computing, 49(4), 2020.

Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni. Streaming k-means approximation. In Advances

in neural information processing systems, pages 10–18, 2009.

Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of euclidean sum-
of-squares clustering. Machine learning, 75(2):245–248, 2009.

Aditya Bhaskara and Aravinda Kanchana Rwanpathirana. Robust algorithms for online $k$-means
clustering. In Aryeh Kontorovich and Gergely Neu, editors, Algorithmic Learning Theory, ALT

2020, 8-11 February 2020, San Diego, CA, USA, volume 117 of Proceedings of Machine Learn-

ing Research, pages 148–173. PMLR, 2020.

Robi Bhattacharjee and Michal Moshkovitz. No-substitution k-means clustering with adversarial
order. In Algorithmic Learning Theory, pages 345–366. PMLR, 2021.

Vladimir Braverman, Adam Meyerson, Rafail Ostrovsky, Alan Roytman, Michael Shindler, and
Brian Tagiku. Streaming k-means on well-clusterable data. In Proceedings of the twenty-second

annual ACM-SIAM symposium on Discrete Algorithms, pages 26–40. Society for Industrial and
Applied Mathematics, 2011.

Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering
and dynamic information retrieval. In Frank Thomson Leighton and Peter W. Shor, editors,
Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso,

Texas, USA, May 4-6, 1997, pages 626–635. ACM, 1997.

V. Cohen-Addad, B. Guedj, V. Kanade, and G. Rom. Online k-means clustering. In Proceedings

of The 24th International Conference on Artificial Intelligence and Statistics, volume 130, pages
1126–1134, 2021.

Sanjoy Dasgupta. The hardness of k-means clustering. Department of Computer Science and
Engineering, University of California, 2008.

Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Cluster-
ing data streams: Theory and practice. IEEE transactions on knowledge and data engineering,
15(3):515–528, 2003.

M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B. Reed, editors. Probabilistic methods for

algorithmic discrete mathematics, volume 16 of Algorithms and Combinatorics. Springer-Verlag,
Berlin, 1998.

15



ONLINE CLUSTERING

Tom Hess and Sivan Sabato. Sequential no-substitution k-median-clustering. In International Con-

ference on Artificial Intelligence and Statistics, pages 962–972, 2020.

Tom Hess, Michal Moshkovitz, and Sivan Sabato. A constant approximation algorithm for se-
quential no-substitution k-median clustering under a random arrival order. arXiv preprint

arXiv:2102.04050, 2021.

Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and
Angela Y Wu. A local search approximation algorithm for k-means clustering. Computational

Geometry, 28(2-3):89–112, 2004.

Elias Koutsoupias. The k-server problem. Comput. Sci. Rev., 3(2):105–118, 2009.

Edo Liberty, Ram Sriharsha, and Maxim Sviridenko. An algorithm for online k-means cluster-
ing. In 2016 Proceedings of the eighteenth workshop on algorithm engineering and experiments

(ALENEX), pages 81–89. SIAM, 2016.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine Learning, 2(4):285–318, 1987.

N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and Computation,
108(2):212–261, 1994.

Adam Meyerson. Online facility location. In Proceedings 42nd IEEE Symposium on Foundations

of Computer Science, pages 426–431. IEEE, 2001.

Michal Moshkovitz. Unexpected effects of online no-substitution k-means clustering. In Algorith-

mic Learning Theory, pages 892–930. PMLR, 2021.

D. Pollard. Strong consistency of k-means clustering. Annals of Statistics, 9(1):135–140, 1981.

D. Pollard. Quantization and the method of k-means. IEEE Transactions on Information Theory,
28:199–205, 1982.

Michael Shindler, Alex Wong, and Adam W Meyerson. Fast and accurate k-means for large datasets.
In Advances in neural information processing systems, pages 2375–2383, 2011.

Appendix A. Proof of Theorem 2

For convenience, we begin by restating Theorem 2.

Theorem 2 [Lower Bound] Let X be any data sequence that contains infinitely many distinct

points. Let A be an online clustering algorithm such that its output satisfies |Sn|  bn for all n and

for all input sequences, where {bn} is a sequence of positive integers. Then there exists a sequence

X̃ = x̃1, x̃2, . . . such that the following conditions hold.

1. X̃ is drawn from the closure of X , (i.e. X and its limit points). Thus all points in X̃ are

arbitrarily close to points in X .

16



ONLINE CLUSTERING

2. For all n � 2, the expected loss over A satisfies EA

⇥P
n

s=2 d(x̃s, Ss�1)2
⇤
� ⌦(⇤(X̃n)).

Here, we have a slight generalization of the statement in the introduction, as we now only
assume that |Sn|  bn for some arbitrary sequence of integers b1, b2, . . . . To obtain the earlier
result, we simply substitute bn = n.

Proof idea of Theorem 2 We first summarize the main ideas of the proof of Theorem 2.
The key idea is to first consider the case in which the input sequence X satisfies some additional

structure that allows us to cleanly construct sub-sequences, X̃ , with the desired property. We call
such inputs nice sequences.

Definition 13 A sequence X is nice if it consists of distinct points such that for all 1 < i < j,

d(xi, xj) >
1
2d(xi, x1) and d(xi, xj) >

1
2d(xj , x1).

Nice sequences have the property that all of their points are relatively well “spread out” in
comparison to their distance to the first point. Thus, in order for an algorithm to achieve a better

loss than ⇤(Xn), the loss incurred by an algorithm that makes no guesses about future points, it
must have guessed the value of xn. This is the main idea behind how we construct X̃ from a nice
sequence: the adversary randomly chooses its next points from a large set (larger than bn) of points
which means that on average, any algorithm is going to fail at guessing. We give a full proof of this
case in Lemma 14 in Appendix A.

Next, to prove the general version of Theorem 2, it suffices to reduce a general sequence X to
a nice sequence. In particular, we must show that any sequence X has a nice subsequence (with
possible rearrangements to the order of the subsequence). To do this, we appeal to the fact that X
is a subset of Rd by using casework on whether X is bounded, and thus contained in a compact set,
or unbounded. Both cases follow from a similar type of argument, the only difference is that for
bounded sequences, our nice sub-sequence X̃ converges while in the unbounded case it diverges.

We now prove a specific version of Theorem 2 for nice sequences (Definition 13).

