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Abstract

Despite the recent success of representation learn-
ing in sequential decision making, the study of
the pure exploration scenario (i.e., identify the
best option and minimize the sample complex-
ity) is still limited. In this paper, we study multi-
task representation learning for best arm identi-
fication in linear bandits (RepBAI-LB) and best
policy identification in contextual linear bandits
(RepBPI-CLB), two popular pure exploration set-
tings with wide applications, e.g., clinical trials
and web content optimization. In these two prob-
lems, all tasks share a common low-dimensional
linear representation, and our goal is to leverage
this feature to accelerate the best arm (policy)
identification process for all tasks. For these prob-
lems, we design computationally and sample ef-
ficient algorithms DouExpDes and C-DouExpDes,
which perform double experimental designs to
plan optimal sample allocations for learning the
global representation. We show that by learning
the common representation among tasks, our sam-
ple complexity is significantly better than that of
the native approach which solves tasks indepen-
dently. To the best of our knowledge, this is the
first work to demonstrate the benefits of represen-
tation learning for multi-task pure exploration.

1. Introduction

Multi-task representation learning (Caruana, 1997) is an
important problem which aims to learn a common low-
dimensional representation from multiple related tasks. Rep-
resentation learning has received extensive attention in both
empirical applications (Ando et al., 2005; Bengio et al.,
2013; Li et al., 2014) and theoretical study (Maurer et al.,
2016; Du et al., 2021a; Tripuraneni et al., 2021).
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Recently, an emerging number of works (Yang et al., 2021;
2022; Hu et al., 2021; Cella et al., 2022b) investigate repre-
sentation learning for sequential decision making, and show
that if all tasks share a joint low-rank representation, then
by leveraging such a joint representation, it is possible to
learn faster than treating each task independently. Despite
the accomplishments of these works, they mainly focus on
the regret minimization setting, where the performance is
measured by the cumulative reward gap between the optimal
option and the actually chosen options.

However, in real-world applications where obtaining a
sample is expensive and time-consuming, e.g., clinical
trails (Zhang et al., 2012), it is often desirable to identify
the optimal option using as few samples as possible, i.e., we
face the pure exploration scenario rather than regret mini-
mization. Moreover, in many decision-making applications,
we often need to tackle multiple related tasks, e.g., treatment
planning for different diseases (Bragman et al., 2018) and
content optimization for multiple websites (Agarwal et al.,
2009), and there usually exists a common representation
among these tasks, e.g., the features of drugs and the
representations of website items. Thus, we desire to exploit
the shared representation among tasks to expedite learning.
For example, in clinical treatment planning, we want to
identify the optimal treatment for multiple diseases, and
there exists a joint representation of treatments. In this case,
since conducting a clinical trial and collecting a sample
is time-consuming, we desire to make use of the shared
representation and reduce the number of samples required.

Motivated by the above fact, in this paper, we study represen-
tation learning for multi-task pure exploration in sequential
decision making. Following prior works (Yang et al., 2021;
2022; Hu et al., 2021), we consider the linear bandit set-
ting, which is one of the most popular settings in sequential
decision making and has various applications such as clin-
ical trials and recommendation systems. Specifically, we
investigate two pure exploration problems, i.e., represen-
tation learning for best arm identification in linear bandits
(RepBAI-LB) and best policy identification in contextual
linear bandits (RepBPI-CLB).

In RepBAI-LB, an agent is given a confidence parameter
�, an arm set X := {x1, . . . ,xn} ✓ Rd and M tasks. For
each task m 2 [M ], the expected reward of each arm x 2 X
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is generated by x>✓m, where ✓m 2 Rd is an underlying
reward parameter. There exists an unknown global feature
extractor B 2 Rd⇥k and an underlying prediction parameter
wm such that ✓m = Bwm for any m 2 [M ], where M �

d � k. We can understand the problem as that all tasks
share a joint representation f(x) := B>x for arms, where
the dimension of f(x) is much smaller than that of x. The
agent sequentially selects arms and tasks to sample, and
observes noisy rewards. The goal of the agent is to identify
the best arm with the maximum expected reward for each
task with confidence 1��, using as few samples as possible.

The RepBPI-CLB problem is an extension of RepBAI-LB
to environments with random and varying contexts. In
RepBPI-CLB, there are a context space S, an action space
A, a known feature mapping � : S ⇥A 7! Rd and an un-
known context distribution D. For each task m 2 [M ], the
expected reward of each context-action pair (s, a) 2 S ⇥A

is generated by �(s, a)>✓m, where ✓m = Bwm. We can
similarly interpret the problem as that all tasks share a low-
dimensional context-action representation B>�(s, a) 2
Rk. At each timestep, the agent first observes a context
drawn from D, and chooses an action and a task to sample,
and then observes a random reward. Given a confidence
parameter � and an accuracy parameter ", the agent aims to
identify an "-optimal policy (i.e., a mapping S 7! A that
gives suboptimality within ") for each task with confidence
1� �, while minimizing the number of samples used.

In contrast to existing representation learning works (Yang
et al., 2021; 2022; Hu et al., 2021; Cella et al., 2022b),
we focus on the pure exploration scenario and face several
unique challenges: (i) The sample complexity minimization
objective requires us to plan an optimal sample allocation
for recovering the low-rank representation, in order to save
samples to the highest degree. (ii) Unlike prior works which
either assume that the arm set is an ellipsoid/sphere (Yang
et al., 2021; 2022) or are computationally inefficient (Hu
et al., 2021), we allow an arbitrary arm set that spans Rd,
which poses challenges on how to efficiently schedule sam-
ples according to the shapes of arms. (iii) Different from
prior works (Huang et al., 2015; Li et al., 2022), we do not
assume prior knowledge of the context distribution. This
imposes additional difficulties in sample allocation plan-
ning and estimator construction. To handle these challenges,
we design computationally and sample efficient algorithms,
which effectively estimate the context distribution and em-
ploy the experimental design approaches to plan samples.

We summarize our contributions in this paper as follows.

• We formulate the problems of multi-task representation
learning for best arm identification in linear bandits
(RepBAI-LB) and best policy identification in contex-
tual linear bandits (RepBPI-CLB). To the best of our
knowledge, this is the first work to study representation

learning in the multi-task pure exploration scenario.

• For RepBAI-LB, we propose an efficient algorithm
DouExpDes equipped with double experimental de-
signs. The first design optimally schedules samples to
learn the joint representation according to arm shapes,
and the second design minimizes the estimation er-
ror for rewards using low-dimensional representations.
Furthermore, we establish a sample complexity guar-
antee Õ( Mk

�2
min

), which shows superiority over the base-

line result Õ( Md

�2
min

) (i.e., solving each task indepen-
dently). Here �min denotes the minimum reward gap.

• For RepBPI-CLB, we develop C-DouExpDes, an algo-
rithm which efficiently estimates the context distribu-
tion and conducts double experimental designs under
the estimated context distribution to learn the global
representation. A sample complexity result Õ(Mk

2

"2
)

is also provided for C-DouExpDes, which significantly
outperforms the baseline result Õ(Md

2

"2
), and demon-

strates the power of representation learning.

2. Related Work

In this section, we introduce two lines of related works, and
defer a more complete literature review to Appendix A.

Representation Learning. The study of representation
learning has been initiated and developed in the supervised
learning setting, e.g., (Baxter, 2000; Ando et al., 2005; Mau-
rer et al., 2016; Du et al., 2021a; Tripuraneni et al., 2021).

Recently, representation learning for sequential decision
making has attracted extensive attention. Lale et al. (2019);
Jun et al. (2019); Lu et al. (2021b); Huang et al. (2021) study
linear bandits with a hidden low-rank structure (e.g., bilinear
bandits), which is very related to the problem of represen-
tation learning. Yang et al. (2021; 2022); Hu et al. (2021);
Cella et al. (2022b) consider multi-task representation learn-
ing for linear bandits with the regret minimization objective.
Yang et al. (2021; 2022) assume that the arm set is an ellip-
soid or sphere. Hu et al. (2021) relax this assumption and
allow arbitrary arm sets, but their algorithms that build upon
a multi-task joint least-square estimator are computationally
inefficient. Cella et al. (2022b) design algorithms that do
not need to know the dimension of the underlying represen-
tation. There are also other works (Lu et al., 2021a; 2022;
Pacchiano et al., 2022; Zhang & Wang, 2021; Cheng et al.,
2022; Agarwal et al., 2022) which investigate representation
learning for reinforcement learning.

Different from the above works which consider regret mini-
mization, we study representation learning for (contextual)
linear bandits with the pure exploration objective, which
brings unique challenges on how to optimally allocate sam-
ples to learn the feature extractor, and motivates us to design
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algorithms based on double experimental designs.

Pure Exploration in (Contextual) Linear Bandits. Most
existing linear bandit works focus on regret minimization,
e.g., (Dani et al., 2008; Chu et al., 2011; Abbasi-Yadkori
et al., 2011). Recently, there has been a surge of interests in
the pure exploration objective for (contextual) linear bandits.
For linear bandits, Soare et al. (2014) firstly apply the ex-
perimental design approach to distinguish the optimal arm,
and establish sample complexity that heavily depends on
the minimum reward gap. Tao et al. (2018) design a novel
randomized estimator for the underlying reward parame-
ter, and achieve tighter sample complexity which depends
on the reward gaps of the best d arms. Fiez et al. (2019)
provide the first near-optimal sample complexity upper and
lower bounds for best arm identification in linear bandits.
For contextual linear bandits, Zanette et al. (2021) develop
a non-adaptive policy to collect data, from which a near-
optimal policy can be computed. Li et al. (2022) build
instance-optimal sample complexity for best policy identi-
fication in contextual linear bandits, with prior knowledge
of the context distribution. By contrast, our work studies
a multi-task setting where tasks share a common represen-
tation, and does not assume any prior knowledge of the
context distribution.

3. Problem Formulation

In this section, we present the formal problem formulations
of RepBAI-LB and RepBPI-CLB. Before describing the
formulations, we first introduce some useful notations.

Notations. We use bold lower-case letters to denote vec-
tors and bold upper-case letters to denote matrices. For
any matrix A, kAk denotes the spectral norm of A, and
�min(A) denotes the minimum singular value of A. For
any positive semi-definite matrix A 2 Rd

0⇥d
0

and vector
x 2 Rd

0
, kxkA :=

p

x>Ax. We use polylog(·) to denote
a polylogarithmic factor in given parameters, and Õ(·) to
denote an expression that hides polylogarithmic factors in
all problem parameters except � and ".

Representation Learning for Best Arm Identification

in Linear Bandits (RepBAI-LB). An agent is given a
set of arms X := {x1, . . . ,xn} ✓ Rd and M best arm
identification tasks. Without loss of generality, we assume
that X spans Rd, as done in many prior works (Fiez et al.,
2019; Katz-Samuels et al., 2020; Degenne et al., 2020). For
any x 2 X , kxk  Lx for some constant Lx. For each task
m 2 [M ], the expected reward of each arm x 2 X is x>✓m,
where ✓m 2 Rd is an unknown reward parameter. Among
all tasks, there exists a common underlying feature extractor
B 2 Rd⇥k, which satisfies that for each task m 2 [M ],
✓m = Bwm. Here B has orthonormal columns, wm 2 Rk

is an unknown prediction parameter, and M � d� k. For

any m 2 [M ], kwmk  Lw for some constant Lw.

At each timestep t, the agent chooses an arm x 2 X and
a task m 2 [M ], to sample arm x in task m. Then, she
observes a random reward rt = x>✓m + ⌘t = x>Bwm +
⌘t, where ⌘t is an independent, zero-mean and sub-Gaussian
noise. For simplicity of analysis, we assume that E[⌘2

t
] =

1, which can be easily relaxed by using a more carefully-
designed estimator in our algorithm. Given a confidence
parameter � 2 (0, 1), the agent aims to identify the best
arms x⇤

m
:= argmaxx2X x>✓m for all tasks m 2 [M ]

with probability at least 1 � �, using as few samples as
possible. We define sample complexity as the total number
of samples used over all tasks, which is the performance
metric considered in our paper.

To efficiently learn the underlying low-dimensional repre-
sentation, we make the following standard assumptions.

Assumption 3.1 (Diverse Tasks). We assume that
�min(

1
M

P
M

m=1 wmw>
m
) = ⌦( 1

k
).

This assumption indicates that the prediction parameters
w1, . . . ,wM are uniformly spread out in all directions of
Rk, which was also assumed in (Du et al., 2021a; Tripura-
neni et al., 2021; Yang et al., 2021), and is necessary for
recovering the feature extractor B.

For any distribution � 2 4X and B 2 Rd⇥k, let
A(�,B) :=

P
n

i=1 �(xi)B>xix>
i
B. For any task m 2

[M ], let

�⇤
m

:= argmin
�24X

max
x2X\{x⇤

m}

kB>(x⇤
m
� x)k2A(�,B)�1

((x⇤
m
� x)>✓m)2

.

Here �⇤
m

denotes the optimal sample allocation that min-
imizes prediction error of arms (i.e., the solution of G-
optimal design (Pukelsheim, 2006)) under the underlying
low-dimensional representation.

Assumption 3.2 (Eigenvalue of G-optimal Design Matrix).
For any task m 2 [M ], �min(A(�⇤

m
,B)) � ! for some

constant ! > 0.

This assumption implies that the covariance matrix
A(�⇤

m
,B) under the optimal sample allocation is invert-

ible, which is necessary for estimating wm. Note that
the quantities introduced in Assumptions 3.1 and 3.2, i.e.,
�min(

1
M

P
M

m=1 wmw>
m
) and �min(A(�⇤

m
,B)), are both

defined on the low-dimensional subspace, which scale as k
instead of d.

