
Published as a conference paper at ICLR 2023

HYBRID RL: USING BOTH OFFLINE AND ONLINE DATA
CAN MAKE RL EFFICIENT

Yuda Song⇤

Carnegie Mellon University
Yifei Zhou⇤

Cornell University
Ayush Sekhari
MIT

J. Andrew Bagnell
Carnegie Mellon University

Akshay Krishnamurthy
Microsoft Research

Wen Sun
Cornell University

ABSTRACT

We consider a hybrid reinforcement learning setting (Hybrid RL), in which an
agent has access to an offline dataset and the ability to collect experience via
real-world online interaction. The framework mitigates the challenges that arise
in both pure offline and online RL settings, allowing for the design of simple and
highly effective algorithms, in both theory and practice. We demonstrate these
advantages by adapting the classical Q learning/iteration algorithm to the hybrid
setting, which we call Hybrid Q-Learning or Hy-Q. In our theoretical results, we
prove that the algorithm is both computationally and statistically efficient whenever
the offline dataset supports a high-quality policy and the environment has bounded
bilinear rank. Notably, we require no assumptions on the coverage provided by
the initial distribution, in contrast with guarantees for policy gradient/iteration
methods. In our experimental results, we show that Hy-Q with neural network
function approximation outperforms state-of-the-art online, offline, and hybrid RL
baselines on challenging benchmarks, including Montezuma’s Revenge.

1 INTRODUCTION

Learning by interacting with an environment, in the standard online reinforcement learning (RL)
protocol, has led to impressive results across a number of domains. State-of-the-art RL algorithms
are quite general, employing function approximation to scale to complex environments with minimal
domain expertise and inductive bias. However, online RL agents are also notoriously sample
inefficient, often requiring billions of environment interactions to achieve suitable performance. This
issue is particularly salient when the environment requires sophisticated exploration and a high quality
reset distribution is unavailable to help overcome the exploration challenge. As a consequence, the
practical success of online RL and related policy gradient/improvement methods has been largely
restricted to settings where a high quality simulator is available.

To overcome the issue of sample inefficiency, attention has turned to the offline RL setting (Levine
et al., 2020), where, rather than interacting with the environment, the agent trains on a large dataset
of experience collected in some other manner (e.g., by a system running in production or an expert).
While these methods still require a large dataset, they mitigate the sample complexity concerns of
online RL, since the dataset can be collected without compromising system performance. However,
offline RL methods can suffer from distribution shift, where the state distribution induced by the
learned policy differs significantly from the offline distribution (Wang et al., 2021). Existing prov-
able approaches for addressing distribution shift are computationally intractable, while empirical
approaches rely on heuristics that can be sensitive to the domain and offline dataset (as we will see).

In this paper, we focus on a hybrid reinforcement learning setting, which we call Hybrid RL, that
draws on the favorable properties of both offline and online settings. In Hybrid RL, the agent has
both an offline dataset and the ability to interact with the environment, as in the traditional online RL
setting. The offline dataset helps address the exploration challenge, allowing us to greatly reduce

⇤Equal contribution
Author contact info: yudas@andrew.cmu.edu, yz639@cornell.edu, sekhari@mit.edu,

dbagnell@aurora.tech, akshaykr@microsoft.com, ws455@cornell.edu

1

Published as a conference paper at ICLR 2023

the number of interactions required. Simultaneously, we can identify and correct distribution shift
issues via online interaction. Variants of the setting have been studied in a number of empirical
works (Rajeswaran et al., 2017; Hester et al., 2018; Nair et al., 2018; 2020; Vecerik et al., 2017)
which mainly focus on using expert demonstrations as offline data. Our algorithmic development is
closely related to these works, although our focus is on formalizing the hybrid setting and establishing
theoretical guarantees against more general offline datasets.

Hybrid RL is closely related to the reset setting, where the agent can interact with the environment
starting from a “nice” distribution. A number of simple and effective algorithms, including CPI
(Kakade & Langford, 2002), PSDP (Bagnell et al., 2003), and policy gradient methods (Kakade, 2001;
Agarwal et al., 2020b)—which have further inspired deep RL methods such as TRPO (Schulman
et al., 2015) and PPO (Schulman et al., 2017)—are provably efficient in the reset setting. Yet, a nice
reset distribution is a strong requirement (often tantamount to having access to a detailed simulation)
and unlikely to be available in real world applications. Hybrid RL differs from the reset setting in that
(a) we have an offline dataset, but (b) our online interactions start from the initial distribution of the
environment, which is not assumed to have any nice properties. Both features (offline data and a nice
reset distribution) facilitate algorithm design by de-emphasizing the exploration challenge. However,
Hybrid RL is much more practical since an offline dataset is much easier to obtain in practice.

We showcase the Hybrid RL setting with a new algorithm, Hybrid Q learning or Hy-Q (pronounced:
Haiku). The algorithm is a simple adaptation of the classical fitted Q-iteration algorithm (FQI) and
accommodates value-based function approximation.1 For our theoretical results, we prove that Hy-Q
is both statistically and computationally efficient assuming that: (1) the offline distribution covers
some high quality policy, (2) the MDP has low bilinear rank, (3) the function approximator is Bellman
complete, and (4) we have a least squares regression oracle. The first three assumptions are standard
statistical assumptions in the RL literature while the fourth is a widely used computational abstraction
for supervised learning. No computationally efficient algorithms are known under these assumptions
in pure offline or pure online settings, which highlights the advantages of the hybrid setting.

We also implement Hy-Q and evaluate it on two challenging RL benchmarks: a rich observation
combination lock (Misra et al., 2020) and Montezuma’s Revenge from the Arcade Learning Environ-
ment (Bellemare et al., 2013). Starting with an offline dataset that contains some transitions from a
high quality policy, our approach outperforms: an online RL baseline with theoretical guarantees,
an online deep RL baseline tuned for Montezuma’s Revenge, pure offline RL baselines, imitation
learning baselines, and existing hybrid methods. Compared to the online methods, Hy-Q requires
only a small fraction of the online experience, demonstrating its sample efficiency. Compared to the
offline and hybrid methods, Hy-Q performs most favorably when the offline dataset also contains
many interactions from low quality policies, demonstrating its robustness. These results reveal the
significant benefits that can be realized by combining offline and online data.

2 RELATED WORKS

We discuss related works from four categories: pure online RL, online RL with access to a reset
distribution, offline RL, and prior work in hybrid settings. We note that pure online RL refers to the
setting where one can only reset the system to initial state distribution of the environment, which is
not assumed to provide any form of coverage.
Pure online RL Beyond tabular settings, many existing statistically efficient RL algorithms are not
computationally tractable, due to the difficulty of implementing optimism. This is true in the linear
MDP (Jin et al., 2020) with large action spaces, the linear Bellman complete model (Zanette et al.,
2020; Agarwal et al., 2019), and in the general function approximation setting (Jiang et al., 2017;
Sun et al., 2019; Du et al., 2021; Jin et al., 2021a). These computational challenges have inspired
results on intractability of aspects of online RL (Dann et al., 2018; Kane et al., 2022).

There are several online RL algorithms that aim to tackle the computational issue via stronger
structural assumptions and supervised learning-style computational oracles (Misra et al., 2020; Zhang
et al., 2022c; Agarwal et al., 2020a; Uehara et al., 2021; Modi et al., 2021; Zhang et al., 2022a; Qiu
et al., 2022). Compared to these oracle-based methods, our approach operates in the more general

1We use Q-learning and Q-iteration interchangeably, although they are not strictly speaking the same
algorithm. Our theoretical results analyze Q-iteration, but we use an algorithm with an online/mini-batch flavor
that is closer to Q-learning for our experiments.

2

Published as a conference paper at ICLR 2023

“bilinear rank” setting and relies on a standard supervised learning primitive: least squares regression.
Notably, our oracle admits efficient implementation with linear function approximation, so we obtain
an end-to-end computational guarantee; this is not true for prior oracle-based methods.

There are many deep RL methods for the online setting (e.g., Schulman et al. (2015; 2017); Lillicrap
et al. (2016); Haarnoja et al. (2018); Schrittwieser et al. (2020)). Apart from a few exceptions (e.g.,
Burda et al. (2018); Badia et al. (2020); Guo et al. (2022)), most rely on random exploration and are not
capable of strategic exploration. In our experiments, we test our approach on Montezuma’s Revenge,
and we pick RND (Burda et al., 2018) as a deep RL exploration baseline due to its effectiveness.

Online RL with reset distributions When an exploratory reset distribution is available, a number
of statistically and computationally efficient algorithms are known. The classic algorithms are CPI
(Kakade & Langford, 2002), PSDP (Bagnell et al., 2003), Natural Policy Gradient (Kakade, 2001;
Agarwal et al., 2020b), and POLYTEX (Abbasi-Yadkori et al., 2019). Uchendu et al. (2022) recently
demonstrated that algorithms like PSDP work well when equipped with modern neural network
function approximators. However, these algorithms (and their analyses) heavily rely on the reset
distribution to mitigate the exploration challenge, but such a reset distribution is typically unavailable
in practice, unless one also has a simulator. In contrast, we assume the offline data covers some high
quality policy, which helps with exploration, but we do not require an exploratory reset distribution.
This makes the hybrid setting much more practically appealing.

Offline RL Offline RL methods learn policies solely from a given offline dataset, with no interaction
whatsoever. When the dataset has global coverage, algorithms such as FQI (Munos & Szepesvári,
2008; Chen & Jiang, 2019) or certainty-equivalence model learning (Ross & Bagnell, 2012), can
find near-optimal policies in an oracle-efficient manner, via least squares or model-fitting oracles.
However, with only partial coverage, existing methods either (a) are not computationally efficient due
to the difficulty of implementing pessimism both in linear settings with large action spaces (Jin et al.,
2021b; Zhang et al., 2022b; Chang et al., 2021) and general function approximation settings (Uehara
& Sun, 2021; Xie et al., 2021a; Jiang & Huang, 2020; Chen & Jiang, 2022; Zhan et al., 2022), or
(b) require strong representation conditions such as policy-based Bellman completeness (Xie et al.,
2021a; Zanette et al., 2021). In contrast, in the hybrid setting, we obtain an efficient algorithm under
the more natural condition of completeness w.r.t., the Bellman optimality operator only.

Among the many empirical offline RL methods (e.g., Kumar et al. (2020); Yu et al. (2021); Kostrikov
et al. (2021); Fujimoto & Gu (2021)), we use CQL (Kumar et al., 2020) as a baseline in our
experiments, since it has been shown to work in image-based control settings such as Atari games.

Online RL with offline datasets Ross & Bagnell (2012) developed a model-based algorithm for a
similar hybrid setting. In comparison, our approach is model-free and consequently more suitable
for high-dimensional state spaces (e.g., raw-pixel images). Xie et al. (2021b) studied hybrid RL and
show that offline data does not yield statistical improvements in tabular MDPs. Our work instead
focuses on the function approximation setting and demonstrates computational benefits of hybrid RL.

On the empirical side, several works consider combining offline expert demonstrations with online
interaction (Rajeswaran et al., 2017; Hester et al., 2018; Nair et al., 2018; 2020; Vecerik et al., 2017).
A common challenge in offline RL is the robustness against low-quality offline dataset. Previous
works mostly focus on expert demonstrations and have no rigorous guarantees for such robustness.
In fact, Nair et al. (2020) showed that such degradation in performance indeed happens in practice
with low-quality offline data. In our experiments, we observe that DQfD (Hester et al., 2018) also
has a similar degradation. On the other hand, our algorithm is robust to the quality of the offline
data. Note that the core idea of our algorithm is similar to that of Vecerik et al. (2017), who adapt
DDPG to the setting of combining RL with expert demonstrations for continuous control. Although
Vecerik et al. (2017) does not provide any theoretical results, it may be possible to combine our
theoretical insights with existing analyses for policy gradient methods to establish some guarantees
of the algorithm from Vecerik et al. (2017) for the hybrid RL setting. We also include a detailed
comparison with previous empirical work in Appendix D.

3 PRELIMINARIES

We consider finite horizon Markov Decision Process M(S,A, H,R, P, d0), where S is the state
space, A is the action space, H denotes the horizon, stochastic rewards R(s, a) 2 �([0, 1]) and
P (s, a) 2 �(S) are the reward and transition distributions at (s, a), and d0 2 �(S) is the initial

3

Published as a conference paper at ICLR 2023

Algorithm 1 Hybrid Q-learning using both offline and online data (Hy-Q)

Require: Value class: F , #iterations: T , offline dataset D⌫

h
of size mo↵ = T for h 2 [H � 1].

1: Initialize f1
h
(s, a) = 0.

2: for t = 1, . . . , T do
3: Let ⇡t be the greedy policy w.r.t. f t i.e., ⇡t

h
(s) = argmax

a
f t

h
(s, a).

4: For each h, collect mon = 1 online tuples Dt

h
⇠ d⇡

t

h
. // Online collection

// FQI using both online and offline data

5: Set f t+1
H

(s, a) = 0.
6: for h = H � 1, . . . , 0 do
7: Estimate f t+1

h
using least squares regression on the aggregated data Dt

h
= D

⌫

h
+
P

t

⌧=1 D
⌧

h
:

f t+1
h
 argmin

f2Fh

n
bED

t

h

(f(s, a)� r �max
a0

f t+1
h+1(s

0, a0))2
o

(1)
8: end for
9: end for

distribution. We assume the agent can only reset from d0 (at the beginning of each episode). Since
the optimal policy is non-stationary in this setting, we define a policy ⇡ := {⇡0, . . . ,⇡H�1} where
⇡h : S 7! �(A). Given ⇡, d⇡

h
2 �(S⇥A) denotes the state-action occupancy induced by ⇡ at step h.

Given ⇡, we define the state and state-action value functions in the usual manner: V ⇡

h
(s) =

E[
P

H�1
⌧=h

r⌧ |⇡, sh = s] and Q⇡

h
(s, a) = E[

P
H�1
⌧=h

r⌧ |⇡, sh = s, ah = a]. Q? and V ? denote
the optimal value functions. We define the Bellman operator T such that for any f : S ⇥A 7! R,

T f(s, a) = E[R(s, a)] + Es0⇠P (s,a) max
a0

f(s0, a0) 8s, a,

We assume that for each h we have an offline dataset of mo↵ samples (s, a, r, s0) drawn iid via
(s, a) ⇠ ⌫h, r 2 R(s, a), s0 ⇠ P (s, a). Here ⌫ = {⌫0, . . . , ⌫H�1} denote the corresponding offline
data distributions. For a dataset D, we use ÊD[·] to denote a sample average over this dataset. For our
theoretical results, we will assume that ⌫ covers some high-quality policy.