Lemma 14 (Theorem 2 for nice sequences) Let X be a nice sequence, and let A be an online

clustering algorithm such that its output satisfies |Sn|  bn for all n and for all input sequences,

where {bn} is a sequence of positive integers. There exists a sequence X̃ such that

1. All elements of X̃ are taken from X .

2. For all n � 2, the expected loss over A satisfies EA

⇥P
n

s=2 d(x̃s, Ss�1)2
⇤
� ⇤(X̃n)

24 .

Proof We generate X̃ recursively with x̃1 = x1. Suppose we have generated x̃1, x̃2, . . . , x̃n; we
will explain how x̃n+1 is obtained.

Let ri =
d(xi,x1)

4 for i � 2. For i 6= j, since X is nice,

d(xi, xj) >
d(xi, x1)/2 + d(xj , x1)/2

2

=
d(xi, x1)

4
+

d(xj , x1)

4
= ri + rj ,

17



ONLINE CLUSTERING

which implies B(xi, ri) and B(xj , rj) are disjoint where B(x, r) denotes the closed ball of radius r
centered at x. This implies that for any set Sn of size  bn, there are at most bn indices i for which
|Sn \ B(xi, ri)| � 1. Thus, for a fixed choice of Sn and a randomly chosen 2  i  3bn + 1,
with probability at least 2

3 , d(xi, Sn) > ri. Applying this over all Sn generated by A (after seeing
x̃1, . . . , x̃n) and switching orders, we have

Pr
i

Pr
A

[d(xi, Sn) > ri] = Pr
A

Pr
i

[d(xi, Sn) > ri] �
2

3
.

Thus, there exists i for which PrA[d(xi, Sn) > ri] � 2
3 . It follows by Markov’s inequality that

EA[d(xi, Sn)
2] � 2

3
r
2
i +

1

3
0 =

d(x1, xi)2

24
.

We now set x̃n+1 = xi, which concludes the definition of X̃ . Since x1 2 X̃ , the above equation
implies that

EA[d(x̃n+1, Sn)
2] � d(x̃1, x̃n+1)2

24
� d(x̃n+1, Xn)2

24
.

Summing this and applying linearity of expectation, we have that

EA

"
nX

s=2

d(x̃s, Ss�1)
2

#
�

nX

s=2

d(x̃s, X̃s�1)2

24

� ⇤(X̃n)

24
.

We now prove Theorem 2.
Proof (Theorem 2)

We claim there exists a nice sequence of points Z ✓ X . By Lemma 14, this suffices. To show
this, we have two cases.

Case 1: X is bounded: Since X contains infinitely many distinct points, there is an infinitely-long
subsequence that has all distinct points. Taking this subsequence if necessary, we assume without
loss of generality that all points in X are distinct. Since X is a sequence in a bounded region in Rd,
it follows that X is contained within a compact subset of Rd. Thus, by the definition of sequential
compactness, X must contain a subsequence that converges. Let y1, y2, . . . denote this sequence
and let y denote its limit.

In the case that y = yi for some i, simply delete this entry. So we may now assume that
y, y1, . . . are distinct points such that limi!1 yi = y. We now construct Z recursively. Let z1 = y

and z2 = y1.
Suppose we have constructed z1, . . . , zn thus far. Since yi converges to z1 = y, we can simply

pick a point yj such that d(z1, yj) < 1
2d(z1, zn). We let zn+1 equal such a point, and this concludes

the construction.
To verify the condition holds, let i 6= j > 1 and without loss of generality suppose i > j. This

already implies d(zj , z1) > d(zi, z1), and all that remains is to show that d(zi, zj) >
1
2d(zj , z1).

18



ONLINE CLUSTERING

This follows from the triangle inequality:

d(zi, zj) � d(zj , z1)� d(zi, z1) > d(zj , z1)�
1

2
d(zj , z1)

=
d(zj , z1)

2
.

Case 2: X is unbounded: Let z1 = x1 and z2 = x2 with x2 6= x1. We then construct Z
recursively.

Suppose we have constructed z1, . . . , zn thus far. Then select zn+1 to be any point in X such
that 2d(z1, zn) < d(z1, zn+1). This completes the construction.

To verify the condition holds, let i 6= j > 1 and without loss of generality suppose i > j. This
implies d(zi, z1) > d(zj , z1), and all that remains is to show that d(zi, zj) > 1

2d(zi, z1). Using the
triangle inequality in the same way as in the bounded case, we can establish this. This completes
the proof for both the bounded and unbounded cases.

Appendix B. Proof of Theorem 1

We begin by proving Proposition 8, which will be frequently used to relate scale changes to the
k-means clustering loss.

B.1. Proof of Proposition 8

Proof The subroutine online k centers maintains a k-centers clustering with cost wn (at time n)
that is an 8-approximation to the optimal k-centers cost.

By directly using the given k-centers clustering with cost wn as a k-means clustering, we get
an upper bound of nw2

n. Because the lower bound of the k-centers cost is wn
8 , there must exist two

points in any set of k clusters that are clustered together with distance at least wn
8 . By the triangle

inequality, under any cluster center these two points will incur cost at least 2(wn
16 )

2 = w
2
n

128 , which
finishes the proof.

B.2. Proof of Proposition 10: Bounding the loss with ⇤

The proof follows an almost identical argument to the proof of Theorem 3 given in Section 5.1.
The only difference is that the set St of centers maintained by Online Cluster changes over time as
Online Cluster is not a no-substitution clustering algorithm. However, Online Cluster only deletes
points at scale changes, and these are easy events to reason about.

In Theorem 3, we used the fact that for a no-substitution algorithm, d(xt, St0) < d(xt, St) for
any t

0
< t because St0 can only get bigger. Analyzing the behavior of Online Cluster at scale

changes, we can prove a similar result.

Lemma 15 Let l � 1, and let times t, t
0

that satisfy 1  t  t
0
< ⌧l+2. Then d(xt, St0) 

d(xt, St) + w⌧l (t  ⌧l+1).

19



ONLINE CLUSTERING

Proof Suppose t > ⌧l+1. Then since t0 < ⌧l+2, the latest scale change on or before t0 occurs at time
⌧l+1 during which all points on or before ⌧l are deleted. It follows that St ✓ St0 since no points are
deleted between times t and t

0 inclusive. This implies the inequality.
Otherwise, if t  ⌧l+1, let x 2 St be the nearest neighbor of xt in St. If x arrived after ⌧l,

then x 2 St0 . Thus d(xt, St0)  d(xt, St), and we are done. Otherwise, there is a point z such that
d(z, x)  w⌧l is in St0 : it is one of the k-center points added in Line 11 at time ⌧l. We can use the
triangle inequality to conclude the result.