Representation Learning for Best Policy Identification in

Contextual Linear Bandits (RepBPI-CLB). In this prob-
lem, there are a context space S , an action space A, a feature
mapping �(·, ·) : S⇥A 7! Rd and an unknown context dis-
tribution D 2 4S . For any (s, a) 2 S⇥A, k�(s, a)k  L�

for some constant L�. An agent needs to solve M best
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policy identification tasks. For each task m 2 [M ], the ex-
pected reward of each context-action pair (s, a) 2 S ⇥A is
�(s, a)>✓m, where ✓m 2 Rd is an unknown reward param-
eter. Similar to RepBAI-LB, there exists a global feature
extractor B 2 Rd⇥k with orthonormal columns, such that
for each task m 2 [M ], ✓m = Bwm. Here wm 2 Rk

is an unknown prediction parameter, kwmk  Lw for any
m 2 [M ], and M � d� k.

At each timestep t, the agent first observes a random context
st, which is i.i.d. drawn from D. Then, she selects an action
at 2 A and a task m 2 [M ], to sample action at in context
st under task m. After sampling, she observes a random
reward rt = �(st, at)>✓m + ⌘t = �(st, at)>Bwm + ⌘t,
where ⌘t is an independent, zero-mean and 1-sub-Gaussian
noise.

We define a policy ⇡ as a mapping from S to A. For each
task m 2 [M ], we say a policy ⇡̂m is "-optimal if

Es⇠D


max
a2A

(�(s, a)� �(s, ⇡̂m(s))> ✓m

�
 ".

Given a confidence parameter � 2 (0, 1) and an accuracy
parameter " > 0, the goal of the agent is to identify
an "-optimal policy ⇡̂m for each task m 2 [M ] with
probability at least 1 � �, and minimize the number of
samples used, i.e., sample complexity.

We also make two standard assumptions for RepBPI-CLB:
Assumption 3.1 and the following assumption on the context
distribution and context-action features.

Assumption 3.3. There exists some � 2 4A such that

�min

 
X

a2A
�(a)Es⇠D

⇥
�(s, a)�(s, a)>

⇤
!
� ⌫

for some constant ⌫ > 0.

Assumption 3.3 manifests that there exists at least one sam-
ple allocation, under which the expected covariance matrix
with respect to random contexts is invertible. This assump-
tion enables one to reveal the feature extractor B, despite
stochastic and varying contexts. Note that Assumption 3.3
only assumes the existence of a feasible sample allocation,
rather than the knowledge of this sample allocation.

It is worth mentioning that in this work, we do not assume
that we can sample arbitrary vectors in an ellipsoid/sphere
as in (Yang et al., 2021; 2022), or assume that each arm
(action) has zero mean and identity covariance as in (Tripu-
raneni et al., 2021). In contrast, we allow arbitrary shapes
of arms (actions), and efficiently allocate samples accord-
ing to their different shapes. Moreover, we do not assume
prior knowledge of the context distribution as in (Huang
et al., 2015; Li et al., 2022). Instead, we design an effective

scheme to estimate the context distribution, and carefully
bound the estimation error in our analysis.

Below we will introduce our algorithms and results. We
defer all our proofs to Appendix due to space limit.

4. Representation Learning for Best Arm

Identification in Linear Bandits

In this section, we design a computationally efficient algo-
rithm DouExpDes for RepBAI-LB, which performs double
delicate experimental designs to recover the feature extractor
and distinguish the best arms using low-rank representations.
Furthermore, we provide sample complexity guarantees that
mainly depend on the underlying low dimension.

To better describe our algorithm, we first introduce the no-
tion of experimental design. Experimental design is an im-
portant problem in statistics (Pukelsheim, 2006). Consider
a set of feature vectors and an unknown linear regression pa-
rameter. Sampling each feature vector will produce a noisy
feedback of the inner-product of this feature vector and the
unknown parameter. Experimental design investigates how
to schedule samples to maximize the statistical power of esti-
mating the unknown parameter. In our algorithm, we mainly
use two popular types of experimental design, i.e., E-optimal
design, which minimizes the spectral norm of the inverse
of sample covariance matrix, and G-optimal design, which
minimizes the maximum prediction error for feature vectors.

4.1. Algorithm DouExpDes

Now we present our algorithm DouExpDes, whose pseudo-
code is provided in Algorithm 1. DouExpDes is a phased
elimination algorithm, which first conducts the E-optimal
design to optimally schedule samples for learning the feature
extractor B, and then performs the G-optimal design with
low-dimensional representations to eliminate suboptimal
arms.

DouExpDes uses a rounding procedure ROUND (Allen-
Zhu et al., 2017; Fiez et al., 2019), which transforms a
given continuous sample allocation (design) into a dis-
crete sample sequence and maintains important proper-
ties (e.g., E-optimality and G-optimality) of the design.
ROUND({(qi,Qi)}n

0

i=1,�, ⇣, N) takes n
0 arm-matrix pairs

(q1,Q1), . . . , (qn0 ,Qn0) 2 X ⇥Rd
0⇥d

0
, a distribution � 2

4{q1,...,qn0}, a rounding approximation parameter ⇣ > 0,
and the number of samples N such that N � 180d0

⇣2 as inputs.
It will return a sample sequence s1, . . . , sN 2 X , which cor-
respond to feature matrices S1, . . . ,SN 2 {Q1, . . . ,Qn0},
and

P
N

j=1 Sj has similar properties as the covariance matrix

of the inputted design N
P

n
0

i=1 �(qi)Qi (see Appendix B
for more details).
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Algorithm 1 DouExpDes (Double Experimental Design)
1: Input: X , �, rounding procedure ROUND, rounding ap-

proximation parameter ⇣ := 1
10 , and the size of sample

batch p := 180d
⇣2 .

2: Let �E and ⇢
E be the optimal solution and the optimal

value of the E-optimal design optimization:

min
�24X

���
� nX

i=1

�(xi)xix
>
i

��1
���

3: x̄1, . . . , x̄p  ROUND({(xi,xix>
i
)}n

i=1,�
E
, ⇣, p)

4: X̂1,m  X for any m 2 [M ]. �t  �

2t2 for any t � 1
5: for phase t = 1, 2, . . . do

6: Tt  d
c1(1+⇣)3(⇢E)2k4

L
4
xL

4
w

M
max{22t, L

4
x

!2 }·

polylog(⇣, ⇢E , p, k, Lx, Lw,
1
�t
,
1
!
)e, where c1 is an

absolute constant
7: B̂t  FeatRecover(Tt, {x̄i}i2[p])

8: {X̂t+1,m}m2[M ]  

EliLowRep(t,X , {X̂t,m}m2[M ], �t, ROUND, ⇣, B̂t)

9: if |X̂t+1,m| = 1, 8m 2 [M ] then

10: return X̂t+1,m for all tasks m 2 [M ]
11: end if

12: end for

The procedure of DouExpDes is as follows. At the begin-
ning, DouExpDes performs the E-optimal design with raw
representations, to plan an optimal sample allocation �E for
the purpose of recovering the feature extractor B (Line 2).
Then, DouExpDes calls ROUND to convert the E-optimal sam-
ple allocation �E into a discrete sample batch x̄1, . . . , x̄p,
which satisfies that

����
⇣ pX

j=1

x̄jx̄
>
j

⌘�1
����  (1 + ⇣)

����
⇣
p

nX

i=1

�
E(xi)xix

>
i

⌘�1
����.

Next, DouExpDes enters multiple phases, and maintains a
candidate arm set X̂t,m for each task. The specific value of
Tt in Line 6 is presented in Eq. (8) of Appendix C.2.

In each phase t, DouExpDes first calls subroutine
FeatRecover to recover the feature extractor B. In
FeatRecover (Algorithm 2), we repeatedly sample
x̄1, . . . , x̄p in all tasks, and construct an estimator Z for
1
M

P
M

i=1 ✓m✓>
m

, which contains the information of underly-
ing reward parameters (Line 9). Then, we perform SVD on
Z and obtain the estimated feature extractor B̂ (Line 10).

Then, DouExpDes calls subroutine EliLowRep to eliminate
suboptimal arms using low-dimensional representations. In
EliLowRep (Algorithm 3), we conduct the G-optimal de-
sign with the reduced-dimensional representations B̂>x,
and obtain sample allocation �G

m
for each task (Line 2). We

further use ROUND to transform �G
m

into a sample sequence

Algorithm 2 FeatRecover(T, {x̄i}i2[p])

1: for task m 2 [M ] do

2: for round j 2 [T ] do

3: for arm i 2 [p] do

4: Sample x̄i, and observe random reward ↵m,j,i

5: end for

6: ✓̃m,j  (
P

p

i=1 x̄ix̄>
i
)�1

P
p

i=1 x̄i↵m,j,i

7: end for

8: end for

9: Z  
1

MT

P
M

m=1

P
T

j=1 ✓̃m,j(✓̃m,j)> �

(
P

p

i=1 x̄ix̄>
i
)�1

10: Perform SVD decomposition on Z, and let B̂ be the
top-k left singular vectors of Z

11: return B̂

Algorithm 3 EliLowRep(t,X,{X̂m}m2[M ], �
0
, ROUND,⇣,B̂)

1: for task m 2 [M ] do

2: Let �G
m

and ⇢
G
m

be the optimal solution and the opti-
mal value of the G-optimal design optimization:

argmin
�24X

max
x,x02X̂m

���B̂>(x� x0)
���
2

A(�,B̂)�1

3: Nm  dmax{32(1+ ⇣)22t⇢G
m
log( 4n

2
M

�0 ), 180k
⇣2 }e

4: zm,1, . . . , zm,Nm  

ROUND({(xi, B̂>xix>
i
B̂)}n

i=1,�
G
m
, ⇣, Nm)

5: Sample the arms zm,1, . . . , zm,Nm 2 X , and ob-
serve random rewards rm,1, . . . , rm,Nm

6: Let z̃m,j := B̂>zm,j for any j 2 [Nm]

7: ŵm  (
P

Nm

j=1 z̃m,j z̃>
m,j

)�1
P

Nm

j=1 z̃m,jrm,j

8: ✓̂m  B̂ŵm

9: X̂
0
m
 X̂m\{x 2 X̂m | 9x0

2 X̂m : (x0
�x)>✓̂m >

2�t
}

10: end for

11: return {X̂
0
m
}m2[M ]

zm,1, . . . , zm,Nm , which satisfies that

max
x,x02X̂m

kx� x0
k
2

(
PNm

j=1 B̂>zm,jz>
m,jB̂)

�1

(1 + ⇣) max
x,x02X̂m

kx� x0
k
2

(Nm
Pn

i=1 �G
m(xi)B̂>xix>

i B̂)�1 .

After sampling this sequence, we build estimators ŵt,m

and ✓̂t,m for the underlying prediction parameter wm and
reward parameter ✓m, respectively (Lines 7-8). Then, we
discard the arms that show large gaps to the estimated opti-
mal arm for each task (Line 9).

4.2. Theoretical Performance of DouExpDes

In this subsection, we provide sample complexity guarantees
for DouExpDes. To formally present our sample complexity,
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we first revisit existing results for conventional single-task
best arm identification in linear bandits (BAI-LB).

For a single-task BAI-LB instance with arm set X 2 Rd

and underlying reward parameter ✓ 2 Rd, the instance-
dependent hardness is defined as (Fiez et al., 2019)

⇢
S(X ,✓) := min

�24X
max

x2X\{x⇤}

kx⇤
� xk2

(
Pn

i=1 �(xi)xix>
i )

�1

((x⇤ � x)>✓)2
,

and the best known sample complexity result is
Õ(⇢S(X ,✓) log( 1

�
)) = Õ( d

(�S
min)

2 log(
1
�
)) (Fiez et al.,

2019). Here x⇤ := argmaxx2X x>✓ denotes the best arm,
and �S

min := minx2X\{x⇤}(x
⇤
� x)>✓ refers to the mini-

mum reward gap.

It can be seen that a naive algorithm for RepBAI-LB is to run
an existing single-task BAI-LB algorithm (Fiez et al., 2019;
Katz-Samuels et al., 2020) to solve M tasks independently.
Then, the sample complexity of such naive algorithm is

Õ

 
MX

m=1

⇢
S(X ,✓m) log

✓
1

�

◆!
=Õ

✓
Md

�2
min

log

✓
1

�

◆◆
, (1)

where �min := minm2[M ],x2X\{x⇤
m}(x

⇤
m
� x)>✓m de-

notes the minimum reward gap among all tasks. In the
following, we take Eq. (1) as the baseline to demonstrate
the power of representation learning.

Now we state the sample complexity for DouExpDes.
Theorem 4.1. With probability at least 1 � �, algorithm
DouExpDes returns the best arms x⇤

m
for all tasks m 2 [M ],

and the number of samples used is bounded by

Õ

✓ MX

m=1

min
�24X

max
x2X\{x⇤

m}

kB>(x⇤
m
� x)k2A(�,B)�1

((x⇤
m
� x)>✓m)2

log
⇣1
�

⌘

+ (⇢E)2dk4L2
x
L
2
w
D log4

⇣1
�

⌘◆
(2)

= Õ

✓
Mk

�2
min

log
⇣1
�

⌘
+ (⇢E)2dk4L2

x
L
2
w
D log4

⇣1
�

⌘◆
,

where D := max{ 1
�2

min
,

L
4
x

!2 }.

Remark 1. In Theorem 4.1, the factors
that have implicit dimensional dependency include

min�24X maxx2X\{x⇤
m}

kB>(x⇤
m�x)k2

A(�,B)�1

((x⇤
m�x)>✓m)2 , ! and ⇢

E ,
which scale as k, 1

k
and d, respectively.

In our sample complexity bound (Eq. (2)), the first term,
P

M

m=1 min�24X maxx2X\{x⇤
m}

kB>(x⇤
m�x)k2

A(�,B)�1

((x⇤
m�x)>✓m)2 =

O( Mk

�2
min

), represents the hardness of M k-dimensional lin-
ear bandit instances with arm set {B>x : x 2 X} and
underlying reward parameters w1, . . . ,wM . This term only

depends on the reduced dimension k, instead of d. In other
words, it is an essential price that is needed for solving M

low-dimensional tasks, even if one knows the feature extrac-
tor B. The second term (⇢E)2dk4L2

x
L
2
w
D, which depends

on the raw dimension d, is a cost paid for learning the fea-
ture extractor. Note that since this term does not contain
M , the cost for learning the underlying features is paid only
once, rather than for all tasks.

