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Abstract
In this paper, we study risk-sensitive Reinforce-
ment Learning (RL), focusing on the objective
of Conditional Value at Risk (CVaR) with risk
tolerance τ . Starting with multi-arm bandits
(MABs), we show the minimax CVaR regret rate
is Ω(

√
τ−1AK), where A is the number of ac-

tions and K is the number of episodes, and that
it is achieved by an Upper Confidence Bound al-
gorithm with a novel Bernstein bonus. For on-
line RL in tabular Markov Decision Processes
(MDPs), we show a minimax regret lower bound
of Ω(

√
τ−1SAK) (with normalized cumulative

rewards), where S is the number of states, and
we propose a novel bonus-driven Value Iteration
procedure. We show that our algorithm achieves
the optimal regret of Õ(

√
τ−1SAK) under a

continuity assumption and in general attains a
near-optimal regret of Õ(τ−1

√
SAK), which is

minimax-optimal for constant τ . This improves
on the best available bounds. By discretizing re-
wards appropriately, our algorithms are compu-
tationally efficient.

1. Introduction
Reinforcement Learning (RL) (Sutton & Barto, 2018) is the
canonical framework for sequential decision making under
uncertainty, with applications in personalizing recommen-
dations (Bottou et al., 2013), robotics (Rajeswaran et al.,
2017), healthcare (Murphy, 2003) and education (Singla
et al., 2021). In vanilla RL, the objective is to maximize
the average of returns, the cumulative rewards collected by
the policy. As RL is increasingly applied in consequential
settings, it is often necessary to account for risk beyond
solely optimizing for the average.
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Conditional Value at Risk (CVaR) is a popular coher-
ent measure of risk (Rockafellar & Uryasev, 2000; Filippi
et al., 2020). For a random return X (where higher is bet-
ter), the CVaR with risk tolerance τ ∈ (0, 1] is defined as

CVaRτ (X) := supb∈R(b− τ−1E[(b−X)
+
]), (1)

where x+ = max(x, 0). CVaRτ (X) is the average out-
come among the worst τ -percent of cases, and when X is
continuous this exactly corresponds to those less than or
equal to the τ -th quantile (Acerbi & Tasche, 2002), i.e.,

CVaRτ (X) = E[X | X ≤ F †
X(τ)], (2)

where F †
X(τ) = inf{x : FX(x) ≥ τ} is the τ -th quantile

of X , a.k.a. the Value at Risk (VaR). A high risk tol-
erance τ = 1 recovers the risk-neutral expectation, i.e.,
CVaR1(X) = EX . As τ decreases, CVaRτ models the
worst-case outcome, i.e., limτ→0 CVaRτ (X) = ess inf X .
In the CVaR RL model we consider, X is the return of a
policy, so our objective captures the tail-risk of the returns
distribution. Another motivating perspective is that CVaR
RL is equivalent to the robust MDP model, i.e., expected
value under worst-case perturbation of the transition ker-
nel (Chow et al., 2015). Thus, CVaR RL is an attractive
alterantive to vanilla RL in safety-critical applications.

In this paper, we provide algorithms with state-of-the-
art regret guarantees for tabular, online decision making
with the CVaR objective. To start, we prove tight lower
bounds on the expected CVaR regret (formalized in Sec-
tion 2) for both multi-arm bandit (MAB) and RL problems.
We then propose BERNSTEIN-UCB, an Upper Confidence
Bound (UCB) algorithm with a novel bonus constructed
using Bernstein’s inequality, and we prove it is minimax-
optimal1. Compared to Brown-UCB (Tamkin et al., 2019),
BERNSTEIN-UCB is minimax-optimal in general, without
requiring reward distributions to be continuous.

We then turn to tabular RL with the CVaR objective. We
propose CVaR-UCBVI, a novel bonus-driven Value Itera-
tion (VI) algorithm in an augmented MDP. The augmented

1Following Azar et al. (2017), we say an algorithm is minimax
optimal if its regret matches (up to log terms) our novel minimax
lower bound, in all problem parameters. Sometimes, this is also
referred to as “nearly-minimax-optimal” (Zhou et al., 2021a).
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MDP framework of Bäuerle & Ott (2011) reveals Bellman
equations for CVaR RL that served as the initial catalyst
for the VI approach. We provide two choices of bonuses
for CVaR-UCBVI, based on Hoeffding’s and Bernstein’s
inequalities. With the Bernstein bonus, we guarantee a
CVaR regret of Õ(τ−1

√
SAK), where K is the number of

episodes, S,A are the sizes of the state and action spaces,
respectively. This improves over the previous bound of
Õ(τ−1

√
S3AHK) (Bastani et al., 2022) in S and H , the

horizon length. Note that we work under the normalized re-
turns model, so there should be no H scaling in the bound
(Jiang & Agarwal, 2018). If τ is a constant, our result
is already minimax-optimal. Surprisingly, however, our
lower bound actually scales as τ−1/2. Under an assump-
tion that the returns of any policies are continuously dis-
tributed with lower-bounded density, we improve the upper
bound on the regret of CVaR-UCBVI with the Bernstein
bonus to Õ(

√
τ−1SAK). This establishes CVaR-UCBVI

as the first algorithm with minimax-optimal regret for risk-
sensitive CVaR RL, under the continuity assumption. Our
key technical innovation is decomposing the regret using a
novel simulation lemma for CVaR RL and precisely bound-
ing the sum of variance bonuses with the Law of Total Vari-
ance (Azar et al., 2017).

1.1. Related Literature

CVaR MAB: Kagrecha et al. (2019) proposed a succes-
sive rejects algorithm for best CVaR arm identification, but
it does not have regret guarantees. Tamkin et al. (2019) pro-
posed two algorithms for CVaR MAB and analyze upper
bounds on their regret, but not lower bounds. Their “CVaR-
UCB" builds a confidence band for the reward distribution
of each arm via Dvoretzky-Kiefer-Wolfowitz inequality, re-
sulting in an optimistic estimate of CVaR. This leads to a
suboptimal τ−1 dependence in the regret but may empiri-
cally work better if τ is not approaching 0. Their “Brown-
UCB" is structurally similar to our BERNSTEIN-UCB, but
they use a Hoeffding bonus that ensures optimism only
if all arms have continuously distributed rewards (Brown,
2007, Theorem 4.2). We propose a Bernstein bonus that at-
tains the minimax-optimal rate

√
τ−1AK without any as-

sumptions on the reward distribution.

Regret bounds for CVaR RL: To the best of our knowl-
edge, Bastani et al. (2022) is the first and only work with re-
gret bounds for CVaR RL (formalized in Section 2). Their
algorithm iteratively constructs optimistic MDPs by rout-
ing unexplored states to a sink state with the maximum
reward. This approach leads to a CVaR regret bound of
Õ(τ−1

√
S3AHK) (Bastani et al., 2022, Theorem 4.1),

which is sub-optimal. The authors conjectured that bonus-
based optimism could improve the bound by a S

√
H fac-

tor. Our proposed CVaR-UCBVI indeed enjoys these im-
provements, leading to a Õ(τ−1

√
SAK) regret guarantee

in Theorem 5.3. If returns are continuously distributed, we
further improve the τ dependence, leading to the minimax-
optimal result in Theorem 5.5.

CVaR RL without regret guarantees: Keramati et al.
(2020) proposed a distributional RL approach (Bellemare
et al., 2017) for RL with the CVaR objective. A key differ-
ence is that Keramati et al. (2020) focuses on the easier task
of identifying a policy with high CVaR. On the other hand,
Bastani et al. (2022) and our work focuses on algorithms
with low CVaR regret, which guarantees safe exploration.
Note that low-regret methods can be converted into proba-
bly approximately correct (PAC) CVaR RL, by taking the
uniform mixture of policies from the low-regret algorithm.

Tamar et al. (2015) derived the policy gradient for the
CVaR RL objective and showed asymptotic convergence to
a local optimum. Chow & Ghavamzadeh (2014) developed
actor-critic algorithms for the mean-CVaR objective, i.e.,
maximizing expected returns subject to a CVaR constraint.
Another motivating perspective for CVaR RL is its close
ties to robust MDPs (Wiesemann et al., 2013). Specifically,
Chow et al. (2015, Proposition 1) showed that the CVaR
of returns is equivalent to the expected returns under the
worst-case perturbation of the transition kernel in some un-
certainty set. While the uncertainty set is not rectangular,
Chow et al. (2015) derived tractable robust Bellman equa-
tions and proved convergence to a globally optimal CVaR
policy. However, these methods for CVaR RL do not lead
to low-regret algorithms, which is our focus.

Risk-sensitive RL with different risk measures: Prior
works have also proved risk-sensitive RL regret bounds in
the context of other risk measures that are not directly com-
parable to the CVaR RL setting we consider. Fei et al.
(2020; 2021); Liang & Luo (2022) showed Bellman equa-
tions and regret guarantees with the entropic risk measure
based on an exponential utility function. Du et al. (2022);
Lam et al. (2023) studied the more conservative Iterated
CVaR objective, which considers the risk of the reward-to-
go at every step along the trajectory. In contrast, our setup
aims to holistically maximize the CVaR of the total returns.

Risk-sensitive regret lower bounds: Fei et al. (2020);
Liang & Luo (2022) showed regret lower bounds for risk-
sensitive RL with the entropic risk measure. We show
tight lower bounds for risk-sensitive MAB and RL with the
CVaR objective, which to the best of our knowledge are the
first lower bounds for this problem.

Safety in offline RL: While our focus is online RL, risk-
aversion has also been studied in offline RL. Some past
works include offline learning with risk measures (Urpí
et al., 2021) and distributional robustness (Panaganti et al.,
2022; Si et al., 2020; Kallus et al., 2022; Zhou et al.,
2021b).
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2. Problem Setup
As warmup, we consider CVaRτ regret in a multi-arm ban-
dit (MAB) problem with K episodes. At each episode k ∈
[K], the learner selects an arm ak ∈ A and observes reward
rk ∼ ν(ak), where ν(a) is the reward distribution of arm
a. The learner’s goal is to compete with the arm with the
highest CVaRτ value, i.e., a⋆ = maxa∈A CVaRτ (ν(a)),
and minimize the regret, defined as RegretMAB

τ (K) =∑K
k=1 CVaRτ (ν(a

⋆))− CVaRτ (ν(ak)).

The focus of this paper is online RL, which general-
izes the MAB (where S = H = 1). The statisti-
cal model is tabular Markov Decision Processes (MDPs)
(Agarwal et al., 2021), with finite state space S of size
S, finite action space A of size A, and horizon H . Let
ΠH be the set of history-dependent policies, so each pol-
icy is π = (πh : S ×Hh → ∆(A))h∈[H] where Hh =

{(si, ai, ri)}i∈[h−1] is the history up to time h. At each
episode k ∈ [K], the learner plays a history-dependent
policy πk ∈ ΠH, which induces a distribution over tra-
jectories as follows. First, start at the fixed initial state
s1 ∈ S . Then, for each time h = 1, 2, . . . ,H , sam-
ple an action ah ∼ πk

h(sh,Hh), which leads to a reward
rh ∼ R(sh, ah) and the next state sh+1 ∼ P ⋆(sh, ah).
Here, P ⋆ : S × A → ∆(S) is the unknown Markov tran-
sition kernel and R : S × A → ∆([0, 1]) is the known
reward distribution. The return is the sum of rewards from
this process, R(π) =

∑H
h=1 rh, which is a random vari-

able. We posit the return is almost surely normalized in that
R(π) ∈ [0, 1] w.p. 1 (as in Jiang & Agarwal, 2018, Section
2.1). We note normalized returns allows for sparsity in the
rewards, and thus is strictly more general for regret upper
bounds. Many prior works do not normalize, so their re-
turns may scale with H . When comparing to their bounds,
we make the scaling consistent by dividing them by H .