Now, similar to Theorem 3, it follows that

d(xt, St�1)  d(xt, xu(t)) + d(xu(t), xp(t)) + d(xp(t), St�1)

 d(xt, xu(t)) + d(xu(t), xp(t)) + d(xp(t), Sp(t)) + w
2
⌧l

(p(t)  ⌧l+1)),

where the first step is the double application of the triangle inequality and the second follows from
applying Lemma 15. By squaring the above and applying Cauchy Schwartz, we have

d(xt, St�1)
2  4d(xt, xu(t))

2 + 4d(xu(t), xp(t))
2 + 4d(xp(t), Sp(t))

2 + 4w2
⌧l

(p(t)  ⌧l+1).

Note the similarity between this inequality and the one used in the proof of Theorem 3: the only
difference is the additional 4w2

⌧l
(p(t)  ⌧l+1) term. We form an upper bound on the loss as

follows:
nX

t=2

d(xt, St�1)
2  4

nX

t=2

d(xt, xu(t))
2

| {z }
=4⇤(Xn)

+4
nX

t=2

d(xu(t), xp(t))
2

| {z }
4⇤(Xn)

+4
nX

t=2

d(xp(t), Sp(t))
2

| {z }
8

Pn
t=1 d(xt,St)2

+ 4
nX

t=1

w
2
⌧l

(p(t)  ⌧l+1)

| {z }
8⌧l+1w

2
⌧l

Here, the first equality holds by definition; the second inequality holds because
P

n

t=2 d(xp(t), xu(t))
2 P

n

t=2 d(xt, xu(t))
2 since p(t) maps a child of u(t) to its previous child (and to u(t) if there is no

previous child); the third inequality holds from 2-injectivity of p(t); and the fourth inequality holds
because p(t) is 2-injective and maps an index to an index strictly less, and thus at most 2⌧l+1 values
of t may satisfy p(t)  ⌧l+1.

Finally, by Definition 9, ⌧l+1w
2
⌧l
<

w
2
⌧l+1

256 , and by Proposition 8,
w

2
⌧l+1

256 
Lk(Xn)

2 . Substituting,
we obtain

nX

t=2

d(xt, St�1)
2  8⇤(Xn) + 8

nX

t=1

d(xt, St)
2 + 4Lk(Xn).

B.3. Proof of Proposition 11: Bounding
P

n

t=1 d(xt, St)2

Proposition 11 With probability at least 1� �

2 over the randomness of Online Cluster, the follow-

ing holds simultaneously for all n � 1:

nX

t=1

d(xt, St)
2

✓
Rt 

Lk(Xt)

k

◆
 33Lk(Xn).

20



ONLINE CLUSTERING

Our main idea will be to fix n (we will later use a union bound to obtain simultaneity over all
n), and bound the desired sum over subsets of Xn that are between scale changes. This allows us
to circumvent issues posed by deleting points. Then, we will sum our bounds over all intervals of
scale changes and conclude by appealing to the exponentially growing nature of data over successive
scale changes.

We begin with a general lemma that assists in bounding our loss for an arbitrary set of times that
occur between of pair of scale changes. Think of X as a fixed, possibly infinite, sequence. Since the
online k-center subroutine is deterministic, the scale-change times ⌧i are also predetermined. The
only randomness arises from line 16 of the algorithm where we probabilistically add a point to S.

Lemma 16 Let T ✓ {1, . . . , n} be set of times such that T ⇢ [⌧i, ⌧i+1) for some i. Let minT
denote the smallest time in T . Let X(T ) denote {xt : t 2 T}. Then for any � > 0 and � � 0, with

probability at least 1� exp

✓
�� log4 2minT

�
�

◆
,

X

t2T
d(xt, St)

2 (Rt  �)  � +max
t2T

L(X(T ), xt).

Proof Let A(T,�,�) denote the event that we don’t want; i.e. that
P

t2T d(xt, St)2 (Rt  �) >
� +maxt2T L(X(T ), xt).

Let {Et}1t=1 denote the sequence of Boolean variables indicating whether xt was selected
as a center on line 16. Writing s = minT , we will show the slightly stronger statement that
Pr[A(T,�,�)|E1, . . . , Es�1]  exp(�� log4 2s

�
� ) for any choice of E1, . . . , Es�1. The result will

then follow by conditional probability.
We use induction on |T | to show the result holds. For T = {}, the claim trivially holds. For the

inductive step, take T 0 = T \ {s}; we will suppose that the claim holds for T 0 and for any choice of
�
0
,�0, and E1, . . . , Es0 , where s

0 = minT 0. By marginalizing over the times s + 1 through s
0, our

inductive hypothesis implies that Pr[A(T 0
,�0

,�
0)|E1, . . . , Es]  exp(��

0 log4 2s
�

�0 ).
Given E1, . . . , Es�1, we have

Pr[Es = 0|E1, . . . , Es�1]  max

(
0,

 
1�

�
2 log4 2s

�

Rs

!)
 exp

 
�
�
2 log4 2s

�

Rs

!
, (3)

where � = d(xs, S0
s), and S

0
s = Ss \{xs} (S0

s is the value of S before line 16 when deciding to take
xs).

We will now bound Pr[A(T,�,�)|E1, . . . , Es�1] as follows:

Pr[A(T,�,�)|E1, . . . , Es�1]  Pr[Es = 0|E1, . . . , Es�1] Pr[A(T,�,�)|E1, . . . , Es�1, Es = 0]

+ Pr[Es = 1|E1, . . . , Es�1] Pr[A(T,�,�)|E1, . . . , Es�1, Es = 1].

We analyze the two parts separately, beginning with the easier one.

Case 1: Es = 1. The key observation in this case is that because T ✓ [⌧i, ⌧i+1), no deletions
occur after xs is selected. Therefore, xs 2 St for all t 2 T with t > s. Furthermore, xs itself incurs

21



ONLINE CLUSTERING

0 loss as xs 2 Ss. This implies that
X

t2T
d(xt, St)

2 (Rt  �) 
X

t2T
d(xt, xs)

2

= L(X(T ), xs)

 � +max
t2T

L(X(T ), xt).

Thus, Pr[A(T,�,�)|E1, . . . , Es�1, Es = 1] = 0.