We consider the value-based function approximation setting, where we are given a function class
F = F0⇥ · · ·⇥FH�1 with Fh ⇢ S⇥A 7! [0, Vmax] that we use to approximate the value functions
for the underlying MDP. For ease of notation, we define f = {f0, . . . , fH�1} and define ⇡f to be the
greedy policy w.r.t., f , which chooses actions as ⇡f

h
(s) = argmax

a
fh(s, a).

4 HYBRID Q-LEARNING

In this section, we present our algorithm Hybrid Q Learning – Hy-Q in Algorithm 1. Hy-Q takes an
offline dataset D⌫ that contains (s, a, r, s0) tuples and a Q function class F ⇢ S ⇥A 7! [0, H] as
inputs, and outputs a policy that optimizes the given reward function. The algorithm is conceptually
simple: it iteratively executes the Fitted Q Iteration procedure (line 6) using the offline dataset and

on-policy samples generated by the learned policies.

Specifically, at iteration t, we have an estimate f t of the Q? function and we set ⇡t to be the greedy
policy for f t. We execute ⇡t to collect a dataset Dt

h
of online samples in line 4. Then we run FQI, a

dynamic programming style algorithm on both the offline dataset D⌫ and all previously collected
online samples {D⌧

h
}
t

⌧=1. The FQI update works backward from time step H to 0 and computes
f t+1
h

via least squares regression with input (s, a) and regression target r +maxa0 f t+1
h+1(s

0, a0).2

Let us make several remarks. Intuitively, the FQI updates in Hy-Q try to ensure that the estimate f t

has small Bellman error under both the offline distribution ⌫ and the online distributions d⇡
t

. The
standard offline version of FQI ensures the former, but this alone is insufficient when the offline
dataset has poor coverage. Indeed FQI may have poor performance in such cases (see examples in
Zhan et al., 2022; Chen & Jiang, 2022). The key insight in Hy-Q is to use online interaction to ensure
that we also have small Bellman error on d⇡

t

. As we will see, the moment we find an f t that has
small Bellman error on the offline distribution ⌫ and its own greedy policy’s distribution d⇡

t

, FQI
2Note that FQI and Hy-Q extend to the infinite horizon discounted setting (Munos & Szepesvári, 2008).

4

Published as a conference paper at ICLR 2023

guarantees that ⇡t will be at least as good as any policy covered by ⌫. This observation results in an
explore-or-terminate phenomenon: either f t has small Bellman error on its distribution and we are
done, or d⇡

t

must be significantly different from distributions we have seen previously and we make
progress. Crucially, no explicit exploration is required for this argument, which is precisely how we
avoid the computational difficulties with implementing optimism.

Another important point pertains to catastrophic forgetting. We will see that the size of the offline
dataset mo↵ should be comparable to the total amount of online data {D

⌧

h
}
T

⌧=1, so that the two
terms in Eq. 1 have similar weight and we ensure low Bellman error on ⌫ throughout the learning
process. In practice, we implement this by having all model updates use a fixed proportion of offline
samples even as we collect more online data, so that we do not “forget” the distribution ⌫. This is
quite different from warm-starting with D

⌫ and then switching to online RL, which may result in
catastrophic forgetting due to a vanishing proportion of offline samples being used for model training
as we collect more online samples. We note that this balancing scheme is analogous to and inspired
by the one used by Ross & Bagnell (2012) in the context of model-based RL with a reset distribution.
Previously, similar techniques have also been explored for various applications (for example, see
Appendix F.3 of Kalashnikov et al. (2018)). As in Ross & Bagnell (2012), a key practical insight from
our analysis is that the offline data should be used throughout training to avoid catastrophic forgetting.

5 THEORETICAL ANALYSIS: LOW BILINEAR RANK MODELS

In this section we present the main theoretical guarantees for Hy-Q. We start by stating the main
assumptions and definitions for the function approximator, the offline data distribution, and the MDP.
We state the key definitions and then provide some discussion.
Assumption 1 (Realizability and Bellman completeness). For any h, we have Q?

h
2 Fh. Additionally,

for any fh+1 2 Fh+1, we have T fh+1 2 Fh.

Definition 1 (Bellman error transfer coefficient). For any policy ⇡, define the transfer coefficient as

C⇡ := max

8
<

:0, max
f2F

P
H�1
h=0 Es,a⇠d

⇡

h
[T fh+1(s, a)� fh(s, a)]qP

H�1
h=0 Es,a⇠⌫h

(T fh+1(s, a)� fh(s, a))
2

9
=

;. (2)

Definition 2 (Bilinear model (Du et al., 2021)). We say that the MDP together with the function

class F is a bilinear model of rank d if for any h 2 [H � 1], there exist two (unknown) mappings

Xh,Wh : F 7! Rd
with maxf kXh(f)k2  BX and maxf kWh(f)k2  BW such that:

8f, g 2 F :
���E

s,a⇠d
⇡f

h

[gh(s, a)� T gh+1(s, a)]
��� = |hXh(f),Wh(g)i| .

All concepts defined above are frequently used in the statistical analysis of RL methods with function
approximation. Realizability is the most basic function approximation assumption, but is known to
be insufficient for offline RL (Foster et al., 2021) unless other strong assumptions hold (Xie & Jiang,
2021; Zhan et al., 2022; Chen & Jiang, 2022). Completeness is the most standard strengthening
of realizability that is used routinely in both online (Jin et al., 2021a) and offline RL (Munos &
Szepesvári, 2008; Chen & Jiang, 2019) and is known to hold in several settings including the linear
MDP and the linear quadratic regulator. These assumptions ensure that the dynamic programming
updates of FQI are stable in the presence of function approximation.

The transfer coefficient definition above is somewhat non-standard, but is actually weaker than related
notions used in prior offline RL results. First, the average Bellman error appearing in the numerator
is weaker than the squared Bellman error notion of (Xie et al., 2021a); a simple calculation shows
that C2

⇡
is upper bounded by their coefficient. Second, by using Bellman errors, both of these are

bounded by notions involving density ratios (Kakade & Langford, 2002; Munos & Szepesvári, 2008;
Chen & Jiang, 2019). Finally, many works, particularly those that do not employ pessimism (Munos
& Szepesvári, 2008; Chen & Jiang, 2019), require “all-policy” analogs, which places a much stronger
requirement on the offline data distribution ⌫. In contrast, we will only ask that C⇡ is small for some

high-quality policy that we hope to compete with (see Appendix A.5 for more details).

Lastly, the bilinear model was developed in a series of works (Jiang et al., 2017; Jin et al., 2021a; Du
et al., 2021) on sample efficient online RL.3 The setting is known to capture a wide class of models

3Jin et al. (2021a) consider the Bellman Eluder dimension, which is related but distinct from the Bilinear
model. However, our proofs can be easily translated to this setting; see Appendix C for more details.

5

Published as a conference paper at ICLR 2023

including linear MDPs, linear Bellman complete models, low-rank MDPs, reactive POMDPs, and
more. As a technical note, the main paper focuses on the “Q-type” version of the bilinear model, but
the algorithm and proofs easily extend to the “V-type” version. See Appendix C for details.
Theorem 1 (Cumulative suboptimality). Fix � 2 (0, 1), mo↵ = T and mon = 1, suppose that the

function class F satisfies Assumption 1, and together with the underlying MDP admits Bilinear rank

d. Then with probability at least 1 � �, Algorithm 1 obtains the following bound on cumulative

subpotimality w.r.t. any comparator policy ⇡e
,

TX

t=1

V ⇡
e

� V ⇡
t

= eO
⇣
max{C⇡e , 1}Vmax

p
dH2T · log(|F|/�)

⌘
,

where ⇡t = ⇡f
t

is the greedy policy w.r.t. f t
at round t.

A standard online-to-batch conversion (Shalev-Shwartz & Ben-David, 2014) immediately gives the
following sample complexity guarantee for Algorithm 1 for finding an ✏-suboptimal policy w.r.t. the
optimal policy ⇡⇤ for the underlying MDP.
Corollary 1 (Sample complexity). Under the assumptions of Theorem 1 if C⇡⇤ <1 then Algorithm 1

can find an ✏-suboptimal policy b⇡ for which V ⇡
⇤
� V b⇡

 ✏ with total sample complexity:

n = eO
�
V 2
maxC

2
⇡⇤H3d log(|F|/�)/✏2

�

The results formalize the statistical properties of Hy-Q. In terms of sample complexity, a somewhat
unique feature of the hybrid setting is that both transfer coefficient and bilinear rank parameters are
relevant, whereas these (or related) parameters typically appear in isolation in offline and online RL
respectively. In terms of coverage, Theorem 1 highlights an “oracle property” of Hy-Q: it competes
with any policy that is sufficiently covered by the offline dataset.

We also highlight the computational efficiency of Hy-Q: it only requires solving least squares
problems over the function class F . To our knowledge, no purely online or purely offline methods
are known to be efficient in this sense, except under much stronger “uniform” coverage conditions.

5.1 THE LINEAR BELLMAN COMPLETENESS MODEL

We next showcase one example of low bilinear rank models: the popular linear Bellman complete
model which captures the linear MDP model (Yang & Wang, 2019; Jin et al., 2020), and instantiate
the sample complexity bound in Corollary 1.
Definition 3. Given a feature function � : S ⇥ A 7! Bd(1), a model admits linear Bellman

completeness if for any w 2 Bd(BW), there exists a w0
2 Bd(BW) such that

8s, a : hw0,�(s, a)i = E[R(s, a)] + Es0⇠P (s,a) max
a0
hw,�(s0, a0)i.

Note that the above condition implies that Q?

h
(s, a) = hw?

h
,�(s, a)i with kw?

h
k2  BW . Thus, we

can define a function class Fh = {hwh,�(s, a)i : wh 2 Rd, kwhk2  BW } which by inspection
satisfies Assumption 1. Additionally, this model is also known to have bilinear rank at most d (Du
et al., 2021). Thus, using Corollary 1 we immediately get the following guarantee:
Lemma 1. Let � 2 (0, 1), suppose the MDP is linear Bellman complete, C⇡⇤ <1, and consider

Fh defined above. Then, with probability 1� �, Algorithm 1 finds an ✏-suboptimal policy with total

sample complexity:

n = eO
�
B2

W
C2

⇡⇤H4d2 log(1/�)/✏2
�
.

Remark 1 (Computational efficiency). For linear Bellman complete models, we note that Algorithm 1

can be implemented efficiently under mild assumptions. For the class F in Lemma 1, the regression

problem in (1) reduces to a least squares linear regression with a norm constraint on the weight

vector. This regression problem can be solved efficiently by convex programming with computational

efficiency scaling polynomially in the number of parameters (Bubeck et al., 2015) (d here), whenever

maxa fh+1(s, a) (or argmax
a
fh+1(s, a)) can be computed efficiently.

Remark 2. (Linear MDPs) Since linear Bellman complete models generalize linear MDPs (Yang

& Wang, 2019; Jin et al., 2020), as we discuss above, Algorithm 1 can be implemented efficiently

whenever maxa fh+1(s, a) can be computed efficiently. The latter is tractable when:

6

Published as a conference paper at ICLR 2023

• When |A| is small/finite, one can just enumerate to compute maxa fh+1(s, a) for any s, and thus

(1) can be implemented efficiently. The computational efficiently of Algorithm 1 in this case is

comparable to the prior works, e.g. Jin et al. (2020).

• When the set {�(s, a) | a 2 A} is convex and compact, one can simply use a linear optimization

oracle to compute maxa fh+1(s, a) = maxa w>

h+1�(s, a). This linear optimization problem is

itself solvable with computational efficiency scaling polynomially with d. here).

Note that even under access to a linear optimization oracle, prior works e.g. Jin et al. (2020) rely

on bonuses in the form of argmax
a
�(s, a)>w+ �

p
�(s, a)>⌃�(s, a), where ⌃ is some positive

definite matrix (e.g., the regularized feature covariance matrix). Computing such bonuses could

be NP-hard (in the feature dimension d) without additional assumptions (Dani et al., 2008).

Remark 3. (Relative condition number) A common coverage metric in these linear MDP models is the

relative condition number. In Appendix A.5, we show that our coefficient C⇡ is upper bounded by the

relative condition number of ⇡ with respect to ⌫: Ed⇡k�k⌃�1
⌫

, where ⌃⌫ = Es,a⇠⌫�(s, a)�>(s, a).

Concretely, we have C⇡ 

q
maxh Ed

⇡

h
k�k2

⌃�1
⌫
h

.

5.2 WHY DON’T OFFLINE RL METHODS WORK?
One may wonder why do pure offline RL methods fail to learn when the transfer coefficient is
bounded, and why does online access help? We illustrate with the MDP construction developed
by Zhan et al. (2022); Chen & Jiang (2022), visualized in Figure 1.

Figure 1: A hard in-
stance for offline RL
(Zhan et al., 2022,
reproduced with per-
mission)

Consider two MDPs {M1,M2} with H = 2, three states {A,B,C}, two
actions {L,R} and the fixed start state A. The two MDPs have the same
dynamics but different rewards. In both, actions from state B yield reward
1. In M1, (C,R) yields reward 1 while (C,L) yields reward 1 in M2. All
other rewards are 0. In both M1 and M2, an optimal policy is ⇡⇤(A) = L and
⇡⇤(B) = ⇡⇤(C) = Uniform({L,R}). With F = {Q?

1, Q
?

2} where Q?

j
is the

optimal Q function for Mj , then one can easily verify that F satisfies Bellman
completeness, for both MDPs. Finally with offline distribution ⌫ supported on
states A and B only (with no coverage on state C), we have sufficient coverage
over d⇡

?

. However, samples from ⌫ are unable to distinguish between f1
and f2 or (M1 and M2), since state C is not supported by ⌫. Unfortunately,
adversarial tie-breaking may result the greedy policies of f1 and f2 visiting
state C, where we have no information about the correct action.