When M � d � k, the first term dominates the bound,
which only depends on the low dimension k. This in-
dicates that algorithm DouExpDes effectively learns the
low-dimensional representation, and exploits the intrinsic
problem structure to reduce the sample complexity from
Õ( Md

�2
min

log( 1
�
)) (i.e., learning each task independently) to

only Õ( Mk

�2
min

log( 1
�
)). Our result corroborates the benefits

of representation learning for multi-task pure exploration.

Technical Novelty. We highlight the novelty in the anal-
ysis of Theorem 4.1 as follows. (i) Prior low-rank ban-
dit works (Jun et al., 2019; Lu et al., 2021b) use arbi-
trary sample distributions to recover the low-dimensional
subspace, and their results depend on the eigenvalue of
an arbitrary sample distribution kX�1

k, where X =
[x(1)

, . . . ,x(d1)] is a collection of arbitrary d1 arms from
the arm set. By contrast, we utilize the E-optimality of
the sample batch x̄1, . . . , x̄p to obtain an optimized de-
pendency ⇢

E
⇡ minx(1),...,x(d1)2X kX

�1
k, which is the

best one can achieve at the subspace recovery stage. (ii)
If one naively applies existing single-task BAI-LB anal-
ysis (Fiez et al., 2019; Katz-Samuels et al., 2020) in the
estimated subspace B̂t, one can only obtain a sample
complexity kB̂>

t
(x � x0)k2

(
Pn

i=1 �⇤
m(xi)B̂>

t xix>
i B̂t)�1 de-

pendent on B̂t, but this is not a valid upper bound. To
tackle this challenge, we connect the low-dimensional sam-
ple complexity under the estimated subspace kB̂>

t
(x �

x0)k2
(
Pn

i=1 �⇤
m(xi)B̂>

t xix>
i B̂t)�1 with that under the true sub-

space kB>(x � x0)k2
(
Pn

i=1 �⇤
m(xi)B>xix>

i B)�1 , and drive
a tight sample complexity.

Lower Bound Conjecture. We conjecture that the lower
bound for RepBAI-LB is ⌦(

P
M

m=1 ⇢
S(X ,✓m) log( 1

�
)).

We describe the preliminary idea below.

First, the lower bound for single-task BAI-LB with
arm set X and underlying reward parameter ✓m is
⌦(⇢S(X ,✓m) log( 1

�
)) (Fiez et al., 2019). If the global fea-

ture extractor B is known, then the RepBAI-LB problem
will reduce to M k-dimensional BAI-LB instances with
arm set {B>x : x 2 X} and underlying reward parame-
ters w1, . . . ,wM . Therefore, we conjecture that the lower
bound for RepBAI-LB is ⌦(

P
M

m=1 ⇢
S(X ,✓m) log( 1

�
)),

which is the cost of solving M k-dimensional BAI-LB in-
stances. However, it is challenging to rigorously analyze

6
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Algorithm 4 C-DouExpDes (Contextual Double Experimen-
tal Design)

1: Input: �, ", �(·, ·), regularization parameter � � 1,
rounding procedure ROUND, rounding approximation
parameter ⇣ := 1

10 , and the size of sample batch p :=

d
c2(1+⇣)2L4

�

⌫2 polylog(⇣,M, d, k, L�, Lw, �,
1
⌫
,
1
�
,
1
"
)e,

where c2 is an absolute constant.
2: T0  d

322(1+⇣)2L4
�

⌫2 log2( 20d|A|
�

)e. D̂  ;
3: for ⌧ 2 [T0] do

4: Observe context s⌧ , and randomly sample an action
5: D̂  D̂ [ {s⌧}

6: end for

7: Let �E

D̂ and ⇢
E

D̂ be the optimal solution and the optimal
value of the E-optimal design optimization:

min
�24A

���
�X

a2A
�(a)E

s⇠D̂
⇥
�(s, a)�(s, a)>

⇤ ��1
���

8: {āi}i2[p] ROUND({(a,E
s⇠D̂

⇥
�(s, a)�(s, a)>

⇤
)}a2A,

�E

D̂, ⇣, p)

9: T  d
c3(1+⇣)2k4

L
4
�L

4
w

M⌫2"2
polylog(⇣, d, k, L�, Lw, �,

1
⌫
,

1
�
,
1
"
)e, where c3 is an absolute constant

10: B̂  C-FeatRecover(T, {āi}i2[p])

11: N  d
(k2+�kL

2
w)

"2
log4(�kLw

"�
)e

12: {✓̂m,N}m2[M ]  EstLowRep(N, �, B̂)

13: return ⇡̂m(·) := argmaxa2A �(·, a)>✓̂m,N for all
tasks m 2 [M ]

the independence of these M k-dimensional instances and
drive the summation in our conjectured lower bound. We
leave the formal lower bound proof for future work.

When M � d� k, Theorem 4.1 matches our conjectured
lower bound, which implies that algorithm DouExpDes per-
forms as well as an oracle that knows the low-rank represen-
tation B in advance.

5. Representation Learning for Best Policy

Identification in Contextual Linear Bandits

In this section, we turn to contextual linear bandits. Differ-
ent from prior contextual linear bandit works, e.g., (Huang
et al., 2015; Li et al., 2022), here we do not assume
any knowledge of context distribution. As a result, our
RepBPI-CLB problem faces several unique challenges: (i)
how to plan an efficient sample allocation for recovering
the feature extractor in advance under an unknown context
distribution, and (ii) how to construct an estimator for the
feature extractor with a partially observed context space.

We propose algorithm C-DouExpDes, which first (i) effi-
ciently estimates the context distribution and conducts ex-

Algorithm 5 C-FeatRecover(T, {āi}i2[p])

1: for task m 2 [M ] do

2: for round j 2 [T ] do

3: for arm i 2 [p] do

4: Observe context s(1)
m,j,i

, sample action āi in task
m, and observe reward ↵

(1)
m,j,i

5: Observe context s(2)
m,j,i

, sample action āi in task
m, and observe reward ↵

(2)
m,j,i

6: end for

7: Let �(`)
m,j,i

:=�(s(`)
m,j,i

, āi), 8i2 [p], 8`2{1, 2}

8: ✓̃(`)
m,j
 (
P

p

i=1�
(`)
m,j,i

�(`)
m,j,i

>
)�1
P

p

i=1�
(`)
m,j,i

↵
(`)
m,j,i

,
8` 2 {1, 2}

9: end for

10: end for

11: Z  1
MT

P
M

m=1

P
T

j=1 ✓̃
(1)
m,j

(✓̃(2)
m,j

)>

12: Perform SVD decomposition on Z, and let B̂ be the
top-k left singular vectors

13: return B̂

Algorithm 6 EstLowRep(N, �, B̂)

1: ⌃m,0  �I for any m 2 [M ]
2: for task m 2 [M ] do

3: for timestep t 2 [N ] do

4: Observe context sm,t

5: am,t  argmaxa2A kB̂
>�(sm,t, a)k⌃�1

m,t�1

6: Sample action am,t, and observe reward rm,t

7: ⌃m,t  ⌃m,t�1+

B̂>�(sm,t, am,t)�(sm,t, am,t)>B̂

8: ŵm,t  ⌃�1
m,t

P
t

⌧=1 B̂
>�(sm,⌧ , am,⌧ )rm,⌧

9: ✓̂m,t  B̂ŵm,t

10: end for

11: end for

12: return {✓̂m,N}m2[M ]

perimental designs under the estimated context distribution,
and then (ii) builds a delicate estimator for the feature ex-
tractor using instantaneous contexts. Moreover, we also
establish a sample complexity guarantee for C-DouExpDes,
which mainly depends on the low dimension of the common
representation among tasks.

5.1. Algorithm C-DouExpDes

Algorithm 4 presents the pseudo-code of C-DouExpDes. At
the beginning, C-DouExpDes uses T0 samples to estimate
the context distribution D (Lines 3-6). Then, it performs
the E-optimal design under the estimated context distribu-
tion D̂, and obtains an efficient sample allocation �E

D̂ for
the purpose of recovering the feature extractor B (Line 7).
Further, C-DouExpDes calls the rounding procedure ROUND

7
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to transform �E

D̂ into a sample batch ā1, . . . , āp, such that

���
� pX

j=1

E
s⇠D̂

⇥
�(s, āj)�(s, āj)

>⇤ ��1
���

(1 + ⇣)
���
�
p

X

a2A
�
E

D̂(a)Es⇠D̂
⇥
�(s, a)�(s, a)>

⇤ ��1
���.

The specific values of p and T in Lines 1, 9 are provided
in Eq. (19) of Appendix D.1 and Eq. (29) of Appendix D.2,
respectively.

Next, C-DouExpDes runs subroutine C-FeatRecover to
estimate the feature extractor B using the sample batch
ā1, . . . , āp. In C-FeatRecover (Algorithm 5), we repeat-
edly sample ā1, . . . , āp in all tasks with random contexts. In
Lines 4-5, we sample this batch twice, and the superscripts
(1) and (2) denotes the first and second samples, respec-
tively. After sampling, we carefully establish an estimator
Z for the reward parameter related matrix 1

M

P
M

m=1 ✓m✓>
m

,
using instantaneous context-action features �(s(`)

m,j,i
, āi)>.

We then perform SVD decomposition on Z to obtain the
estimated feature extractor B̂ (Lines 11-12).

Then, C-DouExpDes calls subroutine EstLowRep, which
adapts existing reward-free-exploration algorithm in
(Zanette et al., 2021) with low-rank representations to esti-
mate ✓m. In EstLowRep (Algorithm 6), we employ the esti-
mated representation B̂>�(s, a) to sample the actions with
the maximum uncertainty under the observed contexts. Af-
ter that, we construct estimators ŵm,t and ✓̂m,t for the pre-
diction parameter ŵm and reward parameter ✓̂m (Lines 8-9).
At last, C-DouExpDes returns the greedy policy with respect
to the estimated reward parameter ✓̂m,N for each task.

5.2. Theoretical Performance of C-DouExpDes

Next, we establish sample complexity guarantees for algo-
rithm C-DouExpDes. In order to illustrate the advantages
of representation learning, we first review existing results
for traditional single-task best policy identification in con-
textual linear bandits (BPI-CLB). For a single BPI-CLB
instance with context-action features �(s, a) 2 Rd and re-
ward parameter ✓ 2 Rd, the best known sample complexity
is Õ(d

2

"2
log( 1

�
)) (Zanette et al., 2021; Li et al., 2022).

Apparently, if one naively solves the RepBPI-CLB problem
by running single-task BPI-CLB algorithms to tackle M

tasks independently, one will have a sample complexity

Õ

✓
Md

2

"2
log
⇣1
�

⌘◆
,

which heavily depends on the raw dimension d of context-
action features. The goal of representation learning is to
leverage the common representation among tasks to alleviate
the dependency of dimension and save samples.

Now we present the sample complexity for C-DouExpDes.

Theorem 5.1. With probability at least 1 � �,
C-DouExpDes returns an "-optimal policy ⇡̂m such
that Es⇠D[maxa2A(�(s, a) � �(s, ⇡̂m(s))>✓m]  " for
each task m 2 [M ], and the number of samples used is

Õ

 
M
�
k
2 + �kL

2
w

�

"2
+

k
4
L
8
�
L
4
w

⌫4"2

!
.

Remark 2. In this result, only factor ⌫ has implicit di-
mensional dependency, which scales as 1

d
. The first term

M(k2+�kL
2
w)

"2
is a cost of identifying optimal policies for M

tasks with k-dimensional features B>�(s, a). The second
term k

4
L

8
�L

4
w

⌫4"2
is a price paid for learning global feature ex-

tractor B and does not depend on M . This indicates that we
only need to pay this price once, and then enjoy the benefits
of dimension reduction for all M tasks.

When M �
1
⌫
� k, this result becomes Õ(Mk

2

"2
) and

only depends on the low dimension k, which implies that
C-DouExpDes performs as well as an oracle that knows the
underlying low-rank subspace B. This sample complex-
ity significantly outperforms the baseline result Õ(Md

2

"2
)

(i.e., solving M tasks independently), and demonstrates the
power of representation learning.

Analytical Novelty. Below we elaborate the nov-
elty in the proof of Theorem 5.1. (i) We carefully
bound the deviation between the context-action
features under the estimated context distribution
E
s⇠D̂[�(s, āi)�(s, āi)

>] and those under the true
context distribution Es⇠D[�(s, āi)�(s, āi)>]. We further
bound the distance between Es⇠D[�(s, āi)�(s, āi)>] and
the context-action features under actual instantaneous
contexts �(s(`)

m,j,i
, āi)�(s

(`)
m,j,i

, āi)>. (ii) We leverage the
E-optimality of the sample batch ā1, . . . , āp to bound

k(
P

p

i=1 �
(`)
m,j,i

�(`)
m,j,i

>
)�1
k. Then, we establish a concen-

tration inequality for kZ � 1
M

P
M

m=1 ✓m✓>
m
k using the

bounded k(
P

p

i=1 �
(`)
m,j,i

�(`)
m,j,i

>
)�1
k and matrix Bernstern

inequality with truncated noises. (iii) Furthermore, we
decompose the prediction error �(s, a)>(✓̂m,t � ✓m) into
three components, including the sample variance and bias of
ŵm,t, and the estimation error of B̂. This prediction error
is bounded via self-normalized concentration inequalities
with the reduced dimension k.

6. Experiments

In this section, we present experiments to evaluate the em-
pirical performance of our algorithms.

In our experiments, we set � = 0.005, d = 5, k = 2 and
M 2 [50, 230], where k divides M . In RepBAI-LB, X is

8
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(b) RepBPI-CLB

Figure 1. Experimental results for RepBAI-LB and RepBPI-CLB.
The two figures compare the sample complexities of our algorithms
with the naive algorithms which treat each task independently.

the canonical basis of Rd. In RepBPI-CLB, we set " = 0.1,
|S| = 5 and |A| = 5. D is the uniform distribution on S.
For any s 2 S, {�(s, a)}a2A is the canonical basis of Rd.
In both problems, B = [Ik;0], where Ik denotes the k ⇥ k

identity matrix. w1, . . . ,wM are divided into k groups,
with M

k
same members in each group. The members in the

i-th group (i 2 [k]), i.e., w(M/k)⇥(i�1)+1, . . . ,w(M/k)⇥i,
have 1 in the i-th coordinate and 0 in all other coordinates.
For any m 2 [M ], ✓m = Bwm. We vary M and perform
50 independent runs to report the average sample complexity
across runs.

