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Abstract

We study the problem of representational transfer in RL, where an agent first pretrains in a number
of source tasks to discover a shared representation, which is subsequently used to learn a good
policy in a target task. We propose a new notion of task relatedness between source and target tasks,
and develop a novel approach for representational transfer under this assumption. Concretely, we
show that given a generative access to source tasks, we can discover a representation, using which
subsequent linear RL techniques quickly converge to a near-optimal policy in the target task. The
sample complexity is close to knowing the ground truth features in the target task, and comparable
to prior representation learning results in the source tasks. We complement our positive results with
lower bounds without generative access, and validate our findings with empirical evaluation on
rich observation MDPs that require deep exploration. In our experiments, we observe speed up in
learning in the target by pre-training, and also validate the need for generative access in source tasks.

Keywords: Transfer Learning, Low-Rank MDPs, Reinforcement Learning Theory.

1. Introduction

Leveraging historical experiences acquired in learning past skills to accelerate the learning of a new
skill is a hallmark of intelligent behavior. In this paper, we study this question in the context of
reinforcement learning (RL). Specifically, we consider a setting where the learner is exposed to
multiple tasks and ask the following question:

Can we accelerate RL by sharing representations across multiple related tasks?
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There is rich empirical literature which studies multiple approaches to this question and various
paradigms for instantiating it. For instance, in a multi-task learning scenario, the learner has simul-
taneous access to different tasks and tries to improve the sample complexity by sharing data across
them (Caruana, 1997). Other works study a transfer learning setting, where the learner has access
to multiple source tasks during a pre-training phase, followed by a target task (Pan and Yang, 2009).
The goal is to learn features and/or a policy which can be quickly adapted to succeed in the target
task. More generally, the paradigms of meta-learning (Finn et al., 2017), lifelong learning (Parisi
et al., 2019) and curriculum learning (Bengio et al., 2009) also consider related questions.

On the theoretical side, questions of representation learning have received an increased recent
emphasis owing to their practical significance, both in supervised learning and RL settings. In RL, a
limited form of transfer learning across multiple downstream reward functions is enabled by several
recent reward-free representation learning approaches (Jin et al., 2020a; Zhang et al., 2020; Wang
et al., 2020; Du et al., 2019; Misra et al., 2020; Agarwal et al., 2020; Modi et al., 2021). Inspired
by recent treatments of representation transfer in supervised (Maurer et al., 2016; Du et al., 2020)
and imitation learning (Arora et al., 2020), some works also study more general task collections in
bandits (Hu et al., 2021; Yang et al., 2020, 2022) and RL (Hu et al., 2021; Lu et al., 2021). Almost
all these works study settings where the representation is frozen after pre-training in the source tasks,
and a linear policy or optimal value function approximation is trained in the target task using these
learned features. This setting, which we call representational transfer, is the main focus of our paper.

A crucial question in formalizing representational transfer settings is the notion of similarity
between source and target tasks. Prior works in supervised learning make the stringent assumption
that the covariates x follow the same underlying distribution in all the tasks, and only the conditional
P(y|x) can vary across tasks (Du et al., 2020). This assumption does not nicely generalize to RL
settings, where state distributions are typically policy dependent, and prior extensions to RL (Lu
et al., 2021; Cheng et al., 2022) resulted in strong assumptions during the learning setup.

'With this context, we summarize our main contributions below.

* Task relatedness: We propose a new state-dependent linear span assumption of task related-
ness and give examples captured by this setting. Our formulation generalizes all prior settings
for representational transfer in RL, e.g., Cheng et al. (2022).

* Transfer guarantees under weaker assumptions: We propose a transfer RL algorithm
REPTRANSFER and prove that it pre-trains a representation for downstream online learning in
any target task satisfying the linear span assumption. Our algorithm employs a novel cross-
sampling procedure made possible by generative access in the source tasks. Our key result is
that the target task regret almost matches (up to a task-relatedness constant) that of learning in
a linear MDP with known features, the strongest possible benchmark to compete with. Our
regret bounds for REPTRANSFER hold under significantly weaker coverage assumptions than
prior works, and we do not require any generalization assumptions. We highlight one key
technical contribution is a novel analysis of LSVI-UCB (Jin et al., 2020b) attains regret under
an average-case misspecified linear MDP.

* Lower bound without generative access: We further show a counter-example where repre-
sentational transfer fails without generative access under our assumptions. As a partial remedy,
we posit that every observed state is reachable in each source task, and show a modification
of REPTRANSFER is still sufficient for transfer learning with only online access. While strong,
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Task-relatedness Access type Reachability Generahzgtlon
(source/target) (assumption)
Luetal. Full rank LSVI weight Gen/Gen Distribution ¢ (given) err(s,a) <
(2021) matrix from source covers observations CE,lerr|Vs, a
Cheng et al. Pt;rget(sl‘sa a) = On/On Observational err(s,a) <
(2022) K i Pr(s]s, a) reachability CEunitlerr]Vs, a
Theorem 3 Piree(s']s,a) = Gen/On Feature reachability None
(this paper) | S°K a,(s)PA(s|s, a) (¢*)
Pl (ss,a) = i
("fl}lliesorem ’ K mge_t(/ | *a) ’ On/On Obselt'lvag.llc?nal None
paper) | >0 (s Pr(s'|s, a) reachability
Theorem 6 Ptzrget(sl‘s’ a) = Feature reachability
(lower bound) | S°K o, (s')Pr(s'|s, a) On/On (9%) Rone

Table 1: Assumptions for representational transfer in low-rank MDPs. “Gen” and “On” refer to
generative or online access to source and target tasks. Feature reachability means that each source
task a policy with a full rank covariance under the features ¢* (Assumption 3.2). Observational
reachability requires each high-dimensional raw observation to be reachability with some lower
bounded probability (Assumption 4.1). The last row is a lower bound which precludes learning under
the assumptions of Theorem 3 without generative access in the source tasks.

this observational reachability assumption still generalizes prior results in transfer RL, e.g.,
Cheng et al. (2022).

* Empirical validation: We empirically validate REPTRANSFER on a challenging benchmark
(Misra et al., 2020), and show that REPTRANSFER saves an order of magnitude of target
samples compared to training from scratch using the SOTA Block MDP algorithm BRIEE.

Our intermediate results may also be of independent interest: (1) to pre-train a representation, we
developed an oracle-efficient reward-free exploration algorithm for low-rank MDPs, (2) to transfer
the pre-trained representation to the target task, we develop a new analysis for linear MDP under an
average case model misspecification extending prior work which relies on a much stronger £, style
model misspecification (Jin et al., 2020b).

1.1. Related Work

Transfer Learning in Low-rank MDPs. The closest work to ours is Cheng et al. (2022), which
also performs reward-free exploration in the source tasks for representation learning, and use the
learned representation in the target task to perform online learning. Cheng et al. (2022) proposed a
linear span assumption with globally fixed coefficients, which is generalized by our state-dependent
linear span assumption. However, despite the more stringent relatedness condition, their work still
makes stronger assumptions to enable transfer. First, their Assumption 5.3 sidesteps the need to
handle generalization by assuming point-wise error is bounded by average-case error (this allows
them to directly use the result from Jin et al. (2020b)), whereas our analysis only relies on standard
in-distribution generalization and indeed one of our key technical contributions is showing that
Lsvi-UcCB succeeds even with average-case misspecification. Our Theorem 7 generalizes the result
of Cheng et al. (2022). Second, their Assumption 5.1 assumes reachability in the high-dimensional
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observation space, whereas we show that with our novel cross-sampling, it is possible to require the
much more realistic spectral coverage in the ground truth (unknown) feature space (Assumption 3.2).

Another work on transfer learning in low-rank MDPs is Lu et al. (2021), which also makes much
stronger assumptions than our work. First, they require generative access in both source and target
tasks. Second, they require the covariance of any pair of features (in feature class ®) to be full rank,
while we only require this reachability condition for the true feature ¢*. Third, they assume a given
distribution ¢ on which the learned representation can extrapolate, whereas we explicitly construct
such a data distribution using the novel cross-sampling procedure. In sum, compared to the prior
works Cheng et al. (2022); Lu et al. (2021), we leverage a novel cross-sampling procedure to enable
transfer under significantly weaker assumptions. Furthermore, we prove a lower bound showing that
generative access is necessary unless stronger assumptions, e.g., those in Cheng et al. (2022), are
made. We summarize the comparision to these prior works in Table 1.

Transfer Learning in Bandit and small-size MDPs. Lazaric et al. (2013) study spectral
techniques for online sequential transfer learning in multi-arm bandits. Brunskill and Li (2014) study
transfer in semi-MDPs by learning options. Lecarpentier et al. (2021) consider lifelong learning in
Lipschitz MDP. All these works consider tabular models while we focus on large-state MDPs.

Multi-task learning. While the multi-task setting also deals with multiple tasks, it is different
from the transfer learning setting in its objective. The goal of multi-task learning is to perform well
over all tasks (typically the average performance of tasks), while transfer learning cares exclusively
about performance in the target task. Thus, the results from multi-task learning are not directly
comparable to the transfer learning results that we focus on in this paper. We survey some multi-task
literature for completeness. For multi-task learning in low-rank MDPs, Huang et al. (2023) only
assumed ¢* to be shared (* can be arbitrarily different between tasks), and showed that the sample
complexity of a multi-task variant of BiLin-UCB (Du et al., 2021) does not scale as K |®| but only as
|®|. However, like BiLin-UCB, the algorithm is not computationally efficient. Several recent works
study multi-task linear bandits with linear representations (¢(s) = A s with unknown A) (Hu et al.,
2021; Yang et al., 2020, 2022). The techniques developed in these works crucially rely on the linear
structure and can not be applied to nonlinear function classes.

For a discussion of the empirical transfer literature, as well as more detailed comparisons to
related works, please see Section C.

2. Preliminaries

In this paper, we study transfer learning in finite-horizon, episodic Markov Decision Processes
(MDPs), M = (H,S, A, {P}}o.r—1,{7h}o:H—1,do), specified by the episode length H, state
space S, discrete action space A of size A, unknown transition dynamics P} : S x A — A(S),
known reward functions r,, : S x A — [0,1], and a known initial distribution dy € A(S).
We now define the value, () functions and visitation distribution, where we make the depen-
dence on the transition dynamics P* = {P}}o.z—1 and reward functions r = {rp}o.r—1 ex-
plicit. For any Markov policy 7 : & — A(A), let E; p«[] denote the expectation under the
trajectory distribution of executing 7 in an MDP with transitions P~, i.e., start at an initial state
so ~ do, then for all h € [0 : H —1]', a5, ~ 7(s1), 5041 ~ Pf(sp,ap). If P* is clear
from context, we use E.[-] instead. The value function is the expected reward-to-go of 7 start-

1.Forl <a<b wedenote [a:b]=a,a+1,...,b—1,band [b] = [1: b].
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ing at state s in step h, i.e,VE. ., (s) = Eq px [Zf;hl r+(Sr,ar) | s, = s|. The @ function is
Qb i (8:a) = 1i(s,a) + Egpr()s.a)VPe p41(5"). We denote the expected total reward of a
policy mas V5 . := Eg ~q,V5,.o(50). We define the state-action occupancy distribution d..;, (s, a)
as the probabiljity of T Visitiné (s, a) at time step h. 7

The transfer learning problem consists of two phases: (1) the pre-training phase where the
agent interacts with K source tasks with transition dynamics { P}} ke|K]> and (2) the deployment
phase where the agent is deployed into the target task with transition dynamics P, and can no
longer access the source tasks. The performance of a transfer learning algorithm is measured by (1)
the sample complexity in the source tasks during pre-training, and (2) the regret in the target task
during deployment, which is defined as Regret(T) = Y7, Viareet — V}Ergwr, where Vi3 is the
optimal value that can be obtained in the target task, and 7 is the policy played in the ¢-th episode of
deployment. For notation, we let dz; », be short-hand for d}BI:; he

We begin formalizing our problem with the low-rank MDP model.

Definition 1 (Low-rank MDP (Jiang et al., 2017; Agarwal et al., 2020)) A transition model P} :
S x A — A(S) is low rank with rank d € N if there exist two unknown embedding functions
o5 Sx A RY px 0 S R such that Vs, s' € S,a € A Pr(s' | s,a) = pi(s) T ¢5 (s, a),
where ||¢7 (s,a)||2 < 1 for all (s,a) and for any function g : S — [0, 1], Ug(s)dp,*l(s)H2 < V.
An MDP is a low rank MDP if P} admits such a low rank decomposition for all h € [0 : H — 1].

Low-rank MDPs capture the latent variable model (Agarwal et al., 2020) where ¢*(s,a) is a
distribution over a discrete latent state space Z, and the block-MDP model (Du et al., 2019) where
¢*(s,a) is a one-hot encoding vector. Note that ¢ can be a non-linear, flexible function class, so the
low-rank framework generalizes prior works with linear representations (Hu et al., 2021; Yang et al.,
2020, 2022). Next, we define what it means for a policy to be exploratory in a low-rank MDP.

Definition 2 (Feature coverage) For o € Ry, a policy 7 is a-exploratory in an MDP with transi-
tion dynamics P* if for all h € [0 : H — 1], we have Amin (Ex ps [ (sh, an) @} (sn,an)']) > a.

An exploratory 7 intuitively ensures that the whole R feature space is well-explored in a spectral
sense. Note this generalizes the notion of “Policy Cover” in Block MDPs from Misra et al. (2019).
We now make two mild structural assumptions on the tasks to enable representational transfer.

Assumption 2.1 (Common ¢*) All tasks are low-rank MDPs with a shared representation ¢} (s, a).

Assumption 2.2 (Point-wise Linear span) Forany h € [0 : H — 1] and s’ € Sp41, there is a
/ K * A K N, % /
vector ap(s') € R™ such that piy,, .1, (s") = 3k _y s () 1., (8)-

The motivation for Assumption 2.2 is: if s is reachable from an (s, a) pair in the target task, then it
must be reachable from the same (s, a) pair in at least one of the source tasks. Intuitively, this is nec-
essary for transfer learning to succeed, as s’ could be a high rewarding state in the target. Based on As-
sumption 2.2, we define, amax = maxp.k scs |ak;n(s’)| and & = maxy, SO maxges |apn(s)]-
Note that amax < @, which we assume is bounded. We conclude the section with a couple of
examples where these assumptions are satisfied.

Example 1 (Mixture of source tasks) The mixture model posits that the target task’s transition

dynamics is a mixture of the source tasks, i.e., Py,q.,(5'|s,a) = K ap Py (s'|s,a). This maps to



AGARWAL SONG SUN WANG WANG ZHANG

Algorithm 1 Exploratory Policy Search (EPS)

1: Input: MDP M with online access, num. LSVI-UCB episodes Vi syi.ycs, num. model-learning
episodes NrewarpFres, failure probability 4.

2: Learn model {ﬁh = (ngbh, ﬂh)}hH;Ol by running REWARDFREE REP-UCB (Algorithm 3) in M
for NrewarpFree €pisodes.

3: Set B = dH+/log(dH Nysvi-ucs/9).

4: Return p = LsvI-UCB ({%h}hH:‘Ol, r =0, NLsvi-ucs, 3, UNIFORMACTIONS = TRUE) by sim-

ulating in the learned model P (Algorithm 5). Note this step requires no samples from P*.

Assumption 2.2 with ay;p, (') = pr, where {py} e[k is a probability distribution, so & = 1. These
mixture models have been studied in the context of known source models (Modi et al., 2020; Ayoub
et al., 2020), and, corresponding to our Assumption 2.1, unknown low-rank source models with the
same ¢* (Cheng et al., 2022). Our linear span Assumption 2.2 strictly generalizes the mixture model
by allowing linear span coefficients to flexibly depend on s', which is more realistic in practice.

In Example 1, & (and hence ap,,x) was nicely bounded by 1. However, if the target task largely
focuses on observations quite rare under the source tasks, then & can grow large.