This issue has been documented before, and in order to address it with pure
offline RL, existing approaches require additional structural assumptions. For instance, Chen &
Jiang (2022) assume that Q? has a gap, which usually does not hold when action space is large or
continuous. Xie et al. (2021a) assumes policy-dependent Bellman completeness for every possible
policy ⇡ 2 ⇧ (which is much stronger than our assumption), and Zhan et al. (2022) assumes a
somewhat non-interpretable realizability assumption on some “value” function that does not obey
the standard Bellman equation. In contrast, by combining offline data and online data, our approach
focuses on functions that have small Bellman residual under both the offline distribution and the
on-policy distributions, which together with the offline data coverage assumption, ensures near
optimality. It is easy to see that the hybrid approach will succeed Figure 1.

6 EXPERIMENTS

In this section we discuss empirical results comparing Hy-Q to several representative RL methods on
two challenging benchmarks. Our experiments focus on answering the following questions:

1. Can Hy-Q efficiently solve problems that SOTA offline RL methods simply cannot?
2. Can Hy-Q, via the use of offline data, significantly improve the sample efficiency of online RL?
3. Does Hy-Q scale to challenging deep-RL benchmarks?
Our empirical results provide positive answers to all of these questions. To study the first two, we
consider the diabolical combination lock environment (Misra et al., 2020; Zhang et al., 2022c), a
synthetic environment designed to be particularly challenging for online exploration. The synthetic
nature allows us to carefully control the offline data distribution to modulate the difficulty of the

7

Published as a conference paper at ICLR 2023

Figure 2: The learning curve for combination lock with H = 100. The plots show the median and
80th/20th quantile for 5 replicates. Pure offline and IL methods are visualized as dashed horizontal
lines (in the left plot, CQL overlaps with BC). Note that we report the number of samples while Zhang
et al. (2022c) report the number of episodes.

setup and also to compare with a provably efficient baseline (Zhang et al., 2022c). To study the third
question, we consider the Montezuma’s Revenge benchmark from the Arcade Learning environment,
which is one of the most challenging empirical benchmarks with high-dimensional image inputs,
largely due to the difficulties of exploration. Additional details are deferred to Appendix E.

Hy-Q implementation. We largely follow Algorithm 1 in our implementation for the combination
lock experiment. Particularly, we use a similar function approximation to Zhang et al. (2022c), and a
minibatch Adam update on Eq. (1) with the same sampling proportions as in the pseudocode. For
Montezuma’s Revenge, in addition to minibatch optimization, since the horizon of the environment is
not fixed, we deploy a discounted version of Hy-Q. Concretely, the target value in the Bellman error
is calculated from the output of a target network, which is periodically updated, times a discount
factor. We refer the readers to Appendix E for more details.

Baselines. We include representative algorithms from four categories: (1) for imitation learning
we use Behavior Cloning (BC) (Bain & Sammut, 1995), (2) for offline RL we use Conservative
Q-Learning (CQL) (Kumar et al., 2020), (3) for online RL we use BRIEE (Zhang et al., 2022c) for
combination lock4 and Random Network Distillation (RND) (Burda et al., 2018) for Montezuma’s Re-
venge, and (4) as a Hybrid-RL baseline we use Deep Q-learning from Demonstrations (DQFD) (Hester
et al., 2018). We note that DQFD and prior hybrid RL methods combine expert demonstrations with
online interactions, but are not necessarily designed to work with general offline datasets.

6.1 COMBINATION LOCK

The combination lock benchmark is depicted in Figure 3 and consists of horizon H = 100, three
latent states for each time step and 10 actions in each state. Each state has a single “good” action
that advances down a chain of favorable states from which optimal reward can be obtained. A single
incorrect action transitions to an absorbing chain with suboptimal value. The agent operates on high
dimensional observations and must use function approximation to succeed. This is an extremely
challenging problem for which many Deep RL methods are known to fail (Misra et al., 2020), in part
because (uniform) random exploration only has 10�H probability of obtaining the optimal reward.

Optimal
Reward

observation space

h=0 h=1 h=2 h=H-1 h=H

Rot

observation space

Rot

Figure 3: The combina-
tion lock (Zhang et al.,
2022c), reproduced with
permission.

On the other hand, the model has low bilinear rank, so we do have online
RL algorithms that are provably sample-efficient: BRIEE currently obtains
state of the art sample complexity. However, its sample complexity is still
quite large, and we hope that Hybrid RL can address this shortcoming.
We are not aware of any experiments with offline RL methods on this
benchmark.

We construct two offline datasets for the experiments, both of which are
derived from the optimal policy ⇡?. In the optimal trajectory dataset we
collect full trajectories by following ⇡? with ✏-greedy exploration with
✏ = 1/H . In the optimal occupancy dataset we collect transition tuples
from the state-occupancy measure of ⇡? with random actions.5 Both
datasets have bounded concentrability coefficients (and hence transfer
coefficients) with respect to ⇡?, but the second dataset is much more

challenging since the actions do not directly provide information about ⇡?, as they do in the former.

4We note that BRIEE is currently the state-of-the-art method for the combination lock environment. In
particular, Misra et al. (2020) show that many Deep RL baselines fail in this enviroment.

5Formally, we sample h ⇠ Unif([H]), s ⇠ d
⇡?

h , a ⇠ Unif(A), r ⇠ R(s, a), s0 ⇠ P (s, a).

8

Published as a conference paper at ICLR 2023

Figure 4: The learning curve for Montezuma’s Revenge. The plots show the median and 80th/20th
quantile for 5 replicates. Pure offline, IL methods and dataset qualities are visualized as dashed
horizontal lines. “Expert” denotes V ⇡

e

and “Offline” denotes the average trajectory reward in the
offline dataset. The y-axis denotes the (moving) average of 100 episodes for the methods involving
online interactions. Note that CQL and BC overlap on the last plot.

The results are presented in Figure 2. First, we observe that Hy-Q can reliably solve the task under
both offline distributions with relatively low sample complexity (500k offline samples and  25m
online samples). In comparison, BC fails completely since both datasets contain random actions. CQL
can solve the task using the trajectory-based dataset with a sample complexity that is comparable to
the combined sample size of Hy-Q. However, CQL fails on the occupancy-based dataset since the
actions themselves are not informative. Indeed the pessimism-inducing regularizer of CQL is constant
on this dataset and so the algorithm reduces to FQI. Finally, Hy-Q can solve the task with a factor of
5-10 reduction in (online and offline) samples when compared with BRIEE. This demonstrates the
robustness and sample efficiency provided by hybrid RL.

6.2 MONTEZUMA’S REVENGE

To answer the third question, we turn to Montezuma’s Revenge, an extremely challenging image-
based benchmark environment with sparse rewards. We follow the setup from Burda et al. (2018)
and introduce stochasticity to the original dynamics: with probability 0.25 the environment exe-
cutes the previous action instead of the current one. For offline datasets, we first train an “expert
policy” ⇡e via RND to achieve V ⇡

e

⇡ 6400. We create three datasets by mixing samples from ⇡e

with those from a random policy: the easy dataset contains only samples from ⇡e, the medium
dataset mixes in a 80/20 proportion (80 from ⇡e), and the hard dataset mixes in a 50/50 pro-
portion. Here we record full trajectories from both policies in the offline dataset, but measure the
proportion using the number of transition tuples instead of trajectories. We provide 0.1 million
offline samples for the hybrid methods, and 1 million samples for the offline and IL methods.

�
�! 	��! 	
�!
��!

�(!��%�#���%�!�&

�

	

�

�

�

�

�
�
%�
�
$
�&
#
�
�
�%
�
*
�
%
�

�#"'�-(!��&���)�"��

�+$�%'

���

�,������&,�

�,����!���(!�

�,������%��

Figure 5: Learning curves of
Hy-Q and RND. Metric fol-
lows Figure 4.

Results are displayed in Figure 4. CQL fails completely on all
datasets. DQFD performs well on the easy dataset due to the large
margin loss (Piot et al., 2014) that imitates the policies in the offline
dataset. However, DQFD’s performance drops as the quality of the
offline dataset degrades (medium), and fails when the offline dataset
is low quality (hard). We also observe that BC is a competitive
baseline in the first two settings, and thus we view these problems
as relatively easy to solve. Hy-Q is the only method that performs
well on the hard dataset. Note that here, BC’s performance is quite
poor. We also include the comparison with RND in Figure 5: with
only 100k offline samples from any of the three datasets, Hy-Q is
over 10x more efficient in terms of online sample complexity.

7 CONCLUSION

We demonstrate the potential of hybrid RL with Hy-Q, a simple, theoretically principled, and empiri-
cally effective algorithm. Our theoretical results showcase how Hy-Q circumvents the computational
issues of pure offline or online RL, while our empirical results highlight its robustness and sample
efficiency. Yet, Hy-Q is perhaps the most natural hybrid algorithm, and we are optimistic that there is
much more potential to unlock from the hybrid setting. We look forward to studying this in the future.

9

Published as a conference paper at ICLR 2023

Reproducibility Statement. For our theory results, we provide detailed proof in the Appendices.
For experiments, we submit anonymous code in the supplemental materials. Our (offline) dataset
can be reproduced with the attached instructions, and our results could be reproduced with the given
random seeds. For more details, we include implementation, environment and computation hardware
details in the Appendices, along with hyperparameters for both our method and the baselines. We
also open source our code at https://github.com/yudasong/HyQ.

ACKNOWLEDGEMENT

AS thanks Karthik Sridharan for useful discussions. WS acknowledges funding support from NSF
IIS-2154711. We thank Simon Zhao for their careful reading of the manuscript and improvement
on the technical correctness of our paper. We also thank Uri Sherman for their discussion on the
computational efficiency of the original draft.

REFERENCES

Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellért
Weisz. Politex: Regret bounds for policy iteration using expert prediction. In International

Conference on Machine Learning, 2019.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and

algorithms. 2019. URL https://rltheorybook.github.io/.

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complexity
and representation learning of low rank MDPs. In Advances in Neural Information Processing

Systems, 2020a.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation
with policy gradient methods in markov decision processes. In Conference on Learning Theory,
2020b.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the Atari human benchmark.
In International Conference on Machine Learning, 2020.

James Bagnell, Sham M Kakade, Jeff Schneider, and Andrew Ng. Policy search by dynamic
programming. Advances in Neural Information Processing Systems, 2003.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence

15, 1995.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
2013.

Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual
bandit algorithms with supervised learning guarantees. In International Conference on Artificial

Intelligence and Statistics, 2011.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends®

in Machine Learning, 2015.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2018.

Jonathan Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mitigating
covariate shift in imitation learning via offline data with partial coverage. Advances in Neural

Information Processing Systems, 2021.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In
International Conference on Machine Learning, 2019.

10

https://github.com/yudasong/HyQ
https://rltheorybook.github.io/

Published as a conference paper at ICLR 2023

Jinglin Chen and Nan Jiang. Offline reinforcement learning under value and density-ratio realizability:
the power of gaps. arXiv:2203.13935, 2022.

Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit
feedback. 2008.

Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E
Schapire. On oracle-efficient PAC RL with rich observations. In Advances in Neural Information

Processing Systems, 2018.

Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and Ruosong
Wang. Bilinear classes: A structural framework for provable generalization in RL. In International

Conference on Machine Learning, 2021.

Dylan J Foster, Akshay Krishnamurthy, David Simchi-Levi, and Yunzong Xu. Offline reinforcement
learning: Fundamental barriers for value function approximation. In Conference on Learning

Theory, 2021.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Advances in Neural Information Processing Systems, 2021.

Zhaohan Daniel Guo, Shantanu Thakoor, Miruna Pı̂slar, Bernardo Avila Pires, Florent Altché,
Corentin Tallec, Alaa Saade, Daniele Calandriello, Jean-Bastien Grill, Yunhao Tang, Michal Valko,
R’emi Munos, Mohammad Gheshlaghi Azar, and Bilal Piot. BYOL-explore: Exploration by
bootstrapped prediction. arXiv:2206.08332, 2022.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms
and applications. arXiv:1812.05905, 2018.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, John Agapiou, Joel Z. Leibo, and Audrunas Gruslys.
Deep Q-learning from demonstrations. In AAAI Conference on Artificial Intelligence, 2018.

Zhiwei Jia, Xuanlin Li, Zhan Ling, Shuang Liu, Yiran Wu, and Hao Su. Improving policy optimization
with generalist-specialist learning. In International Conference on Machine Learning, pp. 10104–
10119. PMLR, 2022.

Nan Jiang and Jiawei Huang. Minimax value interval for off-policy evaluation and policy optimization.
Advances in Neural Information Processing Systems, 2020.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contex-
tual decision processes with low Bellman rank are PAC-learnable. In International Conference on

Machine Learning, 2017.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, 2020.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of RL
problems, and sample-efficient algorithms. Advances in Neural Information Processing Systems,
2021a.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline RL? In
International Conference on Machine Learning, 2021b.

Sham M Kakade. A natural policy gradient. Advances in Neural Information Processing Systems,
2001.

Sham M Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
International Conference on Machine Learning, 2002.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293,
2018.

11

Published as a conference paper at ICLR 2023

Daniel Kane, Sihan Liu, Shachar Lovett, and Gaurav Mahajan. Computational-statistical gaps in
reinforcement learning. In Conference on Learning Theory, 2022.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
Q-learning. arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, 2020.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot

Learning, pp. 1702–1712. PMLR, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv:2005.01643, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
International Conference on Learning Representations, 2016.

Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic state abstrac-
tion and provably efficient rich-observation reinforcement learning. In International conference on

machine learning, 2020.

Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan Jiang, and Alekh Agarwal. Model-free
representation learning and exploration in low-rank MDPs. arXiv:2102.07035, 2021.

Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine

Learning Research, 2008.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcom-
ing exploration in reinforcement learning with demonstrations. In IEEE International Conference

on Robotics and Automation, 2018.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv:2006.09359, 2020.

Haoyi Niu, Shubham Sharma, Yiwen Qiu, Ming Li, Guyue Zhou, Jianming Hu, and Xianyuan Zhan.
When to trust your simulator: Dynamics-aware hybrid offline-and-online reinforcement learning.
arXiv preprint arXiv:2206.13464, 2022.

Bilal Piot, Matthieu Geist, and Olivier Pietquin. Boosted bellman residual minimization handling
expert demonstrations. In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, 2014.