For RepBAI-LB, we compare algorithm DouExpDes with
the baseline IndRAGE which runs the state-of-the-art single-
task BAI-LB algorithm RAGE (Fiez et al., 2019) to solve
M tasks independently. Figure 1(a) shows the empirical
results for RepBAI-LB. From Figure 1(a), we can see that
DouExpDes has a better sample complexity than IndRAGE,
and as the number of tasks M increases, the sample com-
plexity of DouExpDes increases at a lower rate than that of
IndRAGE. This demonstrates that DouExpDes effectively
utilize the shared representation among tasks to reduce the
number of samples needed for multi-task learning.

For RepBPI-CLB, our algorithm C-DouExpDes is compared
with the baseline IndRFLinUCB, which tackles M tasks
independently by calling the state-of-the-art single-task
BPI-CLB algorithm Reward-free LinUCB (Zanette et al.,
2021). As presented in Figure 1(b), C-DouExpDes achieves
a significantly lower sample complexity than IndRFLinUCB.
In addition, the slope of the sample complexity curve of
C-DouExpDes with respect to M is much smaller than that
of IndRFLinUCB, which validates that C-DouExpDes enjoys
a lighter dependency on dimension in multi-task learning.
These empirical results match our theoretical bounds, and
corroborate the power of representation learning.

7. Conclusion and Future Work

In this paper, we investigate representation learning for pure
exploration in multi-task (contextual) linear bandits. We

propose two efficient algorithms which conduct double ex-
perimental designs to optimally allocate samples for learn-
ing the low-rank representation. The sample complexities
of our algorithms mainly depend on the low dimension of
the underlying joint representation among tasks, instead of
the raw high dimension. Our theoretical and experimental
results demonstrate the benefit of representation learning
for pure exploration in multi-task bandits. There are many
interesting directions for further exploration. One direction
is to establish lower bounds to validate the optimality of our
algorithms. Another direction is to extend this work to more
complex (nonlinear) representation settings.
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Appendix

A. Related Work

In this section, we present a full literature review for two lines of related works, i.e., representation learning and pure
exploration in (contextual) linear bandits.

Representation Learning. The study of representation learning has been initiated and developed in the supervised learning
setting, e.g., (Baxter, 2000; Ben-David & Schuller, 2003; Ando et al., 2005; Maurer, 2006; Cavallanti et al., 2010; Maurer
et al., 2016; Du et al., 2021a; Tripuraneni et al., 2021). A most related work is (Tripuraneni et al., 2021), which proposes
a method-of-moments estimator for recovering the feature extractor, and establishes error guarantees for transferring the
learned representation from past tasks to a new task.

Recently, representation learning for sequential decision making (bandits and reinforcement learning) has attracted extensive
attention. We first introduce several works on low-rank bandits, which is a very similar topic to representation learning
for bandits. Lale et al. (2019) study linear bandits with a hidden low-rank structure, and provide a regret bound dependent
on the eigenvalue of the action distribution covariance. Jun et al. (2019); Lu et al. (2021b) also investigate low-rank linear
bandits (bilinear bandits), and design algorithms which run traditional linear bandit algorithm LinUCB (Abbasi-Yadkori
et al., 2011) in the estimated low-dimensional subspace. Lattimore & Hao (2021) consider an instantiation of low-rank
bandits, called bandit phase retrieval. Huang et al. (2021) study a large family of bandit problems with non-concave reward
functions, including low-rank linear bandits. They design a stochastic gradient-based algorithm that achieves an improved
regret bound over those in (Jun et al., 2019; Lu et al., 2021b).

Now we introduce related works on representation learning for bandits. Yang et al. (2021; 2022) study multi-task representa-
tion learning for linear bandits with the regret minimization objective, and assume that the action set at each timestep is
an ellipsoid or sphere. Hu et al. (2021) further relax this assumption and allow arbitrary action sets, but their algorithms
equipped with a multi-task joint least-square estimator are computationally inefficient. Cella et al. (2022a;b) also investigate
the problem in (Yang et al., 2021) and propose algorithms which do not need to know the dimension of the underlying
representation. Qin et al. (2022) study multi-task representation learning for linear bandits in a non-stationary environment,
and develop algorithms that learn and transfer non-stationary representations adaptively.

There are also other works studying multi-task representation learning for reinforcement learning (RL). Lu et al. (2021a; 2022)
consider multi-task representation learning for linear MDPs, where the agent learns a shared representation function from a
given function class. Pacchiano et al. (2022) investigate multi-task RL with a joint low-dimensional linear representation,
and design a computationally efficient algorithm using a bilinear optimization oracle. Zhang & Wang (2021) consider
multi-task (multi-player) RL in tabular MDPs, where the relatedness of MDPs are measured by the similarity of reward
functions and transition distributions. Cheng et al. (2022); Agarwal et al. (2022) study multi-task representation learning and
representational transfer for low-rank MDPs, where multiple low-rank MDPs share a common state-action feature mapping.

Different from the above works which consider regret minimization, we study representation learning for (contextual) linear
bandits with the pure exploration objective, which imposes unique challenges on how to optimally allocate samples to learn
the feature extractor, and motivates us to design algorithms based on double experimental designs.

Pure Exploration in (Contextual) Linear Bandits. Most linear bandit studies consider regret minimization, e.g., (Dani
et al., 2008; Rusmevichientong & Tsitsiklis, 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011). Recently, there is a surge
of interests in pure exploration for (contextual) linear bandits, e.g., (Soare et al., 2014; Tao et al., 2018; Xu et al., 2018; Fiez
et al., 2019; Katz-Samuels et al., 2020; Degenne et al., 2020; Jedra & Proutiere, 2020; Du et al., 2021b; Zanette et al., 2021;
Li et al., 2022). For linear bandits, Soare et al. (2014) firstly apply the G-optimal design to identify the best arm, and provide
a sample complexity result that heavily depends on the minimum reward gap. Tao et al. (2018) design a novel randomized
estimator for the underlying reward parameter, and achieve tighter sample complexity which depends on the reward gaps of
the best d arms. Du et al. (2021b) further extend the algorithm in (Tao et al., 2018) to develop a polynomial-time algorithm
for combinatorially large arm sets. Xu et al. (2018) propose a fully-adaptive algorithm which changes the arm selection
strategy at each timestep. Fiez et al. (2019) establish the first near-optimal sample complexity upper and lower bounds
for best arm identification in linear bandits. Katz-Samuels et al. (2020) further extend the algorithm in (Fiez et al., 2019)
and use empirical processes to avoid an explicit union bound over the number of arms. Degenne et al. (2020); Jedra &
Proutiere (2020) develop asymptotically optimal algorithms using the track-and-stop approaches. For contextual linear
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bandits, Zanette et al. (2021) design a single non-adaptive policy to collect a dataset, from which a near-optimal policy can
be computed. Li et al. (2022) build the first instance-dependent upper and lower bounds for best policy identification in
contextual linear bandits, with the prior knowledge of the context distribution. By contrast, our work studies multi-task best
arm/policy identification in (contextual) linear bandits with a shared representation among tasks, and does not assume any
prior knowledge of the context distribution.

B. Rounding Procedure

In this section, we introduce the rounding procedure ROUND in detail.

Let X+ := X [A denote the union space of arm set X and action space A. There are n arms or actions p1, . . . , pn 2 X
+

and n positive semi-definite matrices Q1, . . . ,Qn 2 Sd+, where Qi represents the feature of arm or action pi for any i 2 [n].
Denote P := {p1, . . . , pn} and Q := {Q1, . . . ,Qn}.

The rounding procedure ROUND({(pi,Qi)}ni=1,�, ⇣, N) (Allen-Zhu et al., 2017; Fiez et al., 2019) takes n arm-matrix
or action-matrix pairs (p1,Q1), . . . , (pn,Qn) 2 X

+
⇥ Sd+, a distribution � 2 4P (or equivalently, � 2 4Q), an

approximation parameter ⇣ > 0, and the number of samples N which satisfies that N � 180d
⇣2 as inputs. Roughly speaking,

it will find a N -length discrete arm or action sequence whose associated feature matrices maintain the similar property (e.g.,
G-optimality and E-optimality) as the continuous sample allocation �.

Formally, ROUND({(pi,Qi)}ni=1,�, ⇣, N) returns a discrete sample sequence s1, . . . , sN 2 P
N associated with feature

matrices S1, . . . ,SN 2 Q
N , which satisfy the following properties:

(i) If � is an E-optimal design, i.e., � is the optimal solution of the optimization

min
�24Q

������

 
nX

i=1

�(Qi)Qi

!�1
������
,

then S1, . . . ,SN satisfy that
�������

0

@
NX

j=1

Sj

1

A
�1
�������
 (1 + ⇣)

������

 
N

nX

i=1

�(Qi)Qi

!�1
������
.

(ii) If � is a G-optimal design, i.e., for a given prediction set Y ✓ Rd, � is the optimal solution of the optimization

min
�24Q

max
y2Y
kyk2(

Pn
i=1 �(Qi)Qi)�1 ,

then S1, . . . ,SN satisfy that

max
y2Y
kyk2(

PN
j=1 Sj)�1  (1 + ⇣)max

y2Y
kyk2(N

Pn
i=1 �(Qi)Qi)�1 .

We implement ROUND by setting ⇡⇤ = N�, k = r = N and xix>
i
= (
P

n

i=1 ⇡
⇤(Qi)Qi)�

1
2Qi(

P
n

i=1 ⇡
⇤(Qi)Qi)�

1
2 for

any i 2 [n] in Algorithm 1 of (Allen-Zhu et al., 2017). Note that Algorithm 1 in (Allen-Zhu et al., 2017) only needs to
access the feature matrix xix>

i
rather than the separate feature vector xi, which allows us to apply it to our problem. We

refer interested readers to (Allen-Zhu et al., 2017) and Appendix B in (Fiez et al., 2019) for more implementation details of
this rounding procedure.

C. Proofs for Algorithm DouExpDes

In this section, we provide the proofs for Algorithm DouExpDes.

Throughout our proofs, we use L✓ to denote the upper bound of k✓mk for any m 2 [M ]. Since ✓m = Bwm for any
m 2 [M ], we have that k✓mk  kBkkwmk  kwmk  Lw, and thus L✓  Lw.
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C.1. Sample Batch Planning

Recall that

�E := argmin
�24X

������

 
nX

i=1

�(xi)xix
>
i

!�1
������

and

⇢
E := min

�24X

������

 
nX

i=1

�(xi)xix
>
i

!�1
������

are the optimal solution and the optimal value of the E-optimal design optimization, respectively (Line 2 in Algorithm 1).
x̄1, . . . , x̄p is an arm sequence generated according to sample allocation �E via rounding procedure ROUND (Line 3 in
Algorithm 1).

Let

Xbatch :=

2

4
x̄>
1

. . .

x̄>
p

3

5 ,

and
X+

batch := (X>
batchXbatch)

�1X>
batch.

According to the fact that X spans Rd, the definition of E-optimal design and the guarantee of ROUND, we have that
X>

batchXbatch is invertible.

Now, we first give an upper bound of kX+
batchk.

Lemma C.1. It holds that

kX+
batchk 

s
(1 + ⇣)⇢E

p
.

Proof of Lemma C.1. We have

kX+
batchk =

���
�
X>

batchXbatch
��1

X>
batch

���

=

r���
�
X>

batchXbatch
��1

X>
batchXbatch

�
X>

batchXbatch
��1
���

=

r���
�
X>

batchXbatch
��1
���

=

vuuut

������

 
pX

i=1

x̄ix̄>
i

!�1
������



vuuut(1 + ⇣)

������

 
p

nX

i=1

�E(xi)xix>
i

!�1
������

=

s
(1 + ⇣)⇢E

p
.
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C.2. Global Feature Extractor Recovery

For clarity of notation, we add subscript t to the notations in subroutine FeatRecover to denote the quantities generated
in phase t. Specifically, we use ↵t,m,j,i, ✓̃t,m,j , Zt and B̂t to denote the random reward, estimator of reward parameter,
estimator of 1

M

P
M

i=1 ✓m✓>
m

and estimator of feature extractor in phase t, respectively.

For any phase t > 0, task m 2 [M ], round j 2 [Tt] and arm i 2 [p], let ⌘t,m,j,i denote the noise of the sample on arm x̄i in
the j-th round for task m, during the execution of FeatRecover in phase t (Line 4 in Algorithm 2). The noise ⌘t,m,j,i is
zero-mean and sub-Gaussian, and has variance 1. ⌘t,m,j,i is independent for different t,m, j, i.

For any phase t > 0, task m 2 [M ], round j 2 [Tt], let ↵t,m,j := [↵t,m,j,1, . . . ,↵t,m,j,p]>. Then, we have that

✓̃t,m,j = X+
batch↵t,m,j ,

and

Zt =
1

MTt

MX

m=1

TtX

j=1

✓̃t,m,j(✓̃t,m,j)
>
�X+

batch(X
+
batch)

>
.

Lemma C.2 (Expectation of Zt). It holds that

E [Zt] =
1

M

MX

m=1

✓m✓>
m
.