Case 2: Es = 0. In this case, we have two subcases, first, when �
2
> � and second when �

2  �.
First, suppose �

2
> �. If Rs > �, then Pr[A(T,�,�)|E1, . . . , Es�1, Es = 0] = 0 as

A(T,�,�) cannot occur. Otherwise, if Rs  �, then using (3), we have

Pr[Es = 0|E1, . . . , Es�1] Pr[A(T,�,�)|E1, . . . , Es�1, Es = 0]

 Pr[Es = 0|E1, . . . , Es�1]  exp

 
�
� log4 2s

�

�

!
.

Second, suppose �
2  �. Recall T 0 = T \ {s}. Observe that

X

t2T
d(xt, St)

2 (Rt  �)  d(xs, Ss)
2 +

X

t2T 0

d(xt, St)
2 (Rt  �)

 �
2 +

X

t2T 0

d(xt, St)
2 (Rt  �).

Since T 0 ⇢ T , it follows that L(X(T ), xt) � L(X(T 0), xt) which implies that maxt2T L(X(T ), xt) �
maxt2T 0 L(X(T 0), xt). Combining these observations, we have

X

t2T
d(xt, St)

2 (Rt  �) � � +max
t2T

L(X(T ), xt)

=) �
2 +

X

t2T 0

d(xt, St)
2 (Rt  �) � � +max

t2T 0
L(X(T 0), xt),

so when �
2  �, A(T,�,�) implies A(T 0

,�,� � �
2). Thus

Pr[Es = 0|E1, . . . , Es�1] Pr[A(T,�,�)|E1, . . . , Es�1, Es = 0]

 Pr[Es = 0|E1, . . . , Es�1] Pr[A(T 0
,�,� � �

2)|E1, . . . , Es�1, Es = 0]

 exp

 
�
�
2 log4 2s

�

Rs

!
exp

 
�
(� � �

2) log4 2s0

�

�

!

 exp

 
�
� log4 2s

�

�

!
.

where we have used equation (3) and the inductive hypothesis for the second inequality. Thus,
regardless of whether or not �2  �, the bound of exp

⇣
�� log4 2s

�
�

⌘
holds, and we have

Pr[A(T,�,�)|E1, . . . , Es�1]  exp

 
�
� log4 2s

�

�

!
,

22



ONLINE CLUSTERING

as desired.

Our next step is to apply Lemma 16 to get a bound on the loss function over well behaved time
intervals. Our key construction for doing this is the notion of a cluster ring, which was introduced
in Braverman et al. (2011).

Definition 17 Let C be a set of points. Let µ denote the mean of C, and � = L(C)
|C| be the average

cost of clustering each point. Then the jth cluster ring of C, denoted Cj , is defined as

• C0 = {x 2 C : d(x, µ)2 < �}

• Cj = {x 2 C : 2j�1
�  d(x, µ)2 < 2j�} for j � 1.

The intuition behind cluster rings is that any point in Cj serves as a reasonable cluster center.
Thus, cluster rings are particularly amenable to Lemma 16: when X(T ) is a cluster ring, the term
maxt2T L(X(T ), xt) can be controlled. We apply this in our next step where we consider time
intervals T that are both bounded between scale changes and change by at most a factor of two.

Lemma 18 Let a,m be times satisfying ⌧i  a  m < ⌧i+1 for some i, and m < 2a. Let Xa:m

denote {xa, . . . xm}. Then with probability at least 1� �

4m2 over the randomness of Online Cluster,

mX

t=a

d(xt, St)
2

✓
Rt 

Lk(Xt)

k

◆
 8Lk(Xa:m) + 4

Lk(Xm)

log2 a
.

Proof Let C1
, C

2
, . . . , C

k denote the optimal k-means clustering of Xa:m, and let c1, c2 . . . ck

denote their respective centers. Using Definition 17, let Ci

j
denote the jth cluster ring of Ci. Let

� = Lk(Xm)
k

and � = 3�
log3 a

. Then by applying Lemma 16 to all non-empty C
i

j
and applying a

union bound, we have that with probability at least 1�
P

i,j:|Ci
j |�1 exp

⇣
�� log4 2a

�
�

⌘

mX

t=a

d(xt, St)
2

✓
Rt 

Lk(Xt)

k

◆


X

i,j:|Ci
j |�1

X

xt2Ci
j

d(xt, St)
2 (Rt  �)


X

i,j:|Ci
j |�1

3�

log3 a
+max

c2Ci
j

L(Ci

j , c).

(4)

Note that we can safely replace the indicator variables bounding Rt with a uniform (Rt  �)
since Lk(Xt) is monotonically non-decreasing.

It consequently suffices to show that
P

i,j:|Ci
j |�1 exp

⇣
�� log4 2a

�
�

⌘
 �

4m2 , and that (4) implies
the desired bound. To do so, we will leverage a few simple properties of cluster rings.

23



ONLINE CLUSTERING

First, observe that there are at most m non-empty cluster rings as there are at most m points in
Xa:m. It follows by substituting this along with � = 3�

log3 a
and m < 2a that

X

i,j:|Ci
j |�1

exp

 
�
� log4 2a

�

�

!
 m exp

 
�
� log4 2a

�

�

!

 m exp

 
�
3� log4 2a

�

� log3 a

!

 m exp
⇣
�3 log m

�

⌘

 �

4m2
.

Thus, (4) holds with the desired probability of at least 1� �

4m2 . Next, for any C
i
j

we upper bound

max
c2Ci

j
L(Ci

j
, c). Let ci denote the optimal cluster center (mean) of Ci and �i =

L(Ci)
|Ci| . Then by

Definition 17, we have

max
c2Ci

j

L(Ci

j , c) = max
c2Ci

j

X

c02Ci
j

d(c, c0)2

 max
c2Ci

j

X

c02Ci
j

2d(c, ci)2 + 2d(c0, ci)2

 4|Ci

j |(2j�i)  8|Ci

j |(2j�1
�i)

 8
X

c2Ci
j

d(ci, c)2 = 8L(Ci

j , c
i).

(5)

Additionally, there are at most m � a + 1  a points in Xa:m, which means there are at most
a points in C

i for any i. It follows that there are at most blog ac + 1 non-empty cluster rings, Ci

j

as 2log a�i is too large to be the cost incurred by any point in C
i. Applying this along with (5), we

have that

X

i,j:|Ci
j |�1

3�

log3 a
+max

c2Ci
j

L(Ci

j , c)  k(blog ac+ 1)
3�

log3 a
+ 8

kX

i=1

X

|Ci
j |�1

L(Ci

j , c
i)

 4Lk(Xm)

log2 a
+ 8Lk(Xa:m).