Example 2 (Block MDPs with shared latent dynamics) Here, each MDP P} is a Block MDP (Du
et al., 2019) with a shared latent space Z and a shared decoder ¢* : S — Z. In a block MDP,
given state action pair (s, a), the decoder \* maps s to a latent state z, the next latent state is
sampled from the latent transition z' ~ P(-|z, a), and the next state is generated from an emission
distribution s' ~ o(:|2'). Recall that o(s'|z") > 0 at only one 2’ € Z for any s' € S for a block
MDP. We assume that the latent transition model P(Z'|z, a) is shared across all the tasks, but the
emission process differs across the MDPs. For instance, in a typical navigation example used to
motivate Block MDPs, the latent dynamics might correspond to navigating in a shared 2-D map,
while emission distributions capture different wall colors or lighting conditions across multiple
rooms. Then Definition 2 posits that the agent can visit the entire 2-D map, while Assumption 2.2
requires that the color/lighting conditions of the target task resemble that of at least one source task.
The coefficients o for any s' are non-zero on the source tasks which can generate that observation.

3. Representational Transfer with Generative Access in Source Tasks

In this section, we study transfer learning assuming generative access to the source tasks.

Assumption 3.1 (Generative access in the source tasks) Forany k € [K],h € [0 : H — 1] and
s,a € S X A, we can query independent samples from P,:; (8, a).

The generative model access is not unrealistic, especially in applications where a high-quality
simulation environment is available. Perhaps surprisingly, we will also show (in Section 4) that
generative access in source tasks is necessary assuming only feature coverage, as in Definition 2.

3.1. The Algorithm

We first describe the helper algorithm Exploratory Policy Search (EPS) (Algorithm 1) to discover
exploratory policies in low-rank MDPs. EPS has two steps. First, it runs a reward-free variant of
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Algorithm 2 Transfer learning with generative access (REPTRANSFER)

PRE-TRAINING PHASE
Input: exploratory policies in the source tasks {7 }1.x, function classes ®, { Y },. ., size of
cross-sampled datasets n, failure probability d.

1: for task pairs i, j, i.e., for all 4, j € [K] do {cross sampling procedure }
2. Foreach h € [H — 1], sample dataset D;,;, containing n i.i.d. (s,a,s’) tuples sampled as:

(5,) ~ % _y,5 ~ Py (15,8), @ ~ unif(A), 5’ ~ Py (15, 0). M
For h = 0,use s ~ %, (:[5,a),a ~ unif(A), s’ ~ P%, (s, a).

3: Foreach h € [0 : H — 1], learn features with MLE, i.e., “Multi-task REPLEARN”,

$h7ﬁ1:K = argmax Z ]EDU;h [log (b(saa)—r,uk(sl)] . (2)

DEPLOYMENT PHASE
Additional Input: number of deployment episodes 7.

1: Set 8 = HVd + adH\/log(dHT/S).

2: Run Lsvi-UcCB ({ggh}hH;(]l, T = Ttarget, 1, 5) in the target task Iq¢; (Algorithm 5).

REP-UCB(Uehara et al., 2021) in each source task k, to learn a linear MDP which approximates the
true low-rank MDP P;. Then, an exploratory policy is learned via reward-free exploration in the
learned linear MDP (e.g., using LSVI-UCB with zero reward), which involves no further interactions
with the true environment. Intuitively, the policy 7y, is trained to fit Definition 2 in the source task k.

We now present our main algorithm REPTRANSFER (Algorithm 2), which takes as input ex-
ploratory policies in each source task that can be obtained from EPS. During the pre-training phase,
REPTRANSFER collects a dataset via a novel cross-sampling procedure across all pairs of source
tasks. Note this step is only possible due to generative access in the source tasks. Concretely, fix any
h € [H — 1] and let 7;, 7; be exploratory policies from source tasks 7, j € [/]. We first sample from
the visitation distribution of 7; in task i, i.e., sp_1, ap_1 ~ d%_l. Then, in the simulator of task j,
we reset to (sp—1, ap—1) and perform a transition step to sy, i.e., sp ~ Pj.p—1(Sh—1,an—1). Next,
we uniformly sample an action ay, reset the simulator of task & to state sy, ap,, and transition to sp 41,
i.e., Sp41 ~ P (sp,an). We then perform Maximum Likelihood Estimation (MLE) representation
learning in Eq. (2) using the union of the cross-sampled datasets across all pairs of source tasks. In
sum, REPTRANSFER learns a single representation gg in the pre-training phase using MLE on the
cross-sampled datasets from exploratory policies across tasks. In the deployment phase, REPTRANS-
FER runs optimistic least squares value iteration (LSVI-UCB) in the target task with the learned
representation. First proposed by Jin et al. (2020b), LSVI-UCB is displayed in Algorithm 5, which
at a high level is as follows. Given any dataset, {s, a,r, s’} feature ¢, and reward r, LSVI learns a
@ function backward, i.e., at step h via 1w, = arg min,, stays,(ngb(s, a) — Vip1(s))? + Aw|)?
and sets V;,(s) = max, (r(s, a) + @, ¢(s,a)),Vs. UCB, short for Upper Confidence Bound, refers
to an exploration bonus added to basic LSVI.
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3.2. Main Result

In this section, we prove our main transfer learning result, which shows that REPTRANSFER achieves
near optimal regret in the target task with nice pre-training sample complexity in the source tasks.
Our main result requires two assumptions. First, we need to ensure that EPS can successfully
discover an exploratory policy in the source tasks, i.e., there should exist a policy that non-trivially
reaches the whole R in the feature space. Without exploratory policies in the source tasks, it may
be possible that the optimal target policy visits subspaces unexplorable in any source task, in which
case, pre-training will not have any benefits.

Assumption 3.2 (Reachability in source tasks) There exists a ¢ € R such that for all k €
[K],h € [0: H — 1], there exists a policy 7 such that \pin (Empk* [0} (Shy an)®7; (S, ah)T]) > ).

Note that this low-rank reachability assumption generalizes the reachability assumption in latent
variable and block MDPs, e.g. (Modi et al., 2021; Misra et al., 2020).

Second, For the MLE in Eq. (2) to succeed, we need to assume the standard realizability
assumption, which is made in almost all prior works in low-rank MDPs.

Assumption 3.3 (Realizability) For any source task k € [K] and any h € [H|, ¢; € ® and
W € Yk For normalization, we assume that for all ¢ € @, pp € Ty, 9 : S — [0, 1], we have

6(s,a)ll2 < Land || [ g(s)dup(s)|, < V.
This leads to our main theorem.

Theorem 3 (Regret under generative source access) Suppose Assumptions 2.1,2.2,3.1,3.2,3.3 hold,
and fix any § € (0,1). Then, running REPTRANSFER with policies from EPS (parameters set as in

Lemma 3.1) has regret in the target task 0f6(dH2d1'5 T log(l/d)), with at most

(5(A4a3 d°HTK?Ty~*(log(|®|/8) + K log|Y|)) generative accesses per source task.

max
Remarkably, Theorem 3 shows that with the pre-trained features, we achieve the same regret bound
on the target task to the setting of linear MDP with known ¢* (Jin et al., 2020b), up to the additional
& factor that depends on the linear span coefficients and captures the intrinsic hardness of transfer
learning. For special cases such as convex combination, i.e., « is state-independent and oy, € A(K),
then & = 1. In the worst-case, some dependence on the scale of o seems unavoidable as we can have
a state s” such that firee(s”) = 1 and pz(s") < 1 with oy, (s”) > 1. This corresponds to a rarely
observed state for the source task encountered often in the target, and our estimates of transitions
involving this state can be highly unreliable if it is not seen in any other source, roughly scaling
the error between target and source tasks as |ay(s")|. Obtaining formal lower bounds that capture a
matching dependence on structural properties of « is an interesting question for future research.

3.3. Proof Sketch

The proof can be broken down into three parts. First, under reachability, we show in Lemma 3.1
that EPS can indeed identify an exploratory policy. Second, we show in Lemma 3.2 that our novel
cross-sampling procedure with MLE can learn a representation that linearly approximates ¢, in
an average-case sense. Third, we prove that even under average-case misspecification, LSVI-UCB

succeeds with low regret. We start by showing that EPS can identify an exploratory policy.
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Lemma 3.1 (Source task exploration) Suppose Assumptions 3.2,3.3 hold. Then, for any 6 € (0,1),
w.p. 1 — 8, running EPS in any source task with Nysyi-ucs = © (A3dH®¢™?) and NrewaroFree =

@) (A?’al‘lH6 log ( [217] ) NESVI ch) returns a Amin-exploratory policy where A\pin = O (A_3d_5H_7@Z12) .

The sample complexlty in the source task is NrewarpFree €pisodes.

To the best of our knowledge, Lemma 3.1 is the first result that finds an exploratory policy in low-rank
MDPs, and might be of independent interest. Wagenmaker et al. (2022) recently obtained a related
guarantee in the linear MDP setting with known features ¢*. Cheng et al. (2022, REFUEL) is also a
reward-free modification of Rep-UCB, but the algorithm proceeds jointly over all tasks while we run
REWARDFREE REP-UCB in each task independently. We note that REFUEL involves optimizing the
Pseudo-Cumulative Value Function (PCV), which may be computationally hard in the planning step.
Our REWARDFREE REP-UCB’s planning step is the same as Rep-UCB (i.e., planning in a known
linear MDP model), and is computationally efficient. We also remark that this step of identifying
exploratory policies is modular and one could also directly use the reward-free algorithm FLAMBE
(Agarwal et al., 2020), despite having a worse sample complexity in source.

We now analyze our novel cross-sampling procedure using the MLE generalization analysis of
Agarwal et al. (2020). Under realizability, running multi-task MLE in (2) with these datasets satisfies
the following w.p. at least 1 — 9,

Z E"w ih

i,j€[K]

2

On(5,0) ikn () = 3(5,0) ik ()| < G = Qs KT 3)

where || - ||y denotes the total variation (TV) norm, and v;;., is the distribution from which we
sampled D;;.p,. That is, s, a ~ 14,5, is equivalent to (5, a) ~ dZ"h_l, s~ P51 (s,a),a ~unif(A).
Then, by the one-step back lemma (Lemma F.2, which is valid due to the low-rank structure of the
target), followed by the linear span assumption (Assumption 2.2), we can prove the following lemma.

Lemma 3.2 (Target model error) Suppose Assumption 2.2 holds and my, is Amin-exploratory for
each source task k. Forany 6 € (0,1), wp. 1 =6, VYhe[0: H—1], 3, :S — R such that

~

On(sns 1) 7in (") = &7 (51 an) Wigern ()| < e1v 1= VI AIOE G Aunins ()

sup Er px v

target

and, for any function g : S — [0,1], || [ g(s)dfin(s)||2 < av/d.

Lemma 3.2 implies that the learned gb is a feature such that Py, is approximately linear in ngS, under
the occupancy distribution induced by any policy. Remarkably, this guarantee holds before the agent
has ever interacted with the target task! Intuitively, this is because cross-sampling ensures that our
training data contains all possible states that can be encountered in the target task. Failure modes
without this can be found in the discussion following Theorem 6.

The final step is to show that the deployment phase, which runs LSVI-UCB in an approximately
linear MDP of the target task, achieves low regret. Note that we face an approximately linear MDP, as
Lemma 3.2 shows, due to the use of learned features ¢, even though P, is linear in the unknown
features ¢*. Online learning in approximately linear MDPs has been studied in Jin et al. (2020b),
but under a much stronger /. error bound. Instead, we work under the weaker, and more realistic,
average-case misspecification in Eq. (4). Indeed, it is possible that some states are unlikely to be
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visited by any policy, so we should not impose strong misspecification restrictions on these parts of
the state space. We now state our novel LSVI-UCB regret bound.

Theorem 4 (LSVI-UCB under average-misspecification) Under Eq. (4), for any § € (0,1), w.p.
1 — 4, LsVI-UCB in the deployment phase has regret O (dH2T€TV + o?dl'5H2\/Tlog(l/(5)>.

The key step in proving Theorem 4 is showing almost-optimism under the occupancy distribution of
the optimal policy m*. As a technical remark, we also employ a novel trajectory-wise indicator to
deal with the clipping of the value estimates. Note the & in the leading term comes from the scaling
of the 1z in Lemma 3.2. The full proof and general LSVI-UCB result is in Theorem 15. To the best of
our knowledge, this is the strongest result for learning in an approximately linear MDP, which may
be of independent interest.

We arrive at the final regret bound by collecting enough samples in the source tasks to make
ey =1/ \/T , which makes the first linear-in-7" term lower order. This gives the REPTRANSFER
guarantee. Note that the guarantee holds independent of the mechanism used for obtain exploratory
policies in the source tasks.

Theorem 5 (REPTRANSFER) Suppose Assumptions 2.1,2.2,3.1,3.3, and m, is Amin-exploratory
for each source task k. Then, for any 6 € (0,1), w.p. 1 — 0, REPTRANSFER when deployed in the

target task has regret at most O (dH 2%\ /Tlog(1/6 )) with at most Kn generative accesses per
. _ B P
source task, with n = (’)()\milnAafnaxKT <log % + Klog |T|))

Combining with the A, specified in Lemma 3.1, we conclude the proof sketch.

4. Failure of transfer learning without generative access to source tasks

In the previous section, we show that efficient transfer learning is possible under very weak structural
assumptions, but requires generative access to the source tasks. One natural question is whether
transfer learning is possible with only online access to the source tasks. Somewhat surprisingly, we
show that this is impossible without significantly stronger assumption.

Theorem 6 (Lower bound for online access to source tasks) Let M = {(Py, ..., Pk, P}
be a set of K + 1 tasks that satisfies (1) all tasks are Block MDPs; (2) all tasks satisfy Assumption 3.2
and Assumption 2.2; (3) the latent dynamics are exactly the same for all source and target tasks. For
any pre-training algorithm A which outputs a feature gzg by interacting with the source tasks k € [K],
there exists (Pf, ..., Pg, Pyoe) € M, such that with probability at least 1/2, A will output a feature

&, such that for any policy taking the functional form of m(s) = f ({QZ;(S, a)}aca, {r(s, a)}aeA),
we have ‘/tnget - V;nget > 1/2

Here, the particular functional form f is defined so that the policy 7 cannot distinguish between
two state-action pair with the same feature embedding. Theorem 6 implies that a representation
learned only from online access to source tasks does not enable learning in downstream tasks if
the downstream task algorithm is restricted to use the representation as the only information of the
state-action pairs (e.g., running LSVI-UCB with gZ;).

We briefly explain the intuition behind the above lower bound. In a Block MDP, for any (s, a),
we can model the ground-truth ¢* as a one-hot encoding e , corresponding to the latent state-action

10
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pair (z,a) with z = 1*(s) being the encoded latent state. The key observation here is that any
permutation of ¢* will also be a perfect feature in terms of characterizing the Block MDPs, since it
corresponds to simply permuting the indices of the latent states. Therefore, without cross referencing,
the agent could potentially learn different permutations in different source tasks, which would
collapse in the target task. A precise constructive proof of Theorem 6 can be found in Section D.
Part of the reason that the above example fails is that each source task has its own observed subset of
raw states, which permits such a permutation to happen.

4.1. Representational Transfer under Observational Reachability

To complement the impossibility result, we next show that under an additional assumption on
the reachability of raw states, a slight variant of the same algorithm (Algorithm 4 in Section G)
can achieve the same regret with only online access to the source tasks. The main difference in
Algorithm 4 is that it performs sampling directly from the occupancy distribution of 7, in source task
k (in an online, episodic manner without needing generative access) instead of the cross-sampling
procedure used in Algorithm 2.