Shuang Qiu, Lingxiao Wang, Chenjia Bai, Zhuoran Yang, and Zhaoran Wang. Contrastive UCB: Prov-
ably efficient contrastive self-supervised learning in online reinforcement learning. In International

Conference on Machine Learning, 2022.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv:1709.10087, 2017.

Stephane Ross and J Andrew Bagnell. Agnostic system identification for model-based reinforcement
learning. arXiv:1203.1007, 2012.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
arXiv:1511.05952, 2015.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering Atari, Go, chess and Shogi by planning with a learned model. Nature,
2020.

12

Published as a conference paper at ICLR 2023

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347, 2017.

Ayush Sekhari, Christoph Dann, Mehryar Mohri, Yishay Mansour, and Karthik Sridharan. Agnostic
reinforcement learning with low-rank MDPs and rich observations. Advances in Neural Information

Processing Systems, 2021.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to

algorithms. Cambridge University Press, 2014.

Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based
RL in contextual decision processes: PAC bounds and exponential improvements over model-free
approaches. In Conference on learning theory, 2019.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, Sergey Levine, and Karol Hausman. Jump-start
reinforcement learning. arXiv:2204.02372, 2022.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under partial
coverage. In International Conference on Learning Representations, 2021.

Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and offline RL
in low-rank MDPs. arXiv:2110.04652, 2021.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-
learning. In AAAI Conference on Artificial Intelligence, 2016.

Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess,
Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations for deep
reinforcement learning on robotics problems with sparse rewards. arXiv:1707.08817, 2017.

Ruosong Wang, Yifan Wu, Ruslan Salakhutdinov, and Sham Kakade. Instabilities of offline rl with
pre-trained neural representation. In International Conference on Machine Learning, 2021.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International Conference on Machine

Learning, 2016.

Tengyang Xie and Nan Jiang. Batch value-function approximation with only realizability. In
International Conference on Machine Learning, 2021.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in Neural Information Processing Systems,
2021a.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridging
sample-efficient offline and online reinforcement learning. Advances in Neural Information

Processing Systems, 2021b.

Lin Yang and Mengdi Wang. Sample-optimal parametric Q-learning using linearly additive features.
In International Conference on Machine Learning, 2019.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. In Advances in Neural Information

Processing Systems, 2021.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near
optimal policies with low inherent Bellman error. In International Conference on Machine

Learning, 2020.

Andrea Zanette, Martin J Wainwright, and Emma Brunskill. Provable benefits of actor-critic methods
for offline reinforcement learning. Advances in Neural Information Processing Systems, 2021.

13

Published as a conference paper at ICLR 2023

Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, and Jason Lee. Offline reinforcement
learning with realizability and single-policy concentrability. In Conference on Learning Theory,
pp. 2730–2775. PMLR, 2022.

Tianjun Zhang, Tongzheng Ren, Mengjiao Yang, Joseph Gonzalez, Dale Schuurmans, and Bo Dai.
Making linear MDPs practical via contrastive representation learning. In International Conference

on Machine Learning, 2022a.

Xuezhou Zhang, Yiding Chen, Xiaojin Zhu, and Wen Sun. Corruption-robust offline reinforcement
learning. In International Conference on Artificial Intelligence and Statistics, 2022b.

Xuezhou Zhang, Yuda Song, Masatoshi Uehara, Mengdi Wang, Alekh Agarwal, and Wen Sun.
Efficient reinforcement learning in block MDPs: A model-free representation learning approach.
In International Conference on Machine Learning, 2022c.

14

Published as a conference paper at ICLR 2023

A PROOFS FOR SECTION 5

Additional notation. Throughout the appendix, we define the feature covariance matrix ⌃t;h as

⌃t;h =
tX

⌧=1

Xh(f
⌧)(Xh(f

⌧))> + �I. (3)

Furthermore, given a distribution � 2 �(S ⇥ A) and a function f : S ⇥ A 7! R, we denote its
weighted `2 norm as kfk22,� :=

p
Es,a⇠�f2(s, a).

A.1 SUPPORTING LEMMAS FOR THEOREM 1

Before proving Theorem 1, we first present a few useful lemma. We start with a standard result on
least square generalization bound, which is be used by recalling that Algorithm 1 performs least
squares on the empirical bellman error. We defer the proof of Lemma 2 to Appendix B.
Lemma 2. (Least squares generalization bound) Let R > 0, � 2 (0, 1), we consider a sequential

function estimation setting, with an instance space X and target space Y . Let H : X 7! [�R,R] be

a class of real valued functions. Let D = {(x1, y1), . . . , (xT , yT)} be a dataset of T points where

xt ⇠ ⇢t := ⇢t(x1:t�1, y1:t�1), and yt is sampled via the conditional probability p(· | xt):

yt ⇠ p(· | xt) := h⇤(xt) + "t,

where the function h⇤
satisfies approximate realizability i.e.

inf
h2H

1

T

TX

t=1

Ex⇠⇢t

h
(h⇤(x)� h(x))2

i
 �,

and {✏i}
n

i=1 are independent random variables such that E[yt | xt] = h⇤(xt). Addition-

ally, suppose that maxt|yt|  R and maxx|h⇤(x)|  R. Then the least square solution

bh argmin
h2H

P
T

t=1(h(xt)� yt)
2

satisfies with probability at least 1� �,

TX

t=1

Ex⇠⇢t

h
(bh(x)� h⇤(x))2

i
 3�T + 256R2 log(2|H|/�).

The above lemma is basically an extension of the standard least square regression agnostic gener-
alization bound from i.i.d. setting to the non-i.i.d. case with the sequence of training data forms a
sequence of Martingales. We state the result when the realizability only holds approximately upto the
approximation �. However, for all our proofs, we invoke this result by setting � = 0.

In the next two lemmas, we prove two lemmas where we can bound each part of the regret decompo-
sition using the Bellman error of the value function f .
Lemma 3 (Performance difference lemma). For any function f = (f0, . . . , fH�1) where fh :
S ⇥A 7! R and h 2 [H � 1], we have

Es⇠d0 [max
a

f0(s, a)� V ⇡
f

0 (s)] 
H�1X

h=0

���E
s,a⇠d

⇡f

h

[fh(s, a)� T fh+1(s, a)]
���,

where we define fH(s, a) = 0 for all s, a.

Proof. We start the proof by noting that ⇡f

0 (s) = argmax
a
f0(s, a), then we have:

Es⇠d0 [max
a

f0(s, a)� V ⇡
f

(s)] = Es⇠d0 [Ea⇠⇡
f

0 (s)
f0(s, a)� V ⇡

f

0 (s)]

= Es⇠d0 [Ea⇠⇡
f

0 (s)
f0(s, a)� T f1(s, a)] + Es⇠d0 [Ea⇠⇡

f

0 (s)
T f1(s, a)� V ⇡

f

0 (s)]

= E
s,a⇠d

⇡f

0
[f0(s, a)� T f1(s, a)]+

Es⇠d0 [Ea⇠⇡
f

0 (s)
[R(s, a) + �Es0⇠P(s,a) max

a0
f1(s

0, a0)�R(s, a) + Es0⇠P(s,a)V
⇡
f

1 (s0)]]

15

Published as a conference paper at ICLR 2023

= E
s,a⇠d

⇡f

0
[f0(s, a)� T f1(s, a)] + E

s⇠d
⇡f

1
[max

a

f1(s, a)� V ⇡
f

1 (s)]

(4)

Then by recursively applying the same procedure on the second term in (4), we have

Es⇠d0 [max
a

f0(s, a)� V ⇡
f

(s)] =
H�1X

h=0

E
s,a⇠d

⇡f

h

[fh(s, a)� T fh+1(s, a)] + E
s⇠d

⇡f

H

[max
a

fH(s, a)� V ⇡
f

H
(s)].

Finally for h = H , we recall that we set fH(s, a) = 0 and V ⇡
f

H
= 0 for notation simplicity. Thus we

have:

Es⇠d0 [max
a

f0(s, a)� V ⇡
f

(s)] =
H�1X

h=0

E
s,a⇠d

⇡f

h

[fh(s, a)� T fh+1(s, a)]



H�1X

h=0

���E
s,a⇠d

⇡f

h

[fh(s, a)� T fh+1(s, a)]
��� .

Now we proceed to how to bound the other half in the regret decomposition:
Lemma 4. Let ⇡e = (⇡e

0, . . . ,⇡
e

H�1) be a comparator policy, and consider any value function

f = (f0, . . . , fH�1) where fh : S ⇥A 7! R. Then,

Es⇠d0

h
V ⇡

e

0 (s)�max
a

f0(s, a)
i


H�1X

i=0

Es,a⇠d
⇡e

i

[T fi+1(s, a)� fi(s, a)],

where we defined fH(s, a) = 0 for all s, a.

Proof. The proof is similar to the proof of Lemma 3, and we start with the fact that maxa f(s, a) �
f(s, a0), 8a0, including actions sampled from ⇡e:

Es⇠d0

h
V ⇡

e

0 (s)�max
a

f0(s, a)
i
 Es,a⇠d

⇡e

0

h
Q⇡

e

0 (s, a)� f0(s, a)
i

= Es,a⇠d
⇡e

0

h
Q⇡

e

0 (s, a)� T f1(s, a) + T f1(s, a)� f0(s, a)
i

= Es,a⇠d
⇡e

0

h
Es0⇠P(s,a)V

⇡
e

1 (s0)�max
a0

f1(s
0, a0)

i
+ Es,a⇠d

⇡e

0
[T f1(s, a)� f0(s, a)]

= Es⇠d
⇡e

1

h
V ⇡

e

1 (s)�max
a

f1(s, a)
i
+ Es,a⇠d

⇡e

0
[T f1(s, a)� f0(s, a)]

(5)

Again by recursively applying the same procedure on the first term in (5), we have

Es⇠d0

h
V ⇡

e

0 (s)�max
a

f0(s, a)
i
 Es⇠d

⇡e

H

h
V ⇡

e

H
(s)�max

a

fH(s, a)
i
+

H�1X

h=0

Es,a⇠d
⇡e

h

[T fh+1(s, a)� fh(s, a)],

and recall that fH(s, a) = 0 and V ⇡
f

H
= 0, we have

Es⇠d0

h
V ⇡

e

0 (s)�max
a

f0(s, a)
i


H�1X

h=0

Es,a⇠d
⇡e

h

[T fh+1(s, a)� fh(s, a)].

The following result is useful in the bilinear models when we want to bound the potential functions.
The result directly follows from the elliptical potential lemma (Lattimore & Szepesvári, 2020, Lemma
19.4).

16

Published as a conference paper at ICLR 2023

Lemma 5. Let Xh(f1), . . . , Xh(fT) 2 Rd
be a sequence of vectors with kXh(f t)k  BX < 1

for all t  T . Then,

TX

t=1

kXh(f
t)k⌃�1

t�1;h


s

2dT log

✓
1 +

TB2
X

�d

◆
,

where the matrix ⌃t;h :=
P

t

⌧=1 Xh(f⌧)Xh(f⌧)> + �I for t 2 [T] and � � B2
X

, and the matrix

norm kXh(f t)k⌃�1
t�1;h

= E[Xh(f t)>⌃�1
t�1;hXh(f t)].

Proof. Since � � B2
X

, we have that

kXh(f
t)k2

⌃�1
t�1;h


1

�
kXh(f

t)k2  1.

Thus, using elliptical potential lemma (Lattimore & Szepesvári, 2020, Lemma 19.4), we get that
TX

t=1

kXh(f
t)k2

⌃�1
t�1;h

 2d log

✓
1 +

TB2
X

�d

◆
.

The desired bound follows from Jensen’s inequality which implies that

TX

t=1

kXh(f
t)k⌃�1

t�1;h


vuutT ·

TX

t=1

kXh(f t)k2
⌃�1

t�1;h



s

2Td log

✓
1 +

TB2
X

�d

◆
.

A.2 PROOF OF THEOREM 1

Before delving into the proof, we first state that following generalization bound for FQI.
Lemma 6 (Bellman error bound for FQI). Let � 2 (0, 1) and let for h 2 [H � 1] and t 2 [T], f t+1

h

be the estimated value function for time step h computed via least square regression using samples in

the dataset
�
D

⌫

h
,D1

h
, . . . ,Dt

h

�
in (1) in the iteration t of Algorithm 1. Then, with probability at least

1� �, for any h 2 [H � 1] and t 2 [T],

��f t+1
h
� T f t+1

h+1

��2
2,⌫h


1

mo↵
256V 2

max log(2HT |F|/�) =: �o↵ ,

and

tX

⌧=1

��f t+1
h
� T f t+1

h+1

��2
2,µ⌧

h


1

mon
256V 2

max log(2HT |F|/�) =: �on,

where ⌫h denotes the offline data distribution at time h, and the distribution µ⌧

h
2 �(s, a) is defined

such that s, a ⇠ d⇡
⌧

h
.

Proof. Fix t 2 [T], h 2 [H � 1] and f t+1
h+1 2 Fh+1 and consider the regression problem ((1) in the

iteration t of Algorithm 1):

f t+1
h
 argmin

f2Fh

n
bED

t

h

(f(s, a)� r �max
a0

f t+1
h+1(s

0, a0))2
o
,

where dataset Dt

h
= D

⌫

h
+
P

t

⌧=1 D
⌧

h
consisting of n = mo↵ + t ·mon samples {(xi, yi)}in

where

xi = (si
h
, ai

h
) and yi = ri +max

a

f t+1
h+1(s

i

h+1, a).

In particular, we define D such that the first mo↵ samples {(xi, yi)}imoff
= D

⌫

h
, the next mon

samples {(xi, yi)}
moff+mon

i=moff+1 = D
1
h

, and so on where the samples {(xi, yi)}
moff+⌧mon

i=moff+(⌧�1)mon+1 = D
⌧

h
.

