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Abstract
We study the problem of representational transfer in RL, where an agent first pretrains in a number
of source tasks to discover a shared representation, which is subsequently used to learn a good
policy in a target task. We propose a new notion of task relatedness between source and target tasks,
and develop a novel approach for representational transfer under this assumption. Concretely, we
show that given a generative access to source tasks, we can discover a representation, using which
subsequent linear RL techniques quickly converge to a near-optimal policy in the target task. The
sample complexity is close to knowing the ground truth features in the target task, and comparable
to prior representation learning results in the source tasks. We complement our positive results with
lower bounds without generative access, and validate our findings with empirical evaluation on
rich observation MDPs that require deep exploration. In our experiments, we observe speed up in
learning in the target by pre-training, and also validate the need for generative access in source tasks.
Keywords: Transfer Learning, Low-Rank MDPs, Reinforcement Learning Theory.

1. Introduction

Leveraging historical experiences acquired in learning past skills to accelerate the learning of a new
skill is a hallmark of intelligent behavior. In this paper, we study this question in the context of
reinforcement learning (RL). Specifically, we consider a setting where the learner is exposed to
multiple tasks and ask the following question:

Can we accelerate RL by sharing representations across multiple related tasks?
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There is rich empirical literature which studies multiple approaches to this question and various
paradigms for instantiating it. For instance, in a multi-task learning scenario, the learner has simul-
taneous access to different tasks and tries to improve the sample complexity by sharing data across
them (Caruana, 1997). Other works study a transfer learning setting, where the learner has access
to multiple source tasks during a pre-training phase, followed by a target task (Pan and Yang, 2009).
The goal is to learn features and/or a policy which can be quickly adapted to succeed in the target
task. More generally, the paradigms of meta-learning (Finn et al., 2017), lifelong learning (Parisi
et al., 2019) and curriculum learning (Bengio et al., 2009) also consider related questions.

On the theoretical side, questions of representation learning have received an increased recent
emphasis owing to their practical significance, both in supervised learning and RL settings. In RL, a
limited form of transfer learning across multiple downstream reward functions is enabled by several
recent reward-free representation learning approaches (Jin et al., 2020a; Zhang et al., 2020; Wang
et al., 2020; Du et al., 2019; Misra et al., 2020; Agarwal et al., 2020; Modi et al., 2021). Inspired
by recent treatments of representation transfer in supervised (Maurer et al., 2016; Du et al., 2020)
and imitation learning (Arora et al., 2020), some works also study more general task collections in
bandits (Hu et al., 2021; Yang et al., 2020, 2022) and RL (Hu et al., 2021; Lu et al., 2021). Almost
all these works study settings where the representation is frozen after pre-training in the source tasks,
and a linear policy or optimal value function approximation is trained in the target task using these
learned features. This setting, which we call representational transfer, is the main focus of our paper.

A crucial question in formalizing representational transfer settings is the notion of similarity
between source and target tasks. Prior works in supervised learning make the stringent assumption
that the covariates x follow the same underlying distribution in all the tasks, and only the conditional
P (y|x) can vary across tasks (Du et al., 2020). This assumption does not nicely generalize to RL
settings, where state distributions are typically policy dependent, and prior extensions to RL (Lu
et al., 2021; Cheng et al., 2022) resulted in strong assumptions during the learning setup.
With this context, we summarize our main contributions below.

• Task relatedness: We propose a new state-dependent linear span assumption of task related-
ness and give examples captured by this setting. Our formulation generalizes all prior settings
for representational transfer in RL, e.g., Cheng et al. (2022).

• Transfer guarantees under weaker assumptions: We propose a transfer RL algorithm
REPTRANSFER and prove that it pre-trains a representation for downstream online learning in
any target task satisfying the linear span assumption. Our algorithm employs a novel cross-
sampling procedure made possible by generative access in the source tasks. Our key result is
that the target task regret almost matches (up to a task-relatedness constant) that of learning in
a linear MDP with known features, the strongest possible benchmark to compete with. Our
regret bounds for REPTRANSFER hold under significantly weaker coverage assumptions than
prior works, and we do not require any generalization assumptions. We highlight one key
technical contribution is a novel analysis of LSVI-UCB (Jin et al., 2020b) attains regret under
an average-case misspecified linear MDP.

• Lower bound without generative access: We further show a counter-example where repre-
sentational transfer fails without generative access under our assumptions. As a partial remedy,
we posit that every observed state is reachable in each source task, and show a modification
of REPTRANSFER is still sufficient for transfer learning with only online access. While strong,
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Task-relatedness Access type
(source/target) Reachability Generalization

(assumption)
Lu et al.
(2021)

Full rank LSVI weight
matrix from source Gen/Gen Distribution q (given)

covers observations
err(s, a) 

CEq[err]8s, a
Cheng et al.

(2022)
P ?

target(s
0|s, a) =

P
K

i=1 ↵iP ?

i
(s0|s, a)

On/On Observational
reachability

err(s, a) 
CEUnif[err]8s, a

Theorem 3
(this paper)

P ?
target(s

0|s, a) =
P

K

i=1 ↵i(s0)P ?

i
(s0|s, a)

Gen/On Feature reachability
(�?) None

Theorem 7
(this paper)

P ?
target(s

0|s, a) =
P

K

i=1 ↵i(s0)P ?

i
(s0|s, a)

On/On Observational
reachability None

Theorem 6
(lower bound)

P ?
target(s

0|s, a) =
P

K

i=1 ↵i(s0)P ?

i
(s0|s, a)

On/On Feature reachability
(�?) None

Table 1: Assumptions for representational transfer in low-rank MDPs. “Gen” and “On” refer to
generative or online access to source and target tasks. Feature reachability means that each source
task a policy with a full rank covariance under the features �? (Assumption 3.2). Observational
reachability requires each high-dimensional raw observation to be reachability with some lower
bounded probability (Assumption 4.1). The last row is a lower bound which precludes learning under
the assumptions of Theorem 3 without generative access in the source tasks.

this observational reachability assumption still generalizes prior results in transfer RL, e.g.,
Cheng et al. (2022).

• Empirical validation: We empirically validate REPTRANSFER on a challenging benchmark
(Misra et al., 2020), and show that REPTRANSFER saves an order of magnitude of target
samples compared to training from scratch using the SOTA Block MDP algorithm BRIEE.

Our intermediate results may also be of independent interest: (1) to pre-train a representation, we
developed an oracle-efficient reward-free exploration algorithm for low-rank MDPs, (2) to transfer
the pre-trained representation to the target task, we develop a new analysis for linear MDP under an
average case model misspecification extending prior work which relies on a much stronger `1 style
model misspecification (Jin et al., 2020b).

1.1. Related Work

Transfer Learning in Low-rank MDPs. The closest work to ours is Cheng et al. (2022), which
also performs reward-free exploration in the source tasks for representation learning, and use the
learned representation in the target task to perform online learning. Cheng et al. (2022) proposed a
linear span assumption with globally fixed coefficients, which is generalized by our state-dependent
linear span assumption. However, despite the more stringent relatedness condition, their work still
makes stronger assumptions to enable transfer. First, their Assumption 5.3 sidesteps the need to
handle generalization by assuming point-wise error is bounded by average-case error (this allows
them to directly use the result from Jin et al. (2020b)), whereas our analysis only relies on standard
in-distribution generalization and indeed one of our key technical contributions is showing that
LSVI-UCB succeeds even with average-case misspecification. Our Theorem 7 generalizes the result
of Cheng et al. (2022). Second, their Assumption 5.1 assumes reachability in the high-dimensional
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observation space, whereas we show that with our novel cross-sampling, it is possible to require the
much more realistic spectral coverage in the ground truth (unknown) feature space (Assumption 3.2).

Another work on transfer learning in low-rank MDPs is Lu et al. (2021), which also makes much
stronger assumptions than our work. First, they require generative access in both source and target
tasks. Second, they require the covariance of any pair of features (in feature class �) to be full rank,
while we only require this reachability condition for the true feature �?. Third, they assume a given
distribution q on which the learned representation can extrapolate, whereas we explicitly construct
such a data distribution using the novel cross-sampling procedure. In sum, compared to the prior
works Cheng et al. (2022); Lu et al. (2021), we leverage a novel cross-sampling procedure to enable
transfer under significantly weaker assumptions. Furthermore, we prove a lower bound showing that
generative access is necessary unless stronger assumptions, e.g., those in Cheng et al. (2022), are
made. We summarize the comparision to these prior works in Table 1.

Transfer Learning in Bandit and small-size MDPs. Lazaric et al. (2013) study spectral
techniques for online sequential transfer learning in multi-arm bandits. Brunskill and Li (2014) study
transfer in semi-MDPs by learning options. Lecarpentier et al. (2021) consider lifelong learning in
Lipschitz MDP. All these works consider tabular models while we focus on large-state MDPs.

Multi-task learning. While the multi-task setting also deals with multiple tasks, it is different
from the transfer learning setting in its objective. The goal of multi-task learning is to perform well
over all tasks (typically the average performance of tasks), while transfer learning cares exclusively
about performance in the target task. Thus, the results from multi-task learning are not directly
comparable to the transfer learning results that we focus on in this paper. We survey some multi-task
literature for completeness. For multi-task learning in low-rank MDPs, Huang et al. (2023) only
assumed �? to be shared (µ? can be arbitrarily different between tasks), and showed that the sample
complexity of a multi-task variant of BiLin-UCB (Du et al., 2021) does not scale as K|�| but only as
|�|. However, like BiLin-UCB, the algorithm is not computationally efficient. Several recent works
study multi-task linear bandits with linear representations (�(s) = As with unknown A) (Hu et al.,
2021; Yang et al., 2020, 2022). The techniques developed in these works crucially rely on the linear
structure and can not be applied to nonlinear function classes.

For a discussion of the empirical transfer literature, as well as more detailed comparisons to
related works, please see Section C.

2. Preliminaries

In this paper, we study transfer learning in finite-horizon, episodic Markov Decision Processes
(MDPs), M = hH,S,A, {P ?

h
}0:H�1, {rh}0:H�1, d0i, specified by the episode length H , state

space S, discrete action space A of size A, unknown transition dynamics P ?

h
: S ⇥ A ! �(S),

known reward functions rh : S ⇥ A ! [0, 1], and a known initial distribution d0 2 �(S).
We now define the value, Q functions and visitation distribution, where we make the depen-
dence on the transition dynamics P ? = {P ?

h
}0:H�1 and reward functions r = {rh}0:H�1 ex-

plicit. For any Markov policy ⇡ : S ! �(A), let E⇡,P ? [·] denote the expectation under the
trajectory distribution of executing ⇡ in an MDP with transitions P ?, i.e., start at an initial state
s0 ⇠ d0, then for all h 2 [0 : H � 1]1, ah ⇠ ⇡h(sh), sh+1 ⇠ P ?

h
(sh, ah). If P ? is clear

from context, we use E⇡[·] instead. The value function is the expected reward-to-go of ⇡ start-

1. For 1  a  b, we denote [a : b] = a, a+ 1, . . . , b� 1, b, and [b] = [1 : b].
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ing at state s in step h, i.e.,V ⇡

P ?,r;h(s) = E⇡,P ?

hP
H�1
⌧=h

r⌧ (s⌧ , a⌧ ) | sh = s
i
. The Q function is

Q⇡

P ?,r;h(s, a) := rh(s, a) + Es0⇠P
?
h (·|s,a)V

⇡

P ?,r;h+1(s
0). We denote the expected total reward of a

policy ⇡ as V ⇡

P,r
:= Es0⇠d0V

⇡

P,r;0(s0). We define the state-action occupancy distribution d⇡
P ?;h(s, a)

as the probability of ⇡ visiting (s, a) at time step h.
The transfer learning problem consists of two phases: (1) the pre-training phase where the

agent interacts with K source tasks with transition dynamics {P ?

k
}k2[K], and (2) the deployment

phase where the agent is deployed into the target task with transition dynamics P ?
target and can no

longer access the source tasks. The performance of a transfer learning algorithm is measured by (1)
the sample complexity in the source tasks during pre-training, and (2) the regret in the target task
during deployment, which is defined as Regret(T ) =

P
T

t=1 V
?

target � V ⇡
t

P
?
target,r

, where V ?
target is the

optimal value that can be obtained in the target task, and ⇡t is the policy played in the t-th episode of
deployment. For notation, we let d⇡

k;h be short-hand for d⇡
P

?
k ;h

.
We begin formalizing our problem with the low-rank MDP model.

Definition 1 (Low-rank MDP (Jiang et al., 2017; Agarwal et al., 2020)) A transition model P ?

h
:

S ⇥ A ! �(S) is low rank with rank d 2 N if there exist two unknown embedding functions
�?
h
: S ⇥ A 7! Rd, µ?

h
: S 7! Rd such that 8s, s0 2 S, a 2 A : P ?

h
(s0 | s, a) = µ?

h
(s0)>�?

h
(s, a),

where k�?
h
(s, a)k2  1 for all (s, a) and for any function g : S ! [0, 1],

��R g(s)dµ?
h
(s)
��
2


p
d.

An MDP is a low rank MDP if P ?

h
admits such a low rank decomposition for all h 2 [0 : H � 1].

Low-rank MDPs capture the latent variable model (Agarwal et al., 2020) where �?(s, a) is a
distribution over a discrete latent state space Z , and the block-MDP model (Du et al., 2019) where
�?(s, a) is a one-hot encoding vector. Note that � can be a non-linear, flexible function class, so the
low-rank framework generalizes prior works with linear representations (Hu et al., 2021; Yang et al.,
2020, 2022). Next, we define what it means for a policy to be exploratory in a low-rank MDP.

Definition 2 (Feature coverage) For ↵ 2 R+, a policy ⇡ is ↵-exploratory in an MDP with transi-
tion dynamics P ? if for all h 2 [0 : H � 1], we have �min(E⇡,P ?

⇥
�?
h
(sh, ah)�?>h (sh, ah)>

⇤
) � ↵.

An exploratory ⇡ intuitively ensures that the whole Rd feature space is well-explored in a spectral
sense. Note this generalizes the notion of “Policy Cover” in Block MDPs from Misra et al. (2019).

We now make two mild structural assumptions on the tasks to enable representational transfer.

Assumption 2.1 (Common �?) All tasks are low-rank MDPs with a shared representation �?
h
(s, a).

Assumption 2.2 (Point-wise Linear span) For any h 2 [0 : H � 1] and s0 2 Sh+1, there is a
vector ↵h(s0) 2 RK such that µ?target;h(s

0) =
P

K

k=1 ↵k;h(s0)µ?k;h(s
0).

The motivation for Assumption 2.2 is: if s0 is reachable from an (s, a) pair in the target task, then it
must be reachable from the same (s, a) pair in at least one of the source tasks. Intuitively, this is nec-
essary for transfer learning to succeed, as s0 could be a high rewarding state in the target. Based on As-
sumption 2.2, we define, ↵max = maxh;k,s02S |↵k;h(s0)| and ↵̄ = maxh

P
K

k=1maxs02S |↵k;h(s0)|.
Note that ↵max  ↵̄, which we assume is bounded. We conclude the section with a couple of
examples where these assumptions are satisfied.

Example 1 (Mixture of source tasks) The mixture model posits that the target task’s transition
dynamics is a mixture of the source tasks, i.e., P ?

target(s
0|s, a) =

P
K

k=1 ↵kP ?

k
(s0|s, a). This maps to
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Algorithm 1 Exploratory Policy Search (EPS)
1: Input: MDP M with online access, num. LSVI-UCB episodes NLSVI-UCB, num. model-learning

episodes NREWARDFREE, failure probability �.
2: Learn model { bPh = (b�h, bµh)}H�1

h=0 by running REWARDFREE REP-UCB (Algorithm 3) in M
for NREWARDFREE episodes.

3: Set � = dH
p
log(dHNLSVI-UCB/�).

4: Return ⇢ = LSVI-UCB
⇣
{b�h}H�1

h=0 , r = 0, NLSVI-UCB,�, UNIFORMACTIONS = TRUE
⌘

by sim-

ulating in the learned model bP (Algorithm 5). Note this step requires no samples from P ?.

Assumption 2.2 with ↵k;h(s0) = pk where {pk}k2[K] is a probability distribution, so ↵̄ = 1. These
mixture models have been studied in the context of known source models (Modi et al., 2020; Ayoub
et al., 2020), and, corresponding to our Assumption 2.1, unknown low-rank source models with the
same �? (Cheng et al., 2022). Our linear span Assumption 2.2 strictly generalizes the mixture model
by allowing linear span coefficients to flexibly depend on s0, which is more realistic in practice.

In Example 1, ↵̄ (and hence ↵max) was nicely bounded by 1. However, if the target task largely
focuses on observations quite rare under the source tasks, then ↵̄ can grow large.

Example 2 (Block MDPs with shared latent dynamics) Here, each MDP P ?

k
is a Block MDP (Du

et al., 2019) with a shared latent space Z and a shared decoder  ? : S ! Z . In a block MDP,
given state action pair (s, a), the decoder  ? maps s to a latent state z, the next latent state is
sampled from the latent transition z0 ⇠ P (·|z, a), and the next state is generated from an emission
distribution s0 ⇠ o(·|z0). Recall that o(s0|z0) > 0 at only one z0 2 Z for any s0 2 S for a block
MDP. We assume that the latent transition model P (z0|z, a) is shared across all the tasks, but the
emission process differs across the MDPs. For instance, in a typical navigation example used to
motivate Block MDPs, the latent dynamics might correspond to navigating in a shared 2-D map,
while emission distributions capture different wall colors or lighting conditions across multiple
rooms. Then Definition 2 posits that the agent can visit the entire 2-D map, while Assumption 2.2
requires that the color/lighting conditions of the target task resemble that of at least one source task.
The coefficients ↵ for any s0 are non-zero on the source tasks which can generate that observation.

3. Representational Transfer with Generative Access in Source Tasks

In this section, we study transfer learning assuming generative access to the source tasks.