Assumption 4.1 (Reachability in the raw states) For all source tasks k € [K], any policy m and
h €0 : H — 1], we have infscs qe 4 d’,;h(s, a) > YrawAmin (]EW7P]: [cbfl(sh,ahw’,;(sh, ah)T])-

Assumption 4.1 implies that for each source task, any policy that achieves a full-rank covariance
matrix also achieves global coverage across the raw state-action space. In addition, in order to apply
importance sampling (IS) to transfer the TV error from source task to target task, we need to assume
that the target task distribution has bounded density. This is true, for example, when S is discrete.

Assumption 4.2 (Bounded density) For all (7, h,s,a), we have dT (s,a) < 1.

target;h

Theorem 7 (Regret with online access) Suppose Assumptions 2.1-2.2,4.1,4.2 hold. Wp. 1 — 9,
Algorithm 4 with appropriate parameters achieves a regret in the target O <6¢d1'5H2 T log(1/5)>,

with poly (A, Omax, d, H, K, T, 71 4L log(|®| ]T\/&)) online queries in the source tasks.
Assumption 4.1 is satisfied in a Block MDP, when, for example, the emission function o(s|z) satisfies
that Vs, 3z, s.t., o(s|z) > c. That is, for any source task, any state in the state space can be generated
by at least one latent state. However, we believe such a covering condition is generally too strong to
hold in practice. Furthermore, the parameter v,.,,, will typically scale with the number of observed
states, which we expect to be prohibitively large in most interesting problems, and view the this
result has mainly to quantify the degree of applicability of Theorem 6.

5. Experiments

In this section we empirically study the following questions: i) the effectiveness of pretraining with
REPTRANSFER, under the linear span and feature/observation coverage assumptions. ii) the hardness
of representational transfer under the linear span assumption without the generative model access.
Our experiments are under the Block MDP setting, with the challenging Rich Observation Combi-
nation Lock (comblock) benchmark (Fig. 1(a)). We design two sets of experiments to investigate
the above questions respectively. We defer the details of the experiments in Appendix J.

11
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Source  O-REPTRANSFER  G-REPTRANSFER Oracle Target
21::?;;3?; l o0 8006 7790 7048 181450
Coverage (294.7) (267.6) (164.8)  (147600.2)
R
h=0 h=1 h=2 h=H-1  h=H Only . . E
(a) (b)

Figure 1: (a): A visualization of the rich observation comblock environment (see Appendix J.1
for details). (b) Top: Number of episodes required to solve the target environment under the
observational coverage setting. (b) Bottom: Number of episodes required to solve the target
environment under the feature coverage setting. An algorithm solves the target task if it can achieve
the optimal return (i.e., 1) for 5 consecutive iterations with 50 evaluation runs each. We include
the mean and standard deviation (in the brackets) for 5 random seeds. oo denotes that an algorithm
can not solve the target task within a fixed sample budget. The sample efficiency of REPTRANSFER
under feature and observational coverage verifies the benefit of representational transfer, and the
failure of O-REPTRANSFER without observational coverage suggests the necessity of generative
assumption during representational transfer. In Figure 2 in the appendix, we further provide the
visualization of the representations that is learned in both settings.

Baselines. We denote Source as the smallest sample complexity of LSVI-UCB using learned
features from any of the source tasks; O-REPTRANSFER as REPTRANSFER with only online access
to the source tasks; G-REPTRANSFER as REPTRANSFER with generative access to the source tasks;
Oracle as learning in the target task with ground truth features; and Target as running BRIEE (Zhang
et al., 2022) — the SOTA Block MDP algorithm, in the target task with no pretraining.

Effectiveness of REPTRANSFER. We first analyze the how representational transfer benefits
where both feature coverage (Theorem 3) and observational coverage (Theorem 7) assumptions
are met. We use 5 source tasks (horizon H = 25), with different latent dynamics. To ensure
linear span assumption (Assumption 2.2), for each timestep h, we make the target latent transition
dynamics from one of the sources uniformly at random. For the coverage assumptions, note that
for comblock, the feature coverage assumption (Assumption 3.2) is always satisfied. We also
guarantee the observational coverage (Assumption 4.1) by equipping all environments with the same
emission distribution on a compact observational space. We record the number of episodes in the
target environment that each method takes to solve the target environment in Table. 1(b). We first
observe that REPTRANSFER with either online or generative access can solve the target task (since.
Assumption 4.1 holds). Second, we observe that directly applying the learned feature from any
single source task does not suffice to solve the target environment. This is because the representation
learned from a single source task may collapse two latent states into a single one during encoding
(e.g., if two latent states at the same time step have exactly identical latent transitions). Third, the
result shows that REPTRANSFER saves order of magnitude of target samples compared with training
in the target environment from scratch using the SOTA Block MDPs algorithm BRIEE. This set
of results verifies the empirical benefits of representation learning from multiple tasks, i.e.,
resolves ambiguity and speeds up downstream task learning.

Hardness without the generative access. In this section, following the intuition of our lower
bound (Theorem 6), we construct a setting where the supports of the emission distributions from

12
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each task are completely disjoint, while the emission distribution in the target task is a mixture of
all source emissions and the latent dynamics are identical across tasks. Hence the latent coverage
(Assumption 2.2) holds while observational coverage (Assumption 4.1) fails. So we expect that an
algorithm without generative access to source tasks will fail based on Theorem 6. We record the
number of target episodes for each method to solve the target task in Table. 1(b). We observe that
indeed the online version fails while the generative version still succeeds. This ablation verifies
that source generative model access is needed without the observational coverage.

6. Conclusion

We study representational transfer among low rank MDPs which share the same unknown representa-
tion. Under a reasonably flexible linear span task relatedness assumption, we propose an algorithm
that provably transfers the representation learned from source tasks to the target task. The regret
in target task matches the bound obtained with oracle access to the true representation, using only
polynomial number of samples from source tasks. Our approach relies on the generative model
access in source tasks, which we prove is not avoidable in the worst case under the linear span
assumption. To complement the lower bound, we propose a stronger assumption on the conditions
of the reachability in raw states, under which online access to source tasks suffices for provably
efficient representation transfer. Finding modalities other than generative access which avoid the
lower bound, and a more extensive empirical evaluation beyond the proof-of-concept experiments
here are important directions for future research

Acknowledgements: This material is based upon work supported by the National Science Founda-
tion under Grant No. IIS-2154711.
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Appendices

Appendix A. Notations

*
p k;h
*
Ptarget;h
T'target;h

EW,PH

711—3;h

T

k;h
(s, a)
Py,
|©|
/‘Z;h(sl)
T

|7

Qmax

17[)7'0,1,0

Table 2: List of Notations

State and action spaces, and A = | A|.

The set of distributions supported by S.

Smallest eigenvalue of matrix A.

One-hot encoding of j, i.e. 0 at each index except the one corresponding to j.
Length of vector implied from context.

min{z, y}.

Episode length of MDPs, a.k.a. time horizon. We index stepsas h = 0,1, ..., H — 1.
The number of source tasks.

dimension of the low-rank MDP, i.e. dimension of ¢*.

Ground truth transition at time A for source task k.

Ground truth transition at time h for target task.

Reward function of the target task.

Expectation under the distribution of trajectories when 7 is executed in P.
We sometimes omit P when the MDP is clear from context.

Occupancy distribution of 7 under transitions P at time h.

Occupancy distribution for the k-th task, i.e. d}k*; b

Embedding function for (s, a) at time h.

Realizable function class for ¢y .

Defined as maxy, |®p,|.

Emission embedding function for s’ at time h for environment k.
Realizable function class for pj .

Defined as maxy,p, | Y 4|.

maxp i s'cs |k:n(s')| (based on Assumption 2.2).

max;, S, maxyes | (s')| (based on Assumption 2.2).

Feature reachability in the source task (Assumption 3.2).

Raw states reachability parameter (Assumption 4.1)
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Appendix B. Omitted Algorithms

Algorithm 3 REWARDFREE REP-UCB

: Input: Regularizer ), bonus scaling o,, model class M = & x T, number of episodes V.
: Initialize 7 as random and Dy, , D;L 0= 0.

: for episoden =1,2,..., N do 7

Data collection from 7,,_1: forh =1,2,..., H — 1,

AWy =

s~ di”_l,a ~ Unif(A), s’ ~ P (s,a);
5~ dinyt G~ Unif(A),§ ~ Pf_,(5,a),d ~ Unif(A),5" ~ P, d);
Dhn = Dhn-1U{(s,a,5)}, D}, ,, =D}, U{(F,a,5")}.

For h = 0, only collect Dy,,.
5. Learn model via MLE: forallh =0,1,.... H — 1,

Phpn = ($hn, finn) = argmax Ep, .up; . [10g on(s, a) (8]
P EMp, ’

6:  Update exploration bonus: forall h =0,1,...., H — 1,

~

¢h,n(37 a)

/5 S,a) =« -
h,n( ’ ) n Z;Zln

i\]h,n = Z Q/Z)\h,n('sa a);b\h,n(sv a)T + )\nI
(Svaaf)e,Dh,n

7:  Learn policy 7,, = argmax Vlg 0 and let ‘A/n be its value.

o]

: Letn = argmin,,> y/9 V.
: Output: 7, ﬁﬁ

NeJ
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Algorithm 4 Transfer learning with online access

PRE-TRAINING PHASE
Input: num. LSVI-UCB episodes Ny syi-ucs, num. model-learning episodes NrewarpFree, Size of
cross-sampled datasets n, failure probability d.

1: for source task k =1, ..., K do

2. Find policy cover 7, =REWARDFREE (P}, NLsvi-ucs; INRewarpFRrEE; 0). (Algorithm 1)
3: for source task k =1, ..., K do

4:  Foreach h € [0: H — 1], sample Dy, as n i.i.d. (sp, ap, Sp+1) tuples from 7.

5: Foreach h € [0 : H — 1], learn features with MLE,

On, itk = argmax > Ep,, {bg(b(sya)TMk(S/) :
d)e(bnu'kETk k‘E[K]

DEPLOYMENT PHASE
Additional Input: number of deployment episodes 7.

1: Set 8 = HVd + adH\/log(dHT/S).

2: Run Lsvi-UcB ({g/b\h}hH;Ol, r=rg,T, ﬁ) in the target task Poe; (Algorithm 5).
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Let ()<, refer to the clamping operator, i.e. (x)<, = min{x,y}. Let My be the maximum possible
value in the MDP with the given reward function.

Algorithm 5 Lsvi-UcCB

1: Input: Features {(gh}h:(),l,‘..,H—l, reward {rp}p=0.1,. H—1, number of episodes N, bonus
scaling parameter 3, UNIFORMACTIONS = FALSE.

2: for episode e =1,2,..., N do

3:  Initialize XA/H,B(S) =0,Vs

4. forstep h=H —1,H—2...,0do

5: Learn best predictor for XA/,L@ 1
e—1
>k KNT (k K\NT
Ane = on(st, af)on(sy,a) " +1,
k=1
e—1
~ -1 >k _kN\T k
Whe =Ny, Z Sk, ap)Vatt,e(Shi1)-
k=1
6: Set bonus and value functions,

bhe(s,a) = Hggh(s,a)‘ =t

h,e

Qne(s,a) = @f dn(s,a) +r4(s,a) + Bbye(s, a),
?h,e(s) = (mgx{@h,e(sa a)})

<My’

7: Set 7y (s) = argmax, @h’e(s, a).

8:  Execute 7° to collect a trajectory (s, af )7

9:  If UNIFORMACTIONS = TRUE, discard aj, and draw freshly sampled uniform actions inde-
pendently for all h, i.e. aj, ~ Unif(.A).

10: Return: uniform mixture p = Uniform({n¢}Y ).

e=1
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Appendix C. More discussion on related works

C.1. Empirical works in transfer learning

The idea of learning transferable representation has been extensively explored in the empirical
literature. Here we don’t intend to provide a comprehensive survey of all existing works on this topic.
Instead, we discuss a few representative approach that may be of interest.

Towards transfer learning across different environments, progressive neural network (Rusu et al.,
2016) is among the first neural-based attempt to learning a transferable representation for a sequence
of downstream tasks that tries to overcome the challenge of catastrophic forgetting. It maintains
the learned neural models for all previous tasks and introduce additional connections between the
network of the current tasks to those of prior tasks to allow information reuse. However, a drawback
common to such an approach is that the network size grows linearly with the number of tasks. Other
approaches include directly learning a multi-task policy that can perform well on a set of source
tasks, with the hope that it will generalize to future tasks (Parisotto et al., 2015). Such an approach
requires the tasks to be similar in their optimal policy, which is a much stronger assumption than
ours.

Slightly off-topic are the works about “transfer learning” inside the same environment but across
different reward functions, which is more restricted than the setting considered in this paper. Several
prior works design representation learning algorithms that aim to learn a representation that generalize
across multiple reward function/goals (Dayan, 1993; Barreto et al., 2017; Touati and Ollivier, 2021;
Blier et al., 2021). These are related to the REWARDFREE REP-UCB we developped in Section E.
The key difference is that we concern representation learning along with efficient exploration to
derive an end-to-end polynomial sample complexity bound. These prior works do not consider
exploration and do not come with provable sample complexity bounds. We refer interested readers to
a recent survey (Zhu et al., 2020) for a comprehensive discussion of other empirical approaches.

C.2. Comparison to Lu et al. (2021)

In the prior work of Lu et al. (2021), which also studies transfer learning in low-rank MDPs with
nonlinear function approximations, they need to make the following assumptions:

1. shared representation (identical to our Assumption 2.1).
2. task diversity (similar to our Assumption 2.2).

3. generative model access to both the source and the target tasks. In contrast, we only require
generative model access to the source tasks and allow online learning in the target task.

4. a somewhat strong coverage assumption saying that the data covariance matrix (under the genera-
tive data distribution) between arbitrary pairs of features ¢, ¢’ € ® must be full rank. In contrast,
our analysis only requires coverage in the true feature ¢* in the source tasks.
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5. the existence of an ideal distribution q on which the learned representation can extrapolate. We do
not require an assumption of a similar nature. Instead, we show that the data collected from our
strategic reward-free exploration phase suffices for successful transfer.

6. the uniqueness for each ¢ in the sense of linear-transform equivalence. Two representation
functions ¢ and ¢’ can yield similar estimation result if and only if they differ by just an invertible
linear transformation. In contrast, we do not make any additional structural assumptions on the
function class ® beyond realizability.

In summary, our work present a theoretical framework that permits successful representation transfer
based on significantly weaker assumptions. We believe that this is a solid step towards understanding
transfer learning in RL.

C.3. Comparison to Cheng et al. (2022)

Cheng et al. (2022) studies representational transfer in low-rank MDPs, with not only a weaker
notion of task relatedness (with global coefficients in the linear span) but also stronger assumptions.
Particularly, we restate the following strong assumption from Cheng et al. (2022, Assumption 5.3).

Assumption C.1 For any two different models in the model class ® x ¥, say Pl(s'|s,a) =
(p1(s,a), ut(s")) and P%(s'|s,a) = (¢*(s,a), u?(s")), there exists a constant Cr such that for
all (s,a) € S x Aand h € [H],

1P (s, @) = P*(|s, a)llrv < CRE(s a)mai(s, ) IP* (|5, @) = P2(:[s, a) | 7v,

where U is the uniform distribution.

This assumption ensures that the point-wise TV error is bounded, as long as the population-level TV
error is bounded. Cheng et al. (2022) used this to transfer the MLE error from the source tasks to
the target task. This type of assumption is strong in the sense that we typically expect Cr to scale
with |S|. In contrast, our analysis (Lemma G.1) shows that this assumption is in fact not necessary,
even assuming online access only to source tasks. The generative access to source task studied here,
which enables transfer under weaker reachability assumptions is not studied in their work.

It is worth noting that Cheng et al. (2022) also study offline RL in the target task which we do
not cover, while we mainly focus on the setting of generative models in the source tasks and
demonstrating a more complete picture by proving generative model access in source tasks is needed
without additional assumptions. Comparing to (Cheng et al., 2022), we also further implement and
perform experimental evaluations of our algorithm.
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C.4. Works in multi-task learning

Multi-task and Transfer Learning in Supervised Learning. The theoretical benefit of represen-
tation learning are well studied under conditions such as the i.i.d. task assumption (Maurer et al.,
2016) and the diversity assumption (Du et al., 2020; Tripuraneni et al., 2020). Many works below
successfully adopt the frameworks and assumptions to sequential decision making problems.