Note that: (a) for any sample (x = (sh, ah), y = (r +maxa f
t+1
h+1(sh+1, a))) in D, we have that

E[y | x] = Esh+1⇠P (sh,ah),r⇠R(sh,ah)

h
r +max

a

f t+1
h+1(sh+1, a)

i

17

Published as a conference paper at ICLR 2023

= T f t+1
h+1(sh, ah)  g(sh, ah),

where the last line holds since the Bellman completeness assumption implies existence of such a
function g, (b) for any sample, |y|  Vmax and f(s, a)  Vmax for all s, a, (c) our construction
of D implies that for each iteration t, the sample (xt, yt) are generated in the following procedure:
xt is sampled from the data generation scheme D

t(x1:t�1, y1:t�1), and yt is sampled from some
conditional probability distribution p(· | xt) as defined in Lemma 2, finally (d) the samples in D

⌫

h

are drawn from the offline distribution ⌫h, and the samples in D
⌧

h
are drawn such that sh ⇠ d⇡

t

h
and

ah ⇠ ⇡f
t

(sh).Thus, using Lemma 2, we get that the least square regression solution f t+1
h

satisfies
nX

i=1

E
⇥
(f t+1

h
(si, ai)� T f t+1

h+1(s
i, ai))2 | Di

⇤
 256V 2

max log(2|F|/�).

Using the property-(d) in the above, we get that

mo↵ ·
��f t+1

h
� T f t+1

h+1

��2
2,⌫h

+mon ·

tX

⌧=1

��f t+1
h
� T f t+1

h+1

��2
2,µ⌧

h

 256V 2
max log(2|F|/�),

where the distribution µ⌧

h
2 �(s, a) is defined by sampling s ⇠ d⇡

⌧

h
and a ⇠ ⇡f

t

(s). Taking a
union bound over h 2 [H � 1] and t 2 [T], and bounding each term separately, gives the desired
statement.

We next note a change in distribution lemma which allows us to bound expected bellman error under
the (s, a) distribution generated by f t in terms of the expected square bellman error w.r.t. the previous
policies data distribution, which is further controlled using regression.
Lemma 7. For any t � 0 and h 2 [H � 1], we have

��⌦Wh(f
t), Xh(f

t)
↵��  kXh(f

t)k⌃�1
t�1;h

vuut
t�1X

i=1

E
s,a⇠d

fi

h

h�
f t

h
� T f t

h+1

�2i
+ �B2

W
,

where ⌃�1
t�1 is defined in (3) and use the notation df

i

h
to denote d⇡

f
i

h
.

Proof. Using Cauchy-Schwarz inequality, we get that
��⌦Wh(f

t), Xh(f
t)
↵��  kXh(f

t)k⌃�1
t�1;h
kWh(f

t)k⌃t�1;h

= kXh(f
t)k⌃�1

t�1;h

q
(Wh(f t))>⌃t�1Wh(f t)

= kXh(f
t)k⌃�1

t�1;h

vuut(Wh(f t))>

t�1X

i=1

Xh(f i)Xh(f i)> + �I
!
Wh(f t)

= kXh(f
t)k⌃�1

t�1;h

vuut
t�1X

i=1

|hWh(f t), Xh(f i)i|2 + �kWh(f t)k2

 kXh(f
t)k⌃�1

t�1;h

vuut
t�1X

i=1

|hWh(f t), Xh(f i)i|2 + �B2
W

(6)

 kXh(f
t)k⌃�1

t�1;h

vuut
t�1X

i=1

E
s,a⇠d

fi

h

h�
f t

h
� T f t

h+1

�2i
+ �B2

W

where the inequality in the second last line holds by plugging in the bound on kWh(f t)k, and the last
line holds by using Definition 2 which implies that

��⌦Wh(f
t), Xh(f

i)
↵��2 =

⇣
E
s,a⇠d

fi

h

⇥
f t

h
� T f t

h+1

⇤⌘2
 E

s,a⇠d
fi

h

h�
f t

h
� T f t

h+1

�2i
,

where the last inequality is due to Jensen’s inequality.

18

Published as a conference paper at ICLR 2023

We now have all the tools to prove Theorem 1. We first restate the bound with the exact problem
dependent parameters, assumign that BW and BX are constants which are hidden in the order
notation below.
Theorem (Theorem 1 restated). Let mo↵ = T and mon = 1. Then, with probability at least 1� �,

the cumulative suboptimality of Algorithm 1 is bounded as

TX

t=1

V ⇡
e

� V ⇡
f
t

= O

max{C⇡e , 1}Vmax

s

dH2T · log

✓
1 +

T

d

◆
log

✓
HT |F|

�

◆!
.

Proof of Theorem 1. Let ⇡e be any comparator policy with bounded transfer coefficient i.e.

C⇡e := max

8
>><

>>:
0, max

f2F

P
H�1
h=0 E

s,a⇠d
⇡e

h

[fh(s, a)� T fh+1(s, a)]
r
P

H�1
h=0 Es,a⇠⌫h

h
(fh(s, a)� T fh+1(s, a))

2
i

9
>>=

>>;
<1. (7)

We start by noting that
TX

t=1

V ⇡
e

� V ⇡
f
t

=
TX

t=1

Es⇠d0

h
V ⇡

e

0 (s)� V ⇡
f
t

0 (s)
i

=
TX

t=1

Es⇠d0

h
V ⇡

e

0 (s)�max
a

f t

0(s, a)
i
+

TX

t=1

Es⇠d0

h
max

a

f t

0(s, a)� V ⇡
f
t

0 (s)
i
.

(8)

For the first term in the right hand side of (8), note that using Lemma 4 for each ft for 1  t  T , we
get

TX

t=1

Es⇠d0

h
V ⇡

e

0 (s)�max
a

f t

0(s, a)
i


TX

t=1

H�1X

h=0

Es,a⇠d
⇡e

h

[T f t

h+1(s, a)� f t

h
(s, a)]



TX

t=1

C⇡e ·

vuut
H�1X

h=0

Es,a⇠⌫h

h�
f t

h
(s, a)� T f t

h+1(s, a)
�2i

= TC⇡e ·

p
H ·�o↵ , (9)

where the second inequality follows from plugging in the definition of C⇡e
in (7). The last line

follows from Lemma 6.

For the second term in (8), using Lemma 3 for each ft for 1  t  T , we get
TX

t=1

Es⇠d0

h
max

a

f t

0(s, a)� V ⇡
f
t

0 (s)
i


TX

t=1

H�1X

h=0

���E
s,a⇠d

⇡ft

h

⇥
f t

h
(s, a)� T f t

h+1(s, a)
⇤��� (10)

=
TX

t=1

H�1X

h=0

��⌦Xh(f
t),Wh(f

t)
↵��



TX

t=1

H�1X

h=0

kXh(f
t)k⌃�1

t�1;h

q
�on + �B2

W
,

where the second line follows from Definition 2, the third line follows from Lemma 7 and by plugging
in the bound in Lemma 6. Using the bound in Lemma 5 in the above, we get that

TX

t=1

Es⇠d0

h
max

a

f t

0(s, a)� V ⇡
f
t

0 (s)
i


s

2dH2 log

✓
1 +

TB2
X

�d

◆
· (�on + �B2

W
) · T



s

2dH2 log

✓
1 +

T

d

◆
· (�on +B2

X
B2

W
) · T , (11)

19

Published as a conference paper at ICLR 2023

where the second line follows by plugging in � = B2
X

.

Combining the bound (9) and (11), we get that
TX

t=1

V ⇡
e

� V ⇡
f
t

 TC⇡e ·

p
H ·�o↵ +

s

2dH2 log

✓
1 +

T

d

◆
· (�on +B2

X
B2

W
) · T

Plugging in the values of �on and �o↵ in the above, and using subadditivity of square-root, we get
that

TX

t=1

V ⇡
e

� V ⇡
f
t

 16VmaxC⇡eT

s
H

mo↵
log

✓
2HT |F|

�

◆
+ 16Vmax

s
2dH2T

mon
log

✓
1 +

T

d

◆
log

✓
2HT |F|

�

◆

+HBXBW

s

2dT log

✓
1 +

T

d

◆
.

Setting mo↵ = T and mon = 1 in the above gives the cumulative suboptimality bound
TX

t=1

V ⇡
e

� V ⇡
f
t

= O

max{C⇡e , 1}Vmax

s

dH2T · log

✓
1 +

T

d

◆
log

✓
HT |F|

�

◆!
. (12)

Proof of Corollary 1. We next convert the above cumulative suboptimality bound into sample com-
plexity bound via a standard online-to-batch conversion. Setting ⇡e = ⇡⇤ in (12) and defining the
policy b⇡ = Uniform

��
⇡1, . . . ,⇡T

 �
, we get that

E
h
V ⇡

⇤
� V b⇡

i
=

1

T

TX

t=1

V ⇡
⇤
� V ⇡

t

!

= O

max{C⇡⇤ , 1}Vmax

s
dH2

T
· log

✓
1 +

T

d

◆
log

✓
HT |F|

�

◆!
.

Thus, we get that for T � eO
✓

max{C
2
⇡⇤ ,1}V

2
maxdH

2 log(HT |F|/�)

✏2

◆
, we get that

E
h
V ⇡

⇤
� V b⇡

i
 ✏.

In these T iterations, the total number of offline samples used is

mo↵ = T = eO

max

�
C2

⇡⇤ , 1

V 2
maxdH

2 log(HT |F|/�)

✏2

!
,

and the total number of online samples used is

mon ·H · T = eO

max

�
C2

⇡⇤ , 1

V 2
maxdH

3 log(HT |F|/�)

✏2

!
,

where the additional H factor appears because we collect mon samples for every h 2 [H] in the
algorithm.

A.3 V-TYPE BILINEAR RANK

Our previous result focus on the Q-type bilinear model. Here we provide the V-type Bilinear rank
definition. This V-type Bilinear rank definition is basically the same as the low Bellman rank model
proposed by Jiang et al. (2017).

20

Published as a conference paper at ICLR 2023

Algorithm 2 V-type Hy-Q

Require: Value function class: F , #iterations: T , Offline dataset D⌫

h
of size mo↵ for h 2 [H � 1].

1: Initialize f1
h
(s, a) = 0.

2: for t = 1, . . . , T do
3: Let ⇡t be the greedy policy w.r.t. f t i.e., ⇡t

h
(s) = argmax

a
f t

h
(s, a).

// Online collection

4: For each h, collect mon online tuples Dt

h
⇠ d⇡

t

h
� Uniform(A).

// FQI using both online and offline data

5: Set f t+1
H

(s, a) = 0.
6: for h = H � 1, . . . , 0 do
7: Estimate f t+1

h
using least squares regression on the aggregated data:

f
t+1
h argmin

f2Fh

(
bED⌫

h
(f(s, a)� r �max

a0
f
t+1
h+1(s

0
, a

0))2 +
tX

⌧=1

bED⌧

h
(f(s, a)� r �max

a0
f
t+1
h+1(s

0
, a

0))2
)

(13)

8: end for
9: end for

Definition 4 (V-type Bilinear model). Consider any pair of functions (f, g) with f, g 2 F . Denote

the greedy policy of f as ⇡f = {⇡f

h
:= argmax

a
fh(s, a), 8h}. We say that the MDP together

with the function F admits a bilinear structure of rank d if for any h 2 [H � 1], there exist

two (unknown) mappings Xh : F 7! Rd
and Wh : F 7! Rd

with maxf kXh(f)k2  BX and

maxf kWh(f)k2  BW , such that:

8f, g 2 F :
���E

s⇠d
⇡f

h
,a⇠⇡g(s)

gh(s, a)� T gh+1(s, a)
��� = |hXh(f),Wh(g)i| .

Note that different from the Q-type definition, here the action a is taken from the greedy policy with
respect to g. This way maxa g(s, a) can serve as an approximation of V ? – thus the name of V -type.

To make Hy-Q work for the V-type Bilinear model, we only need to make slight change on the data
collection process, i.e., when we collect online batch Dh, we sample s ⇠ d⇡

t

h
, a ⇠ Uniform(A), s0 ⇠

P (·|s, a). Namely the action is taken uniformly randomly here. We provide the pseudocode in
Algorithm 2. We refer the reader to Du et al. (2021); Jin et al. (2021a) for a detailed discussion.

A.3.1 COMPLEXITY BOUND FOR V-TYPE BILINEAR MODELS

In this section, we give a performance analysis of Algorithm 2 for V-type Bilinear models. The
contents in this section extend the results developed for Q-type Bilinear models in Section A.2 to
V-type Bilinear models.

We first note the following bound for FQI estimates in Algorithm 2.
Lemma 8. Let � 2 (0, 1) and let for h 2 [H � 1] and t 2 [T], f t+1

h
be the estimated value function

for time step h computed via least square regression using samples in the dataset
�
D

⌫

h
,D1

h
, . . . ,Dt

h

�

in (13) in the iteration t of Algorithm 2. Then, with probability at least 1� �, for any h 2 [H � 1]
and t 2 [T],

��f t+1
h
� T f t+1

h+1

��2
2,⌫h


1

mo↵
256V 2

max log(2HT |F|/�) =: �̄o↵ ,

and

tX

⌧=1

��f t+1
h
� T f t+1

h+1

��2
2,µ⌧

h


1

mon
256V 2

max log(2HT |F|/�) =: �̄on,

where ⌫h denotes the offline data distribution at time h, and the distribution µ⌧

h
2 �(s, a) is defined

such that s ⇠ d⇡
⌧

h
and a ⇠ Uniform(A).

21

Published as a conference paper at ICLR 2023

The following change in distribution lemma is the version of Lemma 7 under V-type Bellman rank
assumption.
Lemma 9. Suppose the underlying model is a V-type bilinear model. Then, for any t � 0 and

h 2 [H � 1], we have

��⌦Wh(f
t), Xh(f

t)
↵��  kXh(f

t)k⌃�1
t�1;h

vuut
|A| ·

t�1X

i=1

E
s⇠d

⇡fi

h
, a⇠Uniform(A)

h�
f t

h
� T f t

h+1

�2i
+ �B2

W
,

where ⌃�1
t�1 is defined in (3).