Assumption 3.1 (Generative access in the source tasks) For any k 2 [K], h 2 [0 : H � 1] and
s, a 2 S ⇥A, we can query independent samples from P ?

k;h(s, a).

The generative model access is not unrealistic, especially in applications where a high-quality
simulation environment is available. Perhaps surprisingly, we will also show (in Section 4) that
generative access in source tasks is necessary assuming only feature coverage, as in Definition 2.

3.1. The Algorithm

We first describe the helper algorithm Exploratory Policy Search (EPS) (Algorithm 1) to discover
exploratory policies in low-rank MDPs. EPS has two steps. First, it runs a reward-free variant of
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Algorithm 2 Transfer learning with generative access (REPTRANSFER)

PRE-TRAINING PHASE
Input: exploratory policies in the source tasks {⇡k}1:K , function classes �, {⌥k}1:K , size of
cross-sampled datasets n, failure probability �.

1: for task pairs i, j, i.e., for all i, j 2 [K] do {cross sampling procedure}
2: For each h 2 [H � 1], sample dataset Dij;h containing n i.i.d. (s, a, s0) tuples sampled as:

(s̃, ã) ⇠ d⇡i
i;h�1, s ⇠ P ?

j;h�1(·|s̃, ã), a ⇠ unif(A), s0 ⇠ P ?

i;h(·|s, a). (1)

For h = 0, use s ⇠ P ?

j;h�1(·|s̃, ã), a ⇠ unif(A), s0 ⇠ P ?

i;h(·|s, a).
3: For each h 2 [0 : H � 1], learn features with MLE, i.e., “Multi-task REPLEARN”,

b�h, bµ1:K = argmax
�2�,µk2⌥k

X

i,j2[K]

EDij;h

h
log �(s, a)>µk(s

0)
i
. (2)

DEPLOYMENT PHASE
Additional Input: number of deployment episodes T .

1: Set � = H
p
d+ ↵̄dH

p
log(dHT/�).

2: Run LSVI-UCB
⇣
{b�h}H�1

h=0 , r = rtarget, T,�
⌘

in the target task P ?
target (Algorithm 5).

REP-UCB(Uehara et al., 2021) in each source task k, to learn a linear MDP which approximates the
true low-rank MDP P ?

k
. Then, an exploratory policy is learned via reward-free exploration in the

learned linear MDP (e.g., using LSVI-UCB with zero reward), which involves no further interactions
with the true environment. Intuitively, the policy ⇡k is trained to fit Definition 2 in the source task k.

We now present our main algorithm REPTRANSFER (Algorithm 2), which takes as input ex-
ploratory policies in each source task that can be obtained from EPS. During the pre-training phase,
REPTRANSFER collects a dataset via a novel cross-sampling procedure across all pairs of source
tasks. Note this step is only possible due to generative access in the source tasks. Concretely, fix any
h 2 [H � 1] and let ⇡i,⇡j be exploratory policies from source tasks i, j 2 [K]. We first sample from
the visitation distribution of ⇡i in task i, i.e., sh�1, ah�1 ⇠ d⇡i

i;h�1. Then, in the simulator of task j,
we reset to (sh�1, ah�1) and perform a transition step to sh, i.e., sh ⇠ Pj;h�1(sh�1, ah�1). Next,
we uniformly sample an action ah, reset the simulator of task k to state sh, ah, and transition to sh+1,
i.e., sh+1 ⇠ P ?

k
(sh, ah). We then perform Maximum Likelihood Estimation (MLE) representation

learning in Eq. (2) using the union of the cross-sampled datasets across all pairs of source tasks. In
sum, REPTRANSFER learns a single representation b� in the pre-training phase using MLE on the
cross-sampled datasets from exploratory policies across tasks. In the deployment phase, REPTRANS-
FER runs optimistic least squares value iteration (LSVI-UCB) in the target task with the learned
representation. First proposed by Jin et al. (2020b), LSVI-UCB is displayed in Algorithm 5, which
at a high level is as follows. Given any dataset, {s, a, r, s0} feature �, and reward r, LSVI learns a
Q function backward, i.e., at step h via ŵh = argminw

P
s,a,s0(w

>�(s, a)� V̂h+1(s0))2 + �kwk2

and sets V̂h(s) = maxa(r(s, a) + ŵ>
h
�(s, a)), 8s. UCB, short for Upper Confidence Bound, refers

to an exploration bonus added to basic LSVI.

7
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3.2. Main Result

In this section, we prove our main transfer learning result, which shows that REPTRANSFER achieves
near optimal regret in the target task with nice pre-training sample complexity in the source tasks.
Our main result requires two assumptions. First, we need to ensure that EPS can successfully
discover an exploratory policy in the source tasks, i.e., there should exist a policy that non-trivially
reaches the whole Rd in the feature space. Without exploratory policies in the source tasks, it may
be possible that the optimal target policy visits subspaces unexplorable in any source task, in which
case, pre-training will not have any benefits.

Assumption 3.2 (Reachability in source tasks) There exists a  2 R+ such that for all k 2
[K], h 2 [0 : H � 1], there exists a policy ⇡ such that �min

⇣
E⇡,P ?

k
[�?

h
(sh, ah)�?h(sh, ah)

>]
⌘
�  .

Note that this low-rank reachability assumption generalizes the reachability assumption in latent
variable and block MDPs, e.g. (Modi et al., 2021; Misra et al., 2020).

Second, For the MLE in Eq. (2) to succeed, we need to assume the standard realizability
assumption, which is made in almost all prior works in low-rank MDPs.

Assumption 3.3 (Realizability) For any source task k 2 [K] and any h 2 [H], �?
h
2 � and

µ?
k;h 2 ⌥k. For normalization, we assume that for all � 2 �, µ 2 ⌥k, g : S ! [0, 1], we have

k�(s, a)k2  1 and
��R g(s)dµ?

h
(s)
��
2


p
d.

This leads to our main theorem.

Theorem 3 (Regret under generative source access) Suppose Assumptions 2.1,2.2,3.1,3.2,3.3 hold,
and fix any � 2 (0, 1). Then, running REPTRANSFER with policies from EPS (parameters set as in
Lemma 3.1) has regret in the target task of eO

⇣
↵̄H2d1.5

p
T log(1/�)

⌘
, with at most

eO
�
A4↵3

maxd
5H7K2T �2(log(|�|/�) +K log |⌥|)

�
generative accesses per source task.

Remarkably, Theorem 3 shows that with the pre-trained features, we achieve the same regret bound
on the target task to the setting of linear MDP with known �? (Jin et al., 2020b), up to the additional
↵̄ factor that depends on the linear span coefficients and captures the intrinsic hardness of transfer
learning. For special cases such as convex combination, i.e., ↵ is state-independent and ↵h 2 �(K),
then ↵̄ = 1. In the worst-case, some dependence on the scale of ↵ seems unavoidable as we can have
a state s0 such that µtarget(s0) = 1 and µk(s0) ⌧ 1 with ↵k(s0) � 1. This corresponds to a rarely
observed state for the source task encountered often in the target, and our estimates of transitions
involving this state can be highly unreliable if it is not seen in any other source, roughly scaling
the error between target and source tasks as |↵k(s0)|. Obtaining formal lower bounds that capture a
matching dependence on structural properties of ↵ is an interesting question for future research.

3.3. Proof Sketch

The proof can be broken down into three parts. First, under reachability, we show in Lemma 3.1
that EPS can indeed identify an exploratory policy. Second, we show in Lemma 3.2 that our novel
cross-sampling procedure with MLE can learn a representation that linearly approximates P ?

target, in
an average-case sense. Third, we prove that even under average-case misspecification, LSVI-UCB
succeeds with low regret. We start by showing that EPS can identify an exploratory policy.
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Lemma 3.1 (Source task exploration) Suppose Assumptions 3.2,3.3 hold. Then, for any � 2 (0, 1),
w.p. 1� �, running EPS in any source task with NLSVI-UCB = e⇥

�
A3d6H8 �2

�
and NREWARDFREE =

eO
⇣
A3d4H6 log

⇣
|�||⌥|
�

⌘
N2

LSVI-UCB

⌘
returns a �min-exploratory policy where �min = e⌦

�
A�3d�5H�7 2

�
.

The sample complexity in the source task is NREWARDFREE episodes.

To the best of our knowledge, Lemma 3.1 is the first result that finds an exploratory policy in low-rank
MDPs, and might be of independent interest. Wagenmaker et al. (2022) recently obtained a related
guarantee in the linear MDP setting with known features �?. Cheng et al. (2022, REFUEL) is also a
reward-free modification of Rep-UCB, but the algorithm proceeds jointly over all tasks while we run
REWARDFREE REP-UCB in each task independently. We note that REFUEL involves optimizing the
Pseudo-Cumulative Value Function (PCV), which may be computationally hard in the planning step.
Our REWARDFREE REP-UCB’s planning step is the same as Rep-UCB (i.e., planning in a known
linear MDP model), and is computationally efficient. We also remark that this step of identifying
exploratory policies is modular and one could also directly use the reward-free algorithm FLAMBE
(Agarwal et al., 2020), despite having a worse sample complexity in source.

We now analyze our novel cross-sampling procedure using the MLE generalization analysis of
Agarwal et al. (2020). Under realizability, running multi-task MLE in (2) with these datasets satisfies
the following w.p. at least 1� �,

X

i,j2[K]

E⌫ij;h
���b�h(s, a)>bµk;h(·)� �?

h
(s, a)>µ?

k;h(·)
���
2

TV

 ⇣N := O((log(|�|/�)+K log(|⌥|))/N). (3)

where k · kTV denotes the total variation (TV) norm, and ⌫ij;h is the distribution from which we
sampled Dij;h. That is, s, a ⇠ ⌫ij;h is equivalent to (es,ea) ⇠ d⇡i

i;h�1, s ⇠ P ?

j;h�1(es,ea), a ⇠ unif(A).
Then, by the one-step back lemma (Lemma F.2, which is valid due to the low-rank structure of the
target), followed by the linear span assumption (Assumption 2.2), we can prove the following lemma.

Lemma 3.2 (Target model error) Suppose Assumption 2.2 holds and ⇡k is �min-exploratory for
each source task k. For any � 2 (0, 1), w.p. 1� �, 8 h 2 [0 : H � 1], 9 eµh : S ! Rd such that

sup
⇡

E⇡,P ?
target

���b�h(sh, ah)>eµh(·)� �?
h
(sh, ah)

>µ?target;h(·)
���
TV

 "TV :=
p
|A|↵3

maxK⇣n/�min, (4)

and, for any function g : S ! [0, 1], k
R
g(s)deµh(s)k2  ↵̄

p
d.

Lemma 3.2 implies that the learned b� is a feature such that P ?
target is approximately linear in b�, under

the occupancy distribution induced by any policy. Remarkably, this guarantee holds before the agent
has ever interacted with the target task! Intuitively, this is because cross-sampling ensures that our
training data contains all possible states that can be encountered in the target task. Failure modes
without this can be found in the discussion following Theorem 6.

The final step is to show that the deployment phase, which runs LSVI-UCB in an approximately
linear MDP of the target task, achieves low regret. Note that we face an approximately linear MDP, as
Lemma 3.2 shows, due to the use of learned features b�, even though P ?

target is linear in the unknown
features �?. Online learning in approximately linear MDPs has been studied in Jin et al. (2020b),
but under a much stronger `1 error bound. Instead, we work under the weaker, and more realistic,
average-case misspecification in Eq. (4). Indeed, it is possible that some states are unlikely to be
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visited by any policy, so we should not impose strong misspecification restrictions on these parts of
the state space. We now state our novel LSVI-UCB regret bound.

Theorem 4 (LSVI-UCB under average-misspecification) Under Eq. (4), for any � 2 (0, 1), w.p.
1� �, LSVI-UCB in the deployment phase has regret eO

⇣
dH2T"TV + ↵̄d1.5H2

p
T log(1/�)

⌘
.

The key step in proving Theorem 4 is showing almost-optimism under the occupancy distribution of
the optimal policy ⇡?. As a technical remark, we also employ a novel trajectory-wise indicator to
deal with the clipping of the value estimates. Note the ↵̄ in the leading term comes from the scaling
of the eµ in Lemma 3.2. The full proof and general LSVI-UCB result is in Theorem 15. To the best of
our knowledge, this is the strongest result for learning in an approximately linear MDP, which may
be of independent interest.

We arrive at the final regret bound by collecting enough samples in the source tasks to make
"TV = 1/

p
T , which makes the first linear-in-T term lower order. This gives the REPTRANSFER

guarantee. Note that the guarantee holds independent of the mechanism used for obtain exploratory
policies in the source tasks.

Theorem 5 (REPTRANSFER) Suppose Assumptions 2.1,2.2,3.1,3.3, and ⇡k is �min-exploratory
for each source task k. Then, for any � 2 (0, 1), w.p. 1� �, REPTRANSFER when deployed in the
target task has regret at most eO

⇣
↵̄H2d1.5

p
T log(1/�)

⌘
, with at most Kn generative accesses per

source task, with n = O
⇣
��1
minA↵

3
maxKT

⇣
log |�|

�
+K log |⌥|

⌘⌘
.

Combining with the �min specified in Lemma 3.1, we conclude the proof sketch.

4. Failure of transfer learning without generative access to source tasks

In the previous section, we show that efficient transfer learning is possible under very weak structural
assumptions, but requires generative access to the source tasks. One natural question is whether
transfer learning is possible with only online access to the source tasks. Somewhat surprisingly, we
show that this is impossible without significantly stronger assumption.

Theorem 6 (Lower bound for online access to source tasks) Let M = {(P ?

1 , ..., P
?

K
, P ?

target)}
be a set of K+1 tasks that satisfies (1) all tasks are Block MDPs; (2) all tasks satisfy Assumption 3.2
and Assumption 2.2; (3) the latent dynamics are exactly the same for all source and target tasks. For
any pre-training algorithm A which outputs a feature �̂ by interacting with the source tasks k 2 [K],
there exists (P ?

1 , ..., P
?

K
, P ?

target) 2 M, such that with probability at least 1/2, A will output a feature

�̂, such that for any policy taking the functional form of ⇡(s) = f
⇣
{�̂(s, a)}a2A, {r(s, a)}a2A

⌘
,

we have V ?
target � V ⇡

target � 1/2.

Here, the particular functional form f is defined so that the policy ⇡ cannot distinguish between
two state-action pair with the same feature embedding. Theorem 6 implies that a representation
learned only from online access to source tasks does not enable learning in downstream tasks if
the downstream task algorithm is restricted to use the representation as the only information of the
state-action pairs (e.g., running LSVI-UCB with �̂).

We briefly explain the intuition behind the above lower bound. In a Block MDP, for any (s, a),
we can model the ground-truth �? as a one-hot encoding e(z,a) corresponding to the latent state-action
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pair (z, a) with z =  ?(s) being the encoded latent state. The key observation here is that any
permutation of �? will also be a perfect feature in terms of characterizing the Block MDPs, since it
corresponds to simply permuting the indices of the latent states. Therefore, without cross referencing,
the agent could potentially learn different permutations in different source tasks, which would
collapse in the target task. A precise constructive proof of Theorem 6 can be found in Section D.
Part of the reason that the above example fails is that each source task has its own observed subset of
raw states, which permits such a permutation to happen.

4.1. Representational Transfer under Observational Reachability

To complement the impossibility result, we next show that under an additional assumption on
the reachability of raw states, a slight variant of the same algorithm (Algorithm 4 in Section G)
can achieve the same regret with only online access to the source tasks. The main difference in
Algorithm 4 is that it performs sampling directly from the occupancy distribution of ⇡k in source task
k (in an online, episodic manner without needing generative access) instead of the cross-sampling
procedure used in Algorithm 2.

Assumption 4.1 (Reachability in the raw states) For all source tasks k 2 [K], any policy ⇡ and
h 2 [0 : H � 1], we have infs2S,a2A d⇡

k;h(s, a) �  raw�min

⇣
E⇡,P ?

k

⇥
�?
h
(sh, ah)�?h(sh, ah)

>⇤
⌘

.

Assumption 4.1 implies that for each source task, any policy that achieves a full-rank covariance
matrix also achieves global coverage across the raw state-action space. In addition, in order to apply
importance sampling (IS) to transfer the TV error from source task to target task, we need to assume
that the target task distribution has bounded density. This is true, for example, when S is discrete.

Assumption 4.2 (Bounded density) For all (⇡, h, s, a), we have d⇡target;h(s, a)  1.

Theorem 7 (Regret with online access) Suppose Assumptions 2.1-2.2,4.1,4.2 hold. W.p. 1 � �,
Algorithm 4 with appropriate parameters achieves a regret in the target eO

⇣
↵̄d1.5H2

p
T log(1/�)

⌘
,

with poly
�
A,↵max, d,H,K, T, �1, �1

raw, log(|�||⌥|/�)
�

online queries in the source tasks.

Assumption 4.1 is satisfied in a Block MDP, when, for example, the emission function o(s|z) satisfies
that 8s, 9z, s.t., o(s|z) � c. That is, for any source task, any state in the state space can be generated
by at least one latent state. However, we believe such a covering condition is generally too strong to
hold in practice. Furthermore, the parameter  raw will typically scale with the number of observed
states, which we expect to be prohibitively large in most interesting problems, and view the this
result has mainly to quantify the degree of applicability of Theorem 6.