Multi-task and Transfer Learning in Bandit and small-size MDPs. Several recent works study
multi-task linear bandits with linear representations (¢(s) = A s with unknown A) (Hu et al., 2021;
Yang et al., 2020, 2022). The techniques developed in these works crucially rely on the linear
structure and can not be applied to nonlinear function classes. Lazaric et al. (2013) study spectral
techniques for online sequential transfer learning. Brunskill and Li (2013) study multi-task RL under
a fixed distribution over finitely many MDPs, while Brunskill and Li (2014) consider transfer in
semi-MDPs by learning options. Lecarpentier et al. (2021) consider lifelong learning in Lipschitz
MDP. All these works consider small size tabular models while we focus on large-scale MDPs.

Multi-task and Transfer Learning in RL via representation learning. Beyond tabular MDPs,
Arora et al. (2020) and D’Eramo et al. (2019) show benefits of representation learning in imitation
learning and planning, but do not address exploration. Lu et al. (2021) study transfer learning in
low-rank MDPs with general nonlinear representations, but make a generative model assumption on
both the source tasks and the target task, along with other distributional and structural assumptions.
We do not require generative access to the target task and make much weaker structural assumptions
on the source-target relatedness. Recently and independently, Cheng et al. (2022) also studied
transfer learning in low-rank MDPs in the online learning setting, identical to the setting we study in
Section 4. However, their analysis relies on an additional assumption that bounds the point-wise TV
error with the population TV error, which we show is in fact not necessary.

Efficient Representation Learning in RL. Even in the single task setting, efficient representation
learning is an active area witnessing recent advances with exploration (Agarwal et al., 2020; Modi
et al., 2021; Uehara et al., 2021; Zhang et al., 2022) or without (Ren et al., 2021). Other papers study
feature selection (e.g. Farahmand and Szepesvdri, 2011; Jiang et al., 2015; Pacchiano et al., 2020;
Cutkosky et al., 2021; Lee et al., 2021; Zhang et al., 2021) or sparse models (Hao et al., 2021a,b).
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Appendix D. Impossibility Results

Here, we present an interesting result showing that the above assumptions we make are so weak that
they do not even permit efficient transfer in supervised learning:

Theorem 8 (Counter-example in supervised learning) Assume that we want to perform condi-
tional density estimation, where P} (y|x) = ¢*(x) 5 (y). Under Assumption 2.1 (shared repre-
sentation) and Assumption 2.2 (linear span), and assume that in each source task, one have access
to a data generating distribution py,(x) such that A\minE,, [¢*(2)¢*(z) '] > 1 (reachability). No
algorithm can consistently achieve E . [Hpt;rge,(y\x) — PreetWl2) |l 7v] < 1/2 on the target task
using the feature learned from the source tasks with probability more than 1 /2.

Proof [Proof of Theorem 8] Consider the following example. X = R? and we have the following 3
sets.

S1 = Byjp((—1,-1))
82 = By2((—2,-2))
S3 = By2((0,1))

where B, ((z,y)) stands for the ball with radius a centered at (z, y). These will be the support of 3
tasks: task 1 and 2 are two source tasks, task 3 is the target task. Let’s assume that P} () are uniform
distribution on Sj,.

Suppose that the feature class ® only contains two functions:

¢1:{x1 <0 & x93 > 21} — (1,0), and (0, 1) otherwise
¢2 : {x2 <0 & x1 > 29} — (0,1), and (1, 0) otherwise

That is, the feature maps from R? to the set of binary encoding of dimension 2, i.e. {(1,0), (0,1)}.
We further assume that pf = (p1(y), p2(y)) for some distributions p1, p2, which is identical for
all task k, where ||p1,po|[7v = 1. We also assume that ;i is known to the learner a prior, i.e.
T, = {p;} for all k € [K], so all the learner needs to do is to pick the correct ¢ out of two
candidates.

Given the above setup, it’s easy to verify that both Assumption 2.1 and Assumption 2.2 are satisfied,
because the decision boundary of both ¢; and ¢4 passes through the support of the source tasks, and
all pu7’s are identical. However, ¢1 and ¢ are equivalent in S; and Ss in terms of their representation
power, therefore no algorithm can always pick the correct feature function with probability more
than 1/2, regardless of the number of samples. Suppose ¢, is the true feature and the algorithm
incorrectly chooses ¢o. Then, for € S3({z1 > 0} which has probability mass 1/2, P3(y|z) = ps
whereas Pj (y|z) = p;. Thus, the expected total variation distance between Pyrge; and Pireer 18 1/2.
|
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The above construction shows that our assumption are not sufficient to permit reliable representation
transfer, even in the supervised learning setting. Yet, surprisingly, these assumptions are sufficient
in the RL setting, implying somehow that transfer learning in RL in easier than transfer learning
in SL. To understand this phenomenon, observe that in RL, the marginal distribution on (s, a) is
not independent from the conditional density P(s’|s,a) we desire to estimate. In particular, if one
collects data in the source tasks in an online fashion via running a policy, p(s,a) is structurally
restricted to be an occupancy distribution generated by the ground-truth transition P*(s’|s, a). Such
a connection can only exist in Markov chains, and our analysis elegantly utilizes this additional
structure to establish the soundness of the learned representation. Also note, crucially, that we never
learn a representation to capture dg, which would suffer from similar issues as the supervised learning
setting, but is not necessary for sample-efficient RL.

Next, we prove the impossibility result in Theorem 6, restated below as Theorem 10. This result
shows that one can not achieve online learning in the source tasks without significantly stronger
assumptions such as Assumption 4.1. Before that, we provide a preliminary version, showing that
the learned ¢ is not sufficient to fit the transition model in the target task, which motivates the
construction in Theorem 10.

Theorem 9 (Impossibility Result: Model Learning) Let M = {(P, ..., Px, Purger) } be a set of
K + 1 tasks that satisfies

1. all tasks are Block MDPs;
2. all tasks satisfy Assumption 3.2 and Assumption 2.2;

3. the latent dynamics are exactly the same for all source and target tasks.

For any pre-training algorithm A, there exists (P, ..., Pi, Pirge:) € M and an occupancy distribu-
1iON Prarger ON the target task, such that with probability at least 1/2, A will output a feature ¢ and
for any

Epure[0(5,0) " 1) = Prayer -1, @) v > 1/2.

Proof [Proof of Theorem 9] Consider a tabular MDP with 2 latent states z1, zo and an observation
state space S = R; |J Rz |J B1 | B2, where in task 1 one can only observe R; | J Ro and in task
2 one can only observe Bj | J B2. Correspondingly, 01(s|z) is only supported on R |J R2 (i.e.,
01(R;|z;) = 1) and similar for task 2. Let the latent state transition be such that P(z1]z1,a) = 1 and
P(22]22,a) = 1, i.e. only self-transition regardless of the actions.

Now, consider a 2-element feature class ¥ = {11, 12} such that

1/11:{R1 —>1,R2—>2,Bl—>1,32—)2}
1/12:{R1—>1,R2—>2,Bl—>2,32—>1}
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Denote ¢;(s,a) = €(y,(s),a) fori € [1,2]. Consider for each task k, a 2-element Y, class in the form
of Tp, = {(ox(slz1), 0k(s]22)), (ok(s]22), 0r(s|21))}-

Notice that ¢; and ¢» are merely permutations of one another and so given any single task data,
the two hypothesis will not be distinguishable by any means. Therefore, for any algorithm, there is
at least probability 1/2 that it will choose the wrong hypothesis if the ground truth ¢* is sampled
between ¢, and ¢2 uniformly at random. Suppose ¢; is the correct hypothesis and ¢3 is the one
that the algorithm picks (i.e., ¢E = ¢9). Let task 3 be such that any state emits to R; | J R2 and
B | Bs each with probability 1/2 (i.e., 03(R;|z;) = 03(B;|z;) = 0.5). This construction satisfies
Assumption 3.2 and Assumption 2.2.

Then, within task 3, one would encounter observations from both B; and By which should be
mapped to latent state z; and z; respectively by the true decoder ¢;, but are instead both mapped
to latent state z; by the learned decoder ¢3, and thus z; and 25 become indistinguishable. Suppose

Prarget (21) = Prarget(22) = 1/2, then
Epuga[[0(5,0) T () = P*(-|s, )|z ]
= %HQE(Rl)TM(') — (R T (v + in@(Bl)Tu(-) — (B T (v
+ i||¢5(R2)TM(') — ¢(Ro)* Ty ()lrw + iHﬁg(Bz)TM(') — ¢(Bo)* T ()lrv
= llor = of[l7v /4 + [lo2 = of[l7v /4 + |lo2 — O3[l7v /4 + |lor — 05|l7v /4

1 1
> ZHOT — osllrv + ZIIOT — osllrv

1

=3
where the last second inequality uses triangle inequality, and the last equality comes from the fact
that 03(-|z1) and o3(+|22) have disjoint support which implies that ||p} — p3||7y = 1. [

Now, we are ready to restate and prove Theorem 6.

Theorem 10 (Impossibility Result: Optimal Policy Identification) Let M = {(Pi, ..., Pk, Piarger) }
be a set of K + 1 tasks that satisfies

1. all tasks are Block MDPs;
2. all tasks satisfy Assumption 3.2 and Assumption 2.2;

3. the latent dynamics are exactly the same for all source and target tasks.

For any pre-training algorithm A, there exists (P, ..., P, P,arge,) € M, such that with probability
at least 1/2, A will output a feature ¢, such that for any policy taking the functional form of

w(s)=f ({gﬁ(s,a)}aeA, {r(s,a)}aeA), we have
V —VT>1/2.
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Proof [Proof of Theorem 10] Consider a tabular MDP with H = 2, two latent states z1, zo for h = 1
and two latent states z3, z4 for h = 2.

* For h = 1, let there be two actions a1, as. Let the observation state space be S = Ry | J Ro | B1 U B2,
where in task 1 one can only observe R; | R and in task 2 one can only observe B | Bo.
Correspondingly, o1 (s|z) is only supported on R |J R (i.e., 01 (R;|z;) = 1) and similar for
task 2. Let the latent state transition be such that P(z3|z1,a1) = P(z3]22,a2) = 1, and
P(z4]21,a2) = P(z4]|22,a1) = 1. All rewards are 0 for h = 1.

e For h = 2, in state z3, all actions have reward 1, and in state z4 all actions have reward 0.

* The initial state distribution is dy(z1) = dop(22) = 1/2.

Now, consider a 2-element feature class U = {11, 99} for h = 1, such that

wlz{Rlﬁl,RQ%ZBl —)1,B2—>2}
¢2:{R1—>1,R2—>2,Bl—>2,B2—>1}

Denote ¢;(s,a) = €(y,(s),a) for i € [1,2]. In addition, define T = {u1, j12} where

H1 = {23 — (1,0),24 — (0, 1)}
Ho = {24 — (1,0),23 — (0, 1)}

Notice that ¢; and ¢2 are merely permutations of one another and so given any single task data, the
two hypothesis will not be distinguishable by any means. Therefore, for any algorithm, there is at
least probability 1/2 that it will choose the wrong hypothesis. Suppose ¢, is the correct hypothesis
and ¢ is the one that the algorithm picks (i.e., qAS = ¢9). Let task 3 be such that any state emits
to Ry UR2 and B UBQ each with probability 1/2 (i.e., O3(RZ"ZZ') = 03<Bi’2i) = 0.5). This
construction satisfies Assumption 3.2 and Assumption 2.2.

Then, for any policy that only make decision based on ¢(s, @) and (s, a), 7 would output the same
action for observations in R; and Bs, or for B; and Rs. However, notice that the optimal policy,
which would try to go to z3 from either z; or 29, will pick a; at Ry and B; while picking as at Ry
and B», which means that the optimal policy will not agree on R; and Bs, and it also will not agree
on Ry and B;. Thus clearly, no such policy as defined above is capable of capturing the optimal
policy. From the reward perspective, notice that d™(z1) = d™(22) = 1/2and d"(R1) = d™(Rg) =
d™(B;) = d"(By) = 1/4. Since 7(R;) = 7(B2), the agent will only be able to collect reward at one
of the R; and B (but not at both). Similarly, since 7(R2) = 7(B1), the agent will only be able to
collect reward at one of the Ro and B; by reaching 23 (but not at both). This means that 7 will have
average reward 1/2. Since the optimal policy will be able to collect reward at all Ry, Ry, By, Ba, it
will have average reward 1. This concludes the proof. |

Theorem 9 and Theorem 10 show that it’s impossible to allow online learning in the source tasks
without much stronger assumptions. In our paper, we show that our Assumption 4.1, which ensures

28



REPRESENTATIONAL TRANSFER IN RL

reachability in the raw states, is sufficient to establish an end-to-ending online transfer learning
result. However, it is unclear if Assumption 4.1 is necessary for online learning. We leave this as an
important direction of future work.

Appendix E. Reward-free Rep-UCB

In this section, we adapt the Rep-UCB algorithm (Uehara et al., 2021) for reward-free exploration in
a single task. We drop all task subscripts as this section is for a single task only, i.e. think about the
task as being each source task. The original Rep-UCB algorithm was for infinite-horizon discounted
MDPs, so we modify it to work for our undiscounted and finite-horizon setting. Our goal is to
prove that Rep-UCB can learn a model that satisfies strong TV guarantees, i.e. Theorem 11 and
(7). Note that FLAMBE (Agarwal et al., 2020, Theorem 2) can be used for this directly, but at a
worse (polynomial) sample complexity. Thus, we do a bit more work to derive a new model-learning
algorithm for low-rank MDPs, based on Rep-UCB, that is more sample efficient in the source tasks.

A finite-horizon analysis of Rep-UCB was done in BRIEE (Zhang et al., 2022), so here we just
need to replace BRIEE’s RepLearn (,, with that of the MLE, which is how we learn ¢ and [z, as in
Rep-UCB. Recall the notation of (Zhang et al., 2022),

n—1
1 - .
pin(s,0) = = 3 di'(s) Unif(a)
=0

n—1
1 AP
Bhn(s,a) = - ZOE%d:iI,ENUnif(A) [P (s | s,a) Unif(a)]

n—1
1 7,
’Yh,n(sv a) = E ZEO dh (S, a)
2.07(757” = n]EP [qb(sv a)¢(57 a)T] + )\nI

By using MLE (Uehara et al., 2021, Lemma 18) to learn models, with probability at least 1 — §, for
anyn=1,2,....Nand h =0,1,..., H — 1, we have

~ 2
maX{EPh,n th(s, a) - P}:(sv a)HTvaﬂh,n

~ 2
Prn(s,0) - Pﬁ(aa)HTV} <G O
where

9

- O<log(]M7lnH/5))

and |M| = max¢(p) |®p||Th|. We also adopt the same choice of ay,, A, parameters as BRIEE,
which we assume from now on.

An = O(dlog(|M|nH/5))

o = O (V/lAPG, + And).
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As in Rep-UCB, we posit standard assumptions about realizability and normalization, on the (source)
task of interest.

Assumption E.1 Forany h = 0,1,..., H — 1, we have ¢} € @, and ji5 € Y. Forany ¢ € ®,
|¢(s,a)ll2 < 1. Forall i € Yy, and any function g : S — R, we have || [, g(s)du(s)|l2 < 9|00 V.