We focus on the setting we call CVaR RL, in which
the learner’s goal is to compete with a CVaRτ -optimal
policy, i.e., π⋆ ∈ argmaxπ∈ΠH

CVaRτ (R(π)). To-
ward this end, we define the regret as RegretRL

τ (K) =∑K
k=1 CVaR

⋆
τ −CVaRτ (R(πk)), where CVaR⋆

τ =
CVaRτ (R(π⋆)). CVaR RL captures vanilla risk-neutral
RL when τ = 1 and Worst Path RL (Du et al., 2022)
when τ → 0. We prove lower bounds in expected regret.
For upper bounds, we give high probability regret bounds,
which implies upper bounds (with the same dependencies
on problem parameters) in expected regret by integrating
over the failure probability δ ∈ (0, 1).

Notation: [i : j] = {i, i+ 1, . . . , j}, [n] = [1 : n]
and ∆(S) is the set of distributions on S . We set L =
log(HSAK/δ) (for MAB, L = log(AK/δ)), where δ is
the desired failure probability provided to the algorithm.
Please see Table 1 for a comprehensive list of notations.

3. Lower Bounds
We start with the minimax lower bound for CVaRτ MAB.

Theorem 3.1. Fix any τ ∈ (0, 1/2), A ∈ N. For any algo-
rithm, there is a MAB problem with Bernoulli rewards s.t.

if K ≥
√

A−1
8τ , then E

[
RegretMAB

τ (K)
]
≥ 1

24e

√
(A−1)K

τ .

Proof Sketch Our proof is inspired by the lower bound
construction for the vanilla MAB (Lattimore & Szepesvári,
2020, Theorem 15.2). The key idea is to fix any learner,
and construct two MAB instances that appear similar to
the learner but in reality have very different CVaR value.
Specifically, for any ε ∈ (0, 1), we need two reward distri-
butions such that their KL-divergence is O(ε2τ−1) while
their CVaRs differ by Ω(τ−1ε). We show that Ber(1 − τ)
and Ber(1− τ + ε) satisfy this.

Compared to the vanilla MAB minimax lower bound of
Ω(

√
AK), our result for CVaRτ MAB has an extra

√
τ−1

factor. This proves that it is information-theoretically
harder to be more risk-averse with CVaRτ . While Brown-
UCB of Tamkin et al. (2019) appears to match this lower
bound, their proof hinges on the continuity of reward dis-
tributions, which is invalid for Bernoulli rewards. In The-
orem 4.1, we show that BERNSTEIN-UCB is minimax-
optimal over all reward distributions.

We next extend the above result to the RL setting.

Corollary 3.2. Fix any τ ∈ (0, 1/2), A,H ∈ N. For any al-
gorithm, there is an MDP (with S = Θ(AH−1)) s.t. if K ≥√

S(A−1)
8τ , then E

[
RegretRL

τ (K)
]
≥ 1

24e

√
S(A−1)K

τ .

The argument is to show that a class of MDPs with rewards
only at the last layer essentially reduces to a MAB with
exponentially many actions. Thus, the hardest CVaR RL
problems are actually very big CVaR MAB problems. The
bound does not scale with H as we’ve assumed returns to
be normalized in [0, 1] (Jiang & Agarwal, 2018).

4. Risk Sensitive MAB
In this section, we propose a simple modification to the
classic Upper Confidence Bound (UCB) with a novel Bern-
stein bonus that enjoys minimax-optimal regret. In the
classic UCB algorithm (Auer et al., 2002), the bonus
quantifies the confidence band from Hoeffding’s inequal-
ity. Instead, we propose to build a confidence band of
µ(b, a) = ER∼ν(a)[(b−R)+] by using a Bernstein-based
bonus (Eq. (3)). The standard deviation

√
τ in our bonus is

crucial for obtaining the minimax-optimal regret.

Theorem 4.1. For any δ ∈ (0, 1), w.p. at least 1 − δ,
BERNSTEIN-UCB with ε ≤

√
A/2τK enjoys

RegretMAB
τ (K) ≤ 4

√
τ−1AKL+ 16τ−1AL2.

3



Near-Minimax-Optimal Risk-Sensitive RL with CVaR

Algorithm 1 BERNSTEIN-UCB
1: Input: risk tolerance τ , number of episodes K, failure probability δ, approximation parameter ε.
2: for episode k = 1, 2, . . . ,K do
3: Compute counts Nk(a) = 1 ∨

∑k−1
i=1 I [ai = a].

4: Define pessimistic estimate of µ(b, a) = ER∼ν(a)[(b−R)+], i.e., for all b, a,

µ̂k(b, a) =
1

Nk(a)

k−1∑
i=1

(b− ri)
+I [ai = a] , BONk(a) =

√
2τ log(AK/δ)

Nk(a)
+

log(AK/δ)

Nk(a)
. (3)

5: Compute ε-optimal solutions b̂a,k, i.e., for all a,

f̂k (̂ba,k, a) ≥ max
b∈[0,1]

f̂k(b, a)− ε, where, f̂k(b, a) = b− τ−1(µ̂k(b, a)− BONk(a)).

6: Compute and pull the action for this episode, ak = argmaxa∈A f̂k (̂ba,k, a). Receive reward rk ∼ ν(ak).
7: end for

Proof Sketch First, we use Bernstein’s inequality
to build a confidence band of µ(b, a) at b⋆a =
argmaxb∈[0,1]

{
b− τ−1µ(b, a)

}
. Conveniently, b⋆a is the

τ -th quantile of ν(a), hence VarR∼ν(a)((b
⋆
a −R)+) ≤ τ .

This proves pessimism with our Bernstein-based bonus,
i.e., µ̂k(b

⋆
a, a) − BONk(a) ≤ µ(b⋆a, a). Pessimism in turn

implies optimism in CVaR, i.e., CVaR⋆
τ ≤ ĈVaR

k

τ :=
maxb∈[0,1]

{
b− τ−1(µ̂k(b, ak)− BONk(ak))

}
. This al-

lows us to decompose regret into (1) the sum of bonuses
plus (2) the difference between empirical and true CVaR
of ν(ak). (1) is handled using a standard pigeonhole argu-
ment. To bound (2), we prove a new concentration inequal-
ity for CVaR that holds for any bounded random variable
(Theorem C.6), which may be of independent interest.

Up to log terms, the resulting bound matches our lower
bound in Theorem 3.1, proving that BERNSTEIN-UCB is
minimax-optimal. As noted earlier, under the assumption
that rewards are continuous, Brown-UCB (Tamkin et al.,
2019) also matches our novel lower bound. When working
with continuous distributions, CVaR takes the convenient
form in Eq. (2), which roughly suggests that Hoeffding’s
inequality on the lower τN data points suffices for a CVaR
concentration bound (Brown, 2007, Theorem 4.2). This

is why the bonus of Brown-UCB, which is
√

5τ log(3/δ)
Nk(a)

,
does not yield optimism when continuity fails. In general,
the 1

Nk(a)
term in our bonus from Bernstein’s inequality is

needed for proving optimism in general.

Computational Efficiency: In Line 5, the objective func-
tion f̂k(·, a) is concave and unimodal. So, its optimal
value can be efficiently approximated, e.g., by golden-
section search (Kiefer, 1953) or gradient ascent in 1/ε2 =
O(τK/A) steps (Boyd et al., 2004). Thus, BERNSTEIN-
UCB is both minimax-optimal for regret and computation-
ally efficient.

5. Risk Sensitive RL
We now shift gears to CVaR RL. First, we review the aug-
mented MDP framework due to Bäuerle & Ott (2011) and
derive Bellman equations for our problem (Bellemare et al.,
2023). Using this perspective, we propose CVaR-UCBVI,
a bonus-driven Value Iteration algorithm in the augmented
MDP, which we show enjoys strong regret guarantees.

5.1. Augmented MDP and Bellman Equations

For any history-dependent π ∈ ΠH, timestep h ∈ [H],
state sh ∈ S , budget bh ∈ [0, 1], and history Hh, define

V π
h (sh, bh;Hh) = Eπ

[(
bh −

∑H
t=h rt

)+
| sh,Hh

]
.

Then, the CVaR RL objective can be formulated as,

CVaR⋆
τ = maxπ∈ΠH maxb∈[0,1]

{
b− τ−1V π

1 (s1, b)
}

= maxb∈[0,1]

{
b− τ−1 minπ∈ΠH V π

1 (s1, b)
}
. (4)

Bäuerle & Ott (2011) showed a remarkable fact about
minπ∈ΠH V π

1 (s1, b1): there exists an optimal policy ρ⋆ ={
ρ⋆h : SAug → A

}
h∈[H]

that is deterministic and Markov
in an augmented MDP, which we now describe. The aug-
mented state is (s, b) ∈ SAug := S × [0, 1]. Given any
b1 ∈ [0, 1], the initial state is (s1, b1). Then, for each
h = 1, 2, ...,H , ah = ρ⋆h(sh, bh), rh ∼ R(sh, ah), sh+1 ∼
P ⋆(sh, ah), bh+1 = bh − rh. Intuitively, the extra state bh
is the amount of budget left from the initial b1, and is a
sufficient statistic of the history for the CVaR RL problem.
Let ΠAug denote the set of deterministic, Markov policies
in the augmented MDP. Then, we may optimize over this
simpler policy class without losing optimality!

Before we formalize the optimality result, we first derive
Bellman equations (as in Bellemare et al., 2023, Chapter

4
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7.8). For any ρ ∈ ΠAug, overload notation and define

V ρ
h (sh, bh) = Eρ

[(
bh −

∑H
t=h rt

)+
| sh, bh

]
,

where rh, . . . , rH are the rewards generated by executing ρ
in the augmented MDP starting from sh, bh at time step h.
Observe that V ρ

h satisfies the Bellman equations,

V ρ
h (sh, bh) = Eah∼ρh(sh,bh)[U

ρ
h(sh, bh, ah)],

Uρ
h(sh, bh, ah) = Esh+1,rh

[
V ρ
h+1(sh+1, bh+1)

]
,

where sh+1 ∼ P ⋆(sh, ah), rh ∼ R(sh, ah), bh+1 = bh −
rh and V ρ

H+1(s, b) = b+. Analogously, define V ⋆
h and ρ⋆

inductively with the Bellman optimality equations,

V ⋆
h (sh, bh) = min

a∈A
U⋆
h(sh, bh, ah),

ρ⋆h(sh, bh) = argmin
a∈A

U⋆
h(sh, bh, ah),

U⋆
h(sh, bh, ah) = Esh+1,rh

[
V ⋆
h+1(sh+1, bh+1)

]
,

where sh+1 ∼ P ⋆(sh, ah), rh ∼ R(sh, ah), bh+1 = bh −
rh and V ⋆

H+1(s, b) = b+. Armed with these definitions, we
formalize the optimality result in the following theorem.

Theorem 5.1 (Optimality of ΠAug). For any b ∈ [0, 1],

V ⋆
1 (s1, b) = V ρ⋆

1 (s1, b) = infπ∈ΠH V π
1 (s1, b).

This is a known result in the infinite-horizon, discounted
setting (Bäuerle & Ott, 2011; Bellemare et al., 2023).
We provide a proof from first principles for the finite-
horizon setting in Appendix F, by inductively unravelling
the Bellman optimality equations. As a technical remark,
we show optimality over history-dependent policies in the
augmented MDP with memory, larger than the history-
dependent class defined here.

These facts imply that we could compute V ⋆
1 and ρ⋆ us-

ing dynamic programming (DP) if we knew the true transi-
tions P ⋆, and the procedure is similar to the classic Value
Iteration procedure in vanilla RL. Based on Theorem 5.1
and Eq. (4), by executing ρ⋆ starting from (s1, b

⋆) with
b⋆ := argmaxb∈[0,1]

{
b− τ−1V ⋆

1 (s1, b)
}

, we achieve the
maximum CVaR value in the original MDP. Below we
leverage this DP perspective on the augmented MDP to de-
sign exploration algorithms to solve CVaR RL.