5. Experiments

In this section we empirically study the following questions: i) the effectiveness of pretraining with
REPTRANSFER, under the linear span and feature/observation coverage assumptions. ii) the hardness
of representational transfer under the linear span assumption without the generative model access.
Our experiments are under the Block MDP setting, with the challenging Rich Observation Combi-
nation Lock (comblock) benchmark (Fig. 1(a)). We design two sets of experiments to investigate
the above questions respectively. We defer the details of the experiments in Appendix J.
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taking the only correct action in all steps leads to the final reward

rich observations

h=0 h=1 h=2 h=H-1 h=H

taking any bad action (9/10) in any steps traps in the bad states

(a)

Source O-REPTRANSFER G-REPTRANSFER Oracle Target

Observational
and Feature
Coverage

1 8006
(294.7)

7790
(267.6)

7048
(164.8)

181450
(147600.2)

Feature
Coverage

Only
1 1 7764

(145.7)
7336

(270.7)
85000

(14469.8)

(b)

Figure 1: (a): A visualization of the rich observation comblock environment (see Appendix J.1
for details). (b) Top: Number of episodes required to solve the target environment under the
observational coverage setting. (b) Bottom: Number of episodes required to solve the target
environment under the feature coverage setting. An algorithm solves the target task if it can achieve
the optimal return (i.e., 1) for 5 consecutive iterations with 50 evaluation runs each. We include
the mean and standard deviation (in the brackets) for 5 random seeds. 1 denotes that an algorithm
can not solve the target task within a fixed sample budget. The sample efficiency of REPTRANSFER
under feature and observational coverage verifies the benefit of representational transfer, and the
failure of O-REPTRANSFER without observational coverage suggests the necessity of generative
assumption during representational transfer. In Figure 2 in the appendix, we further provide the
visualization of the representations that is learned in both settings.

Baselines. We denote Source as the smallest sample complexity of LSVI-UCB using learned
features from any of the source tasks; O-REPTRANSFER as REPTRANSFER with only online access
to the source tasks; G-REPTRANSFER as REPTRANSFER with generative access to the source tasks;
Oracle as learning in the target task with ground truth features; and Target as running BRIEE (Zhang
et al., 2022) — the SOTA Block MDP algorithm, in the target task with no pretraining.

Effectiveness of REPTRANSFER. We first analyze the how representational transfer benefits
where both feature coverage (Theorem 3) and observational coverage (Theorem 7) assumptions
are met. We use 5 source tasks (horizon H = 25), with different latent dynamics. To ensure
linear span assumption (Assumption 2.2), for each timestep h, we make the target latent transition
dynamics from one of the sources uniformly at random. For the coverage assumptions, note that
for comblock, the feature coverage assumption (Assumption 3.2) is always satisfied. We also
guarantee the observational coverage (Assumption 4.1) by equipping all environments with the same
emission distribution on a compact observational space. We record the number of episodes in the
target environment that each method takes to solve the target environment in Table. 1(b). We first
observe that REPTRANSFER with either online or generative access can solve the target task (since.
Assumption 4.1 holds). Second, we observe that directly applying the learned feature from any
single source task does not suffice to solve the target environment. This is because the representation
learned from a single source task may collapse two latent states into a single one during encoding
(e.g., if two latent states at the same time step have exactly identical latent transitions). Third, the
result shows that REPTRANSFER saves order of magnitude of target samples compared with training
in the target environment from scratch using the SOTA Block MDPs algorithm BRIEE. This set
of results verifies the empirical benefits of representation learning from multiple tasks, i.e.,
resolves ambiguity and speeds up downstream task learning.

Hardness without the generative access. In this section, following the intuition of our lower
bound (Theorem 6), we construct a setting where the supports of the emission distributions from

12



REPRESENTATIONAL TRANSFER IN RL

each task are completely disjoint, while the emission distribution in the target task is a mixture of
all source emissions and the latent dynamics are identical across tasks. Hence the latent coverage
(Assumption 2.2) holds while observational coverage (Assumption 4.1) fails. So we expect that an
algorithm without generative access to source tasks will fail based on Theorem 6. We record the
number of target episodes for each method to solve the target task in Table. 1(b). We observe that
indeed the online version fails while the generative version still succeeds. This ablation verifies
that source generative model access is needed without the observational coverage.

6. Conclusion

We study representational transfer among low rank MDPs which share the same unknown representa-
tion. Under a reasonably flexible linear span task relatedness assumption, we propose an algorithm
that provably transfers the representation learned from source tasks to the target task. The regret
in target task matches the bound obtained with oracle access to the true representation, using only
polynomial number of samples from source tasks. Our approach relies on the generative model
access in source tasks, which we prove is not avoidable in the worst case under the linear span
assumption. To complement the lower bound, we propose a stronger assumption on the conditions
of the reachability in raw states, under which online access to source tasks suffices for provably
efficient representation transfer. Finding modalities other than generative access which avoid the
lower bound, and a more extensive empirical evaluation beyond the proof-of-concept experiments
here are important directions for future research
Acknowledgements: This material is based upon work supported by the National Science Founda-
tion under Grant No. IIS-2154711.
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Appendices

Appendix A. Notations

Table 2: List of Notations

S,A, A State and action spaces, and A = |A|.
�(S) The set of distributions supported by S.
�min(A) Smallest eigenvalue of matrix A.
ej One-hot encoding of j, i.e. 0 at each index except the one corresponding to j.

Length of vector implied from context.
(x)y min{x, y}.
H Episode length of MDPs, a.k.a. time horizon. We index steps as h = 0, 1, ..., H � 1.
K The number of source tasks.
d dimension of the low-rank MDP, i.e. dimension of �?.
P ?

k;h Ground truth transition at time h for source task k.
P ?

target;h Ground truth transition at time h for target task.
rtarget;h Reward function of the target task.
E⇡,P [·] Expectation under the distribution of trajectories when ⇡ is executed in P .

We sometimes omit P when the MDP is clear from context.
d⇡
P ;h Occupancy distribution of ⇡ under transitions P at time h.

d⇡
k;h Occupancy distribution for the k-th task, i.e. d⇡

P
?
k ;h

.

�?
h
(s, a) Embedding function for (s, a) at time h.

�h Realizable function class for �?
h
.

|�| Defined as maxh |�h|.
µ?
k;h(s

0) Emission embedding function for s0 at time h for environment k.
⌥k;h Realizable function class for µ?

k;h.
|⌥| Defined as maxk;h |⌥k,h|.
↵max maxh;k,s02S |↵k;h(s0)| (based on Assumption 2.2).
↵̄ maxh

P
K

k=1maxs02S |↵k;h(s0)| (based on Assumption 2.2).
 Feature reachability in the source task (Assumption 3.2).
 raw Raw states reachability parameter (Assumption 4.1)
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Appendix B. Omitted Algorithms

Algorithm 3 REWARDFREE REP-UCB
1: Input: Regularizer �n, bonus scaling ↵n, model class M = �⇥⌥, number of episodes N .
2: Initialize b⇡0 as random and Dh,0,D0

h,0 = ;.
3: for episode n = 1, 2, ..., N do
4: Data collection from b⇡n�1: for h = 1, 2, ..., H � 1,

s ⇠ db⇡n�1

h
, a ⇠ Unif(A), s0 ⇠ P ?

h
(s, a);

es ⇠ db⇡n�1

h�1 ,ea ⇠ Unif(A), es0 ⇠ P ?

h�1(es,ea),ea0 ⇠ Unif(A), es00 ⇠ P ?

h
(es0,ea0);

Dh,n = Dh,n�1 [
�
(s, a, s0)

 
,D0

h,n
= D0

h,n�1 [
�
(es0,ea0, es00)

 
.

For h = 0, only collect D0,n.
5: Learn model via MLE: for all h = 0, 1, ..., H � 1,

bPh,n = (b�h,n, bµh,n) = argmax
�h,µh2Mh

EDh,n[D0
h,n

⇥
log �h(s, a)

Tµh(s
0)
⇤
.

6: Update exploration bonus: for all h = 0, 1, ..., H � 1,

bbh,n(s, a) = ↵n

���b�h,n(s, a)
���b⌃�1

h,n

b⌃h,n =
X

(s,a,_)2Dh,n

b�h,n(s, a)b�h,n(s, a)T + �nI.

7: Learn policy b⇡n = argmax⇡ V
⇡

bPn,bbn
and let bVn be its value.

8: Let bn = argminn�N/2
bVn.

9: Output: bn, bPbn.
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Algorithm 4 Transfer learning with online access

PRE-TRAINING PHASE
Input: num. LSVI-UCB episodes NLSVI-UCB, num. model-learning episodes NREWARDFREE, size of
cross-sampled datasets n, failure probability �.

1: for source task k = 1, ...,K do
2: Find policy cover ⇡k =REWARDFREE(P ?

k
, NLSVI-UCB, NREWARDFREE, �). (Algorithm 1)

3: for source task k = 1, ...,K do
4: For each h 2 [0 : H � 1], sample Dk as n i.i.d. (sh, ah, sh+1) tuples from ⇡k.
5: For each h 2 [0 : H � 1], learn features with MLE,

b�h, bµ1:K = argmax
�2�,µk2⌥k

X

k2[K]

EDk;h

h
log �(s, a)>µk(s

0)
i
.

DEPLOYMENT PHASE
Additional Input: number of deployment episodes T .

1: Set � = H
p
d+ ↵̄dH

p
log(dHT/�).

2: Run LSVI-UCB
⇣
{b�h}H�1

h=0 , r = rK , T,�
⌘

in the target task P ?
target (Algorithm 5).
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Let (x)y refer to the clamping operator, i.e. (x)y = min{x, y}. Let MV be the maximum possible
value in the MDP with the given reward function.

Algorithm 5 LSVI-UCB

1: Input: Features {b�h}h=0,1,...,H�1, reward {rh}h=0,1,...,H�1, number of episodes N , bonus
scaling parameter �, UNIFORMACTIONS = FALSE.

2: for episode e = 1, 2, ..., N do
3: Initialize bVH,e(s) = 0, 8s
4: for step h = H � 1, H � 2..., 0 do
5: Learn best predictor for bV e

h+1,

⇤h,e =
e�1X

k=1

b�h(skh, akh)b�h(skh, akh)> + I,

bwh,e = ⇤
�1
h,e

e�1X

k=1

b�h(skh, akh)bVh+1,e(s
k

h+1).

6: Set bonus and value functions,

bh,e(s, a) =
���b�h(s, a)

���
⇤�1
h,e

,

bQh,e(s, a) = bw>
h,e
b�h(s, a) + rh(s, a) + �bh,e(s, a),

bVh,e(s) =
⇣
max
a

n
bQh,e(s, a)

o⌘

MV

.

7: Set ⇡e
h
(s) = argmaxa bQh,e(s, a).

8: Execute ⇡e to collect a trajectory (se
h
, ae

h
)H�1
h=0 .

9: If UNIFORMACTIONS = TRUE, discard ae
h

and draw freshly sampled uniform actions inde-
pendently for all h, i.e. ae

h
⇠ Unif(A).

10: Return: uniform mixture ⇢ = Uniform({⇡e}N
e=1).
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Appendix C. More discussion on related works

C.1. Empirical works in transfer learning

The idea of learning transferable representation has been extensively explored in the empirical
literature. Here we don’t intend to provide a comprehensive survey of all existing works on this topic.
Instead, we discuss a few representative approach that may be of interest.
Towards transfer learning across different environments, progressive neural network (Rusu et al.,
2016) is among the first neural-based attempt to learning a transferable representation for a sequence
of downstream tasks that tries to overcome the challenge of catastrophic forgetting. It maintains
the learned neural models for all previous tasks and introduce additional connections between the
network of the current tasks to those of prior tasks to allow information reuse. However, a drawback
common to such an approach is that the network size grows linearly with the number of tasks. Other
approaches include directly learning a multi-task policy that can perform well on a set of source
tasks, with the hope that it will generalize to future tasks (Parisotto et al., 2015). Such an approach
requires the tasks to be similar in their optimal policy, which is a much stronger assumption than
ours.
Slightly off-topic are the works about “transfer learning” inside the same environment but across
different reward functions, which is more restricted than the setting considered in this paper. Several
prior works design representation learning algorithms that aim to learn a representation that generalize
across multiple reward function/goals (Dayan, 1993; Barreto et al., 2017; Touati and Ollivier, 2021;
Blier et al., 2021). These are related to the REWARDFREE REP-UCB we developped in Section E.
The key difference is that we concern representation learning along with efficient exploration to
derive an end-to-end polynomial sample complexity bound. These prior works do not consider
exploration and do not come with provable sample complexity bounds. We refer interested readers to
a recent survey (Zhu et al., 2020) for a comprehensive discussion of other empirical approaches.

C.2. Comparison to Lu et al. (2021)

In the prior work of Lu et al. (2021), which also studies transfer learning in low-rank MDPs with
nonlinear function approximations, they need to make the following assumptions:

1. shared representation (identical to our Assumption 2.1).

2. task diversity (similar to our Assumption 2.2).

3. generative model access to both the source and the target tasks. In contrast, we only require
generative model access to the source tasks and allow online learning in the target task.

4. a somewhat strong coverage assumption saying that the data covariance matrix (under the genera-
tive data distribution) between arbitrary pairs of features �,�0 2 � must be full rank. In contrast,
our analysis only requires coverage in the true feature �? in the source tasks.
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5. the existence of an ideal distribution q on which the learned representation can extrapolate. We do
not require an assumption of a similar nature. Instead, we show that the data collected from our
strategic reward-free exploration phase suffices for successful transfer.

6. the uniqueness for each � in the sense of linear-transform equivalence. Two representation
functions � and �0 can yield similar estimation result if and only if they differ by just an invertible
linear transformation. In contrast, we do not make any additional structural assumptions on the
function class � beyond realizability.

In summary, our work present a theoretical framework that permits successful representation transfer
based on significantly weaker assumptions. We believe that this is a solid step towards understanding
transfer learning in RL.

C.3. Comparison to Cheng et al. (2022)

Cheng et al. (2022) studies representational transfer in low-rank MDPs, with not only a weaker
notion of task relatedness (with global coefficients in the linear span) but also stronger assumptions.
Particularly, we restate the following strong assumption from Cheng et al. (2022, Assumption 5.3).

Assumption C.1 For any two different models in the model class � ⇥  , say P 1(s0|s, a) =
h�1(s, a), µ1(s0)i and P 2(s0|s, a) = h�2(s, a), µ2(s0)i, there exists a constant CR such that for
all (s, a) 2 S ⇥A and h 2 [H],

kP 1(·|s, a)� P 2(·|s, a)kTV  CRE(s,a)⇠U(S,A)kP 1(·|s, a)� P 2(·|s, a)kTV ,

where U is the uniform distribution.

This assumption ensures that the point-wise TV error is bounded, as long as the population-level TV
error is bounded. Cheng et al. (2022) used this to transfer the MLE error from the source tasks to
the target task. This type of assumption is strong in the sense that we typically expect CR to scale
with |S|. In contrast, our analysis (Lemma G.1) shows that this assumption is in fact not necessary,
even assuming online access only to source tasks. The generative access to source task studied here,
which enables transfer under weaker reachability assumptions is not studied in their work.

It is worth noting that Cheng et al. (2022) also study offline RL in the target task which we do
not cover, while we mainly focus on the setting of generative models in the source tasks and
demonstrating a more complete picture by proving generative model access in source tasks is needed
without additional assumptions. Comparing to (Cheng et al., 2022), we also further implement and
perform experimental evaluations of our algorithm.
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C.4. Works in multi-task learning

Multi-task and Transfer Learning in Supervised Learning. The theoretical benefit of represen-
tation learning are well studied under conditions such as the i.i.d. task assumption (Maurer et al.,
2016) and the diversity assumption (Du et al., 2020; Tripuraneni et al., 2020). Many works below
successfully adopt the frameworks and assumptions to sequential decision making problems.

Multi-task and Transfer Learning in Bandit and small-size MDPs. Several recent works study
multi-task linear bandits with linear representations (�(s) = As with unknown A) (Hu et al., 2021;
Yang et al., 2020, 2022). The techniques developed in these works crucially rely on the linear
structure and can not be applied to nonlinear function classes. Lazaric et al. (2013) study spectral
techniques for online sequential transfer learning. Brunskill and Li (2013) study multi-task RL under
a fixed distribution over finitely many MDPs, while Brunskill and Li (2014) consider transfer in
semi-MDPs by learning options. Lecarpentier et al. (2021) consider lifelong learning in Lipschitz
MDP. All these works consider small size tabular models while we focus on large-scale MDPs.

Multi-task and Transfer Learning in RL via representation learning. Beyond tabular MDPs,
Arora et al. (2020) and D’Eramo et al. (2019) show benefits of representation learning in imitation
learning and planning, but do not address exploration. Lu et al. (2021) study transfer learning in
low-rank MDPs with general nonlinear representations, but make a generative model assumption on
both the source tasks and the target task, along with other distributional and structural assumptions.
We do not require generative access to the target task and make much weaker structural assumptions
on the source-target relatedness. Recently and independently, Cheng et al. (2022) also studied
transfer learning in low-rank MDPs in the online learning setting, identical to the setting we study in
Section 4. However, their analysis relies on an additional assumption that bounds the point-wise TV
error with the population TV error, which we show is in fact not necessary.

Efficient Representation Learning in RL. Even in the single task setting, efficient representation
learning is an active area witnessing recent advances with exploration (Agarwal et al., 2020; Modi
et al., 2021; Uehara et al., 2021; Zhang et al., 2022) or without (Ren et al., 2021). Other papers study
feature selection (e.g. Farahmand and Szepesvári, 2011; Jiang et al., 2015; Pacchiano et al., 2020;
Cutkosky et al., 2021; Lee et al., 2021; Zhang et al., 2021) or sparse models (Hao et al., 2021a,b).
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Appendix D. Impossibility Results

Here, we present an interesting result showing that the above assumptions we make are so weak that
they do not even permit efficient transfer in supervised learning:

Theorem 8 (Counter-example in supervised learning) Assume that we want to perform condi-
tional density estimation, where P ?

k
(y|x) = �?(x)>µ?

k
(y). Under Assumption 2.1 (shared repre-

sentation) and Assumption 2.2 (linear span), and assume that in each source task, one have access
to a data generating distribution ⇢k(x) such that �minE⇢k [�?(x)�?(x)>] �  (reachability). No
algorithm can consistently achieve E⇢K [kP̂ ?

target(y|x) � P ?
target(y|x)kTV ]  1/2 on the target task

using the feature learned from the source tasks with probability more than 1/2.