Lemma E.1 Let r be any reward function. Suppose we ran Algorithm 3 with line 7 having reward
r + by, instead of just by,. Then, for any § € (0,1), w.p. at least 1 — 0, we have
N—-1

VI L Vi, < O(HP A/ Nlog([MINE/5))

n=0

Proof Start from the third equation of Zhang et al. (2022, Theorem A.4). Following their proof until
the last page of their proof, we arrive at the following: for any n = 1,2, ..., N,

Tn _ /Tn
ﬁnyr“l‘gn VP*’T
H-2
<> Ecanamn 197,(5, @) |l " |Ala2d 4+ Aud + /| Alaid/n
h=0 ’ Thinoh
H-2
+(2H + 1) E‘g,arvd’;fg hHgb,*l(g, @)1 " n|Al¢n + And + (2H + 1)+/| A|¢n.
h=0 ’ ThonPh

By elliptical potential arguments, we have

N-1 N
Y B 160G < \/dN g (14 1)

-
n=0 h,moPh

Thus, summing over n, noting that n(,, ay, Ay, are increasing in n, we can combine the above to get,

N-1 R R
— VIS:,HE” — Vi,
N
5 \/leog<1 + d)\) <H\/ |.A|Oz?vd + And + HQ\/ N|.A|CN + )\Nd>
1

N

< %uv log<1 + A) (H\/N|A|3CNd + Avd? + H*\/N|A[Cy + )\Nd)
1

SH

< %uv 10g<1 + N1> (Hz\/d|A|3 log(|MNH/8) + &3 1og(yM|NH/5))

€ O<H2d2|A|1'5\/N log(\/\/l]NH/cS)).

This gives the following useful corollary for reward free exploration.
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Lemma E.2 Forany ¢ € (0,1) w.p. at least 1 — 6 we have

o < O<H2d2, A \/log(\MNH/é))

N

Proof By definition of ‘/}ﬁ, we have
N ~ 7o
PR Vars, < Z Pobn

which is bounded by the previous lemma and the fact that V%f’r:() = 0, since in Algorithm 3, the
reward function is zero. n

Conditioning on this, we now show that the environment ﬁﬁ has low TV error for any policy-induced
distribution.

Theorem 11 For any policy w, we have

H-1

* D log(|/M|NH/)
S Ea||Pits.0) — Prtsa), < 0<H3d2\¢4\1~5¢ (M H] )) _—
h=0

N

Proof In this proof, let P = ﬁﬁ, which is the returned environment from the algorithm. Let
r(s,a) = HP;:(S,a) - ﬁh(s,a)HTV € [0,2]. Then,

H-1

> (Eip., B, )l
=0
Ve,
= hzo Ed%h |:(EP;:(57G) - Eﬁh(s,a)> Vﬁ*mhﬂ(s’)] (Simulation lemma)
H-1
<2l Y Ear hHP}f(s, a) — Pu(s, a)HTV.
=0 ’
Thus,
H-1 R
Ear, , Pr(s,a) — Ph(s,a)HTV
h=0
H-1
(2H +1) Y Eay HP,:(S, a) — Py(s, a)HTV (by (Zhang et al., 2022, Lemma A.1))
h=0
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§H<H QE% Ds(s,0)] + ,/yAg‘Nm)
h=0
. H<V]l;3 2’A‘10g \M!NH/& )
. H< 2’A‘10g \M]NH/(S )
H<H2d A5 log(W]LNH/ o) 4 \/ A\log(‘M]l[NH/ 5)> (by Lemma E.2)
. O<H3d2| AL log<|M]|VNH/6>)‘
m

This also gives us a guarantee on the TV distance between the visitation distributions induced by P*
vs. by P.

Lemma E.3 Suppose P satisfies the following for allh = 0,1,..., H — 1,
Vr Edg*thPh(s,a) — Pr(s, a)HTV <ep 6)

Then, for any h = 0,1, ..., H — 1, we have

T
)

v :Hdﬁ — . H < .
T4~ AP ||y, &t

ﬂ“
o

Note, for h = 0, the sum is empty so the right hand side is 0.

Proof We proceed by induction for h = 0,1, ..., H — 1. For the base case of h = 0, no transition
has been taken, so that d7T =dp. 5. Nowlet h € {0,1,..., H — 2} be arbitrary, and suppose that

the claim is true for A (IH) We want to show the claim holds for & 4+ 1. One key fact we’ll use
is that, for any measure p, we have ||u|l7v = supj g <1 [Ep[f]]- Below we use the notation that

f(sa 7'[') = EaNﬂ(S)f(SJ a)'
Hdp 1 dz+1HTV

= sup Ed%’hﬂ[f(s,a)} - Edgﬂ[f(b’,a)])

I fllo<1

= ”fSHI:Op<1 E(g@Nd%h,(s,a)Nﬁh(g@ [f(s: mh41)] — EGa)~dr (s.0)~P 33) [f (8 Tht1)]

< IIfSHup<1 (E(aa)Nd;;h - E(g,a)wg)Eﬁh(g@f (377rh+1)‘
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+ sup ‘E('sja)Nd;; []Eﬁh(gﬁ)f(sva)*EP,:('SV,E)f(SaWh—l—l)”

[l £lloo<1
h—1
< e+ E(gﬁ)Nd’}: [”fS”up<1‘ (Eﬁh(§75) - Ep;:(gﬁ)) f(s, 7I‘h+1) ‘] (by IH and Jensen)
t=0 oS
h—1
< > e ten, (by (6) and || f (s, mpt1)[| < 1)
t=0
as desired. |

Thus, when combined with Theorem 11, we have for h = 0,1, ..., H — 1 and any policy 7,

=eTv. (N

B A log(|M|NH/5)
Hdﬁ,h —dpspllrv < O(H3d2A‘1-5\/ ( ]\V / )

In other words, the sample complexity needed for a model-error of 7y is
o (H6d4|A|3 1og(|MyNH/5)>

2
€y

Note this is much better than FLAMBE’s guarantee (Agarwal et al., 2020, Theorem 2) which requires,
N <H22d7|A|9 log(|M|NH/6) >

10
1y

Appendix F. Reward-free Exploration

In this section, we show that the mixture policy returned by Algorithm 1 is exploratory. Recall that
Algorithm 1 contains two main steps:

Step 1 Learn a model P. This was the focus of the previous section, where our modified REP-UCB
method obtained a strong TV guarantee ((7)) by requiring number of episodes at most,
HSd4AP? log(\M]NH/(S))

NREwARDFREE = 0( 2
TV

Step 2 Run LsvI-UCB (Algorithm 5) in the learned model P with reward at the e-th episode being
by . and UNIFORMACTIONS = TRUE. The optimistic bonus pushes the algorithm to explore
directions that are not well-covered yet by the mixture policy up to this point. With elliptical
potential, we can establish that this process will terminate in polynomial number of steps.

We now focus on Step 2. Let 77;1 denote rolling-in 7 for h steps and taking uniform actions on the
h + 1 step, thus inducing a distribution over sj1, ap11. We abuse the notation a little and use Trf}
for a policy that just takes one uniform action from the initial distribution dj.
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LemmaF.1 Ler § € (0,1) and run REWARDFREE (Algorithm 1). Let Ay be the empirical
covariance at the N-th iteration of LSVI-UCB (Algorithm 5). Then, w.p. at least 1 — § we have,

H—
sup Y B o 5l dnlsnan)|| , S AdPHP/log(dNH[5)/N
T h=0 N

Proof In this proof, we’ll treat the empirical MDP as P*, as that is the environment we’re running
in. Thus, we abuse notation and Ph ¢ 1s the model-based perpsective of the linear MDP, i.e. gbhuh e
where fip, ¢ is Ah7e Sl th(sh, ah)é(sﬁﬂ). Also, in Algorithm 1, we set reward to be zero, but
for the purpose of this analysis, suppose the reward function is precisely the (unscaled) bonus in
LsvI-UCB, i.e. 74.¢(Sh,an) = bne(sn,ap). This does not change the algorithm at all since the
[-scaling of the bonus dominates this reward in the definition of @ h,e»> but thinking about the reward
in this way will make our analysis simpler.

Recall the high-level proof structure of reward free guarantee of linear MDP (with known features q?)
(Wang et al., 2020, Lemma 3.2).

Step 1 Show that ‘A/h@ € Vyand w.p. 1 — 9, forall h, e,
Vsh, ap, : fsulg) ﬁhve(sh,ah) — Py (sn,an)|f < Bbye(sn,an).
€Vh

This step only uses self-normalized martingale bounds. So, line 9 can use any martingale
sequence of states and actions, and this claim still holds, with bonus by, . using the appropriate
covariance under the data.

Step 2 Show optimism conditioned on Step 1. Specifically, foralle = 1,2, ..., N, we have Eq, |V (s0, ) — %76(30)] <

0. To show this, we need that f}h?e(sh) = @h,e(3h7 7 (sp)) > @h,e(sh, 7y (sp,)) (this is for the
unclipped case of V-optimism), which we have satisfied in the algorithm, i.e. 7} is greedy

W.I.T. @h,e-

Step 3 Bound the sum ), 17;176, where we decompose it as a sum of expected bonuses with the
expectation is under 7°.

Step 3 is the only place where we use the fact that sﬁ, aﬁ are data sampled from rolling out 7¢. For
Step 1 and 2, please refer to existing proofs in (Agarwal et al., 2019; Jin et al., 2020b; Wang et al.,
2020).

Now we show Step 3 for our modified algorithm with uniform actions. First, let us show a simulation
lemma. For any episode e = 1,2, ..., N, for any s, recalling definition of reward being by, ., we have

Voe(s0) < (1+ B)bo.e(s0, 76 (50)) + Po.e(s0, 7(50)) Vie
< (1+2B)bo (50, 76 (50)) + Pre(50,7(50)) Vi e,
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where the first inequality is due to the thresholding on XA/h,e’s and the second inequality is due to Step
1. Continuing in this fashion, we have
H-1
Eao [Po,e(50)] < (1428) D" B b (51, an)]-
h=0
Summing over e = 1,2, ..., N, we have
N H-1 N
ZEdo |:‘/Oe S0 :| 5 ﬁ Z ZEﬂ'e bhe Sh,ah)]
e—=

e=1 h=0 1
-1

N
ABY D B (e i [bnelsn, an)]

h=0 e=1

IN

For each h = 0,1,..., H — 1, apply Azuma’s inequality to the martingale difference sequence
A, = IE,(7re ) [bh.e(Sh,an)] — bpc(s7, af,). The envelope is at most 2. So, w.p. 1 — 6,
h—1

H-1 N
<ABY D bne(sh.af) + ABy/Nlog(HJ6).
h=0 e=1

Now apply a self-normalized elliptical potential bound to the first term, giving that

H-1 N H-1 N
Z Z (8%, af) Z VN th’e(sz, a$)? < Hy/dN log(N).
=1 h=0 e=1

Thus, we finally have

N
Y Ed, {\70’6(30)} < ABH\/dN log(NH/3).
e=1

Consider any episode e = 1,2, ..., N. By definition, Ay, xy = Ay, ¢, so for all s, a we have pointwise
that by, n(s,a) < by(s,a). Hence, for all s, we have Vi (s;7Y) < V{(s;7¢), and further using
optimism, we have

N N
NEq, Vi (s0i7)] £ D Bap Vi (503 7e)] < D By | Voo(s0)| S ABH /AN Tog(NH]).
e=1 e=1

Now consider any A and policy 7, and consider rolling it out for h — 1 steps and taking a random
action. Then we have

N e
EﬁﬁlﬁHtﬁh(Sh,ah)‘ o < Eg, [VO "1 (s0; rN)] < ABH+\/dlog(NH/&)/N

h,N

Summing over h incurs an extra H factor on the right. This concludes the proof. |
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Lemma F.2 (One-step back for Linear MDP) Suppose Py, = (¢, 1) is a linear MDP. Suppose
p is any mixture of n policies, and let ¥}, := nlE, [¢h(sh, an)dn(Sh, ah)T] + M denote the unnor-
malized covariance. Forany g : S x A — R, policy 7, and h = 0,1, ..., H — 2, we have

Erlg(sne1, ans1)] < Exlln(sn an)lls |\ /RAE 1 (g5t ans)?] + Al

Proof
Exl9(sh+1,an41)] = <Ew[¢h(5h7ah)]7/ 9(8h+1,7rh+1)duh(8h+1)>
Sh41
SEwH(z)h(Shvah)HE;l / 9(8hat, Thy1)dpn(she)||
Sh+1 Eh
where
‘/ 9(3h+1>77h+1)dﬂh(3h+1)
Sh+41 Eh
2

=nk, |:(E8h+1NPh(5h7ah) l9(sn+1, 7rh+1)]>2] +A

/ 9(Sht15 Tha1)dpen (She1)
Sh+1

< A[E 41 [g(she1, ans1)?] + Adllgl.

Under reachability, we can show that small (squared) bonuses and spectral coverage, in the sense of
having lower bounded eigenvalues, are somewhat equivalent.

Lemma F.3 Let X be a symmetric positive definite matrix and define the bonus by(s,a) =
|}, (s,a)||s—1. Then we have

1. For any policy T, E4z [b}%(s, a)] < m That is, coverage implies small squared bonus.

2. Suppose reachability under ¢* (Assumption 3.2), then we have the converse: there exists T,
for any policy 7, E dF [b%(s, a)] > ﬁ@) That is, small squared bonus implies coverage.

Proof The first claim follows directly from Cauchy-Schwartz. Indeed, for any policy 7, we have

1
Ear [b,zl(s,a)] < Egr [Hgﬁi(s,a)H%HE*ng] < m

For the second claim, Assumption 3.2 implies that there exist a policy 7 such that for all vectors
v € R? with ||v|l2 = 1, we have Edi [(¢7(s,a)"v)?] > 9. Now decompose ¥ = Z?Zl A\,

70
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where \;, v; are eigenvalue/vector pairs with ||v;]|2 = 1 and \; > A2 > ... > A4. Then substituting
this into the definition of the bonus, we have

By (50 = 3 3 Eap (9105, 0) )

|
>

=
SN

3
—~~
-
=
—~
»

S
S—

<
u
~—

We now prove our main lemma for reward-free exploration, Lemma 3.1.

Lemma 3.1 (Source task exploration) Suppose Assumptions 3.2,3.3 hold. Then, for any ¢ € (0,1),
w.p. 1 — 9, running EPS in any source task with Ny gyi.ucs = @(A3d6H81/J_2) and NRewarDFREE =

@ (A?’al‘J‘H6 log (%) NESVI_UCB) returns a Amin-exploratory policy where Apin = Q (A_gd_sH_WJZ) .

The sample complexity in the source task is NrRgwarpFreg €pisodes.