5.2. CVaR-UCBVI

In this section, we introduce our algorithm CVaR-UCBVI
(Algorithm 2), an extension of the classic UCBVI algo-
rithm of Azar et al. (2017) which attained the minimax-
optimal regret for vanilla RL. Our contribution is show-
ing that bonus-driven pessimism, which guarantees that the
learned V̂ ↓

h,k is a high probability lower confidence bound

(LCB) on the optimal V ⋆
h , is sufficient and in fact opti-

mal for CVaR RL. This remarkably shows that the bonus-
driven exploration paradigm from vanilla RL, i.e., “opti-
mism/pessimism under uncertainty,” can be used to opti-
mally conduct safe exploration for CVaR RL.

CVaR-UCBVI iterates over K episodes, where the k-th
episode proceeds as follows. First, in Line 3, we com-
pute an empirical estimate P̂k of the transition dynamics
P ⋆ using the previous episodes’ data. Then, in Line 6,
we inductively compute Û↓

h,k from h = H to h = 1 by
subtracting a bonus that accounts for the error from us-
ing P̂k instead of P ⋆. Next, V̂ ↓

h,k and ρ̂k are computed

greedily w.r.t. Û↓
h,k to mimic the Bellman optimality equa-

tions (Section 5.1). Subtracting the bonus is key to show-
ing Û↓

h,k (resp. V̂ ↓
h,k) is a high probability lower bound

of U⋆
h (resp. V ⋆

h ). Next, in Line 9, we compute b̂k using
the pessimistic V̂ ↓

1,k. Similar to our MAB algorithm, this

guarantees that ĈVaR
k

τ := b̂k − τ−1V̂ ↓
1,k(s1, b̂k) is an op-

timistic estimate of CVaR⋆
τ . Finally, in Line 10, we roll in

with the learned, augmented policy ρ̂k starting from b̂k in
the augmented MDP to collect data for the next iterate. We
highlight that in Line 10, the algorithm is still only interact-
ing with the original MDP described in Section 2. To roll in
with an augmented policy, the algorithm can imagine this
augmented MDP by keeping track of the bh via the update
bh+1 = bh− rh. There is virtually no overhead as it is only
a scalar with known transitions.

5.3. The Hoeffding Bonus

Two types of bonuses may be used in CVaR-UCBVI: Ho-
effding (Eq. (5)) and Bernstein (Eq. (6)). We now show that
a simple Hoeffding bonus, defined below, can already pro-
vide the best CVaR regret bounds in the current literature:

BONHOEFF
h,k (s, a) =

√
L

Nk(s, a)
, (5)

where L = log(HSAK/δ).

Theorem 5.2. For any δ ∈ (0, 1), w.p. at least 1 − δ,
CVaR-UCBVI with the Hoeffding bonus (Eq. (5)) enjoys

RegretRL
τ (K) ≤ 4eτ−1

√
SAHKL+ 10eτ−1S2AHL2.

Proof Sketch The first step is to establish pes-
simism, i.e., V̂ ↓

1,k ≤ V ⋆
1 , which implies optimism of

ĈVaR
k

τ ≥ CVaR⋆
τ . At this point, we cannot apply

CVaR concentration as we did for MAB, since V̂ ↓
1,k

is not the empirical CVaR. Instead, we show that the
simulation lemma (Lemma G.4) extends to the aug-
mented MDP, which gives V ρ̂k

1 (s1, b̂k) − V̂ ↓
1,k(s1, b̂k) ≤

5
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Algorithm 2 CVaR-UCBVI
1: Input: risk tolerance τ , number of episodes K, failure probability δ, bonus function BONh,k(s, b, a).
2: for episode k = 1, 2, . . . ,K do
3: Compute counts and empirical transition estimate,

Nk(s, a, s
′) =

H∑
h=1

k−1∑
i=1

I [(sh,i, ah,i, sh+1,i) = (s, a, s′)] ,

Nk(s, a) = 1 ∨
∑
s′∈S

Nk(s, a, s
′), P̂k(s

′ | s, a) = Nk(s, a, s
′)

Nk(s, a)
,

4: For all s ∈ S, b ∈ [0, 1], set V̂ ↑
H+1,k(s, b) = V̂ ↓

H+1,k(s, b) = b+.
5: for h = H,H − 1, . . . , 1 do
6: Define pessimistic estimates of V ⋆ and ρ̂k, i.e., for all s, b, a,

Û↓
h,k(s, b, a) = P̂k(s, a)

⊤Erh∼R(s,a)

[
V̂ ↓
h+1,k(·, b− rh)

]
− BONh,k(s, b, a),

ρ̂kh(s, b) = argmin
a

Û↓
h,k(s, b, a), V̂ ↓

h,k(s, b) = max
{
Û↓
h,k(s, b, ρ̂

k
h(s, b)), 0

}
.

7: If using Bernstein bonus (Section 5.4), also define optimistic estimates for V ⋆, i.e., for all s, b, a,

Û↑
h,k(s, b, a) = P̂k(s, a)

⊤Erh∼R(s,a)

[
V̂ ↑
h+1,k(·, b− rh)

]
+ BONh,k(s, b, a),

V̂ ↑
h,k(s, b) = min

{
Û↑
h,k(s, b, ρ̂

k
h(s, b)), 1

}
.

8: end for
9: Calculate b̂k = argmaxb∈[0,1]

{
b− τ−1V̂ ↓

1,k(s1, b)
}

.

10: Collect {(sh,k, ah,k, rh,k)}h∈[H] by rolling in ρ̂k starting from (s1, b̂k) in the augmented MDP.
11: end for

Eρ̂k ,̂bk

[∑H
h=1 2BONHOEFF

h,k (sh, ah) + ξh,k(sh, ah)
]
. The

expectation is over the distribution of rolling in ρ̂k from
b̂k, which is exactly how we explore and collect sh,k, ah,k.
Thus, we can apply Azuma and elliptical potential to
conclude the proof, as in the usual UCBVI analysis.

The leading term of the Hoeffding bound is
Õ(τ−1

√
SAHK), which is optimal in S,A,K. No-

tably, it has a S factor improvement over the current
best bound τ−1

√
S3AHKL from Bastani et al. (2022)

(we’ve divided their bound by H to make returns scaling
consistent). While Theorem 5.2 is already the tightest in
the literature, our lower bound suggests the possibility of
removing another

√
τ−1H .

5.4. Improved Bounds with the Bernstein Bonus

Precise design of the exploration bonus is critical to en-
abling tighter performance bounds, even in vanilla RL
(Azar et al., 2017; Zanette & Brunskill, 2019). In this sub-
section, we propose the Bernstein bonus and prove two
tighter regret bounds. The bonus depends on the sam-

ple variance, which recall, for any function f , is defined
as Vars′∼P̂k(s,a)

(f(s′)) = P̂k(s, a)
⊤(f(·)− f̄N

)2
with

f̄N = P̂k(s, a)
⊤f being the sample mean (Maurer & Pon-

til, 2009). We define the Bernstein bonus as follows,

BONBERN
h,k (s, b, a) =

√√√√2Vars′∼P̂k(s,a)

(
Erh

[
V̂ ↓
h+1,k(s

′, b′)
])

L

Nk(s, a)

+

√√√√√2Es′∼P̂k(s,a),rh

[(
V̂ ↑
h+1,k(s

′, b′)− V̂ ↓
h+1,k(s

′, b′)
)2

]
L

Nk(s, a)

+
L

Nk(s, a)
, where b′ = b− rh, and rh ∼ R(s, a). (6)

When using the Bernstein bonus, Line 7 should be acti-
vated to compute optimistic estimates V̂ ↑

h,k by adding the

bonus. Together, (V̂ ↓
h,k, V̂

↑
h,k) forms a tight confidence

band around V ⋆
h , which we will use to inductively prove

pessimism and optimism at all h ∈ [H] (as in Zanette
& Brunskill, 2019). Compared to Zanette & Brunskill
(2019), our Bernstein bonus also depends on the state aug-
mentation b, since our UCBVI procedure is running in the

6
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augmented MDP. We now prove the first Bernstein bound,
which tightens the Hoeffding bound by a

√
H factor.

Theorem 5.3. For any δ ∈ (0, 1), w.p. at least 1 − δ,
CVaR-UCBVI with the Bernstein bonus (Eq. (6)) enjoys
a regret guarantee of

RegretRL
τ (K) ≤ 10eτ−1

√
SAKL+ τ−1ξ,

where ξ ∈ Õ(SAHK1/4 + S2AH) is a lower order term.

Proof Sketch We first establish pessimism and optimism of
V̂ ↓
h,k and V̂ ↑

h,k, similar to Zanette & Brunskill (2019). Then,
apply Simulation lemma as in Theorem 5.2. The key obser-
vation is that the H sample variances from the bonus, i.e.,∑H

h=1 Vars′∼P̂k(s,a)

(
Erh [V̂

↓
h+1,k(s

′, b− rh)]
)

, can be

reduced to a single variance Varρ̂k ,̂bk

(
(̂bk −

∑H
h=1 rh)

+
)

,
which we bound by 1. To do so, we show that Azar et al.
(2017)’s Law of Total Variance technique also applies to
our V ρ̂k

, which, unlike the value function of vanilla RL,
depends on the state augmentation b.

The leading term of Theorem 5.3 is τ−1
√
SAK, and im-

proves over Bastani et al. (2022) by a S
√
H factor. Up to

log terms, this matches our lower bound in all parameters
except τ , which implies CVaR-UCBVI is minimax-
optimal for a constant τ . In particular, τ = 1 recovers
the risk-neutral vanilla RL setting, where CVaR-UCBVI
matches the minimax result (Azar et al., 2017). To get the
optimal τ−1/2 scaling (Corollary 3.2), we cannot loosely
bound each variance term by 1, as they should scale as τ if
b̂k approximates the τ -th quantile of R(ρ̂k, b̂k). We show
this is indeed the case under a continuity assumption.

Assumption 5.4. For all ρ ∈ ΠAug and b1 ∈ [0, 1], the re-
turns of rolling in ρ from b1, i.e., R(ρ, b1), is continuously
distributed with a density lower bounded by pmin.

Theorem 5.5. Under Assumption 5.4, the bound in
Theorem 5.3 can be refined to,

RegretRL
τ (K) ≤ 12e

√
τ−1SAKL+ τ−1p

−1/2
min ξ.

Proof Sketch The only divergence from Theorem 5.3 is
how we bound Varρ̂k ,̂bk

(
(̂bk −

∑H
h=1 rh)

+
)

. Since the

density of R(ρ̂k, b̂k) is lower bounded, the CVaR objective
f(b) = b − τ−1Eρ̂k ,̂bk

[
(b−

∑H
h=1 rh)

+
]

is strongly

concave. This implies that b̂k approximates the true τ -th
quantile b⋆k = argmaxb∈[0,1] f(b), i.e., pmin

2 (̂bk − b⋆k)
2 ≤

τ(f(b⋆k)−f (̂bk)) ≤ V ρ̂k

1 (s1, b̂k)−V̂ ↓
1,k(s1, b̂k). Leveraging

this fact, we show Varρ̂k ,̂bk

(
(̂bk −

∑H
h=1 rh)

+
)

≤ 2τ +

4p−1
min(V

ρ̂k

1 (s1, b̂k) − V̂ ↓
1,k(s1, b̂k)), which notably scales

with τ . We conclude the proof by showing the error term,

i.e.,
∑K

k=1(V
ρ̂k

1 (s1, b̂k) − V̂ ↓
1,k(s1, b̂k)) ∈ Õ(

√
SAHK),

is lower order.