Proof [Proof of Theorem 8] Consider the following example. X = R2 and we have the following 3
sets.

S1 = B1/2((�1,�1))

S2 = B1/2((�2,�2))

S3 = B1/2((0, 1))

where Ba((x, y)) stands for the ball with radius a centered at (x, y). These will be the support of 3
tasks: task 1 and 2 are two source tasks, task 3 is the target task. Let’s assume that P ?

k
(x) are uniform

distribution on Sk.

Suppose that the feature class � only contains two functions:

�1 : {x1  0 & x2 � x1} ! (1, 0), and (0, 1) otherwise
�2 : {x2  0 & x1 � x2} ! (0, 1), and (1, 0) otherwise

That is, the feature maps from R2 to the set of binary encoding of dimension 2, i.e. {(1, 0), (0, 1)}.
We further assume that µ?

k
= (p1(y), p2(y)) for some distributions p1, p2, which is identical for

all task k, where kp1, p2kTV = 1. We also assume that µ?
k

is known to the learner a prior, i.e.
⌥k = {µ?

k
} for all k 2 [K], so all the learner needs to do is to pick the correct � out of two

candidates.

Given the above setup, it’s easy to verify that both Assumption 2.1 and Assumption 2.2 are satisfied,
because the decision boundary of both �1 and �2 passes through the support of the source tasks, and
all µ?

k
’s are identical. However, �1 and �2 are equivalent in S1 and S2 in terms of their representation

power, therefore no algorithm can always pick the correct feature function with probability more
than 1/2, regardless of the number of samples. Suppose �1 is the true feature and the algorithm
incorrectly chooses �2. Then, for x 2 S3

T
{x1 � 0} which has probability mass 1/2, P̂3(y|x) = p2

whereas P ?

3 (y|x) = p1. Thus, the expected total variation distance between P̂target and P ?
target is 1/2.
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The above construction shows that our assumption are not sufficient to permit reliable representation
transfer, even in the supervised learning setting. Yet, surprisingly, these assumptions are sufficient
in the RL setting, implying somehow that transfer learning in RL in easier than transfer learning
in SL. To understand this phenomenon, observe that in RL, the marginal distribution on (s, a) is
not independent from the conditional density P (s0|s, a) we desire to estimate. In particular, if one
collects data in the source tasks in an online fashion via running a policy, ⇢(s, a) is structurally
restricted to be an occupancy distribution generated by the ground-truth transition P ?(s0|s, a). Such
a connection can only exist in Markov chains, and our analysis elegantly utilizes this additional
structure to establish the soundness of the learned representation. Also note, crucially, that we never
learn a representation to capture d0, which would suffer from similar issues as the supervised learning
setting, but is not necessary for sample-efficient RL.

Next, we prove the impossibility result in Theorem 6, restated below as Theorem 10. This result
shows that one can not achieve online learning in the source tasks without significantly stronger
assumptions such as Assumption 4.1. Before that, we provide a preliminary version, showing that
the learned �̂ is not sufficient to fit the transition model in the target task, which motivates the
construction in Theorem 10.

Theorem 9 (Impossibility Result: Model Learning) Let M = {(P1, ..., PK , Ptarget)} be a set of
K + 1 tasks that satisfies

1. all tasks are Block MDPs;

2. all tasks satisfy Assumption 3.2 and Assumption 2.2;

3. the latent dynamics are exactly the same for all source and target tasks.

For any pre-training algorithm A, there exists (P1, ..., PK , Ptarget) 2 M and an occupancy distribu-
tion ⇢target on the target task, such that with probability at least 1/2, A will output a feature �̂ and
for any µ

E⇢targetk�̂(s, a)>µ(·)� P ?

target(·|s, a)kTV � 1/2.

Proof [Proof of Theorem 9] Consider a tabular MDP with 2 latent states z1, z2 and an observation
state space S = R1

S
R2
S
B1
S
B2, where in task 1 one can only observe R1

S
R2 and in task

2 one can only observe B1
S
B2. Correspondingly, o1(s|z) is only supported on R1

S
R2 (i.e.,

o1(Ri|zi) = 1) and similar for task 2. Let the latent state transition be such that P (z1|z1, a) = 1 and
P (z2|z2, a) = 1, i.e. only self-transition regardless of the actions.

Now, consider a 2-element feature class  = { 1, 2} such that

 1 = {R1 ! 1, R2 ! 2, B1 ! 1, B2 ! 2}
 2 = {R1 ! 1, R2 ! 2, B1 ! 2, B2 ! 1}
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Denote �i(s, a) = e( i(s),a) for i 2 [1, 2]. Consider for each task k, a 2-element ⌥k class in the form
of ⌥k = {(ok(s|z1), ok(s|z2)), (ok(s|z2), ok(s|z1))}.

Notice that �1 and �2 are merely permutations of one another and so given any single task data,
the two hypothesis will not be distinguishable by any means. Therefore, for any algorithm, there is
at least probability 1/2 that it will choose the wrong hypothesis if the ground truth �? is sampled
between �1 and �2 uniformly at random. Suppose �1 is the correct hypothesis and �2 is the one
that the algorithm picks (i.e., �̂ = �2). Let task 3 be such that any state emits to R1

S
R2 and

B1
S

B2 each with probability 1/2 (i.e., o3(Ri|zi) = o3(Bi|zi) = 0.5). This construction satisfies
Assumption 3.2 and Assumption 2.2.

Then, within task 3, one would encounter observations from both R1 and B2 which should be
mapped to latent state z1 and z2 respectively by the true decoder �1, but are instead both mapped
to latent state z1 by the learned decoder �2, and thus z1 and z2 become indistinguishable. Suppose
⇢target(z1) = ⇢target(z2) = 1/2, then

E⇢target [k�̂(s, a)>µ(·)� P ?(·|s, a)kTV ]

=
1

4
k�̂(R1)

>µ(·)� �(R1)
?>µ?(·)kTV +

1

4
k�̂(B1)

>µ(·)� �(B1)
?>µ?(·)kTV

+
1

4
k�̂(R2)

>µ(·)� �(R2)
?>µ?(·)kTV +

1

4
k�̂(B2)

>µ(·)� �(B2)
?>µ?(·)kTV

= ko1 � o?1kTV /4 + ko2 � o?1kTV /4 + ko2 � o?2kTV /4 + ko1 � o?2kTV /4

� 1

4
ko?1 � o?2kTV +

1

4
ko?1 � o?2kTV

=
1

2
,

where the last second inequality uses triangle inequality, and the last equality comes from the fact
that o3(·|z1) and o3(·|z2) have disjoint support which implies that kp?1 � p?2kTV = 1.

Now, we are ready to restate and prove Theorem 6.

Theorem 10 (Impossibility Result: Optimal Policy Identification) Let M = {(P1, ..., PK , Ptarget)}
be a set of K + 1 tasks that satisfies

1. all tasks are Block MDPs;

2. all tasks satisfy Assumption 3.2 and Assumption 2.2;

3. the latent dynamics are exactly the same for all source and target tasks.

For any pre-training algorithm A, there exists (P1, ..., PK , Ptarget) 2 M, such that with probability
at least 1/2, A will output a feature �̂, such that for any policy taking the functional form of
⇡(s) = f

⇣
{�̂(s, a)}a2A, {r(s, a)}a2A

⌘
, we have

V ? � V ⇡ � 1/2.
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Proof [Proof of Theorem 10] Consider a tabular MDP with H = 2, two latent states z1, z2 for h = 1
and two latent states z3, z4 for h = 2.

• For h = 1, let there be two actions a1, a2. Let the observation state space be S = R1
S
R2
S
B1
S
B2,

where in task 1 one can only observe R1
S
R2 and in task 2 one can only observe B1

S
B2.

Correspondingly, o1(s|z) is only supported on R1
S
R2 (i.e., o1(Ri|zi) = 1) and similar for

task 2. Let the latent state transition be such that P (z3|z1, a1) = P (z3|z2, a2) = 1, and
P (z4|z1, a2) = P (z4|z2, a1) = 1. All rewards are 0 for h = 1.

• For h = 2, in state z3, all actions have reward 1, and in state z4 all actions have reward 0.

• The initial state distribution is d0(z1) = d0(z2) = 1/2.

Now, consider a 2-element feature class  = { 1, 2} for h = 1, such that

 1 = {R1 ! 1, R2 ! 2, B1 ! 1, B2 ! 2}
 2 = {R1 ! 1, R2 ! 2, B1 ! 2, B2 ! 1}

Denote �i(s, a) = e( i(s),a) for i 2 [1, 2]. In addition, define ⌥ = {µ1, µ2} where

µ1 = {z3 ! (1, 0), z4 ! (0, 1)}
µ2 = {z4 ! (1, 0), z3 ! (0, 1)}

Notice that �1 and �2 are merely permutations of one another and so given any single task data, the
two hypothesis will not be distinguishable by any means. Therefore, for any algorithm, there is at
least probability 1/2 that it will choose the wrong hypothesis. Suppose �1 is the correct hypothesis
and �2 is the one that the algorithm picks (i.e., �̂ = �2). Let task 3 be such that any state emits
to R1

S
R2 and B1

S
B2 each with probability 1/2 (i.e., o3(Ri|zi) = o3(Bi|zi) = 0.5). This

construction satisfies Assumption 3.2 and Assumption 2.2.

Then, for any policy that only make decision based on �̂(s, a) and r(s, a), ⇡ would output the same
action for observations in R1 and B2, or for B1 and R2. However, notice that the optimal policy,
which would try to go to z3 from either z1 or z2, will pick a1 at R1 and B1 while picking a2 at R2

and B2, which means that the optimal policy will not agree on R1 and B2, and it also will not agree
on R2 and B1. Thus clearly, no such policy as defined above is capable of capturing the optimal
policy. From the reward perspective, notice that d⇡(z1) = d⇡(z2) = 1/2 and d⇡(R1) = d⇡(R2) =
d⇡(B1) = d⇡(B1) = 1/4. Since ⇡(R1) = ⇡(B2), the agent will only be able to collect reward at one
of the R1 and B2 (but not at both). Similarly, since ⇡(R2) = ⇡(B1), the agent will only be able to
collect reward at one of the R2 and B1 by reaching z3 (but not at both). This means that ⇡ will have
average reward 1/2. Since the optimal policy will be able to collect reward at all R1, R2, B1, B2, it
will have average reward 1. This concludes the proof.

Theorem 9 and Theorem 10 show that it’s impossible to allow online learning in the source tasks
without much stronger assumptions. In our paper, we show that our Assumption 4.1, which ensures
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reachability in the raw states, is sufficient to establish an end-to-ending online transfer learning
result. However, it is unclear if Assumption 4.1 is necessary for online learning. We leave this as an
important direction of future work.

Appendix E. Reward-free Rep-UCB

In this section, we adapt the Rep-UCB algorithm (Uehara et al., 2021) for reward-free exploration in
a single task. We drop all task subscripts as this section is for a single task only, i.e. think about the
task as being each source task. The original Rep-UCB algorithm was for infinite-horizon discounted
MDPs, so we modify it to work for our undiscounted and finite-horizon setting. Our goal is to
prove that Rep-UCB can learn a model that satisfies strong TV guarantees, i.e. Theorem 11 and
(7). Note that FLAMBE (Agarwal et al., 2020, Theorem 2) can be used for this directly, but at a
worse (polynomial) sample complexity. Thus, we do a bit more work to derive a new model-learning
algorithm for low-rank MDPs, based on Rep-UCB, that is more sample efficient in the source tasks.

A finite-horizon analysis of Rep-UCB was done in BRIEE (Zhang et al., 2022), so here we just
need to replace BRIEE’s RepLearn ⇣n with that of the MLE, which is how we learn b� and bµ, as in
Rep-UCB. Recall the notation of (Zhang et al., 2022),

⇢h,n(s, a) =
1

n

n�1X

i=0

db⇡i
h
(s)Unif(a)

�h,n(s, a) =
1

n

n�1X

i=0

Ees⇠d
b⇡i
h�1,ea⇠Unif(A)

[P ?

h
(s | es,ea)Unif(a)]

�h,n(s, a) =
1

n

n�1X

i=0

db⇡i
h
(s, a)

⌃⇢,�,n = nE⇢
⇥
�(s, a)�(s, a)T

⇤
+ �nI.

By using MLE (Uehara et al., 2021, Lemma 18) to learn models, with probability at least 1� �, for
any n = 1, 2, ..., N and h = 0, 1, ..., H � 1, we have

max

⇢
E⇢h,n

��� bPh,n(s, a)� P ?

h
(s, a)

���
2

TV

,E�h,n
��� bPh,n(s, a)� P ?

h
(s, a)

���
2

TV

�
 ⇣n, (5)

where

⇣n = O
✓
log(|M|nH/�)

n

◆
,

and |M| = maxh2[H] |�h||⌥h|. We also adopt the same choice of ↵n,�n parameters as BRIEE,
which we assume from now on.

�n = ⇥(d log(|M|nH/�))

↵n = ⇥
⇣p

n|A|2⇣n + �nd
⌘
.
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As in Rep-UCB, we posit standard assumptions about realizability and normalization, on the (source)
task of interest.

Assumption E.1 For any h = 0, 1, ..., H � 1, we have �?
h
2 �h and µ?

h
2 ⌥h. For any � 2 �h,

k�(s, a)k2  1. For all µ 2 ⌥h and any function g : S ! R, we have k
R
s
g(s)dµ(s)k2  kgk1

p
d.

Lemma E.1 Let r be any reward function. Suppose we ran Algorithm 3 with line 7 having reward
r +bbn instead of just bbn. Then, for any � 2 (0, 1), w.p. at least 1� �, we have

N�1X

n=0

V b⇡n
bPn,r+bbn

� V b⇡n
P ?,r

 O
⇣
H2d2|A|1.5

p
N log(|M|NH/�)

⌘

Proof Start from the third equation of Zhang et al. (2022, Theorem A.4). Following their proof until
the last page of their proof, we arrive at the following: for any n = 1, 2, ..., N ,

V b⇡n
bPn,r+bbn

� V b⇡n
P ?,r

.
H�2X

h=0

Ees,ea⇠d
b⇡n
P?,h

k�?
h
(es,ea)k⌃�1

�h,n,�?
h

p
|A|↵2

nd+ �nd+
q
|A|↵2

1d/n

+ (2H + 1)
H�2X

h=0

Ees,ea⇠d
b⇡n
P?,h

k�?
h
(es,ea)k⌃�1

�h,n,�?
h

p
n|A|⇣n + �nd+ (2H + 1)

p
|A|⇣n.

By elliptical potential arguments, we have
N�1X

n=0

Ees,ea⇠d
b⇡n
P?,h

k�?
h
(es,ea)k⌃�1

�h,n,�?
h



s

dN log

✓
1 +

N

d�1

◆
.

Thus, summing over n, noting that n⇣n,↵n,�n are increasing in n, we can combine the above to get,
N�1X

n=0

V b⇡n
bPn,r+bbn

� V b⇡n
P ?,r

.
s

dN log

✓
1 +

N

d�1

◆✓
H
q
|A|↵2

N
d+ �Nd+H2

p
N |A|⇣N + �Nd

◆

.
s

dN log

✓
1 +

N

d�1

◆⇣
H
p
N |A|3⇣Nd+ �Nd2 +H2

p
N |A|⇣N + �Nd

⌘

.
s

dN log

✓
1 +

N

d�1

◆⇣
H2
p
d|A|3 log(|M|NH/�) + d3 log(|M|NH/�)

⌘

2 O
⇣
H2d2|A|1.5

p
N log(|M|NH/�)

⌘
.

This gives the following useful corollary for reward free exploration.
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Lemma E.2 For any � 2 (0, 1) w.p. at least 1� � we have

bVbn  O
 
H2d2|A|1.5

r
log(|M|NH/�)

N

!
.

Proof By definition of bVbn, we have

N

2
bVbn 

N�1X

n=N/2

V b⇡bn
bPn,bbn


N�1X

n=0

V b⇡bn
bPn,bbn

,

which is bounded by the previous lemma and the fact that V b⇡n
P ?,r=0 = 0, since in Algorithm 3, the

reward function is zero.

Conditioning on this, we now show that the environment bPbn has low TV error for any policy-induced
distribution.

Theorem 11 For any policy ⇡, we have

H�1X

h=0

Ed
⇡
P?,h

���P ?

h
(s, a)� bPh,bn(s, a)

���
TV

 O
 
H3d2|A|1.5

r
log(|M|NH/�)

N

!
:= "TV .

Proof In this proof, let bP = bPbn, which is the returned environment from the algorithm. Let
r(s, a) =

���P ?

h
(s, a)� bPh(s, a)

���
TV

2 [0, 2]. Then,

H�1X

h=0

⇣
Ed

⇡
P?,h

� Ed
⇡
bP,h

⌘
[r(s, a)]

= V ⇡

P ?,r � V ⇡

bP ,r

=
H�1X

h=0

Ed
⇡
bP,h

h⇣
EP

?
h (s,a)

� E bPh(s,a)

⌘
V ⇡

P ?,r,h+1(s
0)
i

(Simulation lemma)

 2H
H�1X

h=0

Ed
⇡
bP,h

���P ?

h
(s, a)� bPh(s, a)

���
TV

.

Thus,

H�1X

h=0

Ed
⇡
P?,h

���P ?

h
(s, a)� bPh(s, a)

���
TV

 (2H + 1)
H�1X

h=0

Ed
⇡
bP,h

���P ?

h
(s, a)� bPh(s, a)

���
TV

(by (Zhang et al., 2022, Lemma A.1))
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. H

 
H�2X

h=0

Ed
⇡
bP,h

h
bbh,bn(s, a)

i
+
q
|A|⇣N/2

!

 H

 
V ⇡

bP ,bbbn
+

r
2|A| log(|M|NH/�)

N

!