Proof [Proof of Lemma 3.1] In this proof, let
Aj, = NusviuesE o1 {qbZ(Sh? an) P (Sh, ah)q + AL
Ay = NLSVI-UCBEp;il ﬁh(sh, an)on(sn, ah)T} + Al

where A = dH log(Nrsvi-ucs/0) > 1. This setting of \ satisfies the precondition for the Concen-
tration of Inverse Covariances Zanette et al. (2021, Lemma 39), which implies w.p. at least 1 — ¢
that

-1

NLSVI»UCB
Ayt = 2( Y onlshap)dnlsh af) T+ M) < 2A;;

h,NLsvi-ucs’
e=1

where we’ve also used the fact that A > 1,50 (A+ AI)~! < (A+ 1)L

Under this event, for any m, we have,

H
> E.p
h=1

Ggh(sh,ah)HA,l < iEmﬁ Ggh(sh»ah)‘ i : ®)

A
h h=1 h;Npsvi-Ucs

Now let h = 0,1, ..., H — 2 be arbitrary. By Assumption 3.2 (there exists some policy 7™ with
coverage) such that,

v
Amin (A;(L+1)
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2
< E%H<Z5Z+1(Sh+1, ap41) H (AZH)_l (by Lemma FE.3)
< Exl| 6k (snrs an)| AL (by A > 1)
<E:p Hsbh Shy Qh) \/A 2d + 7y Nisvi-ucs) + e7v (by Corollary 12)
< E~ \/ 2d + 1 —|— 1/NLSVI UCB (by ETV = 1/]\]'LSVI-UCB)

< A2 H3 \/log dHNLSVI_UCB/5)/NLSVI-UCB + 1/Nysvi-ucs (by (8) and Lemma F.1)
< AP H? \/log(dHNLSVI-UCB /6)/NLsvi-Ucs-
Recall that A = dH log(Npsvi-ucs/9), we have,

)\min (Epil [¢Z+l (57 a)¢z+1 (87 a)T] )
Amin (Ai*zﬂ) —A

NLsvi-Ucs
1 Cy
2 — dH log(Nisvi.ue /0
— Nisviues <A1.5d2H3\/log(dHNLSVI—UCB/(;)/NLSVI—UCB sNLsaves/ >>
Cy dH

~ - )
A1'5d2H3v NLSVI—UCB NLSVI—UCB

where we’ve omitted the log terms for simplicity in the 2. Now we optimize N gyi.ycs t0 maximize

this bound. For a, b > 0, to maximize a function of the form f(z) = % — g, it’s best to set 2™ such

that v/z* = 2, resulting in value f(z*) = j—;. Setting,

2z = NLsvi-Ucs,
Cy

A1.5d2H3’

b=dH.

a =

Hence, we need to set

~ ~ (A3dSH®
NLsvi-ucs = @(52/02) = ®<1/)2>7

which results in a Ap;, lower bound of

_ . 2
Amin (Epzl [Dh+1(Sht15 1) Bhor (1, ah+1)TD = Q(a”/b) = Q<A355H7>'

Finally, we used the fact that 7y = 1/Npsvi-ucs, Which is set by the choice of NrgwarpFrer in the
lemma statement to satisfy (7).

The above proves coverage of p{l forh =0,1,..., H — 2. Finally to argue for pﬂ, which is simply
taking a random action at time h, we can simply invoke Assumption 3.2 for h = 0 to get a policy 7
that

[

1
E [%(So,ao)%(so,aof] = Bz {%(507@0)@55(50,@0) } =
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Corollary 12 Let A\, A7, /A\h be defined as in the proof of Lemma 3.1. For any h =0,1,.... H — 2
and any policy 7, we have

T HQSZ-H (8h+1, ah-&-l)H(AZH)—l} < Eﬂﬁ [ ‘Q/gh(sha ah)Hf\l} \/|A|(2d + e7v NLsvi-ucs) + €1V
h

Intuitively, this means that coverage in the learned features implies coverage in the true features.

Proof For shorthand, let N = Npgyi.ucs. Apply Lemma F.2 (one-step back) to the learned model p

and the function (s, a) — ||#} (s, a)H(A* )t which is bounded by A~/2 < 1. We have,
h+1

Ew,ﬁH‘bZ-i-l (Sh+1, Gh1) H AL )71

<E, 5| on(snan)]| \/NVUE 1 |1 (Shr15 angr) |7

+d
(M)

.+ N|Alepy +d

<E_ pénlsn an)|._ \/N\A\E 97 (sna ans)I?

het)

<E_p||[on(snan)|+_, VAl + N|Alery + d,
h
where we used the fact that

* 2
Ep:l |Ph41(Sh+1 ant1)ll (AZ+1)_1

=Tr <Ep;:1 [¢Z+1(8h+1, aht1)Bhi1(Sh+1, ah+1)T} (NE,,;I [éﬁZ(Sh, an)h (s, ah)T] + M) _1>

1 d
= NTr(I—M) < —,
where M is a positive definite matrix. Thus, doing an initial change from dj , | to d% Bt concludes
the proof. 7 |

Appendix G. Representation Transfer

First, we prove Lemma 3.2, restated below.

Lemma 3.2 (Target model error) Suppose Assumption 2.2 holds and 7y is Apin-exploratory for
each source task k. Forany § € (0,1), wp. 1 =8, Yh € [0: H—1], 31 : S — R? such that

~

On(sn. an) TFin() —¢z<sh,ahﬂu;,ge,;h(-)HTV < erv = VA0 Ko Auin: @)

s)ll2 < avd.

sup Er px

target

and, for any function g : S — [0, 1],
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Proof [Proof of Lemma 3.2] Fix an arbitrary 7. Denote py(s') = Zszl e (") fign (s'). First, note
that

max / i ()g(:)d(s) |
K
< . .
< o / fia(s)aa(5)g(5)d(s)]|
K

IA
g
B
%
=
=
&
N

(Since [ fig:n(s)g(s)d(s) < Vd by 3.3)

Forany h = 0,1, ..., H — 1, we have

~

Ere P || @0 (50> an) T in () — 67 (s, ah)TM%?h(')HTV
: . )
=Errp | D1 kin(sni1) (th(sh, an) " Lk (sha1) — G5 (sh, ah)TMZ;h(ShH))‘
| Sh+11k=1
- )
< Er B Z Z’ak;h(5h+1)|‘¢h(3h, an) " fkn(sni1) — o5 (sn, ah)TMZ;h(ShH)‘
Sh+1 k=1

On(snsan) Firn () — &5 (sns ah)TMZ;h(')H

K
< Omax kgl Er, Pl -

First consider the case when h = 0. At h = 0, the distribution under Py, is the same as vy, , and

so, we directly get that the above quantity is at most amaxd/ 2 < &, which proves the i = 0 case.

Now consider any h = 1,2, ..., H — 1. To simplify notation, let us denote

ertion(ons an) = [[n (s an) kn () = GiCons an) ")

_ *
Wish = / tharget;hfl(Sh)Eahwﬂh(sh)errk;h(Shy ah)7
Sh

-
Y =By py [¢Z(5ha an)dp(sns an) |-
Note that Amin (k1) > Amin by assumption. Now continuing from where we left off, we take a
one-step back as follows,
K
Qmax Z B, P e ki (Shy @)
k=1

K

= Qimax Z Er Bt (D 1(Sh—1,an—1), We;)
k=1
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K
< Qmax ) :(Em%gﬂ

Sralnvanvlgsy Vol
k=1

By Amin guarantee of Xy, ;,, and Jensen’s inequality to push the square inside,

Omax

K
2
< Vi E : \/]Esh—lﬂh—1N7Tk7P1:EShNR:rgel;h_1(Sh—lyah—l)7ah"*7rh(3h)errk§h(sh’ an)
min
k=1

1/2 K
<M E .F AT (Sh, )2
> \/)\7 Sh—1,ah—1~Tk, P} shNPl;rget;h71(sh,l,ah,l),ahwumf(A) k;h\Sh, Uh
mo =1

*

By Assumption 2.2, the expectation over target;h—

1 1s a linear combination of expectations over

*
Pip-1:

1/2 3/2 K K
<A ol E § E E 2
= T Sh—1,8h—1~T, P sthJ?*;hil(sh,l,ah,l),ahwunif(A)errk;h(Shvah)
min k=1

Jj=1
3/2 K K
A1/2am/axK1/2 ,
S \/)\7 E E Esh,l,ah,lwwk,P,:]EshNP]ﬁhil(sh,l,ah,1),ah~unif(A)errk:;h(Sha ah)
m k=1 j=1

. A1/20613n/a2xK1/2C71L/2
B V )\min ’

where we used the MLE guarantee (3) in the last step. |

Next we state an analogous lemma for when we don’t need generative access to the source task, but
instead assume Assumption 4.1, and Assumption 4.2.

Lemma G.1 Suppose Assumption 4.1, and Assumption 4.2. Now take the setup of Lemma 3.2 with
the only difference being that ¢ is learned as in Algorithm 4. Then, the same guarantee of Lemma 3.2
holds with a slightly different right hand side for the bound on the TV-error,

o~

~ amaxKl/Q 7}/2
gbh(sha ah)—r”h(') - ¢2(5h> ah)—rlu;rget;h(') < C

HTV - (T/me)\min)l/2 ’

sup E; px

target
™

Proof [Proof of Lemma G.1] Fix an arbitrary 7. Denote py(s') = Zszl (") fig;n(s"). Then,
some algebra with importance sampling gives us the bound,

Ew,Ptgrge‘ Dn(sh, ah)T:u’h(‘) - ¢Z(Sh7 a’h)T/”L:arget;h(') HTV
K
SErpi | D1 kn(snir) <¢h(3ha an) " frn(sns1) — O3 (s, ah)TMZ;h(ShH))
Sh+1lk=1
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< Qmax : :E larget

On(sns an) TFin () = G (snsan) ik ()

2
2 § :
< amax / E t arget

On(sh an) ik () — ¢Z(Sh,ah)TM2;h(')HTV

dgrgel;h(‘g’a) 1 <
Tl -~ -~
dk;h(57a’) wraw)\min (Eﬂ'k,PI: [¢Z(sh:ah)¢z(shvah)—r]>
ﬁ, where we used the coverage-under-m;, assumption in the last inequality. In other words, for
rTaw A\ min

By Assumption 4.1, Assumption 4.2, for any s, a, we have

U
dtargct HO

Tk
dd, 7,

each source task k € [K], we have S . hence we can use importance sampling,

2

O K2 3 b T T
LN ) ) () — 6 (s, . H
= Grawhm) 2 \| & Sn(sny an) " B () = & (sny an) "Hin ()|

< amaxK1/2C1/2 )
(wraw)\min)l/2

Appendix H. Proofs for LSVI-UCB under average-case misspecification
H.1. Auxiliary RL Lemmas

Lemma H.1 (Self-normalized Martingale) Consider filtrations {F;},_, 5 , sothatEle; | F;_1] =
Oand {e; | Fi—1},_, 5 are sub-Gaussian with parameter o2 Let {Xi},_1 o, be random variables

in a hilbert space H. Suppose a linear operator ¥o : H — H is positive definite. For any t, define
=220+ Zle XZ-XiT. Then w.p. at least 1 — §, we have,

" 2
det(Z;) det(Zg) !
Vit >1: ZXZ-Q §0210g< ( t>(52 (%0) >
=1 gt—l
Proof Lemma A.8 of (Agarwal et al., 2019). |

Lemma H.2 Let Ay = A1 + 22:1 zizl for v; € R and X > 0. Then Zle ol(A)"la; < d

Proof Lemma D.1 of (Jin et al., 2020b). |
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H.2. Proof of main result

Previously, Jin et al. (2020b) analyzed LSvI-UCB under point-wise model-misspecification. Here, we
show that similar guarantees hold under a more general policy-distribution model-misspecification
Ems, captured by Assumption H.1.

Assumption H.1 Suppose for every h = 0,1, ..., H — 1, there exist i3, such that for any policy ,

EW[ i

‘Mh(')Tgh(Sh,ah) - Pp(-| Sh,ah)HTV} < Ems-

We further assume that sup&a’hHﬁh(-)Tq/g(s,a)HT < My and || fTfipll2 < MuVd|| flloo V2 S —

R, for some positive constant M,,.

In other words, we only need the model to be accurate on average under the occupancy distributions
realizable by policies. We also make a slight generalization on the regularization constant M,,, which
is set to 1 in the original linear MDP definition (Jin et al., 2020b). Later, we will later instantiate the
above assumption with our transferred 7ip, (s') = S 1| k., (s') ik ('), then for any s, a, we have

Findn (s, a)lrv = >

s/

<Zz\akh )[Airn(s") on(s, a)]

s’ k=1

Z Q; e ,Uk K )T$h(s, a)

K
< aptonc o st <
_err?xmk,h(s) (by Mk,h¢h(8 CL) TV = )
<a

Also,

£ 7inll2 =

Zzakh Vi (s) f(s)

s’ k=1
—ZmaX|akh Zukh
2

< af d|| flso- oy 1T Tkl < V|| flloo)

2

So we will set M, = a.

Note that we only need the existence of iy, here, and ﬁh(-)Tah(s, a) need not be a valid probability
kernel. In fact, it may even be negative valued.

In this section, we make a model-based analysis of LSVI. Similar approaches have been used in prior
works, e.g. Lykouris et al. (2021); Agarwal et al. (2019); Zhang et al. (2022). For simplicity, we

43



AGARWAL SONG SUN WANG WANG ZHANG

suppose that S is finite, but may be exponentially large, as we suffer no dependence on |S|. The
proof can be easily extended to infinite state spaces by replacing inner products with P by integrals.

Consider the following quantity,
e—1 R e—1 R A A -
fine = (Z O(sh 1) nsh, aff) (An)™" € argmin 3 b (sh ah) = (sieer) 2 + -
k=1 HERZXE 1

where J(s) is a one-hot encoding of the state s. In words, this is the best choice for linearly (in
én(s, a)) predicting By ps(5.4)[0(s")] = Pj(s" | s,a). We highlight that this is just a quantity for
analysis and not computed in the algorithm. Finally, denote

ﬁh,e = ﬁh,e(zm
Py, = [in¢n.
We will also sometimes use the shorthand P f (s, a) for Ey..p(.|s.a)[f(5")]-

Foreach h =0,1,..., H — 1, let V}, denote the class of functions

{s — (mgx{nggh(s,a) + (s, a) + 5Hg/z§h(s,a)||A_1})<M '||w]2 < NMy,B€[0,B],A*=1 symmetric}

The motivation behind this construction is that V}, satisfies the key property that all of the learned
value functions V}, . during Algorithm 5 are captured in this class.

Lemma H.3 Foranyh=0,1,...., H — 1,

~

1. sup, Vh,e(s)‘ < My.

2. Foranye=1,2,....N, we have YA/;W € V.

3. Vf € Vi, we have sup,| f(s)| < My.

Proof Recall that
the(s) = (max{ﬁ},{eqﬁh(s, a) + (s, a) + Bbp (s, a)})
@ <My
e—1 R
where Wy, . = A,:i Z on(sk, aﬁ)VthLe(sﬁH).
k=1

From the thresholding, we have

‘Vh,e(s)‘ < My.
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We can bound the norm of @y,  as follows,

el < |85

e—1
) Z’Vhﬂ,e(slﬁﬂ)‘ < Nsup Vthl,e(S)‘ < NMy.

We also required 5 < B, and we regularized the covariance with I, so Ay is at least 1. Hence X7h7€
satisfies all the conditions to be in V},. |

Now we control the metric entropy of V}, in {o, i.€. d(f1, f2) = sup,|fi(s) — fa(s)| for f; € Vp.

Lemma H.4 Let ¢ > 0 be arbitrary and let N. be the smallest e-net with Ly, of Vy,. Then,

log| V2| < dlog(1 + 6L/e) 4 log(1 4 6B/e) + d*log(1 + 18 B>V d/<?).

Proof Let f1, fo € V. Then,
| f1(s) — fa(s)]

< max (wy — wz)Tgh(s, a) + 51H$h(5, a,)‘

At —52H<Eh(8,a)‘

At

(B~ Ba)||n(s, )

< [lwr — wally + max

Hﬁgh(saa)‘ A

1

+ p max ot o]

ATt

< Jlwr —wally + 81 — Ba| + BméiX \/Hah(S,a)‘ At H(/b\h(svaJH (Amin(A1) > 1)

At

< Jhor —wally + [B1 — B2l + By/[|AT! = Ay

27

Vla—b|
where we used for any a,b > 0, we have ‘\/E— \/l;‘ = \/aﬂ/l;\/\a — b < y/|la—10b]. Now
proceeding like the Lemma 8.6 in the RL. Theory Monograph (Agarwal et al., 2019), we have the

result. |

In this section, we’ll use the following bonus scaling parameter,

Bi=0 (\/Ndsmst + My M, d+/log(dN My, /5)). )

The following high probability event (&,,,04¢1) is a key step in our proof. Essentially, Theorem 13
guarantees that, for all functions in V},, the model we learn is an accurate predictor of the expectation,
up to a bonus and some vanishing terms.