We are now ready to prove Proposition 11. The main idea is to apply the previous lemma to
a series of intervals [a : m] which effectively partition the entire input sequence. While a natural
starting point is to simply use the scale changes, ⌧1, ⌧2, . . . (thus considering intervals [⌧i : ⌧i+1�1]),
this faces a problem; ⌧i+1 can be potentially much larger than ⌧i, and the loss term from Lemma 18
would have a dependence on ⌧i (as we are implicitly setting a = ⌧i). To deal with this, we need to
further subdivide the intervals [⌧i, ⌧i+1) using a sequence of times

⌧i = ⌧i,1 < ⌧i,2 < · · · < ⌧i,si+1 = ⌧i+1, (6)

24



ONLINE CLUSTERING

that are chosen so that ⌧i,j+1  2⌧i,j . In the context of Lemma 18, this means that a ' m up to a
constant factor.
Proof (Proposition 11). Let X = {x1, . . . } be an input sequence, and let ⌧1, ⌧2, . . . be the scale
changes in X (Definition 9). As per the discussion above, we begin by defining ⌧i,j as follows.

Let ⌧i,1, ⌧i,2, . . . , ⌧i,si be defined as ⌧i,1 = ⌧i, and ⌧i,j+1 = min(2⌧i,j , ⌧i+1) with ⌧i,si+1 =
⌧i+1 by convention. Note that we define ⌧l = 1 if ⌧l�1 is the last scale change in X , and we
correspondingly have that sl�1 =1.

For any m � k + 1, define �(m) as the largest ⌧i,j with m � ⌧i,j . For all m, it follows that
�(m)  m  2�(m) (as otherwise maximality of �(m) would be contradicted) and that no scale
changes occur in [�(m) + 1,m]. Finally, we let Em denote the event that

mX

t=�(m)

d(xt, St)
2

✓
Rt 

Lk(Xt)

k

◆
 8Lk(X�(m):m) + 4

Lk(Xm)

log2 �(m)
.

By Lemma 18, Em holds with probability at least 1� �

4m2 which implies (through a union bound)
that

T
m�k+1Em holds with probability at least 1 � �

2 . Thus, it suffices to show that
T

m�k+1Em

implies that
P

n

t=1 d(xt, St)2
⇣
Rt  Lk(Xt)

k

⌘
 33Lk(Xn) holds for all n.

To this end, suppose
T

m�k+1Em holds. Fix any n � k+1 (the case n  k is trivial as we pick

the first k points by default). Let �(n) = ⌧l,r. For brevity, we also write d(xt, St)2
⇣
Rt  Lk(Xt)

k

⌘

as ↵t. It follows that
nX

t=1

↵t =
⌧l�1X

t=1

↵t +
nX

t=⌧l

↵t

=
kX

t=1

d(xt, St)
2 +

⌧l�1X

t=⌧1

↵t +
nX

t=⌧l

↵t

=
l�1X

i=1

siX

j=1

⌧i,j+1�1X

t=⌧i,j

↵t +
r�1X

j=1

⌧l,j+1�1X

t=⌧l,j

↵t +
nX

t=⌧l,r

↵t.

=
l�1X

i=1

siX

j=1

⌧i,j+1�1X

t=�(⌧i,j+1�1)

↵t +
r�1X

j=1

⌧l,j+1�1X

t=�(⌧l,j+1�1)

↵t +
nX

t=�(n)

↵t,

(7)

with the last step following from �(⌧i,j+1 � 1) = ⌧i,j . We can now bound the inner summands
by noting that each of them corresponds to an event Em. In particular, by applying Em for m =
⌧i,j+1 � 1 for 1  i  l � 1 and 1  j  si, we have

l�1X

i=1

siX

j=1

⌧i,j+1�1X

t=�(⌧i,j+1�1)

↵t 
l�1X

i=1

siX

j=1

8Lk

⇣
X�(⌧i,j+1�1):⌧i,j+1�1

⌘
+ 4

Lk

�
X⌧i,j+1�1

�

log2 �(⌧i,j+1 � 1)

 8Lk(X⌧l�1) +
l�1X

i=1

siX

j=1

4
Lk

�
X⌧i,j+1�1

�

log2 �(⌧i,j+1 � 1)

 8Lk(X⌧l�1) +
l�1X

i=1

4Lk

�
X⌧i+1

� siX

j=1

1

log2 ⌧i,j
,

25



ONLINE CLUSTERING

with the manipulations coming from combining the k-means losses for different intervals of X (i.e.
Lk(A [B) � Lk(A) + Lk(B)) and by observing that Lk(Xt) is monotonic in t.

To further bound this quantity, we simply note that ⌧i,j = 2⌧i,j�1 for all but the last term, which
implies that

P
si
j=1

1
log2 ⌧i,j

is at most 7
4 (by crudely bounding the maximal infinite series

P 1
n2 ).

Substituting this gives

l�1X

i=1

siX

j=1

⌧i,j+1�1X

t=�(⌧i,j+1�1)

↵t  8Lk(X⌧l�1) + 7
l�1X

i=1

Lk

�
X⌧i+1

�

However, the latter sum can be further bounded by observing that by applying Proposition 8 and
Definition 9, we have

Lk(X⌧i) �
w

2
⌧i

128
>

256⌧i�1w
2
⌧i�1

128
= 2⌧i�1w

2
⌧i�1
� 2Lk(X⌧i�1).

Thus, by summing a geometric sequence, we have

l�1X

i=1

siX

j=1

⌧i,j+1�1X

t=�(⌧i,j+1�1)

↵t  8Lk(X⌧l�1) + 14Lk(X⌧l) (8)

By applying essentially the same argument to the other two sums in Equation 7, we have

r�1X

j=1

⌧l,j+1�1X

t=�(⌧l,j+1�1)

↵t  8Lk(X⌧l:(⌧l,r�1)) + 7Lk

�
X⌧l,r

�

nX

t=�(n)

↵t  8Lk

�
X⌧l,r:n

�
+ 4Lk(Xn).

(9)

Finally, summing Equations 8 and 9 and combining with Equation 7 gives that
nX

t=1

d(xt, St)
2

✓
Rt 

Lk(Xt)

k

◆
 8Lk(Xn) + 14Lk(X⌧l) + 7Lk(X⌧l,r) + 4Lk(Xn)

 33Lk(Xn),

completing the proof.