Proof. The proof is identical to the proof of Lemma 7. Repeating the analysis till (6), we get that

��⌦Wh(f
t), Xh(f

t)
↵��  kXh(f

t)k⌃�1
t�1;h

vuut
t�1X

i=1

|hWh(f t), Xh(f i)i|2 + �B2
W

= kXh(f
t)k⌃�1

t�1;h

vuut
t�1X

i=1

✓
E
s⇠d

⇡fi

h
, a⇠⇡ft (s)

⇥
f t

h
� T f t

h+1

⇤◆2

+ �B2
W

 kXh(f
t)k⌃�1

t�1;h

vuut
|A| ·

t�1X

i=1

E
s⇠d

⇡fi

h
, a⇠Uniform(A)

h�
f t

h
� T f t

h+1

�2i
+ �B2

W

where the second line above follows from the definition of V-type bilinear model in Definition 4, and
the last line holds because:

✓
E
s⇠d

⇡fi

h
, a⇠⇡ft (s)

⇥
f t

h
� T f t

h+1

⇤◆2

 E
s⇠d

⇡fi

h
,a⇠⇡ft (s)

h�
f t

h
� T f t

h+1

�2i

 |A| · E
s⇠d

⇡fi

h
,a⇠Uniform(A)

h�
f t

h
� T f t

h+1

�2i

where the first inequality above is due to Jensen’s inequality and the last inequality follows form a
straightforward upper bound since each term inside the expectation is non-negative.

We are finally ready to state and prove our main result in this section.
Theorem 2 (Cumulative suboptimality bound for V-type bilinear rank models). Let mon = |A| and

mo↵ = T . Then, with probability at least 1 � �, the cumulative suboptimality of Algorithm 2 is

bounded as

TX

t=1

V ⇡
e

� V ⇡
f
t

= O

max{C⇡e , 1}Vmax

s

dH2T · log

✓
1 +

T

d

◆
log

✓
HT |F|

�

◆!

Proof. The proof follows closely the proof of Theorem 1. Repeating the analysis till (8) and (9), we
get that:

TX

t=1

V ⇡
e

� V ⇡
f
t

 TC⇡e ·

p
H · �̄o↵ +

TX

t=1

Es⇠d0

h
max

a

f t

0(s, a)� V ⇡
f
t

0 (s)
i
. (14)

For the second term in the above, using Lemma 3 for each ft for 1  t  T , we get
TX

t=1

Es⇠d0

h
max

a

f t

0(s, a)� V ⇡
f
t

0 (s)
i


TX

t=1

H�1X

h=0

���E
s,a⇠d

⇡ft

h

⇥
f t

h
(s, a)� Thf

t

h+1(s, a)
⇤���

=
TX

t=1

H�1X

h=0

��⌦Xh(f
t),Wh(f

t)
↵��

22

Published as a conference paper at ICLR 2023



TX

t=1

H�1X

h=0

kXh(f
t)k⌃�1

t�1;h

q
|A| · �̄on + �B2

W
,

where the second line follows from Definition 4, and the last line follows from Lemma 9 and by
plugging in the bound in Lemma 8. Using the elliptical potential Lemma 5 as in the proof of
Theorem 1, we get that

TX

t=1

V ⇡
e

� V ⇡
f
t

 TC⇡e ·

p
H · �̄o↵ +

s

2dH2 log

✓
1 +

T

d

◆
·
�
|A| · �̄on +B2

X
B2

W

�
· T

Plugging in the values of �̄on and �̄o↵ from Lemma 8 in the above, and using subadditivity of
square-root, we get that

TX

t=1

V ⇡
e

� V ⇡
f
t

 16VmaxC⇡eT

s
H

mo↵
log

✓
2HT |F|

�

◆
+ 16Vmax

s
2dH2|A|T

mon
log

✓
1 +

T

d

◆
log

✓
2HT |F|

�

◆

+HBXBW

s

2dT log

✓
1 +

T

d

◆
.

Setting mon = |A| and mo↵ = T , we get the following cumulative suboptimality bound:

TX

t=1

V ⇡
e

� V ⇡
f
t

= O

max{C⇡e , 1}Vmax

s

dH2T · log

✓
1 +

T

d

◆
log

✓
HT |F|

�

◆!
. (15)

Corollary 2 (Sample complexity). Under the assumptions of Theorem 2 if C⇡⇤ <1 then Algorithm 2

can find an ✏-suboptimal policy b⇡ for which V ⇡
⇤
� V b⇡

 ✏ with total sample complexity of:

n = eO

max

�
C2

⇡⇤ , 1

V 2
maxdH

3
|A| log(HT |F|/�)

✏2

!
.

Proof. The following follows from a standard online-to-batch conversion. Setting ⇡e = ⇡⇤ in (15)
and defining the policy b⇡ = Uniform

��
⇡1, . . . ,⇡T

 �
, we get that

E
h
V ⇡

⇤
� V b⇡

i
=

1

T

TX

t=1

V ⇡
⇤
� V ⇡

t

!
= O

max{C⇡e , 1}Vmax

s
dH2

T
· log

✓
1 +

T

d

◆
log

✓
HT |F|

�

◆!
.

Thus, we the policy returned after T � eO
✓

max{C
2
⇡⇤ ,1}V

2
maxdH

2 log(HT |F|/�)

✏2

◆
satisfies

E
⇥
V ⇡

⇤
� V b⇡⇤

 ✏. In these T iterations, the total number of offline samples used is

mo↵ = T = eO

max

�
C2

⇡⇤ , 1

V 2
maxdH

2 log(HT |F|/�)

✏2

!
,

and the total number of online samples collected is

mon ·H · T = eO

max

�
C2

⇡⇤ , 1

V 2
maxdH

3
|A| log(HT |F|/�)

✏2

!
,

where the additional H factor appears because we collect mon samples for every h 2 [H] in the
algorithm.

23

Published as a conference paper at ICLR 2023

A.4 LOW-RANK MDP

In this section, we briefly introduce the low-rank MDP model (Du et al., 2021), which is captured by
the V-type Bilinear model discussed in Appendix A.3. Unlike the linear MDP model discussed in
Section 5.1, low-rank MDP does not assume the feature � is known a priori.
Definition 5 (Low-rank MDP). A MDP is called low-rank MDP if there exists µ? : S 7! Rd,�? :
S ⇥ A 7! Rd

, such that the transition dynamics P (s0|s, a) = µ?(s0)>�?(s, a) for all s, a, s0. We

additionally assume that we are given a realizable representation class � such that �?
2 �, and that

sup
s,a
k�?(s, a)k2  1, and kf>µ?

k2 
p
d for any f : S 7! [�1, 1].

Consider the function class Fh = {w>�(s, a) : � 2 �, w 2 Bd(BW)}, and through the bilinear
decomposition we have that BW  2

p
d. By inspection, we know that this function class satisfies

Assumption 1. Furthermore, it is well known that the low rank MDP model has V-type bilinear rank
of at most d (Du et al., 2021). Invoking the sample complexity bound given in Corollary 2 for V-type
Bilinear models, we get the following result.
Lemma 10. Let � 2 (0, 1) and � be a given representation class. Suppose that the MDP is a rank d
MDP w.r.t. some �?

2 �, C⇡⇤ <1, and consider Fh defined above. Then, with probability 1� �,

Algorithm 2 finds an ✏-suboptimal policy with total sample complexity (offline + online):

eO

max

�
C2

⇡⇤ , 1

V 2
maxd

2H4
|A| log(HTd|�|/✏�)

✏2

!
.

Proof sketch of Lemma 10. The proof follows by invoking the result in Corollary 1 for a discretization
of the class F , denoted by F✏ = F0,✏ ⇥ · · ·⇥ FH�1,✏. F✏ is defined such that Fh,✏ = {w>�(s, a) :

� 2 �, w 2 bBd,✏(BW)} where bBd,✏(BW) is an ✏-net of the Bd(BW) under `1-distance and contains
O((BW /✏)d) many elements. Thus, we get that log(|F✏|) = O(Hd log(BW |�|/✏)).

For low-rank MDP, the transfer coefficient C⇡ is upper bounded by a relative condition number style
quantity defined using the unknown ground truth feature �? (see Lemma 13). On the computational
side, Algorithm 1 (with the modification of a ⇠ Uniform(A) in the online data collection step)
requires to solve a least squares regression problem at every round. The objective of this regression
problem is a convex functional of the hypothesis f over the constraint set F . While this is not
fully efficiently implementable due to the potential non-convex constraint set F (e.g., � could be
complicated), our regression problem is still much simpler than the oracle models considered in the
prior works for this model (Agarwal et al., 2020a; Sekhari et al., 2021; Uehara et al., 2021; Modi
et al., 2021).

A.5 BOUNDS ON TRANSFER COEFFICIENT

Note that C⇡ takes both the distribution shift and the function class into consideration, and is smaller
than the existing density ratio based concentrability coefficient (Kakade & Langford, 2002; Munos
& Szepesvári, 2008; Chen & Jiang, 2019) and also existing Bellman error based concentrability
coefficient Xie et al. (2021a). We formalize this in the following lemma.
Lemma 11. For any ⇡ and offline distribution ⌫,

C⇡ 

s

max
f,h

kfh � T fh+1k
2
d
⇡

h

kfh � T fh+1k
2
⌫h

 sup
h,s,a

d⇡
h
(s, a)

⌫h(s, a)
.

Proof. Using Jensen’s inequality, we get that

C⇡ 

vuutmax
f

P
H�1
h=0 kfh � T fh+1k

2
d
⇡

hP
H�1
h=0 kfh � T fh+1k

2
⌫h



s

max
f,h

kfh � T fh+1k
2
d
⇡

h

kfh � T fh+1k
2
⌫h

24

Published as a conference paper at ICLR 2023



s

sup
h,s,a

d⇡
h
(s, a)

⌫h(s, a)

 sup
h,s,a

d⇡
h
(s, a)

⌫h(s, a)
,

where the second line follows from the Mediant inequality and the last line holds whenever
sup

h,s,a

d
⇡

h
(s,a)

⌫h(s,a)
� 1.

Next we show that in the linear Bellman complete setting, C⇡ is bounded by the relative condition
number using the linear features.
Lemma 12. Consider the linear Bellman complete setting (Definition 3) with known feature

�. Suppose that the feature covariance matrix induced by offline distribution ⌫: ⌃⌫h
:=

Es,a⇠⌫h
[�?(s, a)�?(s, a)>] is invertible. Then for any policy ⇡, we have

C⇡ 

q
max
h

Es,a⇠d
⇡

h
k�(s, a)k2

⌃�1
⌫
h

.

Proof. Repeating the argument in Lemma 11, we have

C⇡ 

s

max
f,h

kfh � T fh+1k
2
d
⇡

h

kfh � T fh+1k
2
⌫h



vuutmax
w,h

kw>

h
�� w0>

h
�k2

d
⇡

h

kw>

h
�� w0>

h
�k2

⌫h



vuut
max
w,h

k(wh � w0

h
)k2⌃⌫

h

Ed
⇡

h
k�k2

⌃�1
⌫
h

k(wh � w0

h
)>�k2

⌫h

=
q
max
h

Es,a⇠d
⇡

h
k�(s, a)k2

⌃�1
⌫
h

.

Recall that in linear Bellman complete setting, we can write f as w>�, and for any w that defines f ,
there exists w0 such that T f = w0>�.

Now we proceed to low-rank MDPs where feature is unknown. We show that for low-rank MDPs,
C⇡ is bounded by the partial feature coverage using the unknown ground truth feature.
Lemma 13. Consider the low-rank MDP setting (Definition 5) where the transition dynamics P is

given by P (s0 | s, a) = hµ?(s0),�?(s, a)i for some µ?,�?
2 Rd

. Suppose that the offline distribution

⌫ = (⌫0, . . . , ⌫H�1) is such that maxh maxs,a
⇡h(a|s)
⌫h(a|s)

 ↵ for any s, a. Furthermore, suppose that

⌫ is induced via trajectories i.e. ⌫0(s) = d0(s) and ⌫h(s) = Es̄,ā⇠⌫h�1P (s|s̄, ā) for any h � 1, and

that the feature covariance matrix ⌃⌫h�1,�
? := Es,a⇠⌫h�1 [�

?(s, a)�?(s, a)>] is invertible.
6

Then

for any policy ⇡, we have

C⇡ 
p
↵

HX

h=1

Es,a⇠d
⇡

h�1


k�?(s, a)k⌃�1

⌫
h�1,�?

�
+
p
↵.

Proof. We first upper bound the numerator separately. First note that for h = 0,

Es,a⇠d
⇡

0
[T f1(s, a)� f0(s, a)] 

r
Es⇠d0,a⇠⇡(·|s)

h
(T f1(s, a)� f0(s, a))

2
i



s

max
s,a

d⇡0 (s, a)

⌫0(s, a)
· Es,a⇠⌫0

h
(T f1(s, a)� f0(s, a))

2
i

6This is for notation simplicity, and we emphasize that we do not assume eigenvalues are lower bounded. In
other words, eigenvalue of this feature covariance matrix could approach to 0+.

25

Published as a conference paper at ICLR 2023



r
↵ · Es,a⇠⌫0

h
(T f1(s, a)� f0(s, a))

2
i
, (16)

where the last inequality follows from our assumption since maxs,a
d
⇡

0 (s,a)
⌫0(s,a)

= maxs,a
⇡0(a|s)
⌫0(a|s)

 ↵.

Next, for any h � 1, we note that backing up one step and looking at the pair s̄, ā that lead to the
state s, we get that

Es,a⇠d
⇡

h
[T fh+1(s, a)� fh(s, a)]

= Es̄,ā⇠d
⇡

h�1,s⇠P (s̄,ā),a⇠⇡(s) [T fh+1(s, a)� fh(s, a)]

= Es̄,ā⇠d
⇡

h�1

"Z �
�?(s̄, ā)>µ?(s)

�X

a

⇡(a|s) [T fh+1(s, a)� fh(s, a)] ds

#

= Es̄,ā⇠d
⇡

h�1

"
�?(s̄, ā)>

Z X

a

µ?(s)⇡(a|s) [T fh+1(s, a)� fh(s, a)] ds

#

 Es̄,ā⇠d
⇡

h�1

2

4k�?(s̄, ā)k⌃�1
⌫
h�1,�?

�����

Z X

a

µ?(s)⇡(a|s) [T fh+1(s, a)� fh(s, a)] ds

�����
⌃⌫

h�1,�?

3

5,

(17)

where the last line follows from an application of Cauchy-Schwarz inequality. For the term inside the
expectation in the right hand side above, we note that,

�����

Z X

a

µ?(s)⇡(a|s) [T fh+1(s, a)� fh(s, a)] ds

�����

2

⌃⌫
h�1,�?