For all the following lemmas and theorems, suppose Assumption H.1 and the bonus scaling £ is set
as in (9). Throughout the section, (;(73,) refers to indicator functions of the trajectory 7, where
T = (S0, S1, ..., Sp). As before, the expectations E-[g(7)] are with respect to the distribution of
trajectories when  is executed in the environment P*.
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Theorem 13 Let § € (0,1). Then, wp. 1 — 6, for any time h, episode e, indicator functions
(1, -.,CH, and policy 7, we have

sup
fevy

Exr [ (Prc(ns an) = Pi(snsan) ) £Ga(m0)] | < BE[E5 (51, n)Ga ()] + [VillooEims:
(gmodel)

Proof Condition on the outcome of Lemma H.5, which implies that w.p. 1 — 4, for any h, e, 7, (3,
we have

sup
fE€VR

Ex [(ﬁh,e(sh,ah) - ﬁh(smah))fCh(Th)} ‘ < BE by, (5h, an)Cr(Th)]-

Also, for any h, e, 7, (j, by Assumption H.1, we have (w.p. 1) that

fS;lSl Ex [(ﬁh(«% an) — Py (sn, @h))fgh(Th)} ‘ < Er [fsél\i (f’h(«% an) — Py (sn, ah))f‘Ch(Th)]
< Er [SUP (ﬁh(Sm an) — Pi(sh, ah))f‘]
fE€VH

S ”Vh”oogms-

Combining these two yields the result, as

sup (Ex [(ﬁh,e(Sh, an) — Py (sn, ah))fCh(Th)] )
fEVH
< J?él\% E, [(ﬁh(sh,ah) - Pf:(sh’ah)>fCh(7'h)} + ;él\i E, [(ﬁh,e(shaah) - ﬁh(sh,ah))fgh(Th)} ‘

Lemma H.5 Suppose Assumption H.1 and the bonus scaling (3 is set as in (9). For any ¢ € (0, 1),
w.p. at least 1 — §, we have for any time h, episode e, and policy T,

Vsp, ap @ sup
feVh

(ﬁh,e(Sh, ap) — ﬁh(Shﬂh))f’ < Bbhe(sh,an).

Proof Consider any h, e, 7. Define ef := —6(3’,2“) + Pg(s’fl+1|sﬁ, a¥), so that E[e¥ | Hy_1] = 0,
where Hj,_1 contains the states and actions before episode k. In what follows, we slightly abuse
notation, as P(s, a)ggT (s,a) will denote the outer product, and hence a R5*¢ quantity.

e—1

ﬁh,eAh,e = Z 5($ﬁ+1)¢h(slfw ag)T
k=1
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e—1 e—1
(P sk af) = Pa(sh, b)) (s ab)™ + D7 (Palsh. af) — <k ) dn(sh, af)”
k=1 k=0
e—1 B R e—1 R
<Pﬁ(527 ay) — Pu(st, aﬁ))¢ (sk,af)" + fin(Ape — I) — <Z endn(sh, aﬁﬁ) :
k=1 k=0

Rearranging, we have

e—1
[ih,e — [th = (Z <P*(5h7 ah) Ph(sha ah))¢h(shv ah)

k=0

>(Ah 6)

- Hh, Ahe <Z5h¢h Shvah )(Ah,e)l

Now let f € V}, be arbitrary. For any sy, aj, multiply the above with ggh(sh, ap,) and multiply with

f, we have

‘(ﬁh,e(sh,ah) - ﬁh(sh,ah))f’

- ‘fT(ﬁh,e — Fin) dn (s, ah)‘

e—1
fT<Z(Ph<sh,ah> Pu(shaf) ) dn(sh. af)" )Ahem(sh,ah)

k=1

/

Term(a)
fTﬂhA;:éQAsh(Sha an) ‘
Term(b)

e—1
/T <Z 5h¢h 5h7 ah)

k=1

)Ah Lon(sn, an)| .

-~

Term(c)

We can deterministically bound Term (b) as follows,

sup fTﬁhAﬁécgh(Sh,ah)’
fE€VH
= sup |(A _1/2fT~) (A}:éﬂ(gh(shvah))’
fE€VH
1/2 T
< sup ‘A H I\f Bnll2bn.e(sh, an)
f€VH
< | Valloo MV dby, o (sh, an). (by Assumption H.1)

This term will be lower order compared to the other two.
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We now derive the bound for Term (c) for any fixed f € V. Observe that

T
= ( _1/22% (shrap)(fTe )> (A}_L;ﬂﬁgh(shyah))

k=1

/T (Z eron(sk, af) ) Aptén(snyan)

k=1

IN

bhe(sn,an).
Ao

e—1
> onlsh ap)(f"eh)
k=1

Now we argue w.p. 1 — ¢, for any e, h we have

e—1
> onlsh af)(f"eh)

k=1

< (zuvh\\oo%?log(l/é) +dlog(N + 1))’

—1
Ah,e

which implies the claim about all s, ay. Indeed, we can apply Lemma H.1. Checking the precondi-
tions, Eps (s, ay) [fTeh | He1] = 0,0 < |fTef] < | fllssllefllt < 2 Valloos det(So) = det I =

1, and det(%;) = det(Ap ) < (e + 1)9 since the largest eigenvalue is e + 1. So, w.p. at least 1 — 6,

for all e, we have the above inequality.

Thus, for any fixed f € V,, w.p. 1 — 6, for all e, h we have,

‘(ﬁh,e(shy ap) — ﬁh(sh,ah))f‘
< Term(a) + Term(b) + Term(c)

< (4lVhlloe (1 4 14,) V108(1/8) + d1og(N) + VAN [VillooEms ) re(5n: a1)
1Valoc MV )b (315 1)

(4111100 V/108(1/8) + d10g(N) )b (51 an)
(VAN Valloozms + Vi lloo My /108(1/6) + d10g(N) )by (51, an).

N+ F

Now we apply a covering argument. Namely, union bound the above argument to every element in
an e,¢e-net of Vy,. For any f € Vy,, let f be its neighbor in the net s.t. || f — f||co < Enet, SO We have

‘(ﬁh,e(sh,ah) - f’h(sh,ah))f’ < ‘(ﬁh,e(Sh,Gh) - ﬁh(smah))ﬂ + ’(ﬁh@(sh,ah) - ﬁh<3h,ah)>(f— f)’
and
‘(ﬁh,e(sh,ah) - ﬁh(sh,ah))(f— f)‘ <f = Fllso(N 4+ 1) < eperN.

Setting €,,.; = I, the metric entropy is of the order d log(N (My + B)) +log(BN) +d? log(BdN).
The error incurred with this epsilon net is a constant, which is lower order.
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Thus, we have

Vsp, ap, : sup (ﬁh’e(sh, ap) — ﬁh(sh, ah))f‘

fEVH

S (VAN Villoozms + [VillooMyuy/10g(1/) + dlog(My) + & 10g(BAN) )by e(5n, an)

< (\/dNMvsms + My M,,\/log(1/8) + dlog(My) + d2 log(BdN)) bhe (s, an)

Note that (3 scales as v/log B, so one can find a valid B by solving 5 < B for B.

Lemma H.6 Let f € V. Forany § € (0,1), w.p. at least 1 — 0, for any time h, episode e, we have

e—1
Vsn, an : |fT (Z Pi(sy,af) — Pa(sh, aﬁ)) én(sh, af)" Ay Lon(sn, an)
k=1

< (4Vhlloe (1 + M) /08(1/3) + dlog(N) + VAN [Vilocms ) be 51, 1)

Proof First observe that

e—1
fr (Z(Pﬁ(s’,ﬁ, af) — findn(sk, af))on(sk, a’Z)T> A;:,iah(sm an)

k=1

e—1 T
= (Ah,i”Z¢h<sz,aﬁ>fT<P;<sﬁ,aﬁ>—ﬁmh(sz,aﬁ))) (A n(snsan))
k=1

bhe(sn,an),
Ao

e—1 N
> onlsh, af)én
k=1

where £, = (Pg(sfl, ar) — JSh(s’fL, ak)>f.

Now we will argue that w.p. 1 — 6, for all e, h,

< (41Vhlloo (1 + M) v/10g(1/3) + d10g(N) + VAN [Vilsoerms ).
Ane

e—1 R
> onlsh, ai)ex
k=1

which will imply the claim for all s, ap,.

Apply self-normalized martingale concentration (Lemma H.1) to X; = ¢y, (s, al ) and g; = &; —
E[g; | Hi—1], where the expectation is over (s}, aj},) in the definition of &;. To see sub-Gaussianity,
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bound the envelope, || < HfHooHP;(s’fL,aﬁ)—ﬁhah(sﬁ,a’g)\hv < ||[Vn|loo(14M,,), and thus o <
I€k] < 2[|[Vh|loo(1 + M,,). Now compute the determinants: det(Aj o) = 1 and since Apax(Ap ) <
e+ 1, we have that log det(Ay, o) < dlog(e + 1). Hence, w.p. at least 1 — J, we have

Ve : < 2 Valloo (1 + My)v/210g(1/8) + dlog(N +1).

-1
Ah,e

e—1
> sk, ap) @ — B[ | i)
k=1

By Assumption H.1 applied to ¥ (the data-generating policy for episode k), we have |E[&}, | Hi_1]] <
| Vh|looEms. Recall for any scalars ¢; and vectors z;, we have || > cizs|| < >, lcil|lzs| <
\ 22i €/ 2 [l Thus,
e—1 R
> Onlsh, ai)EEx | Hy-1]
h=t A
e—1 R e—1
<\ D lon(shaf)li- | > _ElEwk | Hia)®
k=1 e\ k=1
< \/g\/ (e = DIVhllcoEms- (by Lemma H.2)
Combining these two bounds concludes the proof.
|

Lemma H.7 (Optimism) Suppose (E,0de1) holds. Let v = ||Vy||lco€ms. Then, for any episode
e=1,2,...,N, we have

Vh=0,1,... H—1:Eq [(QZ(Sh,ah) - @h,e(sh,ah))gh(Th)} < (H —h)e,
and
Vh=01,. H—1:En [(v,;(sh) - Vh,e(sh))gh_l(m_l)] < (H - h),
where

Cn(sn) = H{Q\h,e(sha%i(sh)) < MV]
h
Cu(rn) = T Cwlsm)-
h'=0
Abusing notation, (_1(-) is the constant function 1.

In particular, we have that

Ea, | Vi (s0) — Voe(s0)| < He.
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Proof Fix any episode e. We prove both claims via inductionon h = H, H — 1, H — 2...,1,0. The
base case holds trivially since V7 . and V7}; are zero at every state by definition. Indeed, we have that
for any 7, including 7*, that

Er [(Pﬁ,_l(stl, ag-1) (Vi — ‘/}H,e))ngl(THfl)}
=E[(0 - 0)¢u-1(TH-1)] = 0.
Now let’s show the inductive step. Let h € {H — 1, H — 2, ..., 1,0} be arbitrary and suppose the

inductive hypothesis. So suppose that VV-optimism holds at h + 1 (we don’t even need -optimism
in the future), i.e.

Eqx [(Pff(sm an) (Vg1 — ‘7h+1,e))4h(7'h)} = Ex [(Vh*ﬂ(shﬂ) - ‘7h+1,e(5h+1))<h(7'h)}
<(H-h—1) (IH)

Recalling that Qp, (51, an) = 71(sh, an) + Phe(sn, an)Vii1,e + Bbhe(sn, an), we have
Ex [(QZ(Sh, an) = Qne(sn, ah))(h(Th)}

=E;+ [(Pff(sm an) Vi, — ﬁh,e(sm ah)‘/}h—i-l,e — Bbpe(sn, ah))(h(Th)}
E

o [((Pﬁ(Sh, an) — Pr(sn, ah))‘7h+1,e — Bbpe(sh, ah))(h(Th)} +(H—-h—1)

(by (IH))

< |Eps [(ﬁh,e(sha an) — Py (sp, ah))‘/}h-i-l,eCh(Th)} ‘ — Ere [Bbn,e(sn, an)Ch(mh)] + (H —h — 1)
<1+ (H—h—1)=(H—h), (by (Emoder) and Vi1, € Vi, (Lemma H.3))
which proves the (Q-optimism claim.
Now let’s prove V -optimism.

E {(Vh* Sh) — ‘/}h,e(sh)>Ch—1(Th—1)]

=Eﬂ*[ Qo) = (@nelon 7)) )ch_lm_l)]

= B [(Q% (8hyan) — My )Ch—1(Th—1)(1 = Cu(sn))]

+EW*[<Q2(Sh,ah) Qne(sn, 75 (1 ))Ch 1(Th=1)Cn Sh)}

< Epe [(Q;*Z(Sh,ah) Qn.e(sn, 75 (sn)) )Ch (Tn) }

< Egp [(QE(Sh,ah) Qhe Shy Th(Sn) )Ch Th }

< (H — h),
by Q-optimism. |
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Remark 14 We did not require Py, . to be a valid transition! It is in general unbounded and can
even have negative entries!

Lemma H.8 (Simulation) For any episode e = 1,2, ..., N, we have

Edo | Vo,e(s0) — V§™ (50 } < Z 7 e|:bhe Shsan) + (Ph(sn, an) _Plt(sh:ah))f}thl,e]]

Proof We progressively unravel the left hand side. For any s,
Voe(s0) = V& (50)
< Qo.e(s0,5(50)) — QF (50, 7(50))
= bo.e(50, 5 (5)) + (Po.c(s0, m5(5) = Py (50, 3 (50)) ) Vi + B (s0, 76 (50)) (Ve = V1),

where the inequality is due to the thresholding on the value function. Now, perform this recursively
on the Pj(sq, 75(s0)) <‘716 - Vl”e> term. Doing this unravelling h times gives the result. [ |

Theorem 15 Suppose Assumption H.1. Then, for any § € (0,1), w.p. at least 1 — §, we have that
Lsvi-UCB (with (3 set to (9)) has regret at most,

N-1
-3 V< (5(dHNMV\/10g(HN/5)5mS +dYHVNMy M, 1og(dHN/5))
e=0

where O hides log dependence.

Proof We first condition on the high-probability event (£,,04¢1), Which occurs w.p. at least 1 — J. Fix
any arbitrary episode e. By optimism Lemma H.7 and the simulation lemma Lemma H.8,

Eao |V (s0) = Vi (s0)| < Eao [?ﬁsw — V§ (s0)] + He
< Z Eze [ﬁbh Sh, ah) (ﬁh,e(5h7 ah) — P,f(sh, ah))‘/}thLe} + H.

Applying (&,,04e1) With no indicators, i.e. (,(75) = 1 always, gives,

< Z Eze [28bn.e(sh, an)] + 2H¢.

Now, summing over e = 1,2, ..., N, we have
N
> By |V (50) = Vi (s0)
e=1
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H-1 N

<2HNt+28 > Eae by e(sn, an)]

h=0 e=1

By Azuma’s inequality applied to the martingale difference A, = Eze[bp, (51, an)] — bre (S5, af),
which has envelope bounded by 2, implies w.p. 1 — 4,

H-1 N

<2HNL+28> > bue(ss,af) +48+/Nlog(HN/J).

h=0 e=1
It remains to bound the sum of expected bonuses. By Lemma H.2, we know that almost surely,

H-1

N
> bnelss,a5) < Hy/dNlog(N).

h=0 e=1

So, putting everything together,

S E, V& (50) = Vi (s0)]
e=1

S HNu+ BHA/dNlog(N) + 51/ N log(HN/9d)
< HN.+ (\/dNMvems + MVM#d\/log(dHN/5)> - H+/dN log(HN/$)
= HNv+ dHN My +/log(HN/6)ems + d*> HV'N My M, log(dHN/§).

Note that He = H ||V||coEms = H My ems is of lower order (with respect to V), we can simply drop
it. This concludes the proof. |

Corollary 16 By setting 6 = 1/N, we have that expected regret also has the same rate as above.

Proof The expected regret by law of total probability, since regret is at most N H,

E[RegN] E[RegN | (&nodel)] + NH(l - P((gmodel)))

<
< E[RegN | (gwwdel)] + H.