 H

 
V b⇡bn

bP ,bbbn
+

r
2|A| log(|M|NH/�)

N

!

. H

 
H2d2|A|1.5

r
log(|M|NH/�)

N
+

r
|A| log(|M|NH/�)

N

!
(by Lemma E.2)

2 O
 
H3d2|A|1.5

r
log(|M|NH/�)

N

!
.

This also gives us a guarantee on the TV distance between the visitation distributions induced by P ?

vs. by bP .

Lemma E.3 Suppose bP satisfies the following for all h = 0, 1, ..., H � 1,

8⇡ : Ed
⇡
P?,h

��� bPh(s, a)� P ?

h
(s, a)

���
TV

 "h. (6)

Then, for any h = 0, 1, ..., H � 1, we have

8⇡ :
���d⇡bP ,h

� d⇡
P ?,h

���
TV


h�1X

t=0

"t.

Note, for h = 0, the sum is empty so the right hand side is 0.

Proof We proceed by induction for h = 0, 1, ..., H � 1. For the base case of h = 0, no transition
has been taken, so that d⇡bP ,0

= d⇡
P ?,0. Now let h 2 {0, 1, ..., H � 2} be arbitrary, and suppose that

the claim is true for h (IH). We want to show the claim holds for h + 1. One key fact we’ll use
is that, for any measure µ, we have kµkTV = supkfk11 |Eµ[f ]|. Below we use the notation that
f(s,⇡) = Ea⇠⇡(s)f(s, a).

kd⇡bP ,h+1
� d⇡

h+1kTV

= sup
kfk11

���Ed
⇡
bP,h+1

[f(s, a)]� Ed
⇡
h+1

[f(s, a)]
���

= sup
kfk11

����E(es,ea)⇠d
⇡
bP,h

,(s,a)⇠ bPh(es,ea)[f(s,⇡h+1)]� E(es,ea)⇠d
⇡
h ,(s,a)⇠P

?
h (es,ea)[f(s,⇡h+1)]

����

 sup
kfk11

���
⇣
E(es,ea)⇠d

⇡
bP,h

� E(es,ea)⇠d
⇡
h

⌘
E bPh(es,ea)f(s,⇡h+1)

���
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+ sup
kfk11

���E(es,ea)⇠d
⇡
h

h
E bPh(es,ea)f(s, a)� EP

?
h (es,ea)f(s,⇡h+1)

i���


h�1X

t=0

"t + E(es,ea)⇠d
⇡
h

"
sup

kfk11

���
⇣
E bPh(es,ea) � EP

?
h (es,ea)

⌘
f(s,⇡h+1)

���

#
(by IH and Jensen)


h�1X

t=0

"t + "h, (by (6) and kf(s,⇡h+1)k  1)

as desired.

Thus, when combined with Theorem 11, we have for h = 0, 1, ..., H � 1 and any policy ⇡,

kd⇡bP ,h
� d⇡

P ?,hkTV  O
 
H3d2|A|1.5

r
log(|M|NH/�)

N

!
= "TV . (7)

In other words, the sample complexity needed for a model-error of "TV is

O
✓
H6d4|A|3 log(|M|NH/�)

"2
TV

◆
.

Note this is much better than FLAMBE’s guarantee (Agarwal et al., 2020, Theorem 2) which requires,

O
✓
H22d7|A|9 log(|M|NH/�)

"10
TV

◆
.

Appendix F. Reward-free Exploration

In this section, we show that the mixture policy returned by Algorithm 1 is exploratory. Recall that
Algorithm 1 contains two main steps:

Step 1 Learn a model bP . This was the focus of the previous section, where our modified REP-UCB
method obtained a strong TV guarantee ((7)) by requiring number of episodes at most,

NREWARDFREE = O
✓
H6d4|A|3 log(|M|NH/�)

"2
TV

◆
.

Step 2 Run LSVI-UCB (Algorithm 5) in the learned model bP with reward at the e-th episode being
bh,e and UNIFORMACTIONS = TRUE. The optimistic bonus pushes the algorithm to explore
directions that are not well-covered yet by the mixture policy up to this point. With elliptical
potential, we can establish that this process will terminate in polynomial number of steps.

We now focus on Step 2. Let ⇡+1
h

denote rolling-in ⇡ for h steps and taking uniform actions on the
h+ 1 step, thus inducing a distribution over sh+1, ah+1. We abuse the notation a little and use ⇡+1

�1
for a policy that just takes one uniform action from the initial distribution d0.
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Lemma F.1 Let � 2 (0, 1) and run REWARDFREE (Algorithm 1). Let ⇤h,N be the empirical
covariance at the N -th iteration of LSVI-UCB (Algorithm 5). Then, w.p. at least 1� � we have,

sup
⇡

H�1X

h=0

E
⇡
+1
h�1,

bP

���b�h(sh, ah)
���
⇤�1
h,N

. Ad1.5H3
p
log(dNH/�)/N.

Proof In this proof, we’ll treat the empirical MDP as P ?, as that is the environment we’re running
in. Thus, we abuse notation and bPh,e is the model-based perpsective of the linear MDP, i.e. b�hbµh,e

where bµh,e is ⇤�1
h,e

P
e�1
k=1

b�h(skh, akh)�(skh+1). Also, in Algorithm 1, we set reward to be zero, but
for the purpose of this analysis, suppose the reward function is precisely the (unscaled) bonus in
LSVI-UCB, i.e. rh,e(sh, ah) = bh,e(sh, ah). This does not change the algorithm at all since the
�-scaling of the bonus dominates this reward in the definition of bQh,e, but thinking about the reward
in this way will make our analysis simpler.

Recall the high-level proof structure of reward free guarantee of linear MDP (with known features b�)
(Wang et al., 2020, Lemma 3.2).

Step 1 Show that bVh,e 2 Vh and w.p. 1� �, for all h, e,

8sh, ah : sup
f2Vh

��� bPh,e(sh, ah)� P ?

h
(sh, ah)

���f  �bh,e(sh, ah).

This step only uses self-normalized martingale bounds. So, line 9 can use any martingale
sequence of states and actions, and this claim still holds, with bonus bh,e using the appropriate
covariance under the data.

Step 2 Show optimism conditioned on Step 1. Specifically, for all e = 1, 2, ..., N , we have Ed0

h
V ?

0 (s0, re)� bV0,e(s0)
i


0. To show this, we need that bVh,e(sh) = bQh,e(sh,⇡eh(sh)) � bQh,e(sh,⇡?h(sh)) (this is for the
unclipped case of V -optimism), which we have satisfied in the algorithm, i.e. ⇡e

h
is greedy

w.r.t. bQh,e.

Step 3 Bound the sum
P

e
bVh,e, where we decompose it as a sum of expected bonuses with the

expectation is under ⇡e.

Step 3 is the only place where we use the fact that sk
h
, ak

h
are data sampled from rolling out b⇡e. For

Step 1 and 2, please refer to existing proofs in (Agarwal et al., 2019; Jin et al., 2020b; Wang et al.,
2020).

Now we show Step 3 for our modified algorithm with uniform actions. First, let us show a simulation
lemma. For any episode e = 1, 2, ..., N , for any s, recalling definition of reward being bh,e, we have

bV0,e(s0)  (1 + �)b0,e(s0,⇡
e

0(s0)) + bP0,e(s0,⇡
e(s0))bV1,e

 (1 + 2�)b0,e(s0,⇡
e

0(s0)) + P ?

0,e(s0,⇡
e(s0))bV1,e,

34



REPRESENTATIONAL TRANSFER IN RL

where the first inequality is due to the thresholding on bVh,e’s and the second inequality is due to Step
1. Continuing in this fashion, we have

Ed0

h
bV0,e(s0)

i
 (1 + 2�)

H�1X

h=0

E⇡e [bh,e(sh, ah)].

Summing over e = 1, 2, ..., N , we have

NX

e=1

Ed0

h
bV0,e(s0)

i
. �

H�1X

h=0

NX

e=1

E⇡e [bh,e(sh, ah)]

 A�
H�1X

h=0

NX

e=1

E
(⇡e

h�1)
+1 [bh,e(sh, ah)]

For each h = 0, 1, ..., H � 1, apply Azuma’s inequality to the martingale difference sequence
�e = E

(⇡e
h�1)

+1 [bh,e(sh, ah)]� bh,e(seh, a
e

h
). The envelope is at most 2. So, w.p. 1� �,

 A�
H�1X

h=0

NX

e=1

bh,e(s
e

h
, ae

h
) +A�

p
N log(H/�).

Now apply a self-normalized elliptical potential bound to the first term, giving that

H�1X

h=0

NX

e=1

bh,e(s
e

h
, ae

h
) 

H�1X

h=0

p
N

vuut
NX

e=1

bh,e(seh, a
e

h
)2 . H

p
dN log(N).

Thus, we finally have

NX

e=1

Ed0

h
bV0,e(s0)

i
. A�H

p
dN log(NH/�).

Consider any episode e = 1, 2, ..., N . By definition, ⇤h,N ⌫ ⇤h,e, so for all s, a we have pointwise
that bh,N (s, a)  bh,e(s, a). Hence, for all s, we have V ?

0 (s; r
N )  V ?

0 (s; r
e), and further using

optimism, we have

NEd0 [V
?

0 (s0; rN )] 
NX

e=1

Ed0 [V
?

0 (s0; re)] 
NX

e=1

Ed0

h
bV0,e(s0)

i
. A�H

p
dN log(NH/�).

Now consider any h and policy ⇡, and consider rolling it out for h� 1 steps and taking a random
action. Then we have

E
⇡
+1
h�1,

bP

���b�h(sh, ah)
���
⇤�1
h,N

 Ed0


V
⇡
+1
h�1

0 (s0; rN )

�
 A�H

p
d log(NH/�)/N.

Summing over h incurs an extra H factor on the right. This concludes the proof.
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Lemma F.2 (One-step back for Linear MDP) Suppose Ph = (�h, µh) is a linear MDP. Suppose
⇢ is any mixture of n policies, and let ⌃h := nE⇢

⇥
�h(sh, ah)�h(sh, ah)>

⇤
+ �I denote the unnor-

malized covariance. For any g : S ⇥A ! R, policy ⇡, and h = 0, 1, ..., H � 2, we have

E⇡[g(sh+1, ah+1)]  E⇡
h
k�h(sh, ah)k⌃�1

h

iq
nAE

⇢
+1
h
[g(sh+1, ah+1)2] + �dkgk21

Proof

E⇡[g(sh+1, ah+1)] =

*
E⇡[�h(sh, ah)],

Z

sh+1

g(sh+1,⇡h+1)dµh(sh+1)

+

 E⇡k�h(sh, ah)k⌃�1
h

�����

Z

sh+1

g(sh+1,⇡h+1)dµh(sh+1)

�����
⌃h

,

where
�����

Z

sh+1

g(sh+1,⇡h+1)dµh(sh+1)

�����
⌃h

= nE⇢
h�
Esh+1⇠Ph(sh,ah)[g(sh+1,⇡h+1)]

�2i
+ �

�����

Z

sh+1

g(sh+1,⇡h+1)dµh(sh+1)

�����

2

 n|A|E
⇢
+1
h

⇥
g(sh+1, ah+1)

2
⇤
+ �dkgk21.

Under reachability, we can show that small (squared) bonuses and spectral coverage, in the sense of
having lower bounded eigenvalues, are somewhat equivalent.

Lemma F.3 Let ⌃ be a symmetric positive definite matrix and define the bonus bh(s, a) =
k�?

h
(s, a)k⌃�1 . Then we have

1. For any policy ⇡, Ed
⇡
h

⇥
b2
h
(s, a)

⇤
 1

�min(⌃) . That is, coverage implies small squared bonus.

2. Suppose reachability under �? (Assumption 3.2), then we have the converse: there exists b⇡,
for any policy ⇡, E

d
e⇡
h

⇥
b2
h
(s, a)

⇤
�  

�min(⌃) . That is, small squared bonus implies coverage.

Proof The first claim follows directly from Cauchy-Schwartz. Indeed, for any policy ⇡, we have

Ed
⇡
h

⇥
b2
h
(s, a)

⇤
 Ed

⇡
h

⇥
k�?

h
(s, a)k22k⌃�1k2

⇤
 1

�min(⌃)
.

For the second claim, Assumption 3.2 implies that there exist a policy e⇡ such that for all vectors
v 2 Rd with kvk2 = 1, we have E

d
e⇡
h

⇥
(�?

h
(s, a)>v)2

⇤
�  . Now decompose ⌃ =

P
d

i=1 �iviv
>
i

,
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where �i, vi are eigenvalue/vector pairs with kvik2 = 1 and �1 � �2 � ... � �d. Then substituting
this into the definition of the bonus, we have

E
d
e⇡
h

⇥
b2
h
(s, a)

⇤
=

dX

i=1

1

�i
E
d
e⇡
h

⇥
(�?

h
(s, a)T vi)

2
⇤

� 1

�d
E
d
e⇡
h

⇥
(�?

h
(s, a)T vd)

2
⇤

�  

�min(⌃)
.

We now prove our main lemma for reward-free exploration, Lemma 3.1.

Lemma 3.1 (Source task exploration) Suppose Assumptions 3.2,3.3 hold. Then, for any � 2 (0, 1),
w.p. 1� �, running EPS in any source task with NLSVI-UCB = e⇥

�
A3d6H8 �2

�
and NREWARDFREE =

eO
⇣
A3d4H6 log

⇣
|�||⌥|
�

⌘
N2

LSVI-UCB

⌘
returns a �min-exploratory policy where �min = e⌦

�
A�3d�5H�7 2

�
.

The sample complexity in the source task is NREWARDFREE episodes.

Proof [Proof of Lemma 3.1] In this proof, let

⇤?
h
= NLSVI-UCBE⇢+1

h�1

h
�?
h
(sh, ah)�

?

h
(sh, ah)

>
i
+ �I,

b⇤h = NLSVI-UCBE⇢+1
h�1

h
b�h(sh, ah)b�h(sh, ah)>

i
+ �I,

where � = dH log(NLSVI-UCB/�) � 1. This setting of � satisfies the precondition for the Concen-
tration of Inverse Covariances Zanette et al. (2021, Lemma 39), which implies w.p. at least 1� �
that

b⇤�1
h

� 2

 
NLSVI-UCBX

e=1

b�h(seh, aeh)b�h(seh, aeh)> + �I

!�1

� 2⇤�1
h,NLSVI-UCB

,

where we’ve also used the fact that � � 1, so (A+ �I)�1 � (A+ I)�1.

Under this event, for any ⇡, we have,

HX

h=1

E
⇡, bP

���b�h(sh, ah)
���b⇤�1

h

.
HX

h=1

E
⇡, bP

���b�h(sh, ah)
���b⇤�1

h,NLSVI-UCB

. (8)

Now let h = 0, 1, ..., H � 2 be arbitrary. By Assumption 3.2 (there exists some policy e⇡ with
coverage) such that,

 

�min
�
⇤?
h+1

�
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 Ee⇡
���?

h+1(sh+1, ah+1)
��2
(⇤?

h+1)
�1 (by Lemma F.3)

 Ee⇡
���?

h+1(sh+1, ah+1)
��
(⇤?

h+1)
�1 (by � � 1)

 Ee⇡, bP

���b�h(sh, ah)
���b⇤�1

h

p
A(2d+ "TV NLSVI-UCB) + "TV (by Corollary 12)

 Ee⇡, bP

���b�h(s, a)
���b⇤�1

h

p
A(2d+ 1) + 1/NLSVI-UCB (by "TV = 1/NLSVI-UCB)

. A1.5d2H3
p
log(dHNLSVI-UCB/�)/NLSVI-UCB + 1/NLSVI-UCB (by (8) and Lemma F.1)

. A1.5d2H3
p
log(dHNLSVI-UCB/�)/NLSVI-UCB.

Recall that � = dH log(NLSVI-UCB/�), we have,

�min

⇣
E
⇢
+1
h

⇥
�?
h+1(s, a)�

?

h+1(s, a)
T
⇤⌘

=
�min

�
⇤?
h+1

�
� �

NLSVI-UCB

� 1

NLSVI-UCB

 
C 

A1.5d2H3
p
log(dHNLSVI-UCB/�)/NLSVI-UCB

� dH log(NLSVI-UCB/�)

!

& C 

A1.5d2H3
p
NLSVI-UCB

� dH

NLSVI-UCB
,

where we’ve omitted the log terms for simplicity in the &. Now we optimize NLSVI-UCB to maximize
this bound. For a, b > 0, to maximize a function of the form f(x) = ap

x
� b

x
, it’s best to set x? such

that
p
x? = 2b

a
, resulting in value f(x?) = a

2

4b . Setting,

x = NLSVI-UCB,

a =
C 

A1.5d2H3
,

b = dH.

Hence, we need to set

NLSVI-UCB = e⇥
�
b2/a2

�
= e⇥

✓
A3d6H8

 2

◆
,

which results in a �min lower bound of

�min

⇣
E
⇢
+1
h

⇥
�?
h+1(sh+1, ah+1)�

?

h+1(sh+1, ah+1)
T
⇤⌘

= e⌦
�
a2/b

�
= e⌦

✓
 2

A3d5H7

◆
.

Finally, we used the fact that "TV = 1/NLSVI-UCB, which is set by the choice of NREWARDFREE in the
lemma statement to satisfy (7).

The above proves coverage of ⇢+1
h

for h = 0, 1, ..., H � 2. Finally to argue for ⇢+1
�1, which is simply

taking a random action at time h, we can simply invoke Assumption 3.2 for h = 0 to get a policy e⇡
that

E
⇢
+1
�1

h
�?0(s0, a0)�

?

0(s0, a0)
>
i
⌫ 1

A
Ee⇡

h
�?0(s0, a0)�

?

0(s0, a0)
>
i
⌫  

A
.
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Corollary 12 Let �,⇤?
h
, b⇤h be defined as in the proof of Lemma 3.1. For any h = 0, 1, ..., H � 2

and any policy ⇡, we have

E⇡
���?

h+1(sh+1, ah+1)
��
(⇤?

h+1)
�1

�
 E

⇡, bP

���b�h(sh, ah)
���b⇤�1

h

�p
|A|(2d+ "TV NLSVI-UCB) + "TV .