Proof of Lemma C.2. Zt can be written as

Zt =
1

MTt

MX

m=1

TtX

j=1

✓̃t,m,j(✓̃t,m,j)
>
�X+

batch(X
+
batch)

>

=
1

MTt

MX

m=1

TtX

j=1

X+
batch

2

64
↵t,m,j,1

...
↵t,m,j,p

3

75 [↵t,m,j,1, . . . ,↵t,m,j,p]
>(X+

batch)
>
�X+

batch(X
+
batch)

>

=
1

MTt

MX

m=1

TtX

j=1

X+
batch

2

64
x̄>
1 ✓m + ⌘t,m,j,1

...
x̄>
p
✓m + ⌘t,m,j,p

3

75 [x̄>
1 ✓m + ⌘t,m,j,1, . . . , x̄

>
p
✓m + ⌘t,m,j,p]

>(X+
batch)

>
�X+

batch(X
+
batch)

>

=
1

MTt

MX

m=1

TtX

j=1

X+
batch

2

4
(x̄>

1 ✓m + ⌘t,m,j,1)2 · · · (x̄>
1 ✓m + ⌘t,m,j,1)(x̄>

p
✓m + ⌘t,m,j,p)

· · · · · · · · ·

(x̄>
p
✓m + ⌘t,m,j,p)(x̄>

1 ✓m + ⌘t,m,j,1) · · · (x̄>
p
✓m + ⌘t,m,j,p)2

3

5 (X+
batch)

>

�X+
batch(X

+
batch)

>

=
1

MTt

MX

m=1

TtX

j=1

X+
batch

 2

4
(x̄>

1 ✓m)2 · · · x̄>
1 ✓mx̄>

p
✓m

· · · · · · · · ·

x̄>
1 ✓mx̄>

p
✓m · · · (x̄>

p
✓m)2

3

5

+

2

4
2x̄>

1 ✓m⌘t,m,j,1 · · · x̄>
1 ✓m⌘t,m,j,p + x̄>

p
✓m⌘t,m,j,1

· · · · · · · · ·

x̄>
1 ✓m⌘t,m,j,p + x̄>

p
✓m⌘t,m,j,1 · · · 2x̄>

p
✓m⌘t,m,j,p

3

5

+

2

4
(⌘t,m,j,1)2 · · · ⌘t,m,j,1⌘t,m,j,p

· · · · · · · · ·

⌘t,m,j,1⌘t,m,j,p · · · (⌘t,m,j,p)2

3

5
!
(X+

batch)
>
�X+

batch(X
+
batch)

>
. (3)

Then, taking the expectation on Zt, we have

E[Zt] =
1

MTt

MX

m=1

TtX

j=1

X+
batch

 2

4
(x̄>

1 ✓m)2 · · · x̄>
1 ✓mx̄>

p
✓m

· · · · · · · · ·

x̄>
p
✓mx̄>

1 ✓m · · · (x̄>
p
✓m)2

3

5+ Id

!
(X+

batch)
>
�X+

batch(X
+
batch)

>
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=
1

MTt

MX

m=1

TtX

j=1

X+
batch

2

4
(x̄>

1 ✓m)2 · · · x̄>
1 ✓mx̄>

p
✓m

· · · · · · · · ·

x̄>
p
✓mx̄>

1 ✓m · · · (x̄>
p
✓m)2

3

5 (X+
batch)

>

=
1

MTt

MX

m=1

TtX

j=1

X+
batch

2

64
x̄>
1 ✓m

...
x̄>
p
✓m

3

75 [x̄>
1 ✓m, . . . , x̄>

p
✓m]>(X+

batch)
>

=
1

MTt

MX

m=1

TtX

j=1

X+
batchXbatch✓m✓>

m
X>

batch(X
+
batch)

>

=
1

MTt

MX

m=1

TtX

j=1

✓m✓>
m

=
1

M

MX

m=1

✓m✓>
m
.

Recall that for any t > 0, �t := �

2t2 .

For any phase t > 0, define events

Et :=

8
<

:kZt � E[Zt]k 
96
��X+

batch

��2 pLxL✓ log
⇣

16p
�t

⌘

p
MTt

log

✓
16pMTt

�t

◆9=

; ,

and

E := \1
t=1Et.

Lemma C.3 (Concentration of Zt). It holds that

Pr [E ] �
�

2
.

Proof of Lemma C.3. According to Eq. (3), we have

Zt � E[Zt] =
1

MTt

MX

m=1

TtX

j=1

X+
batch

 2

4
2x̄>

1 ✓m⌘t,m,j,1 · · · x̄>
1 ✓m⌘t,m,j,p + x̄>

p
✓m⌘t,m,j,1

· · · · · · · · ·

x̄>
1 ✓m⌘t,m,j,p + x̄>

p
✓m⌘t,m,j,1 · · · 2x̄>

p
✓m⌘t,m,j,p

3

5

� E

2

4
2x̄>

1 ✓m⌘t,m,j,1 · · · x̄>
1 ✓m⌘t,m,j,p + x̄>

p
✓m⌘t,m,j,1

· · · · · · · · ·

x̄>
1 ✓m⌘t,m,j,p + x̄>

p
✓m⌘t,m,j,1 · · · 2x̄>

p
✓m⌘t,m,j,p

3

5

+

2

4
(⌘t,m,j,1)2 · · · ⌘t,m,j,1⌘t,m,j,p

· · · · · · · · ·

⌘t,m,j,1⌘t,m,j,p · · · (⌘t,m,j,p)2

3

5� E

2

4
(⌘t,m,j,1)2 · · · ⌘t,m,j,1⌘t,m,j,p

· · · · · · · · ·

⌘t,m,j,1⌘t,m,j,p · · · (⌘t,m,j,p)2

3

5
!
(X+

batch)
>
.

Define the following matrices:

At,m,j :=
1

MTt

2

4
2x̄>

1 ✓m⌘t,m,j,1 · · · x̄>
1 ✓m⌘t,m,j,p + x̄>

p
✓m⌘t,m,j,1

· · · · · · · · ·

x̄>
1 ✓m⌘t,m,j,p + x̄>

p
✓m⌘t,m,j,1 · · · 2x̄>

p
✓m⌘t,m,j,p

3

5 ,

At :=
MX

m=1

TtX

j=1

At,m,j ,
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Ct,m,j :=
1

MTt

2

4
(⌘t,m,j,1)2 · · · ⌘t,m,j,1⌘t,m,j,p

· · · · · · · · ·

⌘t,m,j,1⌘t,m,j,p · · · (⌘t,m,j,p)2

3

5 ,

Ct :=
MX

m=1

TtX

j=1

Ct,m,j .

Then, we can write Zt � E[Zt] as

Zt � E[Zt] = X+
batch (At � E[At] +Ct � E[Ct]) (X

+
batch)

>
,

and thus,

kZt � E[Zt]k 
��X+

batch

��2 (kAt � E[At]k+ kCt � E[Ct]k) . (4)

Next, we analyze kAt � E[At]k and kCt � E[Ct]k. In order to use the truncated matrix Bernstein inequality (Lemma E.2),
we define the truncated noise and truncated matrices as follows.

Let R > 0 be a truncation level of noises, which will be chosen later. For any t > 0, m 2 [M ], j 2 [Tt] and i 2 [p], let
⌘̃t,m,j,i = ⌘t,m,j,i {|⌘t,m,j,i|  R} denote the truncated noise. Then, we define the following truncated matrices:

Ãt,m,j :=
1

MTt

2

4
2x̄>

1 ✓m⌘̃t,m,j,1 · · · x̄>
1 ✓m⌘̃t,m,j,p + x̄>

p
✓m⌘̃t,m,j,1

· · · · · · · · ·

x̄>
1 ✓m⌘̃t,m,j,p + x̄>

p
✓m⌘̃t,m,j,1 · · · 2x̄>

p
✓m⌘̃t,m,j,p

3

5

Ãt :=
MX

m=1

TtX

j=1

Ãt,m,j ,

C̃t,m,j :=
1

MTt

2

4
(⌘̃t,m,j,1)2 · · · ⌘̃t,m,j,1⌘̃t,m,j,p

· · · · · · · · ·

⌘̃t,m,j,1⌘̃t,m,j,p · · · (⌘̃t,m,j,p)2

3

5 (5)

C̃t :=
MX

m=1

TtX

j=1

C̃t,m,j

First, we bound kAt � E[At]k. Since for any t > 0, m 2 [M ], j 2 [Tt] and i 2 [p], |⌘̃t,m,j,i|  R and |x̄>
i
✓m|  LxL✓,

we have kÃt,m,jk 
1

MTt
· 2pLxL✓R.

Recall that for any t > 0, m 2 [M ], j 2 [Tt] and i 2 [p], ⌘t,m,j,i is 1-sub-Gaussian. Using a union bound over i 2 [p], we
have that for any t > 0, m 2 [M ], j 2 [Tt], with probability at least 1� 2p exp(�R

2

2 ), |⌘t,m,j,i|  R for all i 2 [p]. Thus,
with probability at least 1� 2p exp(�R

2

2 ), kAt,m,jk 
1

MTt
· 2pLxL✓R.

Then, we have

���E[At,m,j ]� E[Ãt,m,j ]
��� 

����E

At,m,j ·

⇢
kAt,m,jk �

2pLxL✓R

MTt

������

E

kAt,m,jk ·

⇢
kAt,m,jk �

2pLxL✓R

MTt

��

=E

2pLxL✓R

MTt

·

⇢
kAt,m,jk �

2pLxL✓R

MTt

��

+

✓
kAt,m,jk �

2pLxL✓R

MTt

◆
·

⇢
kAt,m,jk �

2pLxL✓R

MTt

��

=
2pLxL✓R

MTt

· Pr


kAt,m,jk �

2pLxL✓R

MTt

�
+

Z 1

0
Pr


kAt,m,jk �

2pLxL✓R

MTt

> x

�
dx

17
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
2pLxL✓R

MTt

· 2p · exp

✓
�
R

2

2

◆
+

2pLxL✓

MTt

Z 1

R

Pr


kAt,m,jk >

2pLxL✓y

MTt

�
dy


2pLxL✓R

MTt

· 2p · exp

✓
�
R

2

2

◆
+

2pLxL✓

MTt

Z 1

R

2p exp

✓
�
y
2

2

◆
dy


2pLxL✓R

MTt

· 2p · exp

✓
�
R

2

2

◆
+

2pLxL✓

MTt

· 2p ·
1

R
· exp

✓
�
R

2

2

◆

=
2pLxL✓

MTt

· 2p ·

✓
R+

1

R

◆
exp

✓
�
R

2

2

◆
.

Let �0 2 (0, 1) be a confidence parameter which will be chosen later. Using the truncated matrix Bernstein inequality

(Lemma E.2) with n = MTt, R =

r
2 log

⇣
2pMTt

�0

⌘
, nPr[kAt,m,jk �

1
MTt

·2pLxL✓R]  �
0, U =

2pLxL✓

q
2 log( 2pMTt

�0 )
MTt

,

�
2 = MTtU

2, ⌧ =
4·2pLxL✓

q
2 log( 2pMTt

�0 ) log( 2p
�0 )p

MTt
+

4·2pLxL✓

q
2 log( 2pMTt

�0 ) log( 2p
�0 )

MTt
and � =

2pLxL✓·2
q

2 log( 2pMTt
�0 )

MTt
·

�
0

MTt
,

we have that with probability at least 1� 2�0,

kAt � E[At]k 
4 · 2pLxL✓

r
2 log

⇣
2pMTt

�0

⌘
log
� 2p
�0

�

p
MTt

+
4 · 2pLxL✓

r
2 log

⇣
2pMTt

�0

⌘
log
� 2p
�0

�

MTt



8 · 2pLxL✓

r
2 log

⇣
2pMTt

�0

⌘
log
� 2p
�0

�

p
MTt

. (6)

Now we investigate kCt � E[Ct]k. Recall that in Eq. (5), for any t > 0, m 2 [M ], j 2 [Tt] and i 2 [p], |⌘̃t,m,j,i|  R.
Then, we have kC̃t,m,jk 

1
MTt

· pR
2.

Recall that for any t > 0, m 2 [M ] and j 2 [Tt], with probability at least 1� 2p exp(�R
2

2 ), |⌘t,m,j,i|  R for all i 2 [p].
Thus, with probability at least 1� 2p exp(�R

2

2 ), kCt,m,jk 
1

MTt
· pR

2. Then, we have

���E[Ct,m,j ]� E[C̃t,m,j ]
��� 

����E

Ct,m,j ·

⇢
kCt,m,jk �

pR
2

MTt

������

E

kCt,m,jk ·

⇢
kCt,m,jk �

pR
2

MTt

��

=E

pR

2

MTt

·

⇢
kCt,m,jk �

pR
2

MTt

��
+

✓
kCt,m,jk �

pR
2

MTt

◆
·

⇢
kCt,m,jk �

pR
2

MTt

��

=
pR

2

MTt

· Pr


kCt,m,jk �

pR
2

MTt

�
+

Z 1

0
Pr


kCt,m,jk �

pR
2

MTt

> x

�
dx


pR

2

MTt

· 2p · exp

✓
�
R

2

2

◆
+

2p

MTt

Z 1

R

y · Pr


kCt,m,jk >

dy
2

MTt

�
dy


pR

2

MTt

· 2p · exp

✓
�
R

2

2

◆
+

2p

MTt

Z 1

R

y · 2p exp

✓
�
y
2

2

◆
dy


pR

2

MTt

· 2p · exp

✓
�
R

2

2

◆
+

2p

MTt

· 2p · exp

✓
�
R

2

2

◆

=
p

MTt

· 2p ·
�
R

2 + 2
�
exp

✓
�
R

2

2

◆
.

Using the truncated matrix Bernstein inequality (Lemma E.2) with n = MTt, R =

r
2 log

⇣
2pMTt

�0

⌘
, nPr[kCt,m,jk �

1
MTt

· pR
2]  �

0, U =
p·2 log( 2pMTt

�0 )
MTt

, �2 = 32p
MTt

, ⌧ =
4·p·2 log( 2pMTt

�0 ) log( 2p
�0 )p

MTt
+

4·p·2 log( 2pMTt
�0 ) log( 2p

�0 )
MTt

and � =
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p·2·2 log( 2pMTt
�0 )

MTt
·

�
0

MTt
, we have that with probability at least 1� 2�0,

kCt � E [Ct]k 
4 · 2p log

⇣
2pMTt

�0

⌘
log
� 2p
�0

�

p
MTt

+
4 · 2p log

⇣
2pMTt

�0

⌘
log
� 2p
�0

�

MTt



8 · 2p log
⇣

2pMTt

�0

⌘
log
� 2p
�0

�

p
MTt

(7)

Plugging Eqs. (6) and (7) into Eq. (4), we have that with probability at least 1� 4�0,

kZt � E[Zt]k 
��X+

batch

��2 (kAt � E [At]k+ kCt � E [Ct]k)


��X+

batch

��2

0

BB@
8 · 2pLxL✓

r
2 log

⇣
2pMTt

�0

⌘
log
� 2p
�0

�

p
MTt

+
8 · 2p log

⇣
2pMTt

�0

⌘
log
� 2p
�0

�

p
MTt

1

CCA


96
��X+

batch

��2 pLxL✓ log
� 2p
�0

�
p
MTt

log

✓
2pMTt

�0

◆
.