B.4. Proof of Proposition 12

Proposition 12 Running Online Cluster(X, k, �) satisfies Pr[Rn  Lk(Xn)
k

for all n � k] �
1� �

100 .

The proof boils down to showing that once Rn becomes large, Online Cluster is unlikely to
select many centers after the last scale change. This claim will be useful later because we will see
that selecting lots of centers is the main factor increasing the value of Rn. Intuitively, this claim
is true because points are selected with probability inversely proportional to Rn; however, proving
the claim is complicated by the fact that point selections are not independent. Thus, we make use
of martingale concentration results to prove the formal lemma below, though the intuition is still
straightforward.

26



ONLINE CLUSTERING

Lemma 19 Let n be a positive integer such that n > k. Suppose we run Online Cluster(X, k, �),
and we are given that there is a time q < n where the following hold

1. No scale changes occur in the interval [q, n]

2.
Lk(Xn)

2k  Rt for all t 2 [q, n].

Let count(q, n) be the number of centers selected during the interval [q, n]. For any 0 < �  1,

we have that Pr[count(q, n) � 25k log5 2n
�
]  �

165n2 .

Proof

Let C1
, C

2
, . . . , C

k denote the optimal k-clustering of Xn, and let c1, c2 . . . ck denote their
respective centers. Let �i =

L(Ci)
|Ci| be the average cost of cluster Ci. For j � 0, let Ci

j
be the jth

cluster ring of Ci as in Definition 17. Recall that Ci
j

is empty for all j > log |Ci|. Since |Ci|  n,
at most k(log n+2) of the sets Ci

j
are non-empty. For ease of notation, for x 2 X , let C(x) denote

C
i

j
, where C

i

j
is the unique ring with x 2 C

i

j
.

For q  t  n, let Et be the random variable defined by

Et =

(
1 xt is selected, |C(xt) \ St| � 1

0 otherwise
,

where we take the value of St right before Line 16 of the algorithm is executed.
In other words, if point xt is taken, then Et = 1, except if xt is the first to be selected in

C(xt). For each ring C
i
j
, there can be at most one such point. Since the number of rings is at most

k(log n+2), it follows that count(q, n)  k(log n+2)+
P

n

t=q
Et. We will complete the proof by

showing that Pr[
P

n

t=q
Et � 24k log5 2n

�
]  �

165n2 .
We do this by computing an absolute bound on Pr[Et = 1] for all q  t  n and then by using

a martingale concentration result—even though the Et are not independent, the absolute bound still
allows us to prove tight concentration.

Fix xt 2 C
i

j
. If xt is the first point in C

i

j
, then Pr[Et = 1] = 0. Otherwise, suppose there

is a distinct xs 2 C
i
j

that was selected before xt. Because no scale changes occur in the time
interval, xs 2 St and d(xt, St)  d(xt, xs). By the triangle inequality, d(xt, xs)2  2d(xt, ci)2 +
2d(ci, xs)2  2j+2

�i. This implies that

Pr[Et = 1] 
d(xt, St)2(log

2t
�
)4

Rt


2j+2

�i(log
2n
�
)4

Rt


8k(2j�i)(log

2n
�
)4

Lk(Xn)
, (10)

with the last inequality holding since Lk(Xn)
2k  Rt.

We will apply a standard martingale generalization of Bernstein’s theorem (e.g. Habib et al.
(1998), Theorem 3.8), which states that if the random variables Es are zero-one valued, and the
maximum possible variance of

P
n

t=q
Et is v̂, then for all � > 0, Pr[

P
n

t=q
Et � �+E[

P
n

t=q
Et]] 

exp(��
2
/2

v̂+�/3). First, we have the following bound on the expectation:

27



ONLINE CLUSTERING

E[
nX

t=q

Et] 
kX

i=1

logn+1X

j=0

X

xt2Cj
i

E[Et]


8k(log 2n

�
)4

Lk(Xn)

kX

i=1

logn+1X

j=0

|Ci

j |2j�i


8k(log 2n

�
)4

Lk(Xn)

kX

i=1

2

64
X

x2Ci
0

�i +
logn+1X

j=1

X

x2Ci
j

2d(x, ci)2

3

75


8k(log 2n

�
)4

Lk(Xn)

kX

i=1

⇥
L(Ci) + 2L(Ci)

⇤

= 24k(log
2n

�
)4.

The main manipulations we make come from the fact that 2j�1
�i < d(x, ci)2  2j�i for all j � 1,

x 2 C
i

j
, and from the definition of L(Ci).

Next, since each Et is zero-one valued, the variance of any Et is at most supPr[Et = 1|Eq, . . . , Et�1]
which can be upper bounded by (10). Thus, v̂ 

P
n

t=q
supPr[Et = 1|Eq, . . . , Et�1]  24k log(2n

�
)4

(using the same steps as the expectation bound). Applying the martingale form of Bernstein’s theo-
rem with � = 24k log(2n

�
)4(log 2n

�
� 1), we have

Pr

"
nX

t=q

Et > t+ E
hP

n

t=q
Et

i#
 exp

✓
��2

/2

v̂ + �/3

◆

 exp

 
��2

/2

8k log4 2n
�
(log 2n

�
+ 2)

!

 exp

 
�
242k(log 2n

�
� 1)2

16(log 2n
�
+ 2)

!

 exp

✓
�9 log 2n

�

◆


✓

�

2n

◆9

 �

165n2
.

This completes the proof.

To complete the proof of Proposition 12, we observe that if Rn becomes larger than Lk(Xn)
k

, it
could not have been set this high by Line 12 (as w

2
n

128k is controlled by Proposition 8). Thus, it must
be the case that Rn was doubled at time n, and that many points were selected since the last scale
change, since the counter F resets in between scale changes. This gives the exact conditions for
Lemma 19, and we are able to bound the probability that Rn becomes large.
Proof (Proposition 12)

28



ONLINE CLUSTERING

Let An be the event that Rn >
Lk(Xn)

k
and Rt  Lk(Xt)

k
for all t < n—i.e. n is the minimal

time for which the property Rn � Lk(Xn)
k

holds. The events Ak are pairwise disjoint, so we have

Pr[9n : Rn >
Lk(Xn)

k
] =

1X

n=k

Pr[An]

Observe that An holds only if Rn increased via lines 12 or 19. In line 12, it could have been set to
w

2
n

128k , but this quantity is at most Lk(Xn)
k

by Proposition 8.
Thus, An holds only if line 19 is executed at time n, so Fn�1 + 1 > 25k log5 2n

�
. Let q(n) be

the largest time less than n for which Fq(n) = 0. The above conditions imply that if An holds, then:

1. During the interval [q(n), n], at least 25k log5 2n
�

centers are taken, because the counter in-
creases every time a center is taken. Denote this event by A

1
n.