The leading term of Theorem 5.5 is
√
τ−1SAK, which

matches our lower bound in Corollary 3.2 and establishes
the optimality of CVaR-UCBVI for return distributions
satisfying Assumption 5.4. Notably, pmin only multiplies
with the lower order term ξ. This result highlights the
importance of the Bernstein bonus for CVaR RL – it
improves the regret bound of the Hoeffding bonus by√
τ−1H , whereas in vanilla RL, the improvement is

√
H .

With regards to Assumption 5.4, lower bounded densities,
i.e., strong monotonicity of the CDF, is standard for identi-
fying the quantile (Ma et al., 2021). In fact, PAC results for
quantile identification is not possible without some control
of the mass at the quantile. As a simple example, con-
sider estimating the 0.5-th quantile using N i.i.d. data-
points sampled from Ber(0.5). The correct answer is 0, but
by symmetry, the sample median is always distributed as
Ber(0.5) for any N . So we always have a 0.5-probability
of being incorrect. We provide an information theoretic
lower bound to rule out all estimators – not just the sample
median – in Theorem I.1.

It nonetheless remains an open question whether As-
sumption 5.4 can be removed by eschewing identifying
the quantile. In MABs Theorem 4.1, we circumvented
the need to identify quantiles by decomposing the regret
into (1) the sum of bonuses, plus, (2) the difference be-
tween the empirical and true CVaRs, both of which can
be shown to have the correct τ−1/2 scaling. An anal-
ogous approach for RL is to decompose the regret into
(1)

∑
h,k Eρ̂k ,̂bk,P̂k

[
BONBERN

h,k (sh,k, bh,k, ah,k)
]
, plus, (2)∑

k CVaRτ (ρ̂
k, b̂k; P̂k) − CVaRτ (ρ̂

k, b̂k). However, it is
unclear if both terms can be unconditionally bounded by
Õ(

√
τ−1SAK).

Remark on b-dependence: Although CVaR-UCBVI op-
erates in the augmented MDP, our Hoeffding bonus has
no dependence on the budget state b and matches the Ho-
effding bonus of UCBVI (from vanilla RL; Azar et al.,
2017). Intuitively, this is possible since the dynamics of b
are known (we assume known reward distribution), so there
is no need to explore in the b-dimension. In contrast to the
Bernstein bonus of UCBVI, our Bernstein bonus depends

on b and captures the variance of
(
b−R(ρ̂k, b̂k)

)+
. This

is crucial for obtaining the correct τ rate.

6. Computational Efficiency via Discretization
Previously, we assumed each line of Algorithm 2 was com-
puted exactly. This is not computationally feasible since
the dynamic programming (DP) step (Lines 6 and 7) needs
to be done over all b ∈ [0, 1] and the calculation for b̂k

7
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(Line 9) involves maximizing a non-concave function. Fol-
lowing Bastani et al. (2022), we propose to discretize the
rewards so the aforementioned steps need only be per-
formed over a finite grid. Thus, we gain computational ef-
ficiency while maintaining the same statistical guarantees.

Fix a precision η ∈ (0, 1), define ϕ(r) = η⌈r/η⌉∧1, which
rounds-up r ∈ [0, 1] to an η-net of [0, 1], henceforth re-
ferred to as “the grid”. The discretized MDP disc(M) is an
exact replica of the true MDP M with one exception: its re-
wards are post-processed with ϕ, i.e., R(s, a; disc(M)) =
R(s, a;M) ◦ ϕ−1, where ◦ denotes composition.

In disc(M), the τ -th quantile of the returns distribution
(the argmax of the CVaR objective) will be a multiple
of η, so it suffices to compute V̂ ↓

1 (s1, b) and maximize
Line 9 over the grid. Since b transitions by subtracting re-
wards, which are multiples of η, bh will always stay on
the grid. Hence, the entire DP procedure (Lines 6 and 7)
only needs to occur on the grid. In Appendix H.3, we
show CVaR-UCBVI has a runtime of O(S2η−2AHK)
in the discretized MDP. It’s worth clarifying that CVaR-
UCBVI is still interacting with M, except that it internally
discretizes the received rewards to simulate running in the
disc(M) for computation’s sake. Thus, we still want to
compete with the strongest CVaR policy in the true MDP;
we’ve just made our algorithm weaker by restricting it to
run in an imagined disc(M).

Now, we show that the true regret only increases by
O(Kη), which can be made lower order by setting η =
K−1/2. Theorems 5.2 and 5.3 made no assumptions
on the reward distribution, so they immediately apply to
bound the disc(M) regret, i.e., RegretRL

τ (K; disc(M)) =∑K
k=1 CVaR

⋆
τ (disc(M))−CVaRτ (ρ̂

k, b̂k; disc(M)). We
translate regret in disc(M) to regret in M via a coupling
argument, inspired by Bastani et al. (2022). Let Zπ,M de-
note the returns from running π in M. For random vari-
ables X,Y , we say Y stochastically dominates X , denoted
X ⪯ Y , if ∀t ∈ R : Pr(Y ≤ t) ≤ Pr(X ≤ t). Then, for
any ρ ∈ ΠAug, b1 ∈ [0, 1], we show two facts:

F1 Running ρ, b1 in the imagined disc(M) is equiv-
alent to running a reward-history-dependent pol-
icy, adapted(ρ, b1)h(sh, r1:h−1) = ρh(sh, b1 −
ϕ(r1) − ... − ϕ(rh−1)). Also, Zρ,b1,disc(M) − Hη ⪯
Zadapted(ρ,b1),M ⪯ Zρ,b1,disc(M).

F2 There exists a memory-history-dependent2 policy
disc(ρ, b) such that Zρ,b,M ⪯ Zdisc(ρ,b),disc(M). Intu-
itively, when running in disc(M), once the discretized
reward rh is seen, a memory mh is generated from

2The memory-MDP model is novel and key to our coupling ar-
gument. In Appendix F, we define this model and show that ΠAug

still contains the optimal policy over this seemingly larger class of
memory-history-dependent policies, i.e., Theorem 5.1 holds.

the conditional reward distribution of rewards that get
rounded-up to rh. Thus, mh is essentially sampled from
the unconditional reward distribution. The memory-
dependent policy disc(ρ, b) makes use of these samples
to mimic running ρ, b in M.

F1 implies CVaRτ (adapted(ρ̂
k, b̂k);M) ≥

CVaRτ (ρ̂
k, b̂k; disc(M)) − τ−1Hη. F2 implies

CVaR⋆
τ (M) ≤ CVaR⋆

τ (disc(M)). Combin-
ing these two facts, we have RegretRL

τ (K;M) ≤
RegretRL

τ (K; disc(M)) +Kτ−1Hη.

Translating Theorem 5.5 requires more care, as its proof
relied on continuously distributed returns (Assumption 5.4)
which is untrue in disc(M). We show that we only need
the true returns distribution to be continuous.

Assumption 6.1. For all ρ ∈ ΠAug and b1 ∈ [0, 1], the
returns distribution of adapted(ρ, b1) in M is continuous,
with a density lower bounded by pmin.

With this premise, we can prove Theorem 5.5 for disc(M),

with an extra term of Õ(τ−1
√

p−1
minSAHKη). In sum, set-

ting η = 1/
√
K ensures that CVaR-UCBVI is both near-

minimax-optimal for regret and computationally efficient,
with a runtime of O(S2AHK2). We note the superlinear-
in-K runtime from discretization is not even avoidable in
Lipschitz bandits (Wang et al., 2020), and we leave devel-
oping more scalable methods for future work.

7. Concluding Remarks
In this paper, we presented a more complete picture of risk-
sensitive MAB and RL with CVaR by providing not only
novel lower bounds but also procedures and analyses that
both improve on the state of the art and match our lower
bounds. One exception where a gap remains is CVaR RL
with discontinuous returns and a risk tolerance that is not
constant (or, not lower bounded); in this case, our lower
and upper bounds differ by a factor of

√
τ . We discuss the

feasibility of closing this gap in Section 5.4.

A direction for future work is to develop algorithms with
optimal regret guarantees for more general risk measures,
e.g., optimized certainty equivalent (OCE) (Ben-Tal &
Teboulle, 2007). Another orthogonal direction is to extend
our results beyond tabular MDPs. We believe that our tech-
niques in this work are already enough for linear MDPs (Jin
et al., 2020) where the transition kernel is linear in some
known feature space. However, extending the results be-
yond linear models, such as to low-rank MDPs (Agarwal
et al., 2020; Uehara et al., 2022) and block MDPs (Misra
et al., 2020; Zhang et al., 2022) remains a challenge due to
the fact that achieving point-wise optimism is harder when
nonlinear function approximation is used.

8
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Appendices

A. Notations

Table 1. List of Notations

x+ max(x, 0), i.e., the ReLU function.
S,A, S,A State and action spaces, with sizes S = |S| and A = |A|. In MAB, S = 1.
SAug Augmented state space S × [0, 1] for CVaR RL.
H ∈ N Horizon of the RL problem. In MAB, H = 1.
K ∈ N Number of episodes.
δ ∈ (0, 1) Failure probability.
L log(SAHK/δ).
∆(S) The set of distributions supported by S .
R(a) ∈ ∆([0, 1]) Reward distribution of arm a (for MAB).
P ⋆(s, a) ∈ ∆(S) Ground truth transition kernel (for RL).
R(s, a) ∈ ∆([0, 1]) Known reward distribution (for RL).
R(π) Returns distribution of history-dependent policy π (for RL).
R(ρ, b) Returns distribution of augmented policy ρ ∈ ΠAug starting from b (for RL).
F †(t) for t ∈ [0, 1] The t-th quantile function of X with CDF F , i.e., inf{x : F (x) ≥ t}.
Ih,k(s, a) Indices of prior visits of s, a at h, i.e., {i ∈ [k − 1] : (sh,i, ah,i) = (s, a)}.
Nh,k(s, a) Number of prior visits of s, a at h, i.e., |Ih,k(s, a)|.
ξh,k(s, a) min

{
2, 2HSL

Nh,k(s,a)

}
.

Ek Trajectories from episodes 1, 2, ..., k − 1.
Hh(Hh,k) History up to and not including time h (in episode k).
ΠH Set of history-dependent policies.
ΠAug Set of Markov, deterministic policies in the augmented MDP.
(ρ, b) The policy obtained from rolling in ρ starting from (s1, b) in the augmented MDP.
disc(M) The discretized MDP obtained by discretizing rewards, Section 6.
adapted(ρ, b1) The policy from adapting (ρ, b1) in disc(M) to M.
disc(ρ, b1) The policy from discretizing (ρ, b1) in M to disc(M).