Intuitively, this means that coverage in the learned features implies coverage in the true features.

Proof For shorthand, let N = NLSVI-UCB. Apply Lemma F.2 (one-step back) to the learned model bP
and the function (s, a) 7! k�?

h+1(s, a)k(⇤?
h+1)

�1 , which is bounded by ��1/2  1. We have,

E
⇡, bP
���?

h+1(sh+1, ah+1)
��
(⇤?

h+1)
�1

 E
⇡, bP

���b�h(sh, ah)
���b⇤�1

h

r
N |A|E

⇢
+1
h , bP k�

?

h+1(sh+1, ah+1)k2(⇤?
h+1)

�1 + d

 E
⇡, bP

���b�h(sh, ah)
���b⇤�1

h

r
N |A|E

⇢
+1
h
k�?

h+1(sh+1, ah+1)k2(⇤?
h+1)

�1 +N |A|"TV + d

 E
⇡, bP

���b�h(sh, ah)
���b⇤�1

h

p
d|A|+N |A|"TV + d,

where we used the fact that

E
⇢
+1
h
k�?

h+1(sh+1, ah+1)k2(⇤?
h+1)

�1

= Tr

✓
E
⇢
+1
h

h
�?
h+1(sh+1, ah+1)�

?

h+1(sh+1, ah+1)
>
i⇣

NE
⇢
+1
h

h
�?
h
(sh, ah)�

?

h
(sh, ah)

>
i
+ �I

⌘�1
◆

=
1

N
Tr(I �M)  d

N
,

where M is a positive definite matrix. Thus, doing an initial change from d⇡
h+1 to d⇡bP ,h+1

concludes
the proof.

Appendix G. Representation Transfer

First, we prove Lemma 3.2, restated below.

Lemma 3.2 (Target model error) Suppose Assumption 2.2 holds and ⇡k is �min-exploratory for
each source task k. For any � 2 (0, 1), w.p. 1� �, 8 h 2 [0 : H � 1], 9 eµh : S ! Rd such that

sup
⇡

E⇡,P ?
target

���b�h(sh, ah)>eµh(·)� �?
h
(sh, ah)

>µ?target;h(·)
���
TV

 "TV :=
p
|A|↵3

maxK⇣n/�min, (4)

and, for any function g : S ! [0, 1], k
R
g(s)deµh(s)k2  ↵̄

p
d.

39



AGARWAL SONG SUN WANG WANG ZHANG

Proof [Proof of Lemma 3.2] Fix an arbitrary ⇡. Denote µh(s0) =
P

K

k=1 ↵k;h(s0)bµk;h(s0). First, note
that

max
g:S![0,1]

����
Z

µh(s)g(s)d(s)
����
2

 max
g:S![0,1]

KX

k=1

����
Z
bµk;h(s)↵k;h(s)g(s)d(s)

����
2


KX

k=1

max
s
↵k;h(s)

p
d (Since

R
bµk;h(s)g(s)d(s) 

p
d by 3.3)

= ↵̄
p
d

For any h = 0, 1, ..., H � 1, we have

E⇡,P ?
target

���b�h(sh, ah)>µh(·)� �?
h
(sh, ah)

>µ?
K;h(·)

���
TV

= E⇡,P ?
target

2

4
X

sh+1

�����

KX

k=1

↵k;h(sh+1)
⇣
b�h(sh, ah)>bµk;h(sh+1)� �?

h
(sh, ah)

>µ?
k;h(sh+1)

⌘�����

3

5

 E⇡,P ?
target

2

4
X

sh+1

KX

k=1

|↵k;h(sh+1)|
���b�h(sh, ah)>bµk;h(sh+1)� �?

h
(sh, ah)

>µ?
k;h(sh+1)

���

3

5

 ↵max

KX

k=1

E⇡,P ?
target

���b�h(sh, ah)>bµk;h(·)� �?
h
(sh, ah)

>µ?
k;h(·)

���
TV

.

First consider the case when h = 0. At h = 0, the distribution under P ?
target is the same as ⌫k,h, and

so, we directly get that the above quantity is at most ↵max⇣
1/2
n  ", which proves the h = 0 case.

Now consider any h = 1, 2, ..., H � 1. To simplify notation, let us denote

errk;h(sh, ah) =
���b�h(sh, ah)>bµk;h(·)� �?

h
(sh, ah)

>µ?
k;h(·)

���
TV

,

wk;h =

Z

sh

dµ?target;h�1(sh)Eah⇠⇡h(sh)errk;h(sh, ah),

⌃k,h = E⇡k,P ?
k

h
�?
h
(sh, ah)�

?

h
(sh, ah)

>
i
.

Note that �min(⌃k,h) � �min by assumption. Now continuing from where we left off, we take a
one-step back as follows,

↵max

KX

k=1

E⇡,P ?
target

errk;h(sh, ah)

= ↵max

KX

k=1

E⇡,P ?
target

⌦
�?
h�1(sh�1, ah�1), wk;h

↵
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 ↵max

KX

k=1

✓
E⇡,P ?

target

���?
h�1(sh�1, ah�1)

��
⌃�1

k;h�1

◆
kwk;hk⌃k;h�1

By �min guarantee of ⌃k,h, and Jensen’s inequality to push the square inside,

 ↵maxp
�min

KX

k=1

q
Esh�1,ah�1⇠⇡k,P ?

k
Esh⇠P

?
target;h�1(sh�1,ah�1),ah⇠⇡h(sh)errk;h(sh, ah)2

 A1/2↵maxp
�min

KX

k=1

q
Esh�1,ah�1⇠⇡k,P ?

k
Esh⇠P

?
target;h�1(sh�1,ah�1),ah⇠unif(A)errk;h(sh, ah)2

By Assumption 2.2, the expectation over P ?

target;h�1 is a linear combination of expectations over
P ?

j;h�1,

 A1/2↵3/2
maxp

�min

KX

k=1

vuut
KX

j=1

Esh�1,ah�1⇠⇡k,P ?
k
Esh⇠P

?
j;h�1(sh�1,ah�1),ah⇠unif(A)errk;h(sh, ah)2

 A1/2↵3/2
maxK1/2

p
�min

vuut
KX

k=1

KX

j=1

Esh�1,ah�1⇠⇡k,P ?
k
Esh⇠P

?
j;h�1(sh�1,ah�1),ah⇠unif(A)errk;h(sh, ah)2

 A1/2↵3/2
maxK1/2⇣1/2np
�min

,

where we used the MLE guarantee (3) in the last step.

Next we state an analogous lemma for when we don’t need generative access to the source task, but
instead assume Assumption 4.1, and Assumption 4.2.

Lemma G.1 Suppose Assumption 4.1, and Assumption 4.2. Now take the setup of Lemma 3.2 with
the only difference being that b� is learned as in Algorithm 4. Then, the same guarantee of Lemma 3.2
holds with a slightly different right hand side for the bound on the TV-error,

sup
⇡

E⇡,P ?
target

���b�h(sh, ah)>bµh(·)� �?
h
(sh, ah)

>µ?target;h(·)
���
TV

 ↵maxK1/2⇣1/2n

( raw�min)
1/2

.

Proof [Proof of Lemma G.1] Fix an arbitrary ⇡. Denote µh(s0) =
P

K

k=1 ↵k;h(s0)µ̂k;h(s0). Then,
some algebra with importance sampling gives us the bound,

E⇡,P ?
target

���b�h(sh, ah)>µh(·)� �?
h
(sh, ah)

>µ?target;h(·)
���
TV

 E⇡,P ?
target

2

4
X

sh+1

�����

KX

k=1

↵k;h(sh+1)
⇣
b�h(sh, ah)>bµk;h(sh+1)� �?

h
(sh, ah)

>µ?
k;h(sh+1)

⌘�����

3

5
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 ↵max

KX

k=1

E⇡,P ?
target

���b�h(sh, ah)>bµk;h(·)� �?
h
(sh, ah)

>µ?
k;h(·)

���
TV

 ↵maxK
1/2

vuut
KX

k=1

E⇡,P ?
target

���b�h(sh, ah)>bµk;h(·)� �?
h
(sh, ah)>µ?k;h(·)

���
2

TV

By Assumption 4.1, Assumption 4.2, for any s, a, we have
d
⇡
target;h(s,a)

d
⇡k
k;h(s,a)

 1

 raw�min

⇣
E⇡k,P?

k
[�?h(sh,ah)�?h(sh,ah)>]

⌘ 
1

 raw�min
, where we used the coverage-under-⇡k assumption in the last inequality. In other words, for

each source task k 2 [K], we have
����
dd⇡target;h

dd
⇡k
k;h

����
1

 1
 raw�min

, hence we can use importance sampling,

 ↵maxK1/2

( raw�min)
1/2

vuut
KX

k=1

E⇡k,P ?
k

���b�h(sh, ah)>bµk;h(·)� �?
h
(sh, ah)>µ?k;h(·)

���
2

TV

 ↵maxK1/2⇣1/2n

( raw�min)
1/2

.

Appendix H. Proofs for LSVI-UCB under average-case misspecification

H.1. Auxiliary RL Lemmas

Lemma H.1 (Self-normalized Martingale) Consider filtrations {Fi}i=1,2,..., so that E["i | Fi�1] =

0 and {"i | Fi�1}i=1,2,... are sub-Gaussian with parameter �2. Let {Xi}i=1,2,... be random variables
in a hilbert space H. Suppose a linear operator ⌃0 : H ! H is positive definite. For any t, define
⌃t = ⌃0 +

P
t

i=1XiXT

i
. Then w.p. at least 1� �, we have,

8t � 1 :

�����

tX

i=1

Xi"i

�����

2

⌃�1
t

 �2 log

✓
det(⌃t) det(⌃0)�1

�2

◆
.

Proof Lemma A.8 of (Agarwal et al., 2019).

Lemma H.2 Let ⇤t = �I +
P

t

i=1 xix
T

i
for xi 2 Rd and � > 0. Then

P
t

i=1 x
T

i
(⇤t)�1xi  d.

Proof Lemma D.1 of (Jin et al., 2020b).
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H.2. Proof of main result

Previously, Jin et al. (2020b) analyzed LSVI-UCB under point-wise model-misspecification. Here, we
show that similar guarantees hold under a more general policy-distribution model-misspecification
"ms, captured by Assumption H.1.

Assumption H.1 Suppose for every h = 0, 1, ..., H � 1, there exist eµh such that for any policy ⇡,

E⇡
h���eµh(·)T b�h(sh, ah)� P ?

h
(· | sh, ah)

���
TV

i
 "ms.

We further assume that sups,a,h
���eµh(·)T b�(s, a)

���
TV

 Mµ and kfT eµhk2  Mµ

p
dkfk1 8f : S !

R, for some positive constant Mµ.

In other words, we only need the model to be accurate on average under the occupancy distributions
realizable by policies. We also make a slight generalization on the regularization constant Mµ, which
is set to 1 in the original linear MDP definition (Jin et al., 2020b). Later, we will later instantiate the
above assumption with our transferred eµh(s0) =

P
K

k=1 ↵k;h(s0)bµk;h(s0), then for any s, a, we have

keµh
b�h(s, a)kTV =

X

s0

�����

KX

k=1

↵k;h(s
0)bµk;h(s

0)T b�h(s, a)

�����


X

s0

KX

k=1

|↵k;h(s
0)||bµk;h(s

0)T b�h(s, a)|


KX

k=1

max
s0

|↵k;h(s
0)| (by

���bµk;h
b�h(s, a)

���
TV

 1)

 ↵̄.

Also,

kfT eµhk2 =

�����
X

s0

KX

k=1

↵k;h(s
0)bµk;h(s

0)f(s0)

�����
2

=
KX

k=1

max
s0

|↵k;h(s
0)|

�����
X

s0

bµk;h(s
0)f(s0)

�����
2

 ↵̄
p
dkfk1. (by kfT bµk;hk2 

p
dkfk1)

So we will set Mµ = ↵̄.

Note that we only need the existence of eµh here, and eµh(·)T b�h(s, a) need not be a valid probability
kernel. In fact, it may even be negative valued.

In this section, we make a model-based analysis of LSVI. Similar approaches have been used in prior
works, e.g. Lykouris et al. (2021); Agarwal et al. (2019); Zhang et al. (2022). For simplicity, we
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suppose that S is finite, but may be exponentially large, as we suffer no dependence on |S|. The
proof can be easily extended to infinite state spaces by replacing inner products with P by integrals.

Consider the following quantity,

bµh,e =

 
e�1X

k=1

�(sk
h+1)b�h(skh, akh)T

!
(⇤h,e)

�1 2 argmin
µ2RS⇥d

e�1X

k=1

kµb�h(sih, aih)� �(si
h+1)k2 + kµk2F ,

where �(s) is a one-hot encoding of the state s. In words, this is the best choice for linearly (in
b�h(s, a)) predicting Es0⇠P

?
h (s,a)

[�(s0)] = P ?

h
(s0 | s, a). We highlight that this is just a quantity for

analysis and not computed in the algorithm. Finally, denote

bPh,e = bµh,e
b�h,

ePh = eµh
b�h.

We will also sometimes use the shorthand Pf(s, a) for Es0⇠P (·|s,a)[f(s
0)].

For each h = 0, 1, ..., H � 1, let Vh denote the class of functions
⇢
s 7!

⇣
max
a

n
wT b�h(s, a) + rh(s, a) + e�kb�h(s, a)k⇤�1

o⌘

MV

����kwk2  NMV , e� 2 [0, B],⇤ ⌫ I symmetric
�

The motivation behind this construction is that Vh satisfies the key property that all of the learned
value functions bVh,e during Algorithm 5 are captured in this class.

Lemma H.3 For any h = 0, 1, ..., H � 1,

1. sups

���bVh,e(s)
���  MV .

2. For any e = 1, 2, ..., N , we have bVh,e 2 Vh.

3. 8f 2 Vh, we have sups|f(s)|  MV .

Proof Recall that

bVh,e(s) =
⇣
max
a

n
bwT

h,e
b�h(s, a) + rh(s, a) + �bh,e(s, a)

o⌘

MV

where bwh,e = ⇤
�1
h,e

e�1X

k=1

b�h(skh, akh)bVh+1,e(s
k

h+1).

From the thresholding, we have
���bVh,e(s)

���  MV .
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We can bound the norm of bwh,e as follows,

k bwh,ek 
���⇤�1

h,e

���
2

e�1X

k=1

���bVh+1,e(s
k

h+1)
���  N sup

s

���bVh+1,e(s)
���  NMV .

We also required �  B, and we regularized the covariance with I , so �min is at least 1. Hence bVh,e

satisfies all the conditions to be in Vh.

Now we control the metric entropy of Vh in `1, i.e. d(f1, f2) = sups|f1(s)� f2(s)| for fi 2 Vh.

Lemma H.4 Let " > 0 be arbitrary and let N" be the smallest "-net with `1 of Vh. Then,

log|N"|  d log(1 + 6L/") + log(1 + 6B/") + d2 log(1 + 18B2
p
d/"2).

Proof Let f1, f2 2 Vh. Then,

|f1(s)� f2(s)|

 max
a

����(w1 � w2)
T b�h(s, a) + �1

���b�h(s, a)
���
⇤�1
1

� �2
���b�h(s, a)

���
⇤�1
2

����

 kw1 � w2k2 +max
a

����(�1 � �2)
���b�h(s, a)

���
⇤�1
1

����+ �2max
a

����
���b�h(s, a)

���
⇤�1
1

�
���b�h(s, a)

���
⇤�1
2

����

 kw1 � w2k2 + |�1 � �2|+Bmax
a

r���b�h(s, a)
���
⇤�1
1

�
���b�h(s, a)

���
⇤�1
2

(�min(⇤1) � 1)

 kw1 � w2k2 + |�1 � �2|+B
q��⇤�1

1 � ⇤�1
2

��
2
,

where we used for any a, b � 0, we have
���
p
a�

p
b
��� =

p
|a�b|

p
a+

p
b

p
|a� b| 

p
|a� b|. Now

proceeding like the Lemma 8.6 in the RL Theory Monograph (Agarwal et al., 2019), we have the
result.

In this section, we’ll use the following bonus scaling parameter,

� := O
⇣p

Nd"msMV +MV Mµd
p
log(dNMV /�)

⌘
. (9)

The following high probability event (Emodel) is a key step in our proof. Essentially, Theorem 13
guarantees that, for all functions in Vh, the model we learn is an accurate predictor of the expectation,
up to a bonus and some vanishing terms.

For all the following lemmas and theorems, suppose Assumption H.1 and the bonus scaling � is set
as in (9). Throughout the section, ⇣h(⌧h) refers to indicator functions of the trajectory ⌧h, where
⌧h = (s0, s1, ..., sh). As before, the expectations E⇡[g(⌧h)] are with respect to the distribution of
trajectories when ⇡ is executed in the environment P ?.
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Theorem 13 Let � 2 (0, 1). Then, w.p. 1 � �, for any time h, episode e, indicator functions
⇣1, . . . , ⇣H , and policy ⇡, we have

sup
f2V

���E⇡
h⇣
bPh,e(sh, ah)� P ?

h
(sh, ah)

⌘
f⇣h(⌧h)

i���  �E⇡[beh(sh, ah)⇣h(⌧h)] + kVhk1"ms.

(Emodel)

Proof Condition on the outcome of Lemma H.5, which implies that w.p. 1� �, for any h, e,⇡, ⇣h,
we have

sup
f2Vh

���E⇡
h⇣
bPh,e(sh, ah)� ePh(sh, ah)

⌘
f⇣h(⌧h)

i���  �E⇡[beh(sh, ah)⇣h(⌧h)].