(i)
= Es̄,ā⇠⌫h�1

2

4
 Z X

a

�
µ?(s)>�⇤(s̄, ā)

�
⇡(a|s)(T fh+1(s, a)� fh(s, a))ds

!2
3

5

= Es̄,ā⇠⌫h�1

h�
Es⇠P (s̄,ā),a⇠⇡(s)[T fh+1(s, a)� fh(s, a)]

�2i

(ii)
 Es̄,ā⇠⌫h�1,s⇠P (s̄,ā),a⇠⇡(s)

h
(T fh+1(s, a)� fh(s, a))

2
i

(iii)
= Es⇠⌫h,a⇠⇡(s)

h
(T fh+1(s, a)� fh(s, a))

2
i

(iv)
 ↵ · Es,a⇠⌫h

h
(T fh+1(s, a)� fh(s, a))

2
i

(18)

where (i) follows by expanding the norm , (ii) follows an application of Jensen’s inequality, (iii)
is due to our assumption that the offline dataset is generated using trajectories such that ⌫h(s) =
Es̄,s̄⇠⌫h�1 [P (s | s̄, ā)]. Finally, (iv) follows from the definition of ↵. Plugging (18) in (17), we get
that for h � 1,

Es,a⇠d
⇡

h
[T fh+1(s, a)� fh(s, a)]

 Es̄,ā⇠d
⇡

h�1

"
k�?(s̄, ā)k⌃�1

⌫
h�1,�?

r
↵ · Es,a⇠⌫h

h
(T fh+1(s, a)� fh(s, a))

2
i#

(19)

We are now ready to bound the transfer coefficient. First note that using (16), for any f ,

Es,a⇠d
⇡

0
[T f1(s, a)� f0(s, a)]r

P
H�1
h=0 Es,a⇠⌫h

h
(T fh+1(s, a)� fh(s, a))

2
i 

r
↵ · Es,a⇠⌫0

h
(T f1(s, a)� f0(s, a))

2
i

r
P

H�1
h=0 Es,a⇠⌫h

h
(T fh+1(s, a)� fh(s, a))

2
i


p
↵.

26

Published as a conference paper at ICLR 2023

Furthermore, for any f , using (19), we get that
P

H�1
h=1 Es,a⇠d

⇡

h
[T fh+1(s, a)� fh(s, a)]r

P
H�1
h=0 Es,a⇠⌫h

h
(T fh+1(s, a)� fh(s, a))

2
i



H�1X

h=1

Es̄,ā⇠d
⇡

h�1

2

664k�
?(s̄, ā)k⌃�1

⌫
h�1,�?

r
↵ · Es,a⇠⌫h

h
(T fh+1(s, a)� fh(s, a))

2
i

r
P

H�1
h=0 Es,a⇠⌫h

h
(T fh+1(s, a)� fh(s, a))

2
i

3

775



HX

h=1

Es̄,ā⇠d
⇡

h�1


k�?(s̄, ā)k⌃�1

⌫
h�1,�?

p
↵

�
,

where the last line holds for an appropriate choice of � (e.g. � = 0). Combining the above two
bounds in the definition of C⇡ we get that

C⇡ 
p
↵

HX

h=1

Es̄,ā⇠d
⇡

h�1


k�?(s̄, ā)k⌃�1

⌫
h�1,�?

�
+
p
↵.

Note that in the above result, the transfer coefficient is upper bounded by the relative coverage under
unknown feature �? and a term ↵ related to the action coverage, i.e., maxh maxs,a

⇡h(a|s)
⌫h(a|s)

 ↵. This
matches to the coverage condition used in prior offline RL works for low-rank MDPs (Uehara & Sun,
2021).

B AUXILIARY LEMMAS

In this section, we provide a few results and their proofs that we used in the previous sections. We
first with the following form of Freedman’s inequality that is a modification of a similar inequality in
(Beygelzimer et al., 2011).
Lemma 14 (Freedman’s Inequality). Let {X1, . . . , XT } be a sequence of non-negative random

variables where each xt is sampled from some process that depends on all previous instances, i.e,

xt ⇠ ⇢t = ⇢t(x1:t�1). Further, suppose that |Xt|  R almost surely for all t  T . Then, for any

� > 0 and � 2 [0, 1/2R], with probability at least 1� �,

�����

TX

t=1

Xt � E[Xt | ⇢t]

�����  �
TX

t=1

�
2R|E[Xt | ⇢t]|+ E

⇥
X2

t
| ⇢t

⇤�
+

log(2/�)

�
.

Proof. Define the random variable Zt = Xt�E[Xt | ⇢t]. Clearly, {Zt}
T

t=1 is a martingale difference
sequence. Furthermore, we have that for any t, |Zt|  2R and that

E
⇥
Z2
t
| ⇢t

⇤
= E

h
(Xt � E[Xt | ⇢t])

2
| ⇢t

i
 2R|E[Xt | ⇢t]|+ E

⇥
X2

t
| ⇢t

⇤
. (20)

where the last inequality holds because |Xt|  R.

Using the form of Freedman’s inequality in Beygelzimer et al. (2011, Theorem 1), we get that for any
� 2 [0, 1/2R],

�����

TX

t=1

Zt

�����  �
TX

t=1

E
⇥
Z2
t
| ⇢t

⇤
+

log(2/�)

�
.

Plugging in the form of Zt and using (20), we get the desired statement.

Next we give a formal proof of Lemma 2, which gives a generalization bound for least squares
regression when the samples are adapted to an increasing filtration (and are not necessarily i.i.d.).
The proof follows similarly to Agarwal et al. (2019, Lemma A.11).

27

Published as a conference paper at ICLR 2023

Lemma 15 (Lemma 2 restated: Least squares generalization bound). Let R > 0, � 2 (0, 1), we

consider a sequential function estimation setting, with an instance space X and target space Y .

Let H : X 7! [�R,R] be a class of real valued functions. Let D = {(x1, y1), . . . , (xT , yT)} be

a dataset of T points where xt ⇠ ⇢t = ⇢t(x1:t�1, y1:t�1), and yt is sampled via the conditional

probability p(· | xt):

yt ⇠ p(· | xt) := h⇤(xt) + "t,

where the function h⇤
satisfies approximate realizability i.e.

inf
h2H

1

T

TX

t=1

Ex⇠⇢t

h
(h⇤(x)� h(x))2

i
 �,

and {✏i}
n

i=1 are independent random variables such that E[yt | xt] = h⇤(xt). Addition-

ally, suppose that maxt|yt|  R and maxx|h⇤(x)|  R. Then the least square solution

bh argmin
h2H

P
T

t=1(h(xt)� yt)
2

satisfies with probability at least 1� �,

TX

t=1

Ex⇠⇢t

h
(bh(x)� h⇤(x))2

i
 3�T + 256R2 log(2|H|/�).

Proof. Consider any fixed function h 2 H and define the random variable

Zh

t
:= (h(xt)� yt)

2
� (h⇤(xt)� yt)

2.

Define the notation E[· | ⇢t] to denote Ext⇠⇢t
[·], and note that

E
⇥
Zh

t
| ⇢t

⇤
= Ext⇠⇢t

[(h(xt)� h⇤(xt))(h(xt) + h⇤(xt)� 2yi)] = Ext⇠⇢t

h
(h(xt)� h⇤(xt))

2
i
,

(21)

where the last line holds because E[yt | xt] = h⇤(xt). Furthermore, we also have that

E
⇥
(Zh

t
)2 | ⇢t

⇤
= Ext⇠⇢t

h
(h(xt)� h⇤(xt))

2(h(xt) + h⇤(xt)� 2yt)
2
i

 16R2 Ext⇠⇢t

h
(h(xt)� h⇤(xt))

2
i
. (22)

Now we can note that the sequence of random variables
�
Zh

1 , . . . , Z
h

T

satisfies the condition in

Lemma 14 with
��Zh

t

��  4R2. Thus we get that for any � 2 [0, 1/8R2] and � > 0, with probability at
least 1� �,

�����

TX

t=1

Zh

t
� E

⇥
Zh

t
| ⇢t

⇤
�����  �

TX

t=1

⇣
8R2

��E
⇥
Zh

t
| ⇢t

⇤��+ E
h�
Zh

t

�2
| ⇢t

i⌘
+

log(2/�)

�

 32�R2
TX

t=1

Ext⇠⇢t

h
(h(xt)� h⇤(xt))

2
i
+

log(2/�)

�
,

where the last inequality uses (21) and (22). Setting � = 1/64R2 in the above, and taking a union
bound over h, we get that for any h 2 H and � > 0, with probability at least 1� �,

�����

TX

t=1

Zh

t
� E

⇥
Zh

t
| ⇢t

⇤
����� 

1

2

TX

t=1

Ext⇠⇢t

h
(h(xt)� h⇤(xt))

2
i
+ 64R2 log(2|H|/�).

Rearranging the terms and using (21) in the above implies that,
TX

t=1

Zh

t


3

2

TX

t=1

Ext⇠⇢t

h
(h(xt)� h⇤(xt))

2
i
+ 64R2 log(2|H|/�)

and
TX

t=1

Ext⇠⇢t

h
(h(xt)� h⇤(xt))

2
i
 2

TX

t=1

Zh

t
+ 128R2 log(2|H|/�). (23)

28

Published as a conference paper at ICLR 2023

For the rest of the proof, we condition on the event that (23) holds for all h 2 H.

Define the function eh := argmin
h2H

P
T

t=1 Ext⇠⇢t

⇥
(h(xt)� h⇤(xt))2

⇤
. Using (23), we get that

TX

t=1

Z
eh
t


3

2

TX

t=1

Ext⇠⇢t

h
(eh(xt)� h⇤(xt))

2
i
+ 64R2 log(2|H|/�)


3

2
�T + 64R2 log(2|H|/�),

where the last inequality follows from the approximate realizability assumption. Let bh denote the
least squares solution on dataset {(xt, yt)}tT

. By definition, we have that

TX

t=1

Z
bh
t
= (bh(xt)� yt)

2
� (h⇤(xt)� yt)

2
 (eh(xt)� yt)

2
� (h⇤(xt)� yt)

2 =
TX

t=1

Z
eh
t
.

Combining the above two relations, we get that
TX

t=1

Z
bh
t


3

2
�T + 64R2 log(2|H|/�). (24)

Finally, using (23) for the function bh, we get that
TX

t=1

Ext⇠⇢t

h
(bh(xt)� h⇤(xt))

2
i
 2

TX

t=1

Z
bh
t
+ 128R2 log(2|H|/�)

 3�T + 256R2 log(2|H|/�),

where the last inequality uses the relation (24).

C LOW BELLMAN ELUDER DIMENSION PROBLEMS

In this section, we consider problems with low Bellman Eluder dimensions Jin et al. (2021a). This
complexity measure is a distributional version of the Eluder dimension applied to the class of Bellman
residuals w.r.t. F . We show that our algorithm Hy-Q gives a similar performance guarantee for
problems with small Bellman Eluder dimensions. This demonstrates that Hy-Q applies to any general
model-free RL frameworks known in the RL literature so far.

We first introduce the key definitions:
Definition 6 ("-independence between distributions (Jin et al., 2021a)). Let G be a class of functions

defined on a space X , and ⌫, µ1, . . . , µn be probability measures over X . We say ⌫ is "-independent

of {µ1, µ2, . . . , µn} with respect to G if there exists g 2 G such that

pP
n

i=1(Eµi
[g])2  ", but

|E⌫ [g]| > ".

Definition 7 (Distributional Eluder (DE) dimension). Let G be a function class defined on X , and P

be a family of probability measures over X . The distributional Eluder dimension dimDE(F ,P, ")
is the length of the longest sequence {⇢1, . . . , ⇢n} ⇢ P such that there exists "0 � " where ⇢i is

"0-independent of {⇢1, . . . , ⇢i�1} for all i 2 [n].

Definition 8 (Bellman Eluder (BE) dimension (Jin et al., 2021a)). Given a value function class F , let

Gh := (fh � T fh+1 | f 2 Fh, fh+1 2 Fh+1) be the set of Bellman residuals induced by F at step

h, and P = {Ph}
H

h=1 be a collection of H probability measure families over X ⇥A. The ✏-Bellman

Eluder dimension of F with respect to P is defined as

dimBE(F ,P, ") := max
h2[H]

dimDE(Gh,Ph, ✏) .

We also note the following lemma that controls the rate at which Bellman error accumulates.
Lemma 16 (Lemma 41, (Jin et al., 2021a)). Given a function class G defined on a space X with

sup
g2G,x2X

|g(x)|  C, and a set of probability measures P over X . Suppose that the sequence

29

Published as a conference paper at ICLR 2023

{gk}
K

k=1 ⇢ G and {µk}
K

k=1 ⇢ P satisfy that
P

k�1
t=1 (Eµt

[gk])
2
 � for all k 2 [K]. Then, for all

k 2 [K] and � > 0,

kX

t=1

|Eµt
[gt]|  O

⇣p
dimDE(G,P, �)�k +min{k, dimDE(G,P, �)C}+ k�

⌘
.

We next state our main theorem whose proof is similar to that of Theorem 1.
Theorem 3 (Cumulative suboptimality). Fix � 2 (0, 1), mo↵ = HT/d and mon = H2

, and

suppose that the underlying MDP admits Bellman eluder dimention d, and the function class F

satisfies Assumption 1. Then with probability at least 1� �, Algorithm 1 obtains the following bound

on cumulative subpotimality w.r.t. any comparator policy ⇡e
,

TX

t=1

V ⇡
e

� V ⇡
t

= eO
⇣
Vmax max{C⇡e , 1}

p
dT · log(H|F|/�)

⌘
,

where ⇡t = ⇡f
t

is the greedy policy w.r.t. f t
at round t and d = dimBE(F ,PF , 1/

p
T). Here PF is

the class of occupancy measures that can be be induced by greedy policies w.r.t. value functions in F .