B. Concentration Lemmas
B.1. Uniform Hoeffding and Bernstein via Lipschitzness

Recall the classic Hoeffding and Bernstein inequalities (Theorems 2.8 and 2.10 in Boucheron et al., 2013). Let X1:N be
i.i.d. random variables in [0, 1], with mean µ and variance σ2. Then, for any δ, w.p. at least 1− δ, we have∣∣∣∣∣ 1N

N∑
i=1

Xi − µ

∣∣∣∣∣ ≤ 1

2

√
log(4/δ)

N
, (Hoeffding)∣∣∣∣∣ 1N

N∑
i=1

Xi − µ

∣∣∣∣∣ ≤
√

2σ2 log(4/δ)

N
+

log(4/δ)

N
. (Bernstein)

Now we consider uniform inequalities for a function class. Specifically, let X1:N be i.i.d. copies of X ∈ X and F is a
(potentially infinite) set of functions f : X → [0, 1]. Suppose Gε ⊂ F is a finite ℓ∞-cover, a.k.a. ε-net, of F in the sense
that: for any f ∈ F , there exists g ∈ Gε such that supx∈X |f(x)− g(x)| ≤ ε.
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Lemma B.1. Let δ ∈ (0, 1). We have w.p. at least 1− δ,

sup
f∈F

∣∣∣∣∣ 1N
N∑
i=1

f(Xi)− Ef(X)

∣∣∣∣∣ ≤
√

log(4|G1/N |/δ)
N

. (Uniform Hoeffding)

If N ≥ 2 log(4|G1/N |/δ), we also have

sup
f∈F

∣∣∣∣∣ 1N
N∑
i=1

f(Xi)− Ef(X)

∣∣∣∣∣ ≤
√

2Var(f(X)) log(4|G1/N |/δ)
N

+
3 log(4|G1/N |/δ)

N
. (Uniform Bernstein)

Proof. Apply a union bound over the elements of Gε. Then for any f ∈ F ,∣∣∣∣∣ 1N
N∑
i=1

f(Xi)− Ef(X)

∣∣∣∣∣ ≤ 2ε+

∣∣∣∣∣ 1N
N∑
i=1

g(Xi)− Eg(X)

∣∣∣∣∣
≤ 2ε+

1

2

√
log(4|Gε|/δ)

N
.

Setting ε = 1/N gives the Uniform Hoeffding result. We also have∣∣∣∣∣ 1N
N∑
i=1

f(Xi)− Ef(X)

∣∣∣∣∣ ≤ 2ε+

√
2Var(g(X)) log(4|Gε|/δ)

N
+

log(4|Gε|/δ)
N

≤ 2ε+

√
2Var(f(X)) log(4|Gε|/δ)

N
+

log(4|Gε|/δ)
N

+ ε

√
2 log(4|Gε|/δ)

N
,

since
√
Var(g(X))−

√
Var(f(X)) ≤

√
Var(f(X)− g(X)) ≤ ε. By assumption,

√
2 log(4|Gε|/δ)

N ≤ 1, so the total error
is at most 3ε. Thus, setting ε = 1/N gives the Uniform Bernstein result.

A particularly important application of this for us is that F will be an finite set of functions fb parameterized by a continuous
parameter b ∈ [0, 1]. These functions are C-Lipschitz in the b parameter, so to construct Gε, it suffices to take a grid over
[0, 1] such that any element is ε/C close to the grid. This grid requires ⌈C/ε⌉ atoms, and so log(|G1/N |) ≤ log(CN).

Empirical Bernstein: By Theorems 4 and 6 of Maurer & Pontil (2009), we also have an empirical version of the
uniform Bernstein, where we may replace Var(f(X)) with 1

N(N−1)

∑N
i,j=1(f(Xi)− f(Xj))

2, i.e., the empirical variance.
Another useful result of Maurer & Pontil (2009) is their Theorem 10, which proves a fast convergence of empirical variance
to the true variance: w.p. 1− δ, ∣∣∣V̂arf(X)−Var f(X)

∣∣∣ ≤√2 log(2/δ)

N − 1
,

where V̂arf(X) = 1
N(N−1)

∑N
i,j=1(f(Xi)− f(Xj))

2 is the sample variance of N datapoints. Note that V̂arf(X) is the

variance under the empirical distribution of these N datapoints, and hence behaves like a variance. Since
√

Var(X + Y ) ≤√
Var(X) +

√
Var(Y ) by Cauchy-Schwartz, this can also be extended to be uniform by the above argument, i.e.,

sup
f∈F

∣∣∣∣√V̂arf(X)−
√
Var f(X)

∣∣∣∣ ≤ 2

√
log(2|G1/N |/δ)

N − 1
.

Proof. For any f , let g be its neighbor in the net. Using the triangle inequality of variance,
√
Var(X + Y ) ≤

√
Var(X)+√

Var(Y ), we have∣∣∣∣√V̂arf(X)−
√
Var f(X)

∣∣∣∣ ≤ ∣∣∣∣√V̂arg(X)−
√
Var g(X)

∣∣∣∣+√V̂ar((f − g)(X)) +
√
Var((f − g)(X))

≤ 2

√
log(2|G1/N |/δ)

N − 1
+ 2ε.

Setting ε = 1/N completes the proof.
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B.2. Tape Method for Tabular MAB and RL

In this section, we describe how we are able to prove claims about MAB and RL using uniform concentration inequalities
over i.i.d. data, i.e., without needing to use complicated uniform martingale inequalities, e.g., Bibaut et al. (2021); Van de
Geer (2000). We construct a probability space using a “tape” method inspired by Slivkins et al. (2019, Section 1.3.1).
Compared to using black-box uniform martingale inequalities, our approach is potentially loose in log terms. However,
our approach is much cleaner as we only need uniform concentrations for i.i.d. data. Thus, we prove everything from first
principles, so that concentration inequalities do not distract from the main ideas.

First, consider the MAB problem. Before the protocol starts, nature constructs an (one-indexed) array with AK cells. For
each a ∈ A, k ∈ [K], nature fills the index [a, k] with an independent sample from R(a). Whenever the learner pulls arm
a on the k-th episode, it receives the contents of (a,Nk(a) + 1) where that Nk(a) is the number of times that a has been
pulled up until now.

Notice that this formulation will never run out of rewards since we’ve seeded each arm with K cells. Also, this is equivalent
to drawing a sample whenever the learner pulls arm a. Crucially, all the rewards are independent and so we can obtain
concentration inequalities for Nk(a) for any learner, even before it is executed.

In particular, for any function f : [0, 1] → [0, 1] of the rewards, we can union bound Hoeffding/Bernstein over the cells
[a, 1 : k] for all a, k to get: for any δ, w.p. at least 1− δ, we have for all a, k,∣∣∣∣∣∣ 1

Nk(a)

∑
i∈Ik(a)

f(ri)− Ef(R(a))

∣∣∣∣∣∣ ≤ 1

2

√
log(4AK/δ)

Nk(a)
,

∣∣∣∣∣∣ 1

Nk(a)

∑
i∈Ik(a)

f(ri)− Ef(R(a))

∣∣∣∣∣∣ ≤
√

2Var(f(R(a))) log(4AK/δ))

Nk(a)
+

log(4AK/δ)

Nk(a)
.

Here Ik(a) is the indices where the learner has pulled arm a.

We now do something similar for tabular RL. Before the RL algorithm starts, nature constructs an (one-indexed) array with
SAHK cells. For each s ∈ S, a ∈ A, h ∈ [H], k ∈ [K], nature fills the index [s, a, h, k] with an independent sample from
P ⋆(s, a). Whenever, the learner takes action a at state s and step h on episode k, it receives the next state via the content
of (s, a, h,Nh,k(s, a) + 1) where recall Nh,k(s, a) is the number of times the learner has taken action a at state s and step
h before the current episode. Then, for any function f : S → [0, 1] of the states, we can union bound Hoeffding/Bernstein
over the cells [s, a, 1 : H, 1 : k] for all s, a, k to get: for any δ, w.p. at least 1− δ, we have for all s, a, h, k,∣∣∣∣∣∣ 1

Nk(s, a)

∑
h,i∈Ik(s,a)

f(sh+1,i)− Es′∼P⋆(s,a)f(s
′)

∣∣∣∣∣∣ ≤ 1

2

√
log(4SAHK/δ)

Nk(s, a)
,

∣∣∣∣∣∣ 1

Nk(s, a)

∑
h,i∈Ik(s,a)

f(sh+1,i)− Es′∼P⋆(s,a)f(s
′)

∣∣∣∣∣∣ ≤
√

2Vars′∼P⋆(s,a)(f(s′)) log(4SAHK/δ))

Nk(s, a)
+

log(4SAHK/δ)

Nk(s, a)
,

where Ik(s, a) are the (h, i) pairs where the learner has visited (s, a), and Nk(s, a) is the size of Ik(s, a).

Since these are standard Hoeffding/Bernstein results over i.i.d. data, the uniform concentration results from the previous
section applies.
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C. Concentration of CVaR
In this section, we derive general concentration results for the empirical CVaR, which may be of independent interest.
The significance of our result is that it applies to any bounded random variable X , which may be continuous, discrete
or neither. Prior concentration results from Brown (2007) require X to be continuous. Some later works (Wang & Gao,
2010; Kagrecha et al., 2019) did not explicitly mention their dependence on the continuity of X , but their proof appears
to require it as well and is complicated by casework. We provide a simple new proof of this concentration based on the
Acerbi integral formula for CVaR, Lemma C.3.

For any random variable X in [0, 1] with CDF F , the quantile function is defined as,

F †(t) = inf{x ∈ [0, 1] : F (x) ≥ t} = sup{x ∈ [0, 1] : F (x) < t}.

The quantile has many useful properties (Chen, Lemma 1), which we recall here.

Lemma C.1. For t ∈ (0, 1), F †(t) is nondecreasing and left-continuous, and satisfies

1. For all x ∈ R, F †(F (x)) ≤ x.

2. For all t ∈ (0, 1), F (F †(t)) ≥ t.

3. F (x) ≥ t ⇐⇒ x ≥ F †(t).

The quantile is always a maximizer of the CVaR objective in Eq. (1). This is true for any random variable, discrete,
continuous or neither.

Lemma C.2. For any random variable X in [0, 1] with CDF F , we have

F †(τ) ∈ argmax
b∈[0,1]

{
b− τ−1E

[
(b−X)+

]}
.

Proof. Recall the objective in Eq. (1), f(b) = −b+ τ−1E[(b−X)+]. It has a subgradient of

∂f(b) = −1 + τ−1(Pr(X < b) + [0, 1] Pr(X = b)).

We want to show that 0 ∈ ∂f(F †(τ)), which is equivalent to showing

0
(a)

≤ τ − Pr(X < F †(τ))
(b)

≤ Pr(X = F †(τ)).

For (b), observe that Pr(X < F †(τ)) + Pr(X = F †(τ)) = F (F †(τ)) ≥ τ (Lemma C.1). Hence, τ − Pr(X < F †(τ)) ≤
Pr(X = F †(τ)).

For (a), recall that Pr(X < F †(τ)) = limn→∞ Pr(X ≤ F †(τ) − n−1), since
{
X ≤ F †(τ)− 1

}
⊂{

X ≤ F †(τ)− 1/2
}

⊂ · · · ⊂
⋃

n∈N
{
X ≤ F †(τ)− n−1

}
=
{
X < F †(τ)

}
and continuity of probability measures.

If for any n ∈ N, we had Pr(X ≤ F †(τ) − n−1) ≥ τ , i.e., F (F †(τ) − n−1) ≥ τ , then by definition of
F †(τ) = inf{x ∈ [0, 1] : F (x) ≥ t}, we have F †(τ) ≤ F †(τ) − n−1, which is a contradiction. Therefore, it must be
that for all n ∈ N, we have Pr(X ≤ F †(τ)−n−1) < τ , so Pr(X < F †(τ)) = limn→∞ Pr(X ≤ F †(τ)−n−1) ≤ τ .

The following interpretation of CVaRτ due to Acerbi & Tasche (2002) will be very useful. An alternative proof was given
in Kisiala (2015, Proposition 2.2).

Lemma C.3 (Acerbi’s Integral Formula). For any non-negative random variable X with CDF F , we have

CVaRτ (X) = τ−1

∫ τ

0

F †(y)dy = E
[
F †(U) | U ≤ τ

]
,

where U ∼ Unif([0, 1]).
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Now suppose X1:N are i.i.d. copies of X ∈ [0, 1]. Define the empirical CVaR as the CVaR of the empirical distribution
F̂N (x) = 1

N

∑N
i=1 I [Xi ≤ x].

ĈVaRτ (X1:N ) = max
b∈[0,1]

{
b− 1

Nτ

N∑
i=1

(b−Xi)
+

}
.

Let X(i) denote the i-th increasing order statistic.