2. No scale changes occur in [q(n), n], because scale changes reset the counter F to 0, and thus
q(n) is at least the time of the last scale change. Denote this event by A

2
n.

3. For all t 2 [q(n), n � 1], we have Rt = Rn
2 because no scale changes occur, and the only

time Line 19 can execute in this interval is at time n. This implies Lk(Xn)
2k  Rt for all

t 2 [q(n), n� 1]. Denote this event by A
3
n.

Conditioning on the value of q(n) above, we have for any n,

Pr[An] =
nX

q=k

Pr[An|q(n) = q] Pr[q(n) = q]

 max
kqn

Pr[An|q(n) = q] (because Pr[q(n) = ·] sum to 1)

 max
kqn

Pr[A1
n ^A

2
n ^A

3
n|q(n) = q]

 max
kqn

Pr[A1
n|q(n) = q,A

2
n, A

3
n]

However, the inner term Pr[A1
n|q(n) = q,A

2
n, A

3
n] is controlled by Lemma 19 to be at most 1

165n2 .
Thus,

1X

n=k

Pr[An] 
1X

n=k

�

165n2
 �

165

⇡
2

6
 �

100
.

Appendix C. Analysis of Other Clustering Settings

Based on the significant influence of other clustering settings to our algorithm (especially the no-
substitution setting), it is natural to ask how well our algorithm performs in other settings. To this
end, we consider the streaming and no-substitution settings.

29



ONLINE CLUSTERING

Streaming: Observe that Online Cluster enjoys a small streaming cost, as
P

n

t=1 d(xt, Sn)2 P
n

t=1 d(xt, St)2, and the latter cost is bounded by Propositions 11 and 12. Since the analysis for the
center complexity remains unchanged, we immediately have Corollary 4 (stated in the introduction).

Thus, Online Cluster serves as a reasonable choice for online streaming – its only drawback is
that it outputs more centers (by a poly(log n) factor), and has a higher approximation factor than
other algorithms in this setting.

C.1. The No-Substitution Setting

Online Cluster cannot be directly applied to the no-substitution setting because it violates the defin-
ing rule – it deletes centers. To remedy this, we simply amend Online Cluster to proceed exactly
as it does without performing any of its deletions – that is, the only change necessary is to delete
lines 10 and 11 of Algorithm 1. The resulting algorithm adheres to the no-substitution paradigm,
since it only updates its centers at time t by either adding or not adding xt. We refer to the resulting
algorithm as No Sub Cluster, which is presented in Algorithm 2

Algorithm 2: The main algorithm, No Sub Cluster(X, k, �).
1 Sk  {x1, . . . , xk} Initial set of centers
2 Rk, F  0
3 ⌧1  k + 1, i 2
4 (Zk, wk) online k centers update(Xk)
5 for t = k + 1, k + 2, . . . do

6 (Zt, wt) online k centers update(xt) Scale approximation
7 if wt > 16w⌧i�1

p
t then Scale change detected

8 ⌧i  t

9 Rt  w
2
t

128k , F  0
10 i i+ 1

11 else

12 St  St�1, Rt  Rt�1

13 With probability min
n
1,

d(xt,St)2 log4
2t
�

Rt

o
, St = St [ {xt} Center selection

14 F  F + 1xt is selected

15 if F > 25k log5 2t
�

then

16 Rt  2Rt, F  0

17 end

Here, the set of centers St is only ever changed in line 13, in which the point xt is potentially
added. The k-centers clustering step is now only used to estimate the scale, wt, which in turn helps
tune the parameter Rt.

We now restate and prove Corollary 5.

Corollary 5 Let X be an arbitrary data sequence, k be a positive integer, and � satisfy 0 < � < 1.

Suppose we run No Sub Cluster(X, k, �). Let St denote the centers outputted at time t and Mt

denote the total amount of memory used at the end of time t. Then with probability at least 1 � �

over the randomness of No Sub Cluster, for all integers n � 1, the following hold:

1. (Approximation Factor)
P

n

t=2 d(xt, St)2 = O (Lk(Xn)).

30



ONLINE CLUSTERING

2. (Center Complexity) |Sn| = O(kOCk+1(Xn) log
6 n

�
), where OCk+1(Xn) is the lower bound

parameter introduced in Bhattacharjee and Moshkovitz (2021).

3. (Memory and Time Complexity) Each step uses O(kdOCk log
6 n

�
) time and memory.

Proof Part 1. is a direct implication of the proof of Theorem 1. To adapt the proof to the no-
substitution setting, we can use exact analogs of Propositions 11 and 12 that hold for No Sub Cluster.
The fact that no deletions occur does not effect these propositions, and it is not difficult to see that
all of the lemmas employed in the proof carry over.

Part 3. is an implication of part 2. as the bulk of the memory is the center complexity (we only
require an additional O(k) points to be stored for the k centers clustering, and O(1) values to be
stored for Rt, Ft, wt). We now turn towards proving part 2.

First, observe by the proof of Theorem 1 (specifically the discussion of center complexity and
memory) that with high probability, for all n, only O

�
k log6 n

�

�
are selected between scale changes

occurring before n. It follows that if `n denotes the number of scale changes before n, then with
probability at least 1 � �

4 over the randomness of No Sub Cluster, |Sn| = O
�
`nk log

6 n

�

�
. It con-

sequently suffices to bound `n in terms of OCk(Xn). We now review the definition of OCk.

Definition 20 Bhattacharjee and Moshkovitz (2021) Let S = {x1, x2, . . . , xn} be any set of points.

Then for any p > 0, OCp(S) is the length of the longest sequence of points, y1, y2, . . . , ym that are

elements of S such that each point has distance to the previous points that is more than double

the maximum diameter of a cluster when the previous points are optimally (with respect to their

diameters) partitioned into p� 1 clusters. More precisely, for all p  i  m,

d(yi, {y1, . . . , yi�1}) > 2 min
C1[C2···[Cp�1=S

max
1jk

diam(Cj).