Let �0 = �t
8 . Then, we obtain that with probability at least 1� �t

2 ,

kZt � E[Zt]k 
96
��X+

batch

��2 pLxL✓ log
⇣

16p
�t

⌘

p
MTt

log

✓
16pMTt

�t

◆
,

which implies that Pr [Et] � 1� �t
2 .

Taking a union bound over all phases t � 1 and recalling �t :=
�

2t2 , we obtain

Pr [E ] �1�
1X

t=1

Pr
⇥
Ēt

⇤

�1�
1X

t=1

�t

2

=1�
1X

t=1

�

4t2

�1�
�

2
.

For any matrix A 2 Rm⇥n with m � n, let �max(A) and �min(A) denote the maximum and minimum singular values of
A, respectively. For any i 2 [m], let �i(A) denote the i-th singular value of A.

For any matrix A 2 Rm⇥n with m � n, let A? denote the orthogonal complement matrix of A, where the columns of A?
are the orthogonal complement of those of A. Then, it holds that AA> +A?A>

? = Im, where Im is the m⇥m identity
matrix.

According to Assumption 3.1, there exists an absolute constant c0 which satisfies that �min(
1
M

P
M

m=1 wmw>
m
) =

�min(
1
M

P
M

m=1 ✓m✓>
m
) � c0

k
.

Lemma C.4 (Concentration of B̂t). Suppose that event E holds. Then, for any phase t > 0,

���B̂>
t,?B

��� 
192

��X+
batch

��2 kpLxL✓ log
⇣

16p
�t

⌘

p
MTt

log

✓
16pMTt

�t

◆
.
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Furthermore, for any phase t > 0, if

Tt =

&
68 · 1922 · 82 (1 + ⇣)3 (⇢E)2k4L4

x
L
2
✓
L
2
w

c20M
·max

⇢
22t,

L
4
x

!2

�
· log2

✓
16p

�t

◆

log2
 
192 · 16 · 8 (1 + ⇣)

3
2 ⇢

E
k
2
pL

2
x
L✓Lw

c0
·max

⇢
2t,

L
2
x

!

�
·
1

�t
· log

✓
16p

�t

◆!'
, (8)

then

���B̂>
t,?B

���  min

⇢
1

8kLxLw · 2t
p
1 + ⇣

,
!

6L2
x

�
.

Proof of Lemma C.4. From Assumption 3.1, �k(E[Zt]) � �k+1(E[Zt]) = �min(
1
M

P
M

m=1 ✓m✓>
m
) � c0

k
. Using the

Davis-Kahan sin ✓ Theorem (Bhatia, 2013) and letting Tt be large enough to satisfy kZt � E[Zt]k 
c0
2k , we have

���B̂>
t,?B

��� 
kZt � E[Zt]k

�k(E[Zt])� �k+1(E[Zt])� kZt � E[Zt]k


2k

c0
kZt � E[Zt]k

(a)


192
��X+

batch

��2 kpLxL✓ log
⇣

16p
�t

⌘

c0
p
MTt

log

✓
16pMTt

�t

◆
, .

where inequality (a) uses the definition of event E .

Using Lemma E.3 with A =
192kX

+
batchk

2
kpLxL✓

c0
log
⇣

16p
�t

⌘
, B = 16p

�t
and  = min{ 1

8kLxLw·2t
p
1+⇣

,
!

6L2
x
}, we have that if

MTt �68

 
192

��X+
batch

��2 kpLxL✓

c0
log

✓
16p

�t

◆!2

·max

⇢⇣
8kLxLw · 2t

p
1 + ⇣

⌘2
,
62L4

x

!2

�
·

log2
 
192

��X+
batch

��2 kpLxL✓

c0
log

✓
16p

�t

◆
·
16p

�t
·max

⇢
8kLxLw · 2t

p
1 + ⇣,

6L2
x

!

�!
,

then
���B̂>

t,?B
���  min

n
1

8kLxLw·2t
p
1+⇣

,
!

6L2
x

o
.

According to Lemma C.1, we have kX+
batchk 

q
(1+⇣)⇢E

p
.

Then, further enlarging MTt, we have that if

MTt �
68 · 1922 · 82 (1 + ⇣)3 (⇢E)2k4L4

x
L
2
✓
L
2
w

c20

·max

⇢
22t,

L
4
x

!2

�
· log2

✓
16p

�t

◆

log2
 
192 · 16 · 8 (1 + ⇣)

3
2 ⇢

E
k
2
pL

2
x
L✓Lw

c0
·max

⇢
2t,

L
2
x

!

�
·
1

�t
· log

✓
16p

�t

◆!
,

then

���B̂>
t,?B

���  min

⇢
1

8kLxLw · 2t
p
1 + ⇣

,
!

6L2
x

�
.

20



Multi-task Representation Learning for Pure Exploration in Linear Bandits

C.3. Elimination with Low-dimensional Representations

For clarity of notation, we also add subscript t to the notations in subroutine EliLowRep to denote the quantities generated
in phase t. Specifically, we use the notations B̂t, X̂t,m, �G

t,m
, ⇢G

t,m
, Nt,m, {zt,m,i}i2[Nt,m], {rt,m,i}i2[Nt,m], ŵt,m and

✓̂t,m to denote the corresponding quantities used in EliLowRep in phase t.

Before analyzing the sample complexity of EliLowRep, we first prove that there exists a sample allocation � 2 4X
such that

P
n

i=1 �(xi)B̂>
t
xix>

i
B̂t is invertible, i.e., the G-optimal design optimization with B̂t is non-vacuous (Line 2 in

Algorithm 3).

For any task m 2 [M ], let

�⇤
m

:= argmin
�24X

max
x2X\{x⇤

m}

kB>x⇤
m
�B>xk2

(
Pn

i=1 �(xi)B>xix>
i B)�1

((x⇤
m
� x)>✓m)2

.

�⇤
m

is the optimal solution of the G-optimal design optimization with true feature extractor B.
Lemma C.5. For any phase t > 0 and task m 2 [M ], if kB̂>

t
B?k 

!

6L2
x

, we have

�min

 
nX

i=1

�
⇤
m
(xi)B̂

>
t
xix

>
i
B̂t

!
> 0.

Proof of Lemma C.5. For any task m 2 [M ], let Am :=
P

n

i=1 �
⇤
m
(xi)xix>

i
. Then, for any phase t > 0 and task m 2 [M ],

we have
nX

i=1

�
⇤
m
(xi)B̂

>
t
xix

>
i
B̂t =B̂>

t
AmB̂t

=B̂>
t

�
BB> +B?B

>
?
�
Am

�
BB> +B?B

>
?
�
B̂t

=B̂>
t
BB>AmBB>B̂t + B̂>

t
BB>AmB?B

>
?B̂t

+ B̂>
t
B?B

>
?AmBB>B̂t + B̂>

t
B?B

>
?AmB?B

>
?B̂t.

Hence, we have

�min

 
nX

i=1

�
⇤
m
(xi)B̂

>
t
xix

>
i
B̂t

!
��min

⇣
B̂>

t
BB>AmBB>B̂t

⌘
� �max

⇣
B̂>

t
BB>AmB?B

>
?B̂t

⌘

� �max

⇣
B̂>

t
B?B

>
?AmBB>B̂t

⌘
� �max

⇣
B̂>

t
B?B

>
?AmB?B

>
?B̂t

⌘

��min

⇣
B̂>

t
B
⌘
�min

�
B>AmB

�
�min

⇣
B>B̂t

⌘
�

���B>
?B̂t

��� kAmk

�

���B̂>
t
B?

��� kAmk �

���B̂>
t
B?

��� kAmk

��
2
min

⇣
B̂>

t
B
⌘
�min

�
B>AmB

�
� 3

���B̂>
t
B?

���L2
x

(a)
�

✓
1�

���B̂>
t
B?

���
2
◆
! � 3

���B̂>
t
B?

���L2
x
,

where inequality (a) uses the fact that B̂>
t
BB>B̂t + B̂>

t
B?B>

?B̂t = B̂>
t
(BB> +B?B>

?)B̂t = B̂>
t
B̂t = Ik, and

thus, �2
min(B̂

>
t
B) = 1� kB̂>

t
B?k

2.

Let kB̂>
t
B?k 

!

6L2
x

. Then, we have

�min

 
nX

i=1

�
⇤
m
(xi)B̂

>
t
xix

>
i
B̂t

!
�

✓
1�

!
2

36L4
x

◆
! �

!

2

=
!

2
�

!
3

36L4
x
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>0,

where the last inequality is due to !  L
2
x
<
p
18L2

x
.

Next, we bound the optimal value ⇢
G
t,m

of the G-optimal design optimization with the estimated feature extractor B̂t.

For any Z ✓ X , let Y(Z) := {x� x0 : 8x,x0
2 Z, x 6= x0

}. Recall that in Line 2 of Algorithm 3, for any phase t > 0
and task m 2 [M ],

⇢
G

t,m
:= min

�24X
max

y2Y(X̂t,m)
kB̂>

t
yk2

(
Pn

i=1 �(xi)B̂>
t xix>

i B̂t)�1 .

Lemma C.6. For any phase t > 0 and task m 2 [M ],

⇢
G

t,m
 4k.

Proof of Lemma C.6. For any phase t > 0 and task m 2 [M ], we have that X̂t,m ✓ X and Y(X̂t,m) ✓ Y(X ).

For any fixed � 2 4X ,

max
y2Y(X̂t,m)

kB̂>
t
yk2

(
Pn

i=1 �(xi)B̂>
t xix>

i B̂t)�1  max
y2Y(X )

kB̂>
t
yk2

(
Pn

i=1 �(xi)B̂>
t xix>

i B̂t)�1

=kB̂>
t
(x0

1 � x0
2)k

2

(
Pn

i=1 �(xi)B̂>
t xix>

i B̂t)�1



⇣
kB̂>

t
x0
1k(

Pn
i=1 �(xi)B̂>

t xix>
i B̂t)�1 + kB̂>

t
x0
2k(

Pn
i=1 �(xi)B̂>

t xix>
i B̂t)�1

⌘2

2kB̂>
t
x0
1k

2

(
Pn

i=1 �(xi)B̂>
t xix>

i B̂t)�1 + 2kB̂>
t
x0
2k

2

(
Pn

i=1 �(xi)B̂>
t xix>

i B̂t)�1

4max
x2X
kB̂>

t
xk2

(
Pn

i=1 �(xi)B̂>
t xix>

i B̂t)�1 ,

where x0
1 and x0

2 are the arms which satisfy that y = x0
1 � x0

2 achieves the maximum value
maxy2Y(X ) kB̂

>
t
yk2

(
Pn

i=1 �(xi)B̂>
t xix>

i B̂t)�1 .

Since B̂>
t
x 2 Rk, according to the Equivalence Theorem in (Kiefer & Wolfowitz, 1960), we have

min
�24X

max
x2X
kB̂>

t
xk2

(
Pn

i=1 �(xi)B̂>
t xix>

i B̂t)�1 = k.

Therefore, we have

4k =4 min
�24X

max
x2X
kB̂>

t
xk2

(
Pn

i=1 �(xi)B̂>
t xix>

i B̂t)�1

=4max
x2X
kB̂>

t
xk2

(
Pn

i=1 �0(xi)B̂>
t xix>

i B̂t)�1

� max
y2Y(X̂t,m)

kB̂>
t
yk2

(
Pn

i=1 �0(xi)B̂>
t xix>

i B̂t)�1

� min
�24X

max
y2Y(X̂t,m)

kB̂>
t
yk2

(
Pn

i=1 �(xi)B̂>
t xix>

i B̂t)�1

=⇢
G

t,m
,

where �0 := argmin�24X maxx2X kB̂>
t
xk2

(
Pn

i=1 �(xi)B̂>
t xix>

i B̂t)�1 .

Now we analyze the estimation error of the estimated reward parameter ✓̂t,m = B̂tŵt,m in EliLowRep.

For any phase t > 0, task m 2 [M ] and arm j 2 [Nt,m], let ⇠t,m,j denote the noise of the sample on arm zt,m,j for task m,
during the execution of EliLowRep in phase t (Line 5 in Algorithm 3).
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For any phase t > 0, define events

Ft :=

(
y>B̂t

0

@
Nt,mX

j=1

B̂>
t
zt,m,jzt,m,j

>B̂t

1

A
�1

Nt,mX

j=1

B̂>
t
zt,m,j · ⇠t,m,j



���B̂>
t
y
���⇣PNt,m

j=1 B̂>
t zt,m,jzt,m,j

>B̂t

⌘�1

s

2 log

✓
4n2M

�t

◆
, 8m 2 [M ], 8y 2 Y(X̂t,m)

)
, (9)

and

F := \1
t=1Ft.

Lemma C.7 (Concentration of the Variance Term). It holds that

Pr [F ] � 1�
�

2
.

Proof of Lemma C.7. Let ⌃t,m :=
PNt,m

j=1 B̂>
t
zt,m,jzt,m,j

>B̂t. Then, we can write

y>B̂t

0

@
Nt,mX

j=1

B̂>
t
zt,m,jzt,m,j

>B̂t

1

A
�1

Nt,mX

j=1

B̂>
t
zt,m,j · ⇠t,m,j =

Nt,mX

j=1

y>B̂t⌃
�1
t,m

B̂>
t
zt,m,j · ⇠t,m,j .