Proof. Repeating the analysis till (10) in the proof of Theorem 1, we get that
TX

t=1

V ⇡
e

� V ⇡
t

 TC⇡e ·

p
H ·�o↵ +

TX

t=1

H�1X

h=0

���E
s,a⇠d

⇡ft

h

⇥
f t

h
(s, a)� Thf

t

h+1(s, a)
⇤���

Using the bound in Lemma 6 and Lemma 16 in the above, we get that
TX

t=1

V ⇡
e

� V ⇡
t . TC⇡e ·

p
H ·�o↵ +

H�1X

h=0

q
dimDE(Gh,PF ;h, �)�onT

+min{T, dimDE(Gh,PF ;h, �)C}+ T�.

where Gh := (fh � T fh+1 | f 2 Fh, fh+1 2 Fh+1) denotes the set of Bellman residuals induced
by F at step h, and P = {PF ;h}

H

h=1 is the collection of occupancy measures at step h induced by
greedy policies w.r.t. value functions in F . We set � = 1/

p
T and define d = dimBE(F ,P, �) =

maxh dimDE(Gh,PF ;h, �). Ignoring the lower order terms, we get that

TX

t=1

V ⇡
e

� V ⇡
t . TC⇡e ·

p
H ·�o↵ +H

p
d�onT

. TC⇡eVmax ·

s

H ·
log(HT |F|/�)

mo↵
+HVmax

s

dT ·
log(HT |F|/�)

mon
,

where . hides lower order terms, multiplying constants and log factors. Setting mo↵ = HT/d and
mon = H2, we get that

TX

t=1

V ⇡
e

� V ⇡
t

= eO
⇣
C⇡eVmax

p
dT log(HT |F|/�)

⌘
.

D COMPARISON WITH PREVIOUS WORKS

As mentioned in the main text, many previous empirical works consider combining offline expert
demonstrations with online interaction (Rajeswaran et al., 2017; Hester et al., 2018; Nair et al., 2018;
2020; Vecerik et al., 2017; Lee et al., 2022; Jia et al., 2022; Niu et al., 2022). Thus the idea of
performing RL algorithm on both offline data (expert demonstrations) and online data is also explored
in some of the previous works, for example, Vecerik et al. (2017) runs DDPG on both the online

30

Published as a conference paper at ICLR 2023

and expert data, and Hester et al. (2018) uses DQN on both data but with an additional supervised
loss. Since we already compared with Hester et al. (2018) in the experiment, here we focus on our
discussion with Vecerik et al. (2017).

We first emphasize that Vecerik et al. (2017) only focuses on expert demonstrations and their
experiments entirely rely on using expert demonstrations, while we focus on more general offline
dataset that is not necessarily coming from experts. Said though, the DDPG-based algorithm from
Vecerik et al. (2017) potentially can be used when offline data is not from experts. Although the
algorithm from Vecerik et al. (2017) and Hy-Q share the same high-level intuition that one should
perform RL on both the datasets, there are still a few differences : (1) Hy-Q uses Q-learning instead
of deterministic policy gradients; note that deterministic policy gradient methods cannot be directly
applied to discrete action setting; (2) Hy-Q does not require n-step TD style update, since in off-policy
case, without proper importance weighting, n-step TD could incur strong bias. While proper tuning
on n could balance bias and variance, one does not need to tune such n-step at all in Hy-Q; (3) The
idea of keeping a non-zero ratio to sample offline dataset is also proposed in Vecerik et al. (2017).
Our buffer ratio is derived from our theory analysis but meanwhile proves the advantage of the similar
heuristic applied in Vecerik et al. (2017). (4) In their experiment, Vecerik et al. (2017) only considers
expert demonstrations. In our experiment, we considered offline datasets with different amounts of
transitions from very low-quality policies and showed Hy-Q is robust to low-quality transitions in
offline data. Note that some of the differences may seem minor on the implementation level, but they
may be important to the theory.

Regarding the experiments, our experimental evaluation adds the following insights over those in
Vecerik et al. (2017): (i) hybrid methods can succeed without expert data, (ii) hybrid methods can
succeed in hard exploration discrete-action tasks, (iii) the core algorithm (Q-learning vs DDPG) is
not essential although some details may matter. Due to the similarity between the two methods, we
believe some of these insights may also translate to Vecerik et al. (2017) and we expect that the choice
between Hy-Q and Hy-DDPG will be environment specific, as it is with the purely online versions
of these methods. In some situations, Q-learning works does not immediately imply Deterministic
policy gradient methods work, nor vice versa. Nevertheless, it is beyond the scope of this paper to
rigorously verify this claim and we deem the study of Actor-critic algorithms in Hybrid RL setting an
interesting future direction.

E EXPERIMENT DETAILS

E.1 COMBINATION LOCK

In this section we provide a detailed description of combination lock experiment. The combination
lock environment has a horizon H and 10 actions at each state. There are three latent states
zi,h, i 2 {0, 1, 2} for each timestep h, where zi,h, i 2 {0, 1} are good states and z2,h is the bad state.
For each good state, we randomly pick a good action ai,h, such that in latent state zi,h, i 2 {0, 1},
taking the good action ai,h will result in 0.5 probability of transiting to z0,h+1 and 0.5 probability
of transiting to z1,h+1 while taking all other actions will result in a 1 probability of transiting to
z2,h+1. At z2,h, all actions will result in a deterministic transition to z2,h+1. For the reward, we
give an optimal reward of 1 for landing zi,H , i 2 {0, 1}. We also give an anti-shaped reward of 0.1
for all transitions from a good state to a bad state. All other transitions have a reward of 0. The
initial distribution is a uniform distribution over z0,0 and z1,0. The observation space has dimension
2dlog(H+1)e, created by concatenating a one-hot representation of the latent state and a one-hot
representation of the horizon (appending 0 if necessary). Random noise from N (0, 0.1) is added to
each dimension, and finally the observation is multiplied by a Hadamard matrix. Note that in this
environment, the agent needs to perform optimally for all H timesteps to hit the final good state for
an optimal reward of 1. Once the agent chooses a bad action, it will stay in the bad state until the end
with at most 0.1 possible reward for the trajectory received while transitting from a good state to a
bad state.

E.2 IMPLEMENTATION DETAILS OF COMBINATION LOCK EXPERIMENT

We train H separate Q-functions for all H timesteps. Our function class consists of an encoder and a
decoder. For the encoder, we feed the observation into one linear layer with 3 outputs, followed by

31

Published as a conference paper at ICLR 2023

a softmax layer to get a state-representation. This design of encoder is intended to learn a one-hot
representation of the latent state. We take a Kronecker Product of the state-representation and the
action, and feed the result to a linear layer with only one output, which will be our Q value. In order
to stabilize the training, we warm-start the Q-function of timestep h � 1 with the encoder from h
Q-function of the current iteration and the decoder from the h� 1 Q-function of the last iteration, for
each iteration of training.

One remark is that since combination lock belongs to Block MDPs, we require a V-type algorithm
instead of the Q-type algorithm as shown in the main text. The only difference lies in the online
sampling process: instead of sampling from d⇡

t

h
, for each h, we sample from d⇡

t

h
� Uniform(A), i.e.,

we first rollin with respect to ⇡t to timestep h� 1, then take a random action, observe the transition
and collect that tuple. We provide Algorithm 2 for completeness. Note that the only difference is in
line 4.

For CQL, we implemented the variant of CQL-DQN and picked the peak in the learning curve to
report in the main paper (so it should represent an upper bound of the performance of CQL).

E.3 IMPLEMENTATION DETAILS OF MONTEZUMA’S REVENGE EXPERIMENT

In this section we provide the detailed algorithm for the discounted setting. The overall algorithm is
described in Algorithm 3. For the function approximation, we use a class of convolutional neural
networks (parameterized by class ⇥) as promoted by the original DQN paper. We include several
standard empirical design choices that have been practically proven to stabilize the training: we
use Prioritize Experience Replay (Schaul et al., 2015) for our buffer. We also add Double DQN
(Van Hasselt et al., 2016) and Dueling DQN (Wang et al., 2016) during our Q-update. We also observe
that a decaying schedule on the offline sample ratio � and the exploration rate ✏ also helps provide
better performance. Note that an annealing � does not contradict to our comment in Section 4 on
catastrophic forgetting because we set � to small after our online trajectory distribution covers d⇡

e

.
In addition, we also perform per step update instead of per episode update since this has been the
popular design choice and leads to better efficiency in practice.

E.4 BASELINE IMPLEMENTATION

E.4.1 COMBINATION LOCK

We use the open-sourced implementation https://github.com/BY571/CQL/tree/main/
CQL-DQN for CQL. For BRIEE, we use the official code released by the authors: https://

github.com/yudasong/briee, where we rely on the code there for the combination lock
environment.

E.4.2 MONTEZUMA’S REVENGE

We use the open-sourced implementation https://github.com/jcwleo/

random-network-distillation-pytorch for RND. For CQL, we use https:

//github.com/takuseno/d3rlpy for their implementation of CQL for atari. We use
https://github.com/felix-kerkhoff/DQfD for DQFD. For all baselines, we keep the
hyperparameters used in these public repositories. For CQL and DQFD, we provide the offline
datasets as described in the main text instead of using the offline dataset provided in the public
repositories.7 All baselines are tested in the same stochastic environment setup as in Burda et al.
(2018).

E.5 HARDWARE INFRASTRUCTURE

We run our experiments on a cluster of computes with Nvidia RTX 3090 GPUs and various CPUs
which do not incur any randomness to the results.

7We note that CQL also fails completely with the original offline dataset (with 1 million samples) provided in
the public repository.

32

https://github.com/BY571/CQL/tree/main/CQL-DQN
https://github.com/BY571/CQL/tree/main/CQL-DQN
https://github.com/yudasong/briee
https://github.com/yudasong/briee
https://github.com/jcwleo/random-network-distillation-pytorch
https://github.com/jcwleo/random-network-distillation-pytorch
https://github.com/takuseno/d3rlpy
https://github.com/takuseno/d3rlpy
https://github.com/felix-kerkhoff/DQfD

Published as a conference paper at ICLR 2023

Algorithm 3 Discounted Hy-Q
Require: Value function class: F (induced by ⇥), #iterations: T , Offline dataset D⌫ of size mo↵ ,

discounted factor �, target update frequency ntarget, learning rate ↵, offline sample ratio �,
exploration rate ✏, action space A.

1: Randomly initialize value function f✓.
2: Initialize target value function f̃ = f✓.
3: Initialize online buffer D = ;.
4: Sample initial state s ⇠ d0
5: for t = 1, . . . , T do
6: Let ⇡ be the ✏-greedy policy w.r.t. f✓ i.e., ⇡(s) = argmax

a
f✓(s, a) with probability 1 � ✏

and ⇡(s) = U(A) with probability ✏.
// Online collection

7: Interact with the environment for one step:

a = ⇡(s), s0 ⇠ P (s, a), r ⇠ R(s, a).

8: Update online buffer: D = D [{s, a, r, s0}.
// Discounted minibatch FQI using both online and offline data

9: if t mod nvalue = 0 then
10: With probability 1� �: Sample a minibatch D with size nminibatch from online buffer D.

Otherwise: Sample a minibatch D with size nminibatch from offline buffer D⌫ .
11: Perform one-step gradient descent on D:

✓ = ✓ � ↵r✓ÊD

⇣
f✓(s, a)� ri � �max

a0
f̃(s0, a0)

⌘2
.

12: end if
// Delayed update of target function every ntarget updates

13: if t mod ntarget = 0 then
14: Set target function to the current value function: f̃ = f✓.
15: end if
16: Update s s0.
17: end for

E.6 HYPERPARAMETERS

E.6.1 COMBINATION LOCK

We provide the hyperparameters of Hy-Q in Table. 1. In addition, we provide the hyperparameters
we tried for CQL baseline in Table. 2.

Table 1: Hyperparameters for Hy-Q in combination lock

Value Considered Final Value
Learning rate {1e-2, 2e-2, 1e-3} 2e-2
Buffer size {1e8} 1e8
Optimizer {Adam, SGD} Adam

Number of updates per iteration {30, 300, 500} 500
Batch size {512} 512

E.6.2 MONTEZUMA’S REVENGE

We provide the hyperparameter of Hy-Q in Table. 3. We reuse many hyperparameter choices from
DQFD. Note that [a, b] denotes a decreasing/increasing schedule from a to b.

33

Published as a conference paper at ICLR 2023

Table 2: Hyperparameters for CQL(DQN) in combination lock

Value Considered Final Value
Learning rate {1e-3} 1e-3

Optimizer {Adam} Adam
Buffer size {1e8} 1e8
Batch size {512} 512

Discount Factor {0.99} 0.99
Moving Average Factor ⌧ {0.01, 0.1, 1} 0.01

Weight on CQL loss ↵ {0, 0.1, 0.01} 0.1

Table 3: Hyperparameter of Discounted Hy-Q in Montezuma’s Revenge.

Value Considered Final Value
Learning rate {6.25e-5, [1e-4,1e-5]} [1e-4,1e-5]

Offline Schedule � {0.5,0.2,[0.2,0.01]} [0.2,0.01]
Exploration ✏ rate {[0.25,0.001]} [0.25,0.001]

Minibatch size nminibatch {32} 32
Weight decay (regularization) coefficient {1e-5} 1e-5

Gradient Clipping {10,20} 10
Discount factor � {0.99} 0.99

Value function update frequency nupdate {4} 4
Target function update frequency ntarget {1000,2000,5000,10000} 10000

Buffer size {220} 220

PER Importance Sampling ratio {[0.6,1]} [0.6,1]
Online PER ✏ {0.001} 0.001
Offline PER ✏ {0.0001} 0.0001

Online PER Priority Coefficient {0.4} 0.4
Offline PER Priority Coefficient {1} 1

34

	Introduction
	Related Works
	Preliminaries
	Hybrid Q-Learning
	Theoretical Analysis: Low Bilinear Rank Models
	The Linear Bellman Completeness Model
	Why don't offline RL methods work?

	Experiments
	Combination Lock
	Montezuma's Revenge

	Conclusion
	Proofs for Section 5
	Supporting lemmas for Theorem 1
	Proof of Theorem 1
	V-type Bilinear Rank
	Complexity bound for V-type Bilinear models

	Low-rank MDP
	Bounds on transfer coefficient

	Auxiliary Lemmas
	Low Bellman Eluder Dimension problems
	Comparison with previous works
	Experiment Details
	Combination Lock
	Implementation Details of Combination Lock experiment
	Implementation Details of Montezuma's Revenge experiment
	Baseline implementation
	Combination Lock
	Montezuma's Revenge

	Hardware Infrastructure
	Hyperparameters
	Combination Lock
	Montezuma's Revenge