Lemma C.4. The maximum for the empirical CVaR is attained at the empirical quantile X⌈Nτ⌉. Hence,

ĈVaRτ (X1:N ) =

(
1− ⌈Nτ⌉

Nτ

)
X⌈Nτ⌉ +

1

Nτ

⌈Nτ⌉∑
i=1

X(i).

Proof. By Lemma C.2, the maximum is attained at the τ -th quantile of the empirical distribution, i.e., F̂ †
N (τ) =

inf
{
x : F̂N (x) ≥ τ

}
. Let k ∈ [N ] be the largest X(k) such that such that F̂N (X(k)) =

k
N < τ ≤ k+1

N = F̂N (X(k+1)).

This implies that F̂ †
N (τ) = X(k+1). Note that k < Nτ ≤ k + 1, so k + 1 = ⌈Nτ⌉. Thus,

ĈVaRτ (X1:N ) = X(⌈Nτ⌉) −
1

Nτ

N∑
i=1

(
X(⌈Nτ⌉) −Xi

)+
= X(⌈Nτ⌉) −

1

Nτ

⌈Nτ⌉∑
i=1

(
X(⌈Nτ⌉) −X(i)

)
=

(
1− ⌈Nτ⌉

Nτ

)
X(⌈Nτ⌉) +

1

Nτ

⌈Nτ⌉∑
i=1

X(i).

Lemma C.5. Let U1:N be i.i.d. copies of Unif([0, 1]). Let p ∈ (0, 1). For any δ ∈ (0, 1), w.p. at least 1− δ, we have

∣∣U⌈Np⌉ − p
∣∣ ≤√3p(1− p) log(2/δ)

N
+

5 log(2/δ)

N
,

provided that N ≥ 25 log(2/δ).

Proof. Let F be the distribution function of Unif([0, 1]), and F̂N the empirical distribution of U1:N . Note that U(⌈Np⌉) =

F̂ †
N (p), by reasoning in the proof of Lemma C.4. So the left hand side is

∣∣∣p− F̂ †
N (p)

∣∣∣.
Now consider any error ε ∈ (0, 1). We have

F̂ †
N (p) ≤ p+ ε ⇐⇒ p ≤ F̂N (p+ ε) ⇐⇒ p+ ε− F̂N (p+ ε) ≤ ε,

and

F̂ †
N (p) > p− ε ⇐⇒ p > F̂N (p− ε) ⇐⇒ F̂N (p− ε)− (p− ε) < ε.

In both cases, we can use Bernstein on I [U ≤ p− ε] or I [U ≤ p+ ε] to obtain a bound depending on the variance. In
the first case,

√
Var(I [U ≤ p− ε]) ≤

√
Var(I [U ≤ p]) +

√
Var(I [U ≤ p− ε]− I [U ≤ p]) ≤ p(1− p) + ε. Similarly,√

Var(I [U ≤ p+ ε]) ≤
√
Var(I [U ≤ p]) +

√
Var(I [U ≤ p+ ε]− I [U ≤ p]) ≤ p(1 − p) + ε. Thus, we have w.p. at

least 1− δ,

(p+ ε)− F̂N (p+ ε) ≤
√

2p(1− p) log(2/δ)

N
+

log(2/δ)

N
+

√
2ε2 log(2/δ)

N
,
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and

F̂N (p− ε)− (p− ε) <

√
3p(1− p) log(2/δ)

N
+

log(2/δ)

N
+

√
3ε2 log(2/δ)

N
.

So we can set ε =
√

3p(1−p) log(2/δ)
N + 5 log(2/δ)

N , as the third error term with this setting of ε is at most 3 log(2/δ)
N +

5 log(2/δ)1.5

N1.5 ≤ 4 log(2/δ)
N when N ≥ 25 log(2/δ). Thus w.p. at least 1− δ, we have

∣∣∣F̂ †
N (p)− p

∣∣∣ ≤ ε.

Theorem C.6. Let X1:N be N i.i.d. copies of a random variable X ∈ [0, 1]. Then for any δ ∈ (0, 1), w.p. at least 1− δ,
if N ≥ 25 log(2/δ), then we have∣∣∣ĈVaRτ (X1:N )− CVaRτ (X)

∣∣∣ ≤√3 log(2/δ)

Nτ
+

15 log(2/δ)

Nτ
.

Proof. We use the interpretation of the empirical CVaR in Lemma C.4. The first term is lower order since∣∣∣∣1− ⌈Nτ⌉
Nτ

∣∣∣∣ ≤ 1

Nτ
.

Now recall that by the inverse CDF trick, we have Xi = F †(Ui) where Ui are i.i.d. copies of Unif([0, 1]). Since F † is
non-decreasing, we have X(i) = F †(U(i)). Thus, the second term of Lemma C.4 is

1

Nτ

⌈Nτ⌉∑
i=1

X(i) =
1

Nτ

⌈Nτ⌉∑
i=1

F †(U(i)) =
1

Nτ

N∑
i=1

F †(Ui)I
[
Ui ≤ U(⌈Nτ⌉)

]
,

which we want to show is close to CVaRτ (X) = τ−1E
[
F †(U)I [U ≤ τ ]

]
by Lemma C.3. If U(⌈Nτ⌉) were replaced by τ ,

we can simply invoke Bernstein and note that Var
(
F †(U)I [U ≤ τ ]

)
≤ Pr(U ≤ τ) = τ , which gives∣∣∣∣∣ 1

Nτ

N∑
i=1

F †(Ui)I [Ui ≤ τ ]− τ−1E
[
F †(U)I [U ≤ τ ]

]∣∣∣∣∣ ≤ τ−1

(√
2τ log(2/δ)

N
+

log(2/δ)

N

)
.

Thus, we just need to bound the difference term,∣∣∣∣∣ 1

Nτ

N∑
i=1

F †(Ui)
(
I
[
Ui ≤ U(⌈Nτ⌉)

]
− I [Ui ≤ τ ]

)∣∣∣∣∣.
By Lemma C.5, we have

∣∣U⌈Nτ⌉ − τ
∣∣ ≤ ε w.p. 1 − δ, where ε =

√
3τ(1−τ) log(2/δ)

N + 5 log(2/δ)
N . So, for any Ui we

have I
[
Ui ≤ U(⌈Nτ⌉)

]
− I [Ui ≤ τ ] ≤ I [τ ≤ Ui ≤ τ + ε] and I [Ui ≤ τ ] ≤ I [τ − ε ≤ Ui ≤ τ ], so the difference term is

at most,

≤ max

{
1

Nτ

N∑
i=1

F †(Ui)I [τ − ε ≤ Ui ≤ τ ] ,
1

Nτ

N∑
i=1

F †(Ui)I [τ ≤ Ui ≤ τ + ε]

}
.

By applying another Bernstein, and noting that
√
Var(F †(U)I [τ − ε ≤ U ≤ τ ]) ≤ ε,√

Var(F †(U)I [τ ≤ U ≤ τ + ε]) ≤ ε, we have this is at most

τ−1

(
max

{
E
[
F †(U)I [τ − ε ≤ U ≤ τ ]

]
,E
[
F †(U)I [τ ≤ U ≤ τ + ε]

]}
+

√
2ε2 log(2/δ)

N
+

log(2/δ)

N

)

≤ τ−1

(
ε+

√
2ε2 log(2/δ)

N
+

log(2/δ)

N

)

≤
√

3 log(2/δ)

Nτ
+

5 log(2/δ)

Nτ
+

3 log(2/δ)

N
√
τ

+
4 log1.5(2/δ)

N1.5τ
+

log(2/δ)

Nτ

≤
√

3 log(2/δ)

Nτ
+

15 log(2/δ)

Nτ
, (when N ≥ 16 log(2/δ))

where the bound on ε occurs when N ≥ 25 log(2/δ), which also implies the last inequality.
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D. Proofs for Lower Bounds
D.1. CVaR MAB Lower Bound

Let us first define some MAB notations that make explicit the dependence on the current MAB problem instance ν and the
learner Alg. Recall that ν is a vector of A reward distributions, and in the k-th episode, Alg picks an action ak based on the
historical actions and rewards. Let ∆a(ν) = CVaR⋆

τ (ν) − CVaRτ (ν(a)) where CVaR⋆
τ (ν) = maxa∈A CVaRτ (ν(a)).

Let RegretMAB
τ (K, ν,Alg) denote the regret of running Alg in MAB ν for K episodes. Let Tk(a) denote the number of

times an arm a has been pulled up to time K.

For two distributions P,Q, recall the KL-divergence is defined as

DKL(P,Q) =

{ ∫
log
(

dP
dQ (ω)dP (ω)

)
, if P ≪ Q,

∞, otherwise.

A key inequality for lower bounds is the Bretagnolle-Huber inequality, cf. (Lattimore & Szepesvári, 2020, Theorem 14.2),

Lemma D.1 (Bretagnolle-Huber). Let P,Q be probability measures on the same measurable space (Ω,F) and A ∈ F be
any event. Then

P (A) +Q(AC) ≥ 1

2
exp(−DKL(P,Q)).

Lemma D.2 (Regret Decomposition). For any MAB instance ν and learner Alg, we have

E
[
RegretMAB

τ (K, ν,Alg)
]
=
∑
a∈A

∆a(ν)E[Ta(K)],

where the expectations are with respect to the trajectory of running Alg in ν.

Proof.

E
[
RegretMAB

τ (K, ν,Alg)
]

=

K∑
k=1

CVaR⋆
τ (ν)− E[CVaRτ (ν(ak))]

=
K∑

k=1

E

[
(CVaR⋆

τ (ν)− CVaRτ (ν(ak))))
∑
a∈A

I [ak = a]

]

=
∑
a∈A

K∑
k=1

E[(CVaR⋆
τ (ν)− CVaRτ (ν(ak)))I [ak = a]].

Notice that if once we condition on ak, if ak = a, the difference CVaR⋆
τ (ν)−CVaRτ (ν(ak)) is simply ∆a(ν). If ak ̸= a,

then we get 0. So, by the tower rule,

E[(CVaR⋆
τ (ν)− CVaRτ (ν(ak)))I [ak = a]] = E[I [ak = a] ∆a(ν)].

Therefore, continuing from before,

=
∑
a∈A

K∑
k=1

E[I [ak = a] ∆a(ν)]

=
∑
a∈A

∆a(ν)
K∑

k=1

E[I [ak = a]]

=
∑
a∈A

∆a(ν)E[Ta(K)].
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Theorem 3.1. Fix any τ ∈ (0, 1/2), A ∈ N. For any algorithm, there is a MAB problem with Bernoulli rewards s.t. if

K ≥
√

A−1
8τ , then E

[
RegretMAB

τ (K)
]
≥ 1

24e

√
(A−1)K

τ .

Proof of Theorem 3.1. Fix any τ ∈ (0, 1/2) and any MAB algorithm Alg. WLOG suppose A = [A]. Define the shorthand,
βc = Ber(1− τ + cε), i.e., larger c implies ε more likelihood of pulling 1. Construct two MAB instances as follows,

ν = (β1, β0, . . . , β0)

ν′ = (β1, β0, . . . , β0, β2︸︷︷︸
index i

, β0, . . . , β0), where i = argmin
a>1

Eν,Alg[Ta(K)].

For the first MAB instance ν, the optimal action is a⋆(ν) = 1, and ∆a(ν) = τ−1ε for all a > 1. By Lemma D.2,

Eν,Alg

[
RegretMAB

τ (K, ν,Alg)
]
=
∑
a∈A

∆a(ν)Eν,Alg[Ta(K)]

= τ−1ε(K − Eν,Alg[T1(K)])

≥ τ−1ε Pr
ν,Alg

(
K − T1(K) ≥ K

2

)
K

2
(Markov’s inequality)

=≥ τ−1ε Pr
ν,Alg

(
T1(K) ≤ K

2

)
K

2
.