For any phase t > 0, task m 2 [M ] and arm j 2 [Nt,m], B̂t, ⌃t,m and {zt,m,j}
Nt,m

j=1 are fixed before the sampling in
EliLowRep, and the noise ⇠t,m,j is 1-sub-Gaussian (Line 5 in Algorithm 3). Thus, we have that for any t > 0, m 2 [M ]

and j 2 [Nt,m], y>B̂t⌃
�1
t,m

B̂>
t
zt,m,j · ⇠t,m,j is (y>B̂t⌃

�1
t,m

B̂>
t
zt,m,j)-sub-Gaussian.

Using Hoeffding’s inequality and taking a union bound over all m 2 [M ] and y 2 Y(X̂t,m), we have that with probability
at least 1� �t

2 ,

Nt,mX

j=1

y>B̂t⌃
�1
t,m

B̂>
t
zt,m,j · ⇠t,m,j



vuut2

Nt,mX

j=1

⇣
y>B̂t⌃

�1
t,m

B̂>
t
zt,m,j

⌘2
· log

✓
4n2M

�t

◆

=

vuut2

Nt,mX

j=1

y>B̂t⌃
�1
t,m

B̂>
t
zt,m,j · zt,m,j

>B̂t⌃
�1
t,m

B̂>
t
y · log

✓
4n2M

�t

◆

=

vuuut2y>B̂t⌃
�1
t,m

0

@B̂>
t

Nt,mX

j=1

zt,m,j · zt,m,j
>B̂t

1

A⌃�1
t,m

B̂>
t
y · log

✓
4n2M

�t

◆

=

s

2y>B̂t⌃
�1
t,m

B̂>
t
y · log

✓
4n2M

�t

◆

=
���B̂>

t
y
���
⌃�1

t,m

s

2 log

✓
4n2M

�t

◆
,

which implies that

Pr [Ft] � 1�
�t

2
.
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Taking a union bound over all phases t � 1 and recalling �t :=
�

2t2 , we obtain

Pr [F ] �1�
1X

t=1

Pr
⇥
F̄t

⇤

�1�
1X

t=1

�t

2

=1�
1X

t=1

�

4t2

�1�
�

2
.

Lemma C.8 (Concentration of ✓̂t,m). Suppose that event E \ F holds. Then, for any phase t > 0, task m 2 [M ] and
y 2 Y(X̂t,m),

���y>
⇣
✓̂t,m � ✓m

⌘��� 
1

2t
.

Proof of Lemma C.8. For any phase t > 0, task m 2 [M ] and y 2 Y(X̂t,m),

y>
⇣
✓̂t,m � ✓m

⌘
=y>B̂tŵt,m � y>

⇣
B̂tB̂

>
t
+ B̂t,?B̂

>
t,?

⌘
✓m

=y>B̂t

⇣
ŵt,m � B̂>

t
✓m
⌘
� y>B̂t,?B̂

>
t,?✓m. (10)

Here, ŵt,m can be written as

ŵt,m =

0

@
Nt,mX

j=1

B̂>
t
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1
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=
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1

A
�1

Nt,mX

j=1

B̂>
t
zt,m,j ·

⇣
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>
⇣
B̂tB̂

>
t
+ B̂t,?B̂

>
t,?

⌘
✓m + ⇠t,m,j

⌘

=B̂>
t
✓m +

0

@
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B̂>
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>B̂t

1

A
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Nt,mX

j=1

B̂>
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+
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1

A
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Nt,mX
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B̂>
t
zt,m,j · ⇠t,m,j . (11)

Plugging Eq. (11) into Eq. (10), we can decompose the estimation error of ✓̂t,m in EliLowRep into three parts as

y>
⇣
✓̂t,m � ✓m

⌘
=y>B̂t

0

@
Nt,mX

j=1

B̂>
t
zt,m,jzt,m,j
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| {z }
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+ y>B̂t

0

@
Nt,mX

j=1

B̂>
t
zt,m,jzt,m,j

>B̂t
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A
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�y>B̂t,?B̂
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Estimation error of B̂t

.

Taking the absolute value on both sides, and using the Cauchy–Schwarz inequality and definition of event F (Eq. (9)), we
have ���y>✓̂t,m � y>✓m

���



���B̂>
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✓
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���
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���
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(c)

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���B̂>
t,?B

���

(d)

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(1 + ⇣) · 4k2 · LxLw ·
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8kLxLw · 2t
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1 + ⇣
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4 · 2t
+ 2LxLw ·
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8kLxLw · 2t
p
1 + ⇣


1

4 · 2t
+

1

4 · 2t
+

1

4 · 2t


1

2t
.

Here inequality (a) is due to the guarantee of rounding procedure ROUND and the triangle inequality. Inequality (b)
uses Lemma E.5, and inequality (c) follows from Lemma C.6. Inequality (d) comes from Lemma C.4 and Nt,m :=

max{d32 · 22t(1 + ⇣)⇢G
t,m

log( 4n
2
M

�t
)e, 180k

⇣2 }.

For any task m 2 [M ] and arm x 2 X , let �m(x) := (x⇤
m
� x)>✓m denote the reward gap between the optimal arm x⇤

m
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and arm x in task m. For any phase t > 0 and task m 2 [M ], let Zt,m := {x 2 X : �m(x)  4 · 2�t
}.

Lemma C.9. Suppose that event E \ F holds. For any phase t > 0 and task m 2 [M ],

x⇤
m
2 X̂t,m,

and for any phase t � 2 and task m 2 [M ],

X̂t,m ✓ Zt,m.

Proof of Lemma C.9. This proof follows a similar analytical procedure as that of Lemma 2 in (Fiez et al., 2019).

First, we prove x⇤
m
2 X̂t,m for any phase t > 0 and task m 2 [M ] by contradiction.

Suppose that for some t > 0 and some m 2 [M ], x⇤
m

is eliminated from X̂t,m in phase t. Then, we have that there exists
some x0

2 X̂t,m such that

(x0
� x⇤

m
)>✓̂t,m > 2�t

.

Then, we have

(x0
� x⇤

m
)>✓m =(x0

� x⇤
m
)>✓̂t,m � (x0

� x⇤
m
)>
⇣
✓̂t,m � ✓m

⌘

�(x0
� x⇤

m
)>✓̂t,m � 2�t

>2�t
� 2�t

=0,

which contradicts the definition of x⇤
m

. Thus, we obtain that x⇤
m
2 X̂t,m for any phase t > 0 and task m 2 [M ].

Next, we prove X̂t,m ✓ Zt,m for any phase t � 2 and task m 2 [M ], i.e., each x 2 X̂t,m satisfies that �m(x)  4 · 2�t.

Suppose that there exists some phase t, some task m and some x 2 X̂t,m such that �m(x) > 4 · 2�t. Then, in phase
t� 1 � 1, we have

(x⇤
m
� x)>✓̂t�1,m =(x⇤

m
� x)>✓m � (x⇤

m
� x)>

⇣
✓m � ✓̂t�1,m

⌘

�(x⇤
m
� x)>✓m � 2�(t�1)

>4 · 2�t
� 2�(t�1)

=2�(t�1)
,

which implies that x should have been eliminated from X̂t,m in phase t � 1, and contradicts our supposition. Thus, we
complete the proof.

C.4. Proof of Theorem 4.1

Before proving Theorem 4.1, we first introduce a useful lemma.

For any task m 2 [M ], let

�⇤
m

:= argmin
�24X

max
x2X\{x⇤

m}

kB>x⇤
m
�B>xk2

(
Pn

i=1 �(xi)B>xix>
i B)�1

((x⇤
m
� x)>✓m)2

,

and

⇢
⇤
m

:= min
�24X
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x2X\{x⇤

m}

kB>x⇤
m
�B>xk2

(
Pn

i=1 �(xi)B>xix>
i B)�1

((x⇤
m
� x)>✓m)2

.

�⇤
m

and ⇢
⇤
m

are the optimal solution and the optimal value of the G-optimal design optimization with true feature extractor
B, respectively.
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Lemma C.10. Suppose that event E \ F holds. For any task m 2 [M ] and y 2 Rd,

kB̂>
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Proof of Lemma C.10. We first handle the term (
P

n

i=1 �
⇤
m
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t
xix>

i
B̂t)�1.

For any task m 2 [M ], we have
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From Assumption 3.2, we have that for any task m 2 [M ],
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invertible, we have that Pt is invertible. According to Lemmas C.4 and C.5, we have that
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From Lemma C.4, we have
���B̂>

t,?B
���  min

⇢
1

8k · 2t
p
1 + ⇣

,
!

6L2
x

�
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1
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!
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x

�
.

Since B>B̂tB̂>
t
B + B>B̂t,?B̂>

t,?B = B>(B̂tB̂>
t

+ B̂t,?B̂>
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Thus, we have

�min(B̂
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t
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which implies that B̂>
t
B is invertible.

Now, we first analyze Term 1 in Eq. (12).
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In the following, we bound Terms 1-1, 1-2, 1-3 and 1-4, respectively.
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Then, second, we have
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Third, we have
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Finally, we have
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Thus, we have
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Next, we investigate Term 2. In order to bound Term 2, we first bound the minimum singular value of Pt and the maximum
singular value of Qt.
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Then, we can bound Term 2 as
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Plugging Eqs. (13) and (14) into Eq. (12), we have
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Below we prove the sample complexity for algorithm DouExpDes (Theorem 4.1).

Proof of Theorem 4.1. According to Lemmas C.3 and C.7, we have Pr[E \F ] � 1� �. Below, supposing that event E \F
holds, we prove the correctness and sample complexity.

We first prove the correctness.

For any task m 2 [M ], let t⇤
m

denote the first phase which satisfies |X̂t,m| = 1. Let t⇤ = maxm2[M ] t
⇤
m

denote the total
number of phases used. For any task m 2 [M ], let �m,min := minx2X\{x⇤

m}(x
⇤
m
� x)>✓m denote the minimum reward

gap for task m. Let �min := minm2[M ] �min,m denote the minimum reward gap among all tasks.

From Lemma C.9, we can obtain the following facts: (i) For any task m 2 [M ], the optimal arm x⇤
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m
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Now we prove the sample complexity. In the following, we first prove that the sample complexity of algorithm DouExpDes
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Next, we prove that the sample complexity of algorithm DouExpDes is bounded by
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From Eq. (15), we have that with probability 1� �, the number of samples used by algorithm DouExpDes is bounded by
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Here inequality (a) is due to X̂t,m ✓ Zt,m (from Lemma C.9). Inequality (b) uses the fact that for any y = xi � xj 2

Y(Zt,m), we can write y = (x⇤
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� xi), and the triangle inequality. Inequality (c) follows from Lemma C.10,
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.
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where equality (a) uses Lemma C.6.

When Lx = ! = ⇥(1), we have that with probability 1� �, the sample complexity of algorithm DouExpDes is bounded by
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D. Proofs for Algorithm C-DouExpDes

In this section, we present the proofs for Algorithm C-DouExpDes.

D.1. Context Distribution Estimation and Sample Batch Planning

Define �
E

D and ⇢
E

D as the optimal solution and the optimal value of the following E-optimal design optimization:
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Proof of Lemma D.1. The optimization in Eq. (18) is equivalent to maximize the minimum singular value of the matrixP
a2A �(a)Es⇠D

⇥
�(s, a)�(s, a)>

⇤
.

Thus, �E

D is the optimal solution of the following optimization:

max
�24A

�min

 
X

a2A
�(a)Es⇠D

⇥
�(s, a)�(s, a)>

⇤
!
.

Using Assumption 3.3, we have

�min

 
X

a2A
�
E

DEs⇠D
⇥
�(s, a)�(s, a)>

⇤
!
� ⌫.
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Then, we have

⇢
E

D =

������

 
X

a2A
�
E

DEs⇠D
⇥
�(s, a)�(s, a)>

⇤
!�1

������

=
1

�min

�P
a2A �E

DEs⇠D [�(s, a)�(s, a)>]
�


1

⌫
.

Define event

K :=

8
<

:
��E

s⇠D̂
⇥
�(s, a)�(s, a)>

⇤
� Es⇠D

⇥
�(s, a)�(s, a)>

⇤�� 
8L2

�
log
⇣

20d|A|
�

⌘

p
T0

, 8a 2 A

9
=

; .

Lemma D.2. It holds that

Pr [K] � 1�
�

5
.

Furthermore, if event K holds and

T0 =

&
322(1 + ⇣)2L4

�

⌫2
log2

✓
20d|A|

�

◆'
,

we have that for any a 2 A,
��E

s⇠D̂
⇥
�(s, a)�(s, a)>

⇤
� Es⇠D

⇥
�(s, a)�(s, a)>

⇤��  ⌫

4(1 + ⇣)
.

Proof of Lemma D.2. For any (s, a) 2 S ⇥ A, k�(s, a)�(s, a)>k  L
2
�

. Then, using the matrix Bernstern inequality
(Lemma E.2) and a union bound over a 2 A, we have that with probability 1� �

5 , for any a 2 A,

��E
s⇠D̂

⇥
�(s, a)�(s, a)>

⇤
� Es⇠D

⇥
�(s, a)�(s, a)>

⇤�� 4L2
�

vuut log
⇣

10·2d|A|
�

⌘

T0
+

4L2
�
log
⇣

10·2d|A|
�

⌘

T0



8L2
�
log
⇣

20d|A|
�

⌘

p
T0

.

If T0 � 322(1 + ⇣)2⌫�2
L
4
�
log2

⇣
20d|A|

�

⌘
, we have

��E
s⇠D̂

⇥
�(s, a)�(s, a)>

⇤
� Es⇠D

⇥
�(s, a)�(s, a)>

⇤��  ⌫

4(1 + ⇣)
,

which completes the proof.

Define event

L :=

(�����

pX

i=1

�(s(`)
m,j,i

, āi)�(s
(`)
m,j,i

, āi)
>
�

pX

i=1

Es⇠D
⇥
�(s, āi)�(s, āi)

>⇤
�����  8L2

�

p
p log

✓
40dMT

�

◆
,

8m 2 [M ], 8j 2 [T ], 8` 2 {1, 2}

)
.
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Lemma D.3. It holds that

Pr [L] � 1�
�

5
.