Bhattacharjee and Moshkovitz (2021) both gave upper and lower bounds on the center com-
plexities of no-substitution algorithms based upon this parameter. Our goal is to relate the number
of scale changes before time n, `n, to this complexity measure, OCk+1(Xn). More precisely, it
suffices to show that there exists a constant C such that,

`n  C · OCk+1(Xn), (11)

as substituting this into the bound above will prove part 2.
Our strategy for proving Equation 11 will be to use the scale changes in Xn to construct a

sequence of points of length ⌦(`n) that satisfies the conditions given in Definition 20. To this end,
let w⇤

t denote the optimal k-centers clustering loss at time t. Since Charikar et al. (1997) provides
an 8-approximation to the optimal k-center cost, it follows that w⇤

t  wt  8w⇤
t . As a result, it

follows that 1  i  `n � 1 satisfy that

w
⇤
⌧i+1
�

w⌧i+1

8
� 2
p
⌧i+1w⌧i � 2

p
tw

⇤
⌧i+1

. (12)

Next, for any time t � 7, suppose t  ⌧i < ⌧i+1. We claim that there exists t0 with t  t
0
< ⌧i+2

such that
d(xt0 , {x1, . . . , xt}) > 4w⇤

t .

31



ONLINE CLUSTERING

To show this, assume towards a contradiction that this isn’t the case. It follows by the triangle
inequality that any k-clustering of Xt = {x1, . . . , xt} with a k-centers loss of w⇤

t can be used as a
k-clustering of X⌧i+1 with loss at most 5w⇤

t . However, this contradicts Equation 12, as

w
⇤
⌧i+1
� 2
p
⌧i+1w

⇤
⌧i
> 5w⇤

t ,

because ⌧i+1 � 7 means 2p⌧i+1 > 5. Thus, we are guaranteed that t0 always exists.
Next, we leverage the construction of t

0 to construct a sequence of times, t1, t2, . . . , t`0 sat-
isfying that d(xti , {xt1 , . . . , xti�1)) > 4w⇤

ti�1
for all i and `

0 � ⌦ (`n) . It suffices to show that
xt1 , xt2 , . . . , xt`0 satisfies the criteria given in Definition 20 when p = k + 1. However, this is a
consequence of the fact that the minimum diameter from clustering a set of points into k parts is at
most double the optimal k-centers cost, and this finishes the proof.

C.2. Comparison with Other No-Substitution Algorithms

Approx. Ratio Center Complexity Aux. Memory Loss Function
LSS16 O(log n) O(k log n log �⇤) O(1)

P
n

t=1 d(xt, St)2

BR20 O(1) O(k log n log �⇤) O(k)
P

n

t=1 d(xt, Sn)2

BM21 O(k3) O(k log k log n · OCk(X)) O(n)
P

n

t=1 d(xt, Sn)2

Our result O(1) O(k log6 n · OCk+1(X)) O(k)
P

n

t=1 d(xt, St)2

Table 1: Comparison of existing no-substitution algorithms with our algorithm. The memory col-
umn contains memory in addition to the selected centers. The factor, OCk(X) is the lower bound
parameter introduced by Bhattacharjee and Moshkovitz (2021), and the term �

⇤ is the aspect ratio,
the ratio between the distances between the furthest two points and the closest two points in the
stream. Bhattacharjee and Moshkovitz (2021) implies that OCk(X) = O(log �⇤), with �

⇤ being
potentially far larger.

We summarize existing clustering algorithms in Table 1, with LSS16, BR20, and BM21 denot-
ing Liberty et al. (2016), Bhaskara and Rwanpathirana (2020), and Bhattacharjee and Moshkovitz
(2021) respectively. For each algorithm, we list their approximation ratio, which is the factor by
which their loss differs from the optimal k-means cost in hindsight, their center complexity, which
is the expected number of centers chosen at time n, and their additional memory, which measures
the amount of auxiliary memory needed for their algorithm to be executed.

In addition, several algorithms in this setting relax the no-substitution cost from
P

n

t=1 d(xt, St)2

to
P

n

t=1 d(xt, Sn)2. The latter expression is a smaller cost function which only measures the cost
at a given time n by using the resulting centers, Sn, in hindsight. Because centers can never be
deleted, we have that

P
n

t=1 d(xt, St)2 �
P

n

t=1 d(xt, Sn)2 implying that any upper bound on the
former bounds the latter. However, the reverse does not necessarily hold.

As it can be seen from Table 1, our algorithm matches the approximation ratio and the addi-
tional memory of the best known algorithms. Furthermore, it is the only one to do so for the more
complex cost function,

P
n

t=1 d(xt, St)2. With regards to center complexity, our algorithm outper-
forms Bhaskara and Rwanpathirana (2020) and Liberty et al. (2016) as it avoids a dependence on
the aspect ratio, �⇤, and instead uses the more refined term OCk+1(X) (Definition 20). As indicated

32



ONLINE CLUSTERING

by Bhattacharjee and Moshkovitz (2021), the term OCk+1(X) is potentially much smaller than the
aspect ratio, and at best the two are comparable by a constant factor.

The only algorithm with a better center complexity than ours is that of Bhattacharjee and
Moshkovitz (2021), which, in addition to having fewer log factors, also uses the true lower bound
parameter, OCk(Xn), rather than OCk+1(Xn), which would technically correspond to using k + 1
centers. However, for many datasets, OCk+1(Xn) is not much larger than OCk(Xn) owing to the
fact the (k� 1)-fold and k-fold diameters of complex datasets are typically not massively different.

On the other hand, our algorithm has significant improvements over that of Bhattacharjee and
Moshkovitz (2021) as it achieves a true O(1)-approximation (rather than O(k3)) and is far more
efficient in terms of the additional memory required. It also uses the more difficult cost function,P

n

t=1 d(xt, St)2. In their algorithm, Bhattacharjee and Moshkovitz (2021) utilize a full offline k-
clustering of the entire dataset at every timestep, thus requiring all data to be memorized in auxiliary
memory.

33


	Introduction
	Connections to Other Clustering Settings

	Related Work
	Preliminaries
	The Lower Bound Parameter, 
	A No-Substitution Approach to Online Clustering
	A Reduction to the No-Substitution Setting

	An Online Clustering Algorithm
	Our Algorithm

	Analysis of Algorithm 1
	Proof of Theorem 2
	Proof of Theorem 1
	Proof of Proposition 8
	Proof of Proposition 10: Bounding the loss with 
	Proof of Proposition 11: Bounding t=1n d(xt, St)2
	Proof of Proposition 12

	Analysis of Other Clustering Settings
	The No-Substitution Setting
	Comparison with Other No-Substitution Algorithms