For the second MAB instance ν′, the optimal action is a⋆(ν′), and ∆1(ν) = τ−1ε. By Lemma D.2,

Eν′,Alg

[
RegretMAB

τ (K, ν′,Alg)
]
=
∑
a∈A

∆a(ν
′)Eν′,Alg[Ta(K)]

≥ ν1(ν
′)Eν′,Alg[T1(K)]

> τ−1ε Pr
ν′,Alg

(
T1(K) >

K

2

)
K

2
. (Markov’s inequality)

Let Pν,Alg denote the trajectory distribution from running Alg in MAB ν. Therefore,

Eν,Alg

[
RegretMAB

τ (K, ν,Alg)
]
+ Eν′,Alg

[
RegretMAB

τ (K, ν′,Alg)
]

>
Kε

2τ

(
Pr

ν,Alg

(
T1(K) ≤ K

2

)
+ Pr

ν′,Alg

(
T1(K) >

K

2

))
≥ Kε

4τ
exp(−DKL(Pν,Alg,Pν′,Alg)) (Bretagnolle-Huber Lemma D.1)

=
Kε

4τ
exp

(
−
∑
a∈A

Eν,Alg[Ta(K)]DKL(ν(a), ν
′(a))

)
(Lattimore & Szepesvári, 2020, Lemma 15.1)

=
Kε

4τ
exp(−Eν,Alg[Ti(K)]DKL(ν(i), ν

′(i))) (other arms are the same for ν, ν′)

=
Kε

4τ
exp(−Eν,Alg[Ti(K)]DKL(ν(i), ν

′(i)))

≥ Kε

4τ
exp

(
− 8Kε2

(A− 1)τ

)
.

The last inequality uses two facts. By definition of i = argmina>1 Eν,Alg[Ta(K)], Eν,Alg[Ti(K)] ≤ K
A−1 . Also, by

Lemma D.4, DKL(ν(i), ν
′(i)) ≤ 8ε2τ−1. Setting ε2 = (A−1)τ

8K and noting 2max{a, b} ≥ a + b gives the desired lower
bound.

Lemma D.3. For any τ ∈ (0, 1/2) and ε ∈ [0, τ ], we have

CVaRτ (Ber(1− τ + ε)) = τ−1ε.
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Proof. The CDF of X ∼ Ber(1− τ + ε) is as follows,

F (x) =


0, if x < 0,

τ − ε, if x ∈ [0, 1),

1, if x ≥ 1.

Therefore, F †(τ) = inf{x : F (x) ≥ τ} = 1 for any ε > 0, and it is 0 when ε = 0. By Lemma C.2, we have

CVaRτ (Ber(1− τ)) = 0− τ−1E
[
(0−X)+

]
= 0,

and

CVaRτ (Ber(1− τ + ε)) = 1− τ−1E
[
(1−X)+

]
= 1− τ−1(τ − ε) = τ−1ε.

Lemma D.4. For any τ ∈ (0, 1/2) and ε ∈ [0, τ ], we have

DKL(Ber(1− τ),Ber(1− τ + ε)) ≤ 2ε2τ−1.

Proof. By explicit computation, we have

DKL(Ber(1− τ),Ber(1− τ + ε))

= τ log

(
τ

τ − ε

)
+ (1− τ) log

(
1− τ

1− τ + ε

)
≤ τ log

(
τ

τ − ε

)
+ τ log

(
τ

τ + ε

)
= −τ log

(
1− ε2

τ2

)
≤ 2ε2τ−1.

The first inequality is because f(x) = x log
(

x
x+ε

)
is a decreasing function and 1 − τ ≥ τ . The second inequality is

because − log(1− x) ≤ 2x for x ∈ [0, 1].

D.2. Lower bound for CVaR RL

Corollary 3.2. Fix any τ ∈ (0, 1/2), A,H ∈ N. For any algorithm, there is an MDP (with S = Θ(AH−1)) s.t. if

K ≥
√

S(A−1)
8τ , then E

[
RegretRL

τ (K)
]
≥ 1

24e

√
S(A−1)K

τ .

Proof of Corollary 3.2. Fix any τ,A,H . Consider an MDP where the states are represented by an A-balanced tree with
depth H (each node of the tree is a state). The initial state s1 is the root, and based on the action a1, transits to the
a1-th node in the next layer. The process repeats until we’ve reached one of the AH−1 leaves, where a reward is given
(which also depends on the action taken at the leaf). There are no rewards until the last step. The number of states is
S = 1 +A+ ...+AH−1, since the h-th layer of the tree has Ah−1 states.

Since there are no rewards until the last step, running in this MDP reduces to a MAB with AH “arms” where the “arms”
are the sequences of actions a1:H . So, by Theorem 3.1, for any RL algorithm, there is an MDP constructed this way (with

Bernoulli rewards at the end) such that if K ≥
√

AH−1
8τ , then E

[
RegretRL

τ (K)
]
≥ 1

24e

√
(AH−1)K

τ . The key observation

is that AH − 1 = (A− 1)
(
AH−1 +AH−2 + · · ·+A+ 1

)
= (A− 1)S. This concludes the proof.
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E. Proofs for BERNSTEIN-UCB
For any arm a ∈ A, let b⋆a denote the τ -th quantile of R(a), so

b⋆a = argmax
b∈[0,1]

{
b− τ−1ER∼ν(a)

[
(b−R)+

]}
CVaRτ (R(a)) = b⋆a − τ−1ER∼ν(a)

[
(b⋆a −R)+

]
.

Let us denote

µ(b, a) = ER∼ν(a)

[
(b−R)+

]
,

µ̂k(b, a) =
1

Nk(a)

k−1∑
i=1

(b− ri)
+I [ai = a] .

Recall that a⋆ is the arm with the highest CVaRτ .

For any δ ∈ (0, 1), w.p. at least 1− δ, uniform Bernstein implies that for all b, a,

|µ̂k(b, a)− µ(b, a)| ≤

√
2τ log(2AK/δ)

Nk(a)
+

log(2AK/δ)

Nk(a)
. (7)

Note that our bonus Eq. (3) is constructed to match the upper bound. This implies that µ̂k−BONk is a pessimistic estimate
of µ.

Lemma E.1 (Pessimism). For all k ∈ [K]

min
a∈A

{µ̂k(b
⋆
a, a)− BONk(a)} ≤ µ(b⋆a⋆ , a⋆).

Proof. Fix any k ∈ [K]. By Eq. (7), for all a ∈ A,

µ̂k(b
⋆
a, a)− BONk(a) ≤ µ(b⋆a, a).

Hence,

min
a∈A

{µ̂k(b
⋆
a, a)− BONk(a)} ≤ µ̂k(b

⋆
a⋆ , a⋆)− BONk(a

⋆)

≤ µ(b⋆a⋆ , a⋆).

Theorem 4.1. For any δ ∈ (0, 1), w.p. at least 1− δ, BERNSTEIN-UCB with ε ≤
√

A/2τK enjoys

RegretMAB
τ (K) ≤ 4

√
τ−1AKL+ 16τ−1AL2.

21



Near-Minimax-Optimal Risk-Sensitive RL with CVaR

Proof of Theorem 4.1.

RegretMAB
τ (K)

=
K∑

k=1

CVaR⋆
τ −CVaRτ (R(ak))

=
K∑

k=1

{
b⋆a⋆ − τ−1µ(b⋆a⋆ , a⋆)

}
− CVaRτ (ν(ak))

≤
K∑

k=1

{
b⋆a⋆ − τ−1 min

a∈A
(µ̂k(b

⋆
a⋆ , a)− BONk(a))

}
− CVaRτ (ν(ak)) (pessimism Lemma E.1)

=
K∑

k=1

max
a∈A

{
b⋆a⋆ − τ−1(µ̂k(b

⋆
a⋆ , a)− BONk(a))

}
− CVaRτ (ν(ak))

≤ Kε+
K∑

k=1

max
a∈A

{
b̂a,k − τ−1

(
µ̂k (̂ba,k, a)− BONk(a)

)}
− CVaRτ (ν(ak)) (̂ba,k is ε-optimal)

= Kε+
K∑

k=1

{
b̂ak,k − τ−1

(
µ̂k (̂bak,k, ak)− BONk(ak)

)}
− CVaRτ (ν(ak)) (defn. of ak)

≤ Kε+

K∑
k=1

τ−1BONk(ak) + max
b∈[0,1]

{
b− τ−1µ̂k(b, ak)

}
− CVaRτ (ν(ak))

= Kε+
K∑

k=1

τ−1BONk(ak) + ĈVaRτ ({ri}i∈Ik(ak)
)− CVaRτ (ν(ak))

≤ Kε+
K∑

k=1

√
2L

Nk(a)τ
+

L

Nk(a)τ
+

√
3L

Nk(a)τ
+

15L

Nk(a)τ
(CVaRτ concentration Theorem C.6)

≤ Kε+

K∑
k=1

√
10L

Nk(a)τ
+

16L

Nk(a)τ

≤ Kε+
√
10Lτ−1 ·

√
AKL+ 16Lτ−1 ·A log(K). (elliptical potential Lemma G.12)

A technical detail is that CVaRτ concentration only applies when Nk(a) ≥ 25L. We can trivially bound the total regret
of the episodes when Nk(a) < 25L by 25AL. Also, we remark the concentration step applies since {ri}i∈Ik(a)

are
i.i.d. via the tape framework, so we do not need to generalize Theorem C.6 to martingale sequences. Finally, setting
ε =

√
τ−1A/2K renders it lower order.

22



Near-Minimax-Optimal Risk-Sensitive RL with CVaR

F. Proofs for Augmented MDP
We first define the memory-MDP model, where the MDP is also equipped with a memory generator Mh, which generates
mh ∼ Mh(sh, ah, rh,Hh). These memories are stored into the history Hh = (st, at, rt,mt)t∈[h−1] and may be used
by history dependent policies in future time steps. Concretely, rolling out π proceeds as follows: for any h ∈ [H],
ah ∼ πh(sh,Hh), sh+1 ∼ P ⋆(sh, ah), rh ∼ R(sh, ah) and mh ∼ Mh(sh, ah, rh,Hh).

We can also extend the above formulation to the augmented MDP, where the state is augmented with b as in Section 5.1.
Here, the history is HAug

h = (st, bt, at, rt,mt)t∈[h−1]. Let ΠAug
H represent the set of history dependent policies in this

augmented MDP with memory. Also, recall that ΠAug is the set of Markov, deterministic policies in the augmented MDP.

The V function is defined for these multiple types of policies:

π ∈ ΠH : V π
h (sh, bh;Hh) = Eπ

(bh −
H∑
t=h

rt

)+

| sh, bh,Hh


ρ ∈ ΠAug : V ρ

h (sh, bh) = Eρ

(bh −
H∑
t=h

rt

)+

| sh, bh


ρ ∈ ΠAug

H : V ρ
h (sh, bh;H

Aug
h ) = Eρ

(bh −
H∑
t=h

rt

)+

| sh, bh,HAug
h


Notice that rolling out ρ, b in the augmented MDP is equivalent to rolling out πρ,b in the original MDP, where

πρ,b
h (sh,Hh) = ρh(sh, b− r1 − ...− rh−1).

Thus, it’s evident that their V functions should match.

Lemma F.1. Fix any ρ ∈ ΠAug, h ∈ [H], augmented state (sh, bh) and history Hh. Then, we have V ρ
h (sh, bh) =

V πρ,b

h (sh, bh;Hh) for b = bh + r1 + ...+ rh−1. In particular, we have V ρ
1 (s1, ·) = V πρ,b

1 (s1, ·).

Proof. The setting of b in the lemma satisfies bh = b − r1 − ... − rh−1. Therefore, the trajectories of (ρ, b) and πρ,b are
exactly coupled.