Also, for any h, e,⇡, ⇣h, by Assumption H.1, we have (w.p. 1) that

sup
f2Vh

���E⇡
h⇣
ePh(sh, ah)� P ?

h
(sh, ah)

⌘
f⇣h(⌧h)

i���  E⇡

"
sup
f2Vh

���
⇣
ePh(sh, ah)� P ?

h
(sh, ah)

⌘
f
���⇣h(⌧h)

#

 E⇡

"
sup
f2Vh

���
⇣
ePh(sh, ah)� P ?

h
(sh, ah)

⌘
f
���

#

 kVhk1"ms.

Combining these two yields the result, as

sup
f2Vh

���E⇡
h⇣
bPh,e(sh, ah)� P ?

h
(sh, ah)

⌘
f⇣h(⌧h)

i���

 sup
f2Vh

���E⇡
h⇣
ePh(sh, ah)� P ?

h
(sh, ah)

⌘
f⇣h(⌧h)

i���+ sup
f2Vh

���E⇡
h⇣
bPh,e(sh, ah)� ePh(sh, ah)

⌘
f⇣h(⌧h)

i���.

Lemma H.5 Suppose Assumption H.1 and the bonus scaling � is set as in (9). For any � 2 (0, 1),
w.p. at least 1� �, we have for any time h, episode e, and policy ⇡,

8sh, ah : sup
f2Vh

���
⇣
bPh,e(sh, ah)� ePh(sh, ah)

⌘
f
���  �bh,e(sh, ah).

Proof Consider any h, e,⇡. Define "k
h
:= ��(sk

h+1) + P ?

h
(sk

h+1|skh, akh), so that E["k
h
| Hk�1] = 0,

where Hk�1 contains the states and actions before episode k. In what follows, we slightly abuse
notation, as P (s, a)b�T (s, a) will denote the outer product, and hence a RS⇥d quantity.

bµh,e⇤h,e =
e�1X

k=1

�(sk
h+1)b�h(skh, akh)T
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=
e�1X

k=1

⇣
P ?

h
(sk

h
, ak

h
)� ePh(s

k

h
, ak

h
)
⌘
b�h(skh, akh)T +

e�1X

k=0

⇣
ePh(s

k

h
, ak

h
)� "k

h

⌘
b�h(skh, akh)T

=
e�1X

k=1

⇣
P ?

h
(sk

h
, ak

h
)� ePh(s

k

h
, ak

h
)
⌘
b�h(skh, akh)T + eµh(⇤h,e � I)�

 
e�1X

k=0

"k
h
b�h(skh, akh)T

!
.

Rearranging, we have

bµh,e � eµh =

 
e�1X

k=0

⇣
P ?

h
(sk

h
, ak

h
)� ePh(s

k

h
, ak

h
)
⌘
b�h(skh, akh)T

!
(⇤h,e)

�1

� eµh(⇤h,e)
�1 �

 
e�1X

k=0

"k
h
b�h(skh, akh)T

!
(⇤h,e)

�1.

Now let f 2 Vh be arbitrary. For any sh, ah, multiply the above with b�h(sh, ah) and multiply with
f , we have

���
⇣
bPh,e(sh, ah)� ePh(sh, ah)

⌘
f
���

=
���fT (bµh,e � eµh)b�h(sh, ah)

���



�����f
T

 
e�1X

k=1

⇣
P ?

h
(sk

h
, ak

h
)� ePh(s

k

h
, ak

h
)
⌘
b�h(skh, akh)T

!
⇤�1
h,e
b�h(sh, ah)

�����
| {z }

Term(a)

+
���fT eµh⇤

�1
h,e
b�h(sh, ah)

���
| {z }

Term(b)

+

�����f
T

 
e�1X

k=1

"k
h
b�h(skh, akh)T

!
⇤�1
h,e
b�h(sh, ah)

�����
| {z }

Term(c)

.

We can deterministically bound Term (b) as follows,

sup
f2Vh

���fT eµh⇤
�1
h,e
b�h(sh, ah)

���

= sup
f2Vh

���(⇤�1/2
h,e

fT eµh)
T

⇣
⇤�1/2
h,e

b�h(sh, ah)
⌘���

 sup
f2Vh

���⇤�1/2
h,e

���
2
kfT eµhk2bh,e(sh, ah)

 kVhk1Mµ

p
dbh,e(sh, ah). (by Assumption H.1)

This term will be lower order compared to the other two.
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We now derive the bound for Term (c) for any fixed f 2 Vh. Observe that

�����f
T

 
e�1X

k=1

"k
h
b�h(skh, akh)T

!
⇤�1
h,e
b�h(sh, ah)

����� =

������

 
⇤�1/2
h,e

e�1X

k=1

b�h(skh, akh)(fT "k
h
)

!T⇣
⇤�1/2
h,e

b�h(sh, ah)
⌘
������



�����

e�1X

k=1

b�h(skh, akh)(fT "k
h
)

�����
⇤�1
h,e

bh,e(sh, ah).

Now we argue w.p. 1� �, for any e, h we have
�����

e�1X

k=1

b�h(skh, akh)(fT "k
h
)

�����
⇤�1
h,e


⇣
2kVhk1

p
2 log(1/�) + d log(N + 1)

⌘
,

which implies the claim about all sh, ah. Indeed, we can apply Lemma H.1. Checking the precondi-
tions, EP

?
h (sh,ah)

⇥
fT "k

h
| Hk�1

⇤
= 0, �  |fT "k

h
|  kfk1k"k

h
k1  2kVhk1, det(⌃0) = det I =

1, and det(⌃t) = det(⇤h,e)  (e+ 1)d since the largest eigenvalue is e+ 1. So, w.p. at least 1� �,
for all e, we have the above inequality.

Thus, for any fixed f 2 Vh, w.p. 1� �, for all e, h we have,
���
⇣
bPh,e(sh, ah)� ePh(sh, ah)

⌘
f
���

 Term(a) + Term(b) + Term(c)


⇣
4kVhk1(1 +Mµ)

p
log(1/�) + d log(N) +

p
dNkVhk1"ms

⌘
bh,e(sh, ah)

+
⇣
kVhk1Mµ

p
d
⌘
bh,e(sh, ah)

+
⇣
4kVhk1

p
log(1/�) + d log(N)

⌘
bh,e(sh, ah)

.
⇣p

dNkVhk1"ms + kVhk1Mµ

p
log(1/�) + d log(N)

⌘
bh,e(sh, ah).

Now we apply a covering argument. Namely, union bound the above argument to every element in
an "net-net of Vh. For any f 2 Vh, let ef be its neighbor in the net s.t. k ef � fk1  "net, so we have
���
⇣
bPh,e(sh, ah)� ePh(sh, ah)

⌘
f
��� 

���
⇣
bPh,e(sh, ah)� ePh(sh, ah)

⌘
ef
���+
���
⇣
bPh,e(sh, ah)� ePh(sh, ah)

⌘
( ef � f)

���

and
���
⇣
bPh,e(sh, ah)� ePh(sh, ah)

⌘
( ef � f)

��� . k ef � fk1(N + 1) . "netN.

Setting "net = N , the metric entropy is of the order d log(N(MV +B))+log(BN)+d2 log(BdN).
The error incurred with this epsilon net is a constant, which is lower order.
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Thus, we have

8sh, ah : sup
f2Vh

���
⇣
bPh,e(sh, ah)� ePh(sh, ah)

⌘
f
���

.
⇣p

dNkVhk1"ms + kVhk1Mµ

p
log(1/�) + d log(MV ) + d2 log(BdN)

⌘
bh,e(sh, ah)

.
⇣p

dNMV "ms +MV Mµ

p
log(1/�) + d log(MV ) + d2 log(BdN)

⌘
bh,e(sh, ah)

Note that � scales as
p
logB, so one can find a valid B by solving �  B for B.

Lemma H.6 Let f 2 Vh. For any � 2 (0, 1), w.p. at least 1� �, for any time h, episode e, we have

8sh, ah :

�����f
T

 
e�1X

k=1

P ?

h
(sk

h
, ak

h
)� ePh(s

k

h
, ak

h
)

!
b�h(skh, akh)T⇤�1

h,e
b�h(sh, ah)

�����


⇣
4kVhk1(1 +Mµ)

p
log(1/�) + d log(N) +

p
dNkVhk1"ms

⌘
bh,e(sh, ah).

Proof First observe that
�����f

T

 
e�1X

k=1

(P ?

h
(sk

h
, ak

h
)� eµh

b�h(skh, akh))b�h(skh, akh)T
!
⇤�1
h,e
b�h(sh, ah)

�����

=

������

 
⇤�1/2
h,e

e�1X

k=1

b�h(skh, akh)fT (P ?

h
(sk

h
, ak

h
)� eµh

b�h(skh, akh))
!T⇣

⇤�1/2
h,e

b�h(sh, ah)
⌘
������



�����

e�1X

k=1

b�h(skh, akh)e"k

�����
⇤�1
h,e

bh,e(sh, ah),

where e"k =
⇣
P ?

h
(sk

h
, ak

h
)� ePh(skh, a

k

h
)
⌘
f .

Now we will argue that w.p. 1� �, for all e, h,
�����

e�1X

k=1

b�h(skh, akh)e"k

�����
⇤�1
h,e


⇣
4kVhk1(1 +Mµ)

p
log(1/�) + d log(N) +

p
dNkVhk1"ms

⌘
,

which will imply the claim for all sh, ah.

Apply self-normalized martingale concentration (Lemma H.1) to Xi = b�h(sih, aih) and "i = e"i �
E[e"i | Hi�1], where the expectation is over (si

h
, ai

h
) in the definition of e"i. To see sub-Gaussianity,
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bound the envelope, |e"k|  kfk1kP ?

h
(sk

h
, ak

h
)�eµh

b�h(skh, akh)kTV  kVhk1(1+Mµ), and thus � 
|"̃k|  2kVhk1(1 +Mµ). Now compute the determinants: det(⇤h,0) = 1 and since �max(⇤h,e) 
e+ 1, we have that log det(⇤h,e)  d log(e+ 1). Hence, w.p. at least 1� �, we have

8e :

�����

e�1X

k=1

b�h(skh, akh)(e"k � E[e"k | Hk�1])

�����
⇤�1
h,e

 2kVhk1(1 +Mµ)
p
2 log(1/�) + d log(N + 1).

By Assumption H.1 applied to ⇡k (the data-generating policy for episode k), we have |E[e"k | Hk�1]| 
kVhk1"ms. Recall for any scalars ci and vectors xi, we have k

P
i
cixik 

P
i
|ci|kxik qP

i
c2
i

pP
i
kxik2. Thus,

�����

e�1X

k=1

b�h(skh, akh)E[e"k | Hk�1]

�����
⇤�1
h,e



vuut
e�1X

k=1

kb�h(skh, akh)k2⇤�1
h,e

vuut
e�1X

k=1

E[e"k | Hk�1]
2


p
d
p
(e� 1)kVhk1"ms. (by Lemma H.2)

Combining these two bounds concludes the proof.

Lemma H.7 (Optimism) Suppose (Emodel) holds. Let ◆ = kVhk1"ms. Then, for any episode
e = 1, 2, ..., N , we have

8h = 0, 1, ..., H � 1 : E⇡?

h⇣
Q?

h
(sh, ah)� bQh,e(sh, ah)

⌘
⇣h(⌧h)

i
 (H � h)◆,

and

8h = 0, 1, ..., H � 1 : E⇡?

h⇣
V ?

h
(sh)� bVh,e(sh)

⌘
⇣h�1(⌧h�1)

i
 (H � h)◆,

where

⇣h(sh) := I
h
bQh,e(sh, b⇡eh(sh))  MV

i

⇣h(⌧h) =
hY

h0=0

⇣h0(sh0).

Abusing notation, ⇣�1(·) is the constant function 1.

In particular, we have that

Ed0

h
V ?

0 (s0)� bV0,e(s0)
i
 H◆.
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Proof Fix any episode e. We prove both claims via induction on h = H,H � 1, H � 2..., 1, 0. The
base case holds trivially since bVH,e and V ?

H
are zero at every state by definition. Indeed, we have that

for any ⇡, including ⇡?, that

E⇡
h⇣

P ?

H�1(sH�1, aH�1)(V
?

H � bVH,e)
⌘
⇣H�1(⌧H�1)

i

= E⇡[(0� 0)⇣H�1(⌧H�1)] = 0.

Now let’s show the inductive step. Let h 2 {H � 1, H � 2, ..., 1, 0} be arbitrary and suppose the
inductive hypothesis. So suppose that V -optimism holds at h+ 1 (we don’t even need Q-optimism
in the future), i.e.

E⇡?

h⇣
P ?

h
(sh, ah)(V

?

h+1 � bVh+1,e)
⌘
⇣h(⌧h)

i
= E⇡?

h⇣
V ?

h+1(sh+1)� bVh+1,e(sh+1)
⌘
⇣h(⌧h)

i

 (H � h� 1)◆ (IH)

Recalling that bQh,e(sh, ah) = rh(sh, ah) + bPh,e(sh, ah)bVh+1,e + �bh,e(sh, ah), we have

E⇡?

h⇣
Q?

h
(sh, ah)� bQh,e(sh, ah)

⌘
⇣h(⌧h)

i

= E⇡?

h⇣
P ?

h
(sh, ah)V

?

h+1 � bPh,e(sh, ah)bVh+1,e � �bh,e(sh, ah)
⌘
⇣h(⌧h)

i

 E⇡?

h⇣⇣
P ?

h
(sh, ah)� bPh,e(sh, ah)

⌘
bVh+1,e � �bh,e(sh, ah)

⌘
⇣h(⌧h)

i
+ (H � h� 1)◆

(by (IH))


���E⇡?

h⇣
bPh,e(sh, ah)� P ?

h
(sh, ah)

⌘
bVh+1,e⇣h(⌧h)

i���� E⇡? [�bh,e(sh, ah)⇣h(⌧h)] + (H � h� 1)◆

 ◆+ (H � h� 1)◆ = (H � h)◆, (by (Emodel) and bVh+1,e 2 Vh (Lemma H.3))

which proves the Q-optimism claim.

Now let’s prove V -optimism.

E⇡?

h⇣
V ?

h
(sh)� bVh,e(sh)

⌘
⇣h�1(⌧h�1)

i

= E⇡?

✓
Q?

h
(sh, ah)�

⇣
bQh,e(sh, b⇡eh(sh))

⌘

MV

◆
⇣h�1(⌧h�1)

�

= E⇡? [(Q?

h
(sh, ah)�MV )⇣h�1(⌧h�1)(1� ⇣h(sh))]

+ E⇡?

h⇣
Q?

h
(sh, ah)� bQh,e(sh, b⇡eh(sh))

⌘
⇣h�1(⌧h�1)⇣h(sh)

i

 E⇡?

h⇣
Q?

h
(sh, ah)� bQh,e(sh, b⇡eh(sh))

⌘
⇣h(⌧h)

i

 E⇡?

h⇣
Q?

h
(sh, ah)� bQh,e(sh,⇡

?

h
(sh))

⌘
⇣h(⌧h)

i

 (H � h)◆,

by Q-optimism.
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Remark 14 We did not require bPh,e to be a valid transition! It is in general unbounded and can
even have negative entries!

Lemma H.8 (Simulation) For any episode e = 1, 2, ..., N , we have

Ed0

h
bV0,e(s0)� V ⇡

e

0 (s0)
i


H�1X

h=0

Eb⇡e

h
bh,e(sh, ah) + ( bPh(sh, ah)� P ?

h
(sh, ah))bVh+1,e]

i

Proof We progressively unravel the left hand side. For any s0,

bV0,e(s0)� V ⇡
e

0 (s0)

 bQ0,e(s0,⇡
e

0(s0))�Q⇡
e

0 (s0,⇡
e

0(s0))

= b0,e(s0,⇡
e

0(s)) +
⇣
bP0,e(s0,⇡

e

0(s))� P ?

0 (s0,⇡
e

0(s0))
⌘
bV1,e + P ?

0 (s0,⇡
e

0(s0))
⇣
bV1,e � V ⇡

e

1

⌘
,

where the inequality is due to the thresholding on the value function. Now, perform this recursively
on the P ?

0 (s0,⇡
e

0(s0))
⇣
bV1,e � V ⇡

e

1

⌘
term. Doing this unravelling h times gives the result.

Theorem 15 Suppose Assumption H.1. Then, for any � 2 (0, 1), w.p. at least 1� �, we have that
LSVI-UCB (with � set to (9)) has regret at most,

NV ? �
N�1X

e=0

V b⇡e  eO
⇣
dHNMV

p
log(HN/�)"ms + d1.5H

p
NMV Mµ log(dHN/�)

⌘

where eO hides log dependence.

Proof We first condition on the high-probability event (Emodel), which occurs w.p. at least 1� �. Fix
any arbitrary episode e. By optimism Lemma H.7 and the simulation lemma Lemma H.8,

Ed0

h
V ?

0 (s0)� V b⇡e

0 (s0)
i
 Ed0

h
bV e

0 (s0)� V b⇡e

0 (s0)
i
+H◆


H�1X

h=0

Eb⇡e

h
�be

h
(sh, ah) +

⇣
bPh,e(sh, ah)� P ?

h
(sh, ah)

⌘
bVh+1,e

i
+H◆

Applying (Emodel) with no indicators, i.e. ⇣h(⌧h) = 1 always, gives,


H�1X

h=0

Eb⇡e [2�bh,e(sh, ah)] + 2H◆.

Now, summing over e = 1, 2, ..., N , we have

NX

e=1

Ed0

h
V ?

0 (s0)� V b⇡e

0 (s0)
i
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 2HN ◆+ 2�
H�1X

h=0

NX

e=1

Eb⇡e [bh,e(sh, ah)]

By Azuma’s inequality applied to the martingale difference �e = Eb⇡e [bh,e(sh, ah)]� bh,e(seh, a
e

h
),

which has envelope bounded by 2, implies w.p. 1� �,

 2HN ◆+ 2�
H�1X

h=0

NX

e=1

bh,e(s
e

h
, ae

h
) + 4�

p
N log(HN/�).