Furthermore, if event L holds and

p =

&
322(1 + ⇣)2L4

�

⌫2
log2

✓
40dMT

�

◆'
, (19)

we have that for any m 2 [M ], j 2 [T ] and ` 2 {1, 2},
�����

pX

i=1

�(s(`)
m,j,i

, āi)�(s
(`)
m,j,i

, āi)
>
�

pX

i=1

Es⇠D
⇥
�(s, āi)�(s, āi)
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����� 

p⌫

4(1 + ⇣)
.

Here, the value of T is specified in Eq. (29).

Proof of Lemma D.3. For any (s, a) 2 S ⇥ A, k�(s, a)�(s, a)>k  L
2
�

. Then, using the matrix Bernstern inequality
(Lemma E.2) and a union bound over m 2 [M ], j 2 [T ] and ` 2 {1, 2}, we have that with probability 1 � �

5 , for any
m 2 [M ], j 2 [T ] and ` 2 {1, 2},

�����

pX

i=1

�(s(`)
m,j,i

, āi)�(s
(`)
m,j,i

, āi)
>
�

pX

i=1
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⇥
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>⇤
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In addition, if p � 322(1 + ⇣)2⌫�2
L
4
�
log2

�
40dMT

�

�
, we have that

8L2
�

p
p log

✓
40dMT

�

◆


p⌫

4(1 + ⇣)

and thus,
�����

pX
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�(s(`)
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, āi)
>
�
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⇥
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p⌫
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,

which completes the proof.

For any task m 2 [M ], round j 2 [T ] and ` 2 {1, 2}, let

�(`)
m,j

=

2

64
�(s(`)

m,j,1, ā1)
>

. . .

�(s(`)
m,j,p

, āp)>

3

75 ,

and
(�(`)

m,j
)+ = ((�(`)

m,j
)>�(`)

m,j
)�1(�(`)

m,j
)>.

Lemma D.4. Suppose that event K \ L holds. Then, for any m 2 [M ], j 2 [T ] and ` 2 {1, 2},

���(�(`)
m,j

)+
���  2

s
(1 + ⇣)

p⌫
.
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Proof of Lemma D.4. We first assume that (�(`)
m,j

)>�(`)
m,j

is invertible. In our later analysis, we will prove that as long as
T0 and p are large enough, (�(`)

m,j
)>�(`)

m,j
is invertible.

For any m 2 [M ], j 2 [T ] and ` 2 {1, 2}, we have
���(�(`)

m,j
)+
��� =

���((�(`)
m,j

)>�(`)
m,j

)�1(�(`)
m,j

)>
���

=
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⇣
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m,j
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m,j

⌘ . (20)

In addition, we have

�min

⇣
(�(`)

m,j
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m,j

⌘

=�min
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⇥
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, āi)
>
�

pX

i=1

Es⇠D
⇥
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, āi)�(s
(`)
m,j,i

, āi)
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where the last inequality uses Lemmas D.2 and D.3.

In the following, we analyze �min(
P

p

i=1 Es⇠D̂
⇥
�(s, āi)�(s, āi)>

⇤
). According to the guarantee of the rounding procedure

ROUND, we have
������
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E
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(1 + ⇣)

������
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,

which implies that
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�

X

a2A
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⌫ �

⌫
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�
3p⌫
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, (22)

where inequality (a) uses Lemmas D.1 and D.2.

Plugging Eq. (22) into Eq. (21), we have

�min

⇣
(�(`)

m,j
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m,j

⌘
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3p⌫

4(1 + ⇣)
�
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Equations (21) and (23) show that if T0 and p are large enough to satisfy that��E
s⇠D̂

⇥
�(s, a)�(s, a)>

⇤
� Es⇠D

⇥
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⇤�� 
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4(1+⇣) for any m 2 [M ], j 2 [T ] and

` 2 {1, 2}, respectively, then we have that (�(`)
m,j

)>�(`)
m,j

is invertible.

Continuing with Eq. (20), we have

���(�(`)
m,j

)+
���  2

s
(1 + ⇣)

p⌫
.

D.2. Global Feature Extractor Recovery with Stochastic Contexts

In subroutine C-FeatRecover, for any m 2 [M ], j 2 [T ], i 2 [p] and ` 2 {1, 2}, let s(`)
m,j,i

and ⌘
(`)
m,j,i

denote the random
context and noise of the `-th sample on action āi in the j-th round for task m, respectively. Here, the superscript ` 2 {1, 2}
refers to the first sample (Line 4 in Algorithm 5) or the second sample (Line 5 in Algorithm 5) on an action āi.
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In C-FeatRecover, for any m 2 [M ], j 2 [T ], i 2 [p] and ` 2 {1, 2}, let ↵(`)
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m,j,1, . . . ,↵
(`)
m,j,p

]>, and then,
✓̃(`)
m,j

= (�(`)
m,j

)+↵(`)
m,j

. Recall that Z = 1
MT

P
M

m=1

P
T

j=1 ✓̃
(1)
m,j

(✓̃(2)
m,j

)>.
Lemma D.5 (Expectation of Z). It holds that

E [Z] =
1

M

MX

m=1

✓m✓>
m
.
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, āp)>✓m

⌘

3

775

+

2

64
�(s(1)

m,j,1, ā1)
>✓m · ⌘

(2)
m,j,1 + ⌘

(1)
m,j,1 · �(s

(2)
m,j,1, ā1)
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For any task m 2 [M ], j 2 [T ], i 2 [p], the sample on action ai in the first round (i.e., s(1)
m,j,i

and ⌘
(1)
m,j,i

) is independent of
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, āp)>✓m

3

775
h
�(s(2)

m,j,1, ā1)
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=
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.

Define event
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Lemma D.6 (Concentration of Z). Suppose that K \ L holds. Then, it holds that
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>✓m

⌘⇣
�(s(2)

m,j,1, ā1)
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From Eq. (24), we can bound kZ � E[Z]k as

kZ � E[Z]k kD � E[D]k+ kE � E[E]k+ kF � E[F ]k . (25)

Similar to the proof of Lemma C.3, in order to use the truncated matrix Bernstein inequality (Lemma E.2), we define the
truncated noise and some truncated matrices as follows.

Let R > 0 be a truncation parameter of noises which will be chosen later. For any m 2 [M ], j 2 [T ], i 2 [p] and ` 2 {1, 2},
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|  R} denote the truncated noise. Furthermore, we define the following matrices with truncated
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Recall that from Lemma D.4, we have that for any m 2 [M ], j 2 [T ] and ` 2 {1, 2}, k(�(`)
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We first analyze kD � E[D]k. Since |�(s(`)
m,j,i
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Let �0 2 (0, 1) be a confidence parameter which will be chosen later. Using the matrix Bernstein inequality (Lemma E.2),
we have that with probability at least 1� �
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Next, we bound kE � E[E]k. Since |�(s(`)
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Since ⌘
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Using the truncated matrix Bernstein inequality (Lemma E.2) with n = MT , R =
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Now we investigate kF � E[F ]k. Since |⌘̃
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Using the truncated matrix Bernstein inequality (Lemma E.2) with n = MT , R =

r
2 log

⇣
4pMT

�0

⌘
, U =

pB
2
�·2 log( 4pMT

�0 )
MT

,

�
2 =

(pB2
�·2 log( 4pMT

�0 ))2
MT

, ⌧ = 4

q
(pB2

�·2 log( 4pMT
�0 ))2·log( 2d

�0 )
MT

+
4·pB2

�·2 log( 4pMT
�0 )·log( 2d

�0 )
MT

and � =
pB

2
�·2·2 log( 4pMT

�0 )
MT

·
�
0

MT
,

we have that with probability at least 1� 2�0,

kF � E [F ]k 
8 · pB2

� · 2 log
⇣

4pMT

�0

⌘
· log

�
2d
�0

�

p
MT

. (28)

41



Multi-task Representation Learning for Pure Exploration in Linear Bandits

Plugging Eqs. (26)-(28) into Eq. (25), we have that with probability at least 1� 5�0,
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Lemma D.7 (Concentration of B̂). Suppose that event G holds. Then,
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D.3. Estimation with Low-dimensional Representations

Lemma D.8. In subroutine EstLowRep (Algorithm 6), for any m 2 [M ] and t > 0, we have
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Proof of Lemma D.8. This proof uses a similar idea as Lemma 11 in (Abbasi-Yadkori et al., 2011).

It holds that
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Lemma D.9. In subroutine EstLowRep (Algorithm 6), for any m 2 [M ] and t � 0, we have
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Proof of Lemma D.9. This proof is similar to that of Lemma 6 in (Zanette et al., 2021).

43



Multi-task Representation Learning for Pure Exploration in Linear Bandits

For any m 2 [M ] and t � 0, since ⌃m,t+1 ⌫ ⌃m,t, we have ⌃�1
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In subroutine EstLowRep, for any m 2 [M ] and t > 0, let ⇠m,t denote the noise of the sample at timestep t for task m

(Line 6 in Algorithm 6).
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Lemma D.10 (Martingale Concentration of the Variance Term). It holds that
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where inequality (a) uses Lemma D.8.

Letting �
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Lemma D.11. It holds that

Pr [J ] � 1�
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.

Proof of Lemma D.11. Using Lemma E.8, we can obtain this lemma.
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where inequality (a) uses the triangle inequality and the definition of event H, and inequality (b) is due to Lemma E.6.

Taking the maximum over a 2 A and taking the expectation on s ⇠ D, we have that for any task m 2 [M ],
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where inequality (a) is due to the definition of event J .
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where inequality (a) uses Lemma E.9, and inequality (b) is due to Lemma D.8.

Combining Eqs. (31) and (32), we have
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where inequality (a) uses the Cauchy–Schwarz inequality.

Furthermore, plugging Eq. (33) into Eq. (30) and using � � 1, we have that for N � 1 and
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Thus, setting N as the value in Eq. (36), and continuing with Eq. (35), we have
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D.4. Proof of Theorem 5.1

Proof of Theorem 5.1. Combining Lemmas D.2, D.3, D.6, D.10 and D.11, we have that Pr[K \ L \ G \H \ J ] � 1� �.
Suppose that event K \ L \ G \H \ J holds.

First, we uses a similar analytical procedure as that in (Zanette et al., 2021) to prove the correctness.

Using Lemma D.12, we have that for any task m 2 [M ],
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Rearranging the above equation and taking the expectation of s on both sides, we have
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Now we prove the sample complexity. Summing the number of samples used in the main algorithm of C-DouExpDes and
subroutines C-FeatRecover and EstLowRep (Line ?? in Algorithm 4, Lines 4-5 in Algorithm 5 and Line 6 in Algorithm 6),
we have that the total number of samples is bounded by
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E. Technical Tools

In this section, we provide some useful technical tools.
Lemma E.1 (Matrix Bernstern Inequality - Average, Lemma 31 in (Tripuraneni et al., 2021)). Consider a truncation level
U > 0. If {Z1, . . . ,Zn} is a sequence of d1 ⇥ d2 independent random matrices and Z 0
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Lemma 31 in (Tripuraneni et al., 2021) gives a truncated matrix Bernstern inequality for symmetric random matrices. Here
we extend it to general random matrices.

Lemma E.1 can be obtained by combining the truncation argument in the proof of Lemma 31 in (Tripuraneni et al., 2021)
and Theorem 6.1.1 in (Tropp et al., 2015) (classic matrix Bernstern inequality for general random matrices).
Lemma E.2 (Matrix Bernstern Inequality - Summation). Consider a truncation level U > 0. If {Z1, . . . ,Zn} is a sequence
of d1 ⇥ d2 independent random matrices, and Z 0

i
= Zi · {kZik  U} and � � kE[Zi]� E[Z 0

i
]k for any i 2 [n], then

for ⌧ � 2n�,
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Furthermore, we have
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Proof of Lemma E.2. Using Lemma E.1 and defining ⌧ := nt, we have that for ⌧ > n�,

Pr

"�����

nX

i=1

(Zi � E[Zi])

����� � ⌧

#
(d1 + d2) exp

 
�

(⌧ � n�)2

2�2 + 2U(⌧�n�)
3

!
+ nPr [kZik � U ] .
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Plugging ⌧ = 4
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Lemma E.3. For any A,B > 1,  2 (0, 1) and T > 0 such that log
�
AB
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�
> 1 and log(BT ) > 2, if
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Proof of Lemma E.3. If T =
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Let f(T ) = Ap
T
log(BT ). Then, the derivative of f(T ) is

f
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If log(BT ) > 2, then f
0(T ) < 0, and thus f(T ) is decreasing with respect to T .
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Lemma E.5. For any x1, . . . ,xn 2 Rk, we have
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Lemma E.6. For any x1, . . . ,xn 2 Rk and � > 0, we have
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where inequality (a) is due to that
�
�I +

P
n

i=1 xix>
i

�
is a positive definite matrix.

Lemma E.7 (Self-normalized Concentration for Martingales, Theorem 1 in (Abbasi-Yadkori et al., 2011)). Let {Ft}
1
t=0 be

a filtration such that for any t � 1, the selected action Xt 2 Rk is Ft�1-measurable, the noise ⌘t 2 R is Ft-measurable,
and conditioning on Ft�1, ⌘t is zero-mean and R-sub-Gaussian. Let V0 2 Rk⇥k be a positive definite matrix and let
Vt =

P
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Lemma E.8 (Reverse Bernstein Inequality for Martingales, Theorem 3 in (Zanette et al., 2021)). Let (⌃,F ,Pr[·]) be a
probability space and consider the stochastic process {Xt} adapted to the filtration {Ft}. Let Et[Xt] := E[Xt|Ft�1] be
the conditional expectation of Xt given Ft�1. If 0 Xt  1 then it holds that
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Lemma E.9 (Elliptical Potential Lemma, Lemma 11 in (Abbasi-Yadkori et al., 2011)). Let {Xt}
1
t=1 be a sequence in Rk.

Let V0 be a k ⇥ k positive definite matrix and let Vt = V0 +
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such that for any t � 1, kXtk
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we have that
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Lemma E.10 (Moments of Sub-Gaussian Random Variables, Proposition 3.2 in (Rivasplata, 2012)). For a �
2-sub-Gaussian

random variable X which satisfies
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where �(n) := (n� 1)! for any integer n � 1.
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