Since H is lower-order, we have the same rate. |

Appendix I. Proof of Main Theorems

First we prove Theorem 5 and Theorem 3.
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Theorem 5 (REPTRANSFER) Suppose Assumptions 2.1,2.2,3.1,3.3, and 1y, is Amin-exploratory for
each source task k. Then, for any 6 € (0, 1), wp. 1 — 6, REPTRANSFER when deployed in the target

task has regret at most O (&H 2d%5\/Tlog(1/ 5)) with at most Kn generative accesses per source

task, with n = (’)(/\;ﬁlnAailaxKT <log % + Klog \T\))

Theorem 3 (Regret under generative source access) Suppose Assumptions 2.1,2.2,3.1,3.2,3.3 hold,
and fix any § € (0,1). Then, running REPTRANSFER with policies from EPS (parameters set as in

Lemma 3.1) has regret in the target task of@(o‘szdl'E’ T log(l/é)), with at most

(5(A4a3 dPHTK?Ty~*(log(|®|/8) + K log|Y|)) generative accesses per source task.

max

Proof [Proof of Theorem 5 and Theorem 3] For the regret bound, set My = H and M,, = & and
apply Theorem 15. This choice of M), is valid by the argument following Assumption H.1. This
gives us a regret bound of

O(dH?Tes + ad"* H*VTlog(1/9) ),
where &,,s can be made smaller than 1/ /T, in which the second term dominates.
Now, we calculate the pre-training phase sample complexity in a source task.
First, let’s calculate the reward-free model learning sample complexity, i.e. this is the number

of samples required for learning ng Recall that we need this to be sufficiently large such that
ery = 1/Npsvi-ucs- As required by Lemma 3.1, we need,

NREWARDFREE = 6(A3d4H6 log(|®| ’T’/(S)NESVI—UCB)
- 6(A3d4H6 log(|®[|T|/5) (A?’dﬁHSw—?)Q)
= O(A%d* H?)p* 1og(|1D||T]/9)).

Second, we calculate the cross-sampling sample complexity. Recall that n is the number of samples
in each pairwise dataset. In order to reduce €, to 1/ VT, by Lemma 3.2, we need

1VT < ema < (A3 o K /Amin) N/ o

1 o
< (A0S K [ Ain) 2\/ - <1og y + Klog !T!> (by (3))
which implies that we need

P
n <AL Aod KT(Iogy| + Klog|T|).

min max 5
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Incorporating the coverage result from Lemma 3.1 gives,

n < A*a?

max

P
AH KTy2 <1og u + K log m).

Since each task is in at most K — 2 pairwise datasets, each of size n, the total pre-training sample
complexity per task is at most,
NREWARDEREE + (K - 2) 'n

=0 <A9d16H221,Z)_4 log(|®||Y[/8) + A'ad, d°H K*Ty~2 <10g ((I;' + K log |T|> ) :

Now we prove Theorem 7, restated below.

Theorem 7 (Regret with online access) Suppose Assumptions 2.1-2.2,4.1,4.2 hold. W.p. 1 — 6,
Algorithm 4 with appropriate parameters achieves a regret in the target O (dd1'5H 2/Tlog(1/6 )),
with poly (A, amax, d, H, K, T, 1, 1b;oh,, 10g(|®||Y|/8)) online queries in the source tasks.

Proof [Proof of Theorem 7] We follows the same format as the proof of Theorem 5. The regret
bound is identical.

Now let’s compute the pre-training sample complexity. The regret bound requires us to set €, <
1/v/T. Here, our &,,,5 comes from Lemma G.1, so

max K21 ®

which implies we need

a2 K |D|
< " llog— + Klog|Y]||.
"= wrawAmin<Og 6 + 0g| |>
Plugging in the coverage of Lemma 3.1,
2 KT o _
n < %% <log u + K log |T|> (A3d°H"y?) !
raw
A2 APH'KT ||
< L log — + Klog |T] ).
= T pat? <°g 5 Aol ’)

Here, we only collect one dataset, so the total pre-training sample complexity is

NRewarDFREE + 10
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=0 <A9d16H22¢4 log(|®|T|/8) + A2, d®HT KT} o2 <log f' + K log m) > .

Appendix J. Experiment Details
J.1. Construction of Comblock

In this section we first introduce the vanilla Combination lock (Comblock) environment that is
widely used as the benchmark for algorithms for Block MDPs. We provide a visualization of the
comblock environment in Fig. 1(a). Concretely, the environment has a horizon H, and 3 latent states
i, € {0, 1,2} for each timestep h and 10 actions. Among the three latent states, we denote zp, 21
as the good states which leads to the final reward and 22 as the bad states. At the beginning of the
task, the environment will uniformly and independent sample 1 out of the 10 actions for each good
state zp., and z1,;, for each timestep h, and we denote these actions ay.j, a1.;, as the optimal actions
(corresponding to each latent state). These optimal actions, along with the task itself, determines the
dynamics of the environment. At each good latent state sq.;, or s1.5, if the agent takes the correct
action, the environment transits to the either good state at the next timestep (i.€., So:h+1, S1;h+1)
with equal probability. Otherwise, if the agent takes any 9 of the bad actions, the environment will
transition to the bad state so.;, 11 deterministicly, and the bad states transit to only bad states at the
next timestep deterministicly. There are two situations where the agent receives a reward: one is
uponing arriving the good states at the last timestep, the agent receives a reward of 1. The other is
upon the first ever transition into the bad state, the agent receives an “anti-shaped” reward of 0.1 with
probability 0.5. Such design makes greedy algorithms without strategic exploration such as policy
optimization methods easily fail. For the initial state distribution, the environment starts in sg.o or
51,0 with equal probability. The dimension of the observation is 2 [log(H+ISI+1)] For the emission
distribution, given a latent state s;.j,, the observation is generated by first concatenate the one hot
vectors of the state and the horizon, adding i.i.d. N(0,0.1) noise at each entry, appending O at the
end if necessary. Then finally we apply a linear transfermation on the observation with a Hadamard
matrix. Note that without a good feature or strategic exploration, it takes 10 actions to reach the
final goal with random actions.

J.2. Construction of transfer setup in the observational coverage setting

In this section we introduce the detailed construction of our first experiment. For the source
environment, we simply generate 5 random vanilla comblock environment described in Section.J.1.
Note that in this way we ensure that the emission distribution shares across the sources, but the latent
dynamics are different because the optimal actions are independently randomly selected. For the
target environment, for each timestep h, we randomly acquire the optimal actions at h from one of
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the sources and set it to be the optimal action of the target environment at timestep h, if the selected
optimal actions are different for the two good states. Otherwise we keep sampling until they are
different. Note that under such construction, since we fix the emission distribution, Assumption 2.2
is satisfied if we set o = 1 for the source environment where we select the optimal action and o = 0
for the other sources, at each timestep. To see how Assumption 4.1 is satisfied, recall that comblock
environment naturally satisfies Assumption 3.2, and identical emission implies that the conditional
ratio of all observations between source and target is 1.

J.3. Construction of transfer setup in feature coverage setting

Now we introduce the construction of the Comblock with Partitioned Observation (Comblock-
PO) environment, which we use in our second experiment. Comparing with the vanilla comblock
environment, the major difference is in the observation space. In this setting, the size of the
observation depends on the number of source environments K. Let the size of the original observation
space be O = |O|, the size of the observation for comblock-PO is KO. For the k-th source
environment, where k& € [K], the environment first generates the O-dimensional observation vector
as in the original comblock, and then embed it to the (kK — 1)O-th to kO-th entries of the KO-
dimensional observation vector, where it is O everywhere else. Thus we can see that the observation
space for each source environment is disjoint (and thus the name partitioned observations). For the
target enviornment, since the latent dynamcis are the same, we only need to design the emission
distribution: for each latent state s;.,, we assign the emission distribution uniformly at random from
one of the sources.

J.4. Implementation details

Our implementation builds on BRIEE (Zhang et al., 2022). 2. In the Multi-task REPLEARN stage,
we requires our learned feature to predict the Bellman backup of all the sources simultaneously.
Therefore, in each iteration we have k discriminators and k sets of linear weights (instead of 1 in
BRIEE), where k is the number of source environments. For the deployment stage we implement
LSVI following Algorithm 5.

To create the training dataset for Multi-task REPLEARN, for each (4, j) environment pairs where
i # j, we collect 500 samples for each timestep h. For each (i,4) environment pairs, we collect
500 x (k — 1) x k samples for each timestep h, where k denotes the number of sources. Thus we
ensure that the number of samples from cross transition of different environments is the same as the
number of samples from cross transition of the same environment. For the online setting, we simply
sample 1000 x (k — 1) x k samples for each (i, i) cross transition to ensure that the total number of
samples is the same for G-REPTRANSFER and O-REPTRANSFER.

To sample the initial state action pair (i.e., (5, a) pair as in (1)), for 90% of the samples, we follow
the final policy from each source environment trained using BRIEE. For the remaining 10%, we

2. Code based on public repository: https://github.com/yudasong/briee.
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follow the same policy to state s, and then take a uniform random policy to get a. With this
sampling scheme we ensure that Assumption 3.2 is satisfied. In the setting of Section. ??, we
follow a more simple procedure to ensure that the samples are more balanced among the three
states: we skip the first sampling step from environment ¢ (i.e., sample s given (3, a@)), and simply
reset environment ¢ to s, where s is one of the three states with equal probability, and generate the
observation accordingly. Note that such visitation distribution is also possible in the online setting
with a more nuanced sampling procedure, and in the experiment we use the same sampling procedure
for both G-REPTRANSFER and O-REPTRANSFER for a fair comparison.

J.5. Hyperparameters

In this section, we record the hyperparameters we try and the final hyperparameter we use for each
baselines. The hyperparameters for REPTRANSFER in the first experiment is in Table. 3. The
hyperparameters for REPTRANSFER in the second experiment is in Table. 4. The hyperparameters
for BRIEE is in Table. 5. We use the same set of hyperparameters for G-REPTRANSFER and
O-REPTRANSFER.

Table 3: Hyperparameters for REPTRANSFER in Comblock.

Value Considered Final Value

Decoder ¢ learning rate {1e-2} le-2
Discriminator f learning rate {le-2} le-2
Discriminator f hidden layer size {256} 256
RepLearn Iteration 7' {30} 30
Decoder ¢ number of gradient steps {64} 64
Discriminator f number of gradient steps {64} 64
Decoder ¢ batch size {256} 256
Discriminator f batch size {512} 512
RepLearn regularization coefficient {0.01} 0.01
Decoder ¢ softmax temperature {1} 1
Decoder ¢ softmax temperature {0.1} 0.1
LSVI bonus coefficient 3 (1,4} 1
LSVI regularization coefficient A {1} 1
Buffer size {1e5} le5
Update frequency {50} 50
Optimizer {SGD} SGD
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Table 4: Hyperparameters for REPTRANSFER in Comblock-PO.

Value Considered Final Value

Decoder ¢ learning rate {le-2} le-2

Discriminator f learning rate {le-2} le-2

Discriminator f hidden layer size {256,512} 256
Discriminator f hidden layer number {2,3} 3
RepLearn Iteration T’ {30,40,50,100,150} 50
Decoder ¢ number of gradient steps {64,80,128,256} 64
Discriminator f number of gradient steps {64,80,128,256} 64

Decoder ¢ batch size {256,512} 512

Discriminator f batch size {256,512} 512

RepLearn regularization coefficient A {0.01} 0.01
Decoder ¢ softmax temperature {1} 1
Decoder ¢( softmax temperature {0.1,1} 1
LSVI bonus coefficient 3 (1,2} 1
LSVI regularization coefficient A {1} 1

Buffer size {1e5} le5

Update frequency {50} 50

Optimizer {SGD, Adam} Adam

Table 5: Hyperparameters for BRIEE in Comblock and Comblock-PO.

Value Considered Final Value

Decoder ¢ learning rate {1e-2} le-2
Discriminator f learning rate {le-2} le-2
Discriminator f hidden layer size {256} 256
RepLearn Iteration T’ {30} 30
Decoder ¢ number of gradient steps {64} 64
Discriminator f number of gradient steps {64} 64
Decoder ¢ batch size {512} 512
Discriminator f batch size {512} 512
RepLearn regularization coefficient A {0.01} 0.01
Decoder ¢ softmax temperature {1} 1
Decoder ¢ softmax temperature {0.1} 0.1
LSVI bonus coefficient 3 {%} %
LSVI regularization coefficient A {1} 1
Buffer size {1e5} le5
Update frequency {50} 50

J.6. Visualizations

In this section we provide a comprehensive visualization of the decoders for all baselines in the
target environment. We observe that the behaviors of all baselines are similar across the 5 random
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seeds. Thus to avoid redundancy, we only show the visualization from 1 random seed. We provide
an example in Fig. 3 on how to interpret the visualization: let the emission function of the target
environment be o, and let the decoder that we are evaluating be ¢, and to generate the blue block
in Fig. 3, we sample 30 observations {s, iozlfrom the target environment at z1 13, the latent state
1 (the title of the subplot) from timestep 13 (the x-axis). Concretely, {s,}3%; ~ o(- | z1.13)-
The blue block denotes the three-dimensional decoded latent states Z from these 30 observations:

2= g5 Ynl1 $sn).

In Figure. 2, we provide a runnning example that explains the results showed in Figure. 1 (b). We
then follow the detailed visualizations in the following sections.

J.6.1. VISUALIZATIONS FROM THE OBSERVATIONAL COVERAGE EXPERIMENT

We record the visualization of the 5 sources from Fig. 3 to Fig. 7; O-REPTRANSFER in Fig.S§;
G-REPTRANSFER in Fig. 9; running BRIEE on target in Fig. 10.

J.6.2. VISUALIZATIONS FROM THE FEATURE COVERAGE EXPERIMENT

We record the visualization of the 2 sources from Fig. 11 and Fig. 12; O-REPTRANSFER in Fig.13;
G-REPTRANSFER in Fig. 14; running BRIEE on target in Fig. 15. Note that the features collapse at
some timesteps in Fig. 14 and Fig. 15, but this is acceptable because the optimal actions at those
timesteps are the same for the collapsed states.
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Figure 2: (a): Visualization of the decoder source (top) and G-REPTRANSFER (bottom). (b):
Visualization of the decoder O-REPTRANSFER (top) and G-REPTRANSFER (bottom). For each
baseline, The A-th column in the i-th image denotes the averaged decoded states from the 30
observations generated by latent state z; 5, for ¢ € {0,1,2} and h € [25], from the corresponding
target environment. The optimal decoder should recover the latent states up to a permutation. In Fig
a (top), note that the learned features in source task fail to solve the target because of the collapse at
timestep 5: both observations from state 0 and 1 are mapped to state 0. Note in the source task where
this feature is trained, such collapse can happen when state 0 and 1 have identical latent transition
(for detailed discussion we refer to Misra et al. (2020)). In Fig b (top), REPTRANSFER with only
online access learns an incorrect decoder when the source tasks’ observation spaces are disjoint. This
is because the learned feature can decode each source task with a different permutation.
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Figure 3: Visualization of decoders from source 1. Note the collapse happens at timestep 5, 9 and 17.
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Figure 4: Visualization of decoders from source 2. Note the collapse happens at timestep 1 and 10.
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Figure 5: Visualization of decoders from source 3. Note the collapse happens at timestep 14 and 15.
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Figure 6: Visualization of decoders from source 4. Note the collapse happens at timestep 7, 16, 24.
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Figure 7: Visualization of decoders from source 3. Note the collapse happens at timestep 13 and 16.
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Figure 8: Visualization of decoders from O-REPTRANSFER
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Figure 9: Visualization of decoders from G-REPTRANSFER
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Figure 10: Visualization of decoders from running BRIEE on target.
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Figure 11: Visualization of decoders from source environment 1.
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Figure 12: Visualization of decoders from source environment 2.
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Figure 13: Visualization of decoders from O-REPTRANSFER.
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Figure 14: Visualization of decoders from G-REPTRANSFER.
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Figure 15: Visualization of decoders running BRIEE in the target.
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