It remains to bound the sum of expected bonuses. By Lemma H.2, we know that almost surely,

H�1X

h=0

NX

e=1

bh,e(s
e

h
, ae

h
)  H

p
dN log(N).

So, putting everything together,

NX

e=1

Ed0

h
V ?

0 (s0)� V b⇡e

0 (s0)
i

. HN ◆+ �H
p

dN log(N) + �
p
N log(HN/�)

. HN ◆+
⇣p

dNMV "ms +MV Mµd
p
log(dHN/�)

⌘
·H
p
dN log(HN/�)

= HN ◆+ dHNMV

p
log(HN/�)"ms + d1.5H

p
NMV Mµ log(dHN/�).

Note that H◆ = HkVk1"ms = HMV "ms is of lower order (with respect to N ), we can simply drop
it. This concludes the proof.

Corollary 16 By setting � = 1/N , we have that expected regret also has the same rate as above.

Proof The expected regret by law of total probability, since regret is at most NH ,

E[RegN ]  E[RegN | (Emodel)] +NH(1� P((Emodel)))
 E[RegN | (Emodel)] +H.

Since H is lower-order, we have the same rate.

Appendix I. Proof of Main Theorems

First we prove Theorem 5 and Theorem 3.
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Theorem 5 (REPTRANSFER) Suppose Assumptions 2.1,2.2,3.1,3.3, and ⇡k is �min-exploratory for
each source task k. Then, for any � 2 (0, 1), w.p. 1� �, REPTRANSFER when deployed in the target
task has regret at most eO

⇣
↵̄H2d1.5

p
T log(1/�)

⌘
, with at most Kn generative accesses per source

task, with n = O
⇣
��1
minA↵

3
maxKT

⇣
log |�|

�
+K log |⌥|

⌘⌘
.

Theorem 3 (Regret under generative source access) Suppose Assumptions 2.1,2.2,3.1,3.2,3.3 hold,
and fix any � 2 (0, 1). Then, running REPTRANSFER with policies from EPS (parameters set as in
Lemma 3.1) has regret in the target task of eO

⇣
↵̄H2d1.5

p
T log(1/�)

⌘
, with at most

eO
�
A4↵3

maxd
5H7K2T �2(log(|�|/�) +K log |⌥|)

�
generative accesses per source task.

Proof [Proof of Theorem 5 and Theorem 3] For the regret bound, set MV = H and Mµ = ↵̄ and
apply Theorem 15. This choice of Mµ is valid by the argument following Assumption H.1. This
gives us a regret bound of

eO
⇣
dH2T"ms + ↵̄d1.5H2

p
T log(1/�)

⌘
,

where "ms can be made smaller than 1/
p
T , in which the second term dominates.

Now, we calculate the pre-training phase sample complexity in a source task.

First, let’s calculate the reward-free model learning sample complexity, i.e. this is the number
of samples required for learning bPk. Recall that we need this to be sufficiently large such that
"TV = 1/NLSVI-UCB. As required by Lemma 3.1, we need,

NREWARDFREE = eO
�
A3d4H6 log(|�||⌥|/�)N2

LSVI-UCB

�

= eO
⇣
A3d4H6 log(|�||⌥|/�)

�
A3d6H8 �2

�2⌘

= eO
�
A9d16H22 �4 log(|�||⌥|/�)

�
.

Second, we calculate the cross-sampling sample complexity. Recall that n is the number of samples
in each pairwise dataset. In order to reduce ✏ms to 1/

p
T , by Lemma 3.2, we need

1/
p
T  "ms 

�
A↵3

maxK/�min
�1/2p

⇣n


�
A↵3

maxK/�min
�1/2

s
1

n

✓
log

|�|
�

+K log |⌥|
◆

(by (3))

which implies that we need

n  ��1
minA↵

3
maxKT

✓
log

|�|
�

+K log |⌥|
◆
.
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Incorporating the coverage result from Lemma 3.1 gives,

n  A4↵3
maxd

5H7KT �2

✓
log

|�|
�

+K log |⌥|
◆
.

Since each task is in at most K � 2 pairwise datasets, each of size n, the total pre-training sample
complexity per task is at most,

NREWARDFREE + (K � 2) · n

= eO
✓
A9d16H22 �4 log(|�||⌥|/�) +A4↵3

maxd
5H7K2T �2

✓
log

|�|
�

+K log |⌥|
◆◆

.

Now we prove Theorem 7, restated below.

Theorem 7 (Regret with online access) Suppose Assumptions 2.1-2.2,4.1,4.2 hold. W.p. 1 � �,
Algorithm 4 with appropriate parameters achieves a regret in the target eO

⇣
↵̄d1.5H2

p
T log(1/�)

⌘
,

with poly
�
A,↵max, d,H,K, T, �1, �1

raw, log(|�||⌥|/�)
�

online queries in the source tasks.

Proof [Proof of Theorem 7] We follows the same format as the proof of Theorem 5. The regret
bound is identical.

Now let’s compute the pre-training sample complexity. The regret bound requires us to set "ms 
1/
p
T . Here, our "ms comes from Lemma G.1, so

1/
p
T  ↵maxK1/2

( raw�min)
1/2

s
1

n

✓
log

|�|
�

+K log |⌥|
◆
,

which implies we need

n  ↵2
maxK

 raw�min

✓
log

|�|
�

+K log |⌥|
◆
.

Plugging in the coverage of Lemma 3.1,

n  ↵2
maxKT

 raw

✓
log

|�|
�

+K log |⌥|
◆�

A�3d�5H�7 2
��1

 A3↵2
maxd

5H7KT

 raw 2

✓
log

|�|
�

+K log |⌥|
◆
.

Here, we only collect one dataset, so the total pre-training sample complexity is

NREWARDFREE + n
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= eO
✓
A9d16H22 �4 log(|�||⌥|/�) +A3↵2

maxd
5H7KT �1

raw 
�2

✓
log

|�|
�

+K log |⌥|
◆◆

.

Appendix J. Experiment Details

J.1. Construction of Comblock

In this section we first introduce the vanilla Combination lock (Comblock) environment that is
widely used as the benchmark for algorithms for Block MDPs. We provide a visualization of the
comblock environment in Fig. 1(a). Concretely, the environment has a horizon H , and 3 latent states
zi;h, i 2 {0, 1, 2} for each timestep h and 10 actions. Among the three latent states, we denote z0, z1
as the good states which leads to the final reward and z2 as the bad states. At the beginning of the
task, the environment will uniformly and independent sample 1 out of the 10 actions for each good
state z0;h and z1;h for each timestep h, and we denote these actions a0;h, a1;h as the optimal actions
(corresponding to each latent state). These optimal actions, along with the task itself, determines the
dynamics of the environment. At each good latent state s0;h or s1;h, if the agent takes the correct
action, the environment transits to the either good state at the next timestep (i.e., s0;h+1, s1;h+1)
with equal probability. Otherwise, if the agent takes any 9 of the bad actions, the environment will
transition to the bad state s2;h+1 deterministicly, and the bad states transit to only bad states at the
next timestep deterministicly. There are two situations where the agent receives a reward: one is
uponing arriving the good states at the last timestep, the agent receives a reward of 1. The other is
upon the first ever transition into the bad state, the agent receives an “anti-shaped” reward of 0.1 with
probability 0.5. Such design makes greedy algorithms without strategic exploration such as policy
optimization methods easily fail. For the initial state distribution, the environment starts in s0;0 or
s1;0 with equal probability. The dimension of the observation is 2dlog(H+|S|+1)e. For the emission
distribution, given a latent state si;h, the observation is generated by first concatenate the one hot
vectors of the state and the horizon, adding i.i.d. N (0,0.1) noise at each entry, appending 0 at the
end if necessary. Then finally we apply a linear transfermation on the observation with a Hadamard
matrix. Note that without a good feature or strategic exploration, it takes 10H actions to reach the
final goal with random actions.

J.2. Construction of transfer setup in the observational coverage setting

In this section we introduce the detailed construction of our first experiment. For the source
environment, we simply generate 5 random vanilla comblock environment described in Section.J.1.
Note that in this way we ensure that the emission distribution shares across the sources, but the latent
dynamics are different because the optimal actions are independently randomly selected. For the
target environment, for each timestep h, we randomly acquire the optimal actions at h from one of
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the sources and set it to be the optimal action of the target environment at timestep h, if the selected
optimal actions are different for the two good states. Otherwise we keep sampling until they are
different. Note that under such construction, since we fix the emission distribution, Assumption 2.2
is satisfied if we set ↵ = 1 for the source environment where we select the optimal action and ↵ = 0
for the other sources, at each timestep. To see how Assumption 4.1 is satisfied, recall that comblock
environment naturally satisfies Assumption 3.2, and identical emission implies that the conditional
ratio of all observations between source and target is 1.

J.3. Construction of transfer setup in feature coverage setting

Now we introduce the construction of the Comblock with Partitioned Observation (Comblock-
PO) environment, which we use in our second experiment. Comparing with the vanilla comblock
environment, the major difference is in the observation space. In this setting, the size of the
observation depends on the number of source environments K. Let the size of the original observation
space be O = |O|, the size of the observation for comblock-PO is KO. For the k-th source
environment, where k 2 [K], the environment first generates the O-dimensional observation vector
as in the original comblock, and then embed it to the (k � 1)O-th to kO-th entries of the KO-
dimensional observation vector, where it is 0 everywhere else. Thus we can see that the observation
space for each source environment is disjoint (and thus the name partitioned observations). For the
target enviornment, since the latent dynamcis are the same, we only need to design the emission
distribution: for each latent state si;h, we assign the emission distribution uniformly at random from
one of the sources.

J.4. Implementation details

Our implementation builds on BRIEE (Zhang et al., 2022). 2. In the Multi-task REPLEARN stage,
we requires our learned feature to predict the Bellman backup of all the sources simultaneously.
Therefore, in each iteration we have k discriminators and k sets of linear weights (instead of 1 in
BRIEE), where k is the number of source environments. For the deployment stage we implement
LSVI following Algorithm 5.

To create the training dataset for Multi-task REPLEARN, for each (i, j) environment pairs where
i 6= j, we collect 500 samples for each timestep h. For each (i, i) environment pairs, we collect
500⇥ (k � 1)⇥ k samples for each timestep h, where k denotes the number of sources. Thus we
ensure that the number of samples from cross transition of different environments is the same as the
number of samples from cross transition of the same environment. For the online setting, we simply
sample 1000⇥ (k � 1)⇥ k samples for each (i, i) cross transition to ensure that the total number of
samples is the same for G-REPTRANSFER and O-REPTRANSFER.

To sample the initial state action pair (i.e., (s̃, ã) pair as in (1)), for 90% of the samples, we follow
the final policy from each source environment trained using BRIEE. For the remaining 10%, we

2. Code based on public repository: https://github.com/yudasong/briee.
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follow the same policy to state s̃, and then take a uniform random policy to get ã. With this
sampling scheme we ensure that Assumption 3.2 is satisfied. In the setting of Section. ??, we
follow a more simple procedure to ensure that the samples are more balanced among the three
states: we skip the first sampling step from environment i (i.e., sample s given (s̃, ã)), and simply
reset environment i to s, where s is one of the three states with equal probability, and generate the
observation accordingly. Note that such visitation distribution is also possible in the online setting
with a more nuanced sampling procedure, and in the experiment we use the same sampling procedure
for both G-REPTRANSFER and O-REPTRANSFER for a fair comparison.

J.5. Hyperparameters

In this section, we record the hyperparameters we try and the final hyperparameter we use for each
baselines. The hyperparameters for REPTRANSFER in the first experiment is in Table. 3. The
hyperparameters for REPTRANSFER in the second experiment is in Table. 4. The hyperparameters
for BRIEE is in Table. 5. We use the same set of hyperparameters for G-REPTRANSFER and
O-REPTRANSFER.

Table 3: Hyperparameters for REPTRANSFER in Comblock.

Value Considered Final Value
Decoder � learning rate {1e-2} 1e-2

Discriminator f learning rate {1e-2} 1e-2
Discriminator f hidden layer size {256} 256

RepLearn Iteration T {30} 30
Decoder � number of gradient steps {64} 64

Discriminator f number of gradient steps {64} 64
Decoder � batch size {256} 256

Discriminator f batch size {512} 512
RepLearn regularization coefficient � {0.01} 0.01

Decoder � softmax temperature {1} 1
Decoder �0 softmax temperature {0.1} 0.1

LSVI bonus coefficient � {1,H5 } 1
LSVI regularization coefficient � {1} 1

Buffer size {1e5} 1e5
Update frequency {50} 50

Optimizer {SGD} SGD
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Table 4: Hyperparameters for REPTRANSFER in Comblock-PO.

Value Considered Final Value
Decoder � learning rate {1e-2} 1e-2

Discriminator f learning rate {1e-2} 1e-2
Discriminator f hidden layer size {256,512} 256

Discriminator f hidden layer number {2,3} 3
RepLearn Iteration T {30,40,50,100,150} 50

Decoder � number of gradient steps {64,80,128,256} 64
Discriminator f number of gradient steps {64,80,128,256} 64

Decoder � batch size {256,512} 512
Discriminator f batch size {256,512} 512

RepLearn regularization coefficient � {0.01} 0.01
Decoder � softmax temperature {1} 1
Decoder �0 softmax temperature {0.1,1} 1

LSVI bonus coefficient � {1,H5 } 1
LSVI regularization coefficient � {1} 1

Buffer size {1e5} 1e5
Update frequency {50} 50

Optimizer {SGD, Adam} Adam

Table 5: Hyperparameters for BRIEE in Comblock and Comblock-PO.

Value Considered Final Value
Decoder � learning rate {1e-2} 1e-2

Discriminator f learning rate {1e-2} 1e-2
Discriminator f hidden layer size {256} 256

RepLearn Iteration T {30} 30
Decoder � number of gradient steps {64} 64

Discriminator f number of gradient steps {64} 64
Decoder � batch size {512} 512

Discriminator f batch size {512} 512
RepLearn regularization coefficient � {0.01} 0.01

Decoder � softmax temperature {1} 1
Decoder �0 softmax temperature {0.1} 0.1

LSVI bonus coefficient � {H

5 } H

5
LSVI regularization coefficient � {1} 1

Buffer size {1e5} 1e5
Update frequency {50} 50

J.6. Visualizations

In this section we provide a comprehensive visualization of the decoders for all baselines in the
target environment. We observe that the behaviors of all baselines are similar across the 5 random
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seeds. Thus to avoid redundancy, we only show the visualization from 1 random seed. We provide
an example in Fig. 3 on how to interpret the visualization: let the emission function of the target
environment be o, and let the decoder that we are evaluating be �, and to generate the blue block
in Fig. 3, we sample 30 observations {sn}30n=1from the target environment at z1,13, the latent state
1 (the title of the subplot) from timestep 13 (the x-axis). Concretely, {sn}30n=1 ⇠ o(· | z1,13).
The blue block denotes the three-dimensional decoded latent states ẑ from these 30 observations:
ẑ = 1

30

P30
n=1 �(sn).

In Figure. 2, we provide a runnning example that explains the results showed in Figure. 1 (b). We
then follow the detailed visualizations in the following sections.

J.6.1. VISUALIZATIONS FROM THE OBSERVATIONAL COVERAGE EXPERIMENT

We record the visualization of the 5 sources from Fig. 3 to Fig. 7; O-REPTRANSFER in Fig.8;
G-REPTRANSFER in Fig. 9; running BRIEE on target in Fig. 10.

J.6.2. VISUALIZATIONS FROM THE FEATURE COVERAGE EXPERIMENT

We record the visualization of the 2 sources from Fig. 11 and Fig. 12; O-REPTRANSFER in Fig.13;
G-REPTRANSFER in Fig. 14; running BRIEE on target in Fig. 15. Note that the features collapse at
some timesteps in Fig. 14 and Fig. 15, but this is acceptable because the optimal actions at those
timesteps are the same for the collapsed states.
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(a)

(b)

Figure 2: (a): Visualization of the decoder source (top) and G-REPTRANSFER (bottom). (b):
Visualization of the decoder O-REPTRANSFER (top) and G-REPTRANSFER (bottom). For each
baseline, The h-th column in the i-th image denotes the averaged decoded states from the 30
observations generated by latent state zi,h, for i 2 {0, 1, 2} and h 2 [25], from the corresponding
target environment. The optimal decoder should recover the latent states up to a permutation. In Fig
a (top), note that the learned features in source task fail to solve the target because of the collapse at
timestep 5: both observations from state 0 and 1 are mapped to state 0. Note in the source task where
this feature is trained, such collapse can happen when state 0 and 1 have identical latent transition
(for detailed discussion we refer to Misra et al. (2020)). In Fig b (top), REPTRANSFER with only
online access learns an incorrect decoder when the source tasks’ observation spaces are disjoint. This
is because the learned feature can decode each source task with a different permutation.
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Figure 3: Visualization of decoders from source 1. Note the collapse happens at timestep 5, 9 and 17.
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Figure 4: Visualization of decoders from source 2. Note the collapse happens at timestep 1 and 10.
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Figure 5: Visualization of decoders from source 3. Note the collapse happens at timestep 14 and 15.
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Figure 6: Visualization of decoders from source 4. Note the collapse happens at timestep 7, 16, 24.
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Figure 7: Visualization of decoders from source 3. Note the collapse happens at timestep 13 and 16.
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Figure 8: Visualization of decoders from O-REPTRANSFER
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Figure 9: Visualization of decoders from G-REPTRANSFER
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Figure 10: Visualization of decoders from running BRIEE on target.
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Figure 11: Visualization of decoders from source environment 1.
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Figure 12: Visualization of decoders from source environment 2.
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Figure 13: Visualization of decoders from O-REPTRANSFER.
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Figure 14: Visualization of decoders from G-REPTRANSFER.
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Figure 15: Visualization of decoders running BRIEE in the target.
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