We now show the key result of this section. The theorem shows that the V ⋆, U⋆ functions defined via the Bellman optimal-
ity equations (from Section 5.1) correspond to the V,U functions of ρ⋆. Furthermore, the Markov (in augmented state) and
deterministic ρ⋆ is in fact an optimal policy amongst all history-dependent policies in the augmented MDP with memory!
This result and our proof is analogous to the “Markov optimality theorem” of vanilla RL, e.g., (Puterman, 2014), (Agarwal
et al., 2021, Theorem 1.7).

Theorem F.2. For all h we have U⋆
h = Uρ⋆

h and V ⋆
h = V ρ⋆

h . Furthermore, for all sh, bh,HAug
h , we have

V ⋆
h (sh, bh) = inf

ρ∈ΠAug
H

V ρ
h (sh, bh;H

Aug
h ).

In particular, V ⋆
1 (s1, b) = infρ∈ΠAug

H
V ρ
1 (s1, b) for all b.

Proof. We first prove the claim that U⋆
h = Uρ⋆

h and V ⋆
h = V ρ⋆

h . The base case of H + 1 is trivial since VH+1(s, b) = b+

everywhere. For the inductive step, fix any h ∈ [H] and suppose the claim is true for h+ 1. Then,

Uρ⋆

h (sh, bh, ah) = Esh+1∼P⋆(sh,ah),rh∼R(sh,ah)

[
V ρ⋆

h+1(sh+1, bh − rh)
]

(Bellman Eqns)

= Esh+1∼P⋆(sh,ah),rh∼R(sh,ah)

[
V ⋆
h+1(sh+1, bh − rh)

]
(IH)

= U⋆
h(sh, bh, ah). (Bellman Opt. Eqns)
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This proves that U⋆
h = Uρ⋆

h . For V ,

V ρ⋆

h (sh, bh) = Eah∼ρ⋆
h(sh,bh)

[
Uρ⋆

h (sh, bh, ah)
]

(Bellman Eqns)

= Eah∼ρ⋆
h(sh,bh)

[U⋆
h(sh, bh, ah)] (above claim)

= min
ah∈A

U⋆
h(sh, bh, ah) (defn. of ρ⋆h)

= V ⋆
h (sh, bh). (Bellman Opt. Eqns)

Therefore, we’ve shown that V ⋆
h = V ρ⋆

h .

We also prove the second claim inductively. The base case is again trivial since VH+1(s, b) = b+ everywhere. For the
inductive step, fix any h ∈ [H] and suppose the claim is true for h+ 1. Now fix any sh, bh and HAug

h ,

inf
ρ∈ΠAug

H

V ρ
h (sh, bh;H

Aug
h )

= inf
ρ∈ΠAug

H

Eρ

(bh −
H∑
t=h

rt

)+

| sh, bh,HAug
h


≥ inf

ρ∈ΠAug
H

Eah,sh+1,rh,mh

 inf
ρ′∈ΠAug

H

Eρ′

(bh −
H∑
t=h

rt

)+

| sh+1, bh+1,HAug
h+1


= inf

ρ∈ΠAug
H

Eah∼ρh(sh,bh,HAug
h )

[
Esh+1∼P⋆(sh,ah),rh∼R(sh,ah)

[
V ⋆
h+1(sh+1, bh − rh)

]]
(IH)

= min
a∈A

Esh+1∼P⋆(sh,ah),rh∼R(sh,ah)

[
V ⋆
h+1(sh+1, bh − rh)

]
(⋆)

= V ⋆
h (sh, bh). (by defn.)

There are three key steps. First, the inequality is due to expanding out one step, where ah ∼ ρh(sh, bh,HAug
h ), sh+1 ∼

P ⋆(sh, ah), rh ∼ R(sh, ah),mh ∼ Mh(sh, ah, rh,Hh), then push the inf for future steps inside the expectation. Second,
the IH invocation is significant as it essentially removes dependence of the memory hallucinations mh. Third, the step
marked with ⋆ is significant since, regardless of the history, the current best action is just to minimize the inner function
(which is independent of the history). We also have V ⋆

h (sh, bh) ≤ infρ∈ΠAug
H

V ρ
h (sh, bh;H

Aug
h ) since by the first part of

the claim, V ⋆
h is the value of ρ⋆ ∈ ΠAug

H . Thus, we’ve shown V ⋆
h (sh, bh) = infρ∈ΠAug

H
V ρ
h (sh, bh;H

Aug
h ).

As a corollary of the above theorem, we can restrict the policy class to history-dependent policies on the non-augmented
MDP (and without history).

Theorem 5.1 (Optimality of ΠAug). For any b ∈ [0, 1],

V ⋆
1 (s1, b) = V ρ⋆

1 (s1, b) = infπ∈ΠH V π
1 (s1, b).

Proof of Theorem 5.1. The first equality is directly from Theorem F.2. We now prove the second equality. For any b,

min
ρ∈ΠAug

V πρ,b

1 (s1, b)

= min
ρ∈ΠAug

V ρ
1 (s1, b) (Lemma F.1)

= min
π∈ΠAug

H

V π
1 (s1, b) (Theorem F.2)

≤ min
π∈ΠH

V π
1 (s1, b)

≤ min
ρ∈ΠAug

V πρ,b

1 (s1, b).

The last two inequalities is due to considering strictly smaller sets of policies. Therefore, we have equality throughout,
which proves the claim.
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G. Proofs for CVaR-UCBVI
G.1. The high probability good event

In this section, we derive all the high probability results needed in the remainder of the proof. Fix any failure probability
δ ∈ (0, 1). Then, w.p. at least 1− δ, for all h ∈ [H], k ∈ [K], s ∈ S, a ∈ A, we have, for all b ∈ [0, 1], s′ ∈ S ,

∣∣∣∣(P̂k(s, a)− P ⋆(s, a)
)⊤

Erh

[
V ⋆
h+1(·, b− rh)

]∣∣∣∣ ≤
√

L

Nk(s, a)
, (8)

∣∣∣∣(P̂k(s, a)− P ⋆(s, a)
)⊤

Erh

[
V ⋆
h+1(·, b− rh)

]∣∣∣∣ ≤
√

2Vars′∼P̂k(s,a)

(
Erh

[
V ⋆
h+1(s

′, b− rh)
])
L

Nk(s, a)
+

L

Nk(s, a)
, (9)

∣∣∣P̂k(s
′ | s, a)− P ⋆(s′ | s, a)

∣∣∣ ≤√2P ⋆(s′ | s, a)L
Nk(s, a)

+
L

Nk(s, a)
. (10)

where rh ∼ R(s, a) in the expectations.

Proof. Eq. (8) is due to uniform Hoeffding applied to Esh+1,rh

[
V ⋆
h+1(sh+1, b− rh)

]
, which is 1-Lipschitz in b by

Lemma G.1. Eq. (10) is due to standard Bernstein’s inequality on the indicator random variable on (s, a, s′), i.e.,
I [(sh,k, ah,k, sh+1,k) = (s, a, s′)]. Eq. (9) is due to uniform empirical Bernstein applied to Esh+1,rh

[
V ⋆
h+1(sh+1, b− rh)

]
.

In Appendix B, we derive and review these uniform results.

Lemma G.1. For any h ∈ [H] and s ∈ S , V ⋆
h (s, ·) is 1-Lipschitz.

Proof. We proceed by induction. Let b, b′ ∈ [0, 1] be arbitrary. At h = H + 1,
∣∣V ⋆

H+1(s, b)− V ⋆
H+1(s, b

′)
∣∣ =

|b+ − (b′)+| ≤ |b− b′| since the ReLU is 1-Lipschitz. For the inductive step, fix any h and suppose the claim is true
at h+ 1. Then |V ⋆

h (s, b)− V ⋆
h (s, b

′)| =
∣∣mina Esh+1,rh

[
V ⋆
h+1(sh+1, b− rh)

]
−mina Esh+1,rh

[
V ⋆
h+1(sh+1, b

′ − rh)
]∣∣ ≤

maxa
∣∣Esh+1,rh

[
V ⋆
h+1(sh+1, b− rh)− V ⋆

h+1(sh+1, b
′ − rh)

]∣∣ ≤ |b− b′|, by the IH. The expectations are over sh+1 ∼
P ⋆(s, a) and rh ∼ R(s, a).

We now show that the projected error between P̂k(s, a) and P ⋆ can be bounded in two ways.

Lemma G.2. For any δ ∈ (0, 1), w.p. at least 1− δ, we have for all f : S → [0, 1],

∣∣∣∣(P̂k(s, a)− P ⋆(s, a)
)⊤

f

∣∣∣∣ ≤ min

{
8

√
SL

Nk(s, a)
,
Es′∼P⋆(s,a)[f(s

′)]

H
+ ξk(s, a)

}
,

where ξk(s, a) := min

{
1,

2HSL

Nk(s, a)

}
.

Proof. Fix any f : S → [0, 1]. The first bound of
√

SL
Nk(s,a)

follows from applying Hoeffding on an ε-net of the space

of f ’s, i.e., for each g in the net, we have
∣∣∣∣(P̂k(s, a)− P ⋆(s, a)

)⊤
g

∣∣∣∣ ≤ √
L

Nk(s,a)
. This ε-net has ℓ2 bounded by

√
S.

This gives the metric entropy log(1 + 2
√
S/ε)S ≈ S log(S/ε). Setting ε = 1

HK makes the error lower order, i.e.,
1

HK ≤ 1
Nk(s,a)

, which gives the uniform result over all f ’s. The detailed proof is in (Agarwal et al., 2021, Lemma 7.2).
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The second bound also appears in Agarwal et al. (2021) as Lemma 7.8. We prove its proof for completeness:∣∣∣∣(P̂k(s, a)− P ⋆(s, a)
)⊤

f

∣∣∣∣ ≤∑
s′

∣∣∣P̂k(s
′ | s, a)− P ⋆(s′ | s, a)

∣∣∣f(s′)
≤
∑
s′

f(s′)

√
2P ⋆(s′ | s, a)L

Nk(s, a)
+

f(s′)L

Nk(s, a)
(Eq. (10))

≤

√
S

∑
s′ 2P

⋆(s′ | s, a)f2(s′)L

Nk(s, a)
+

SL

Nk(s, a)
(C-S)

≤ SHL

Nk(s, a)
+

∑
s′ P

⋆(s′ | s, a)f(s′)
H

+
SL

Nk(s, a)
. (AM-GM)

Finally, since P̂k(s, a)
⊤f and P ⋆(s, a)⊤f are both in [0, 1], a trivial bound is 1, which is why ξh,k can be truncated.

Finally, we also have consequences of Azuma’s inequality Lemma G.11. W.p. at least 1− δ, for all h ∈ [H],

K∑
k=1

Eρ̂k ,̂bk
[2BONh,k(sh, bh, ah) + ξh,k(sh, ah) | Ek] ≤ 6L+ 2

K∑
k=1

2BONh,k(sh,k, bh,k, ah,k) + ξh,k(sh,k, ah,k),

(Azuma 1)

where we used the fact that WLOG we truncated the bonus to be at most 1 (by sentence below Eq. (BON⋆)), so
∥2BONh,k + ξh,k∥∞ ≤ 3. Ek denotes the complete trajectories from episodes 1, 2, ..., k − 1

For the Bernstein bonus proofs, we’ll also need,

H∑
h=1

K∑
k=1

Es′∼P⋆(sh,k,ah,k),r∼R(sh,k,ah,k)

[(
V̂ ↑
h+1,k(s

′, bh,k − r)− V̂ ↓
h+1,k(s

′, bh,k − r)
)2

| Ek,Hh,k

]

≤
√
HKL+

H∑
h=1

K∑
k=1

(
V̂ ↑
h+1,k(sh+1,k, bh+1,k)− V̂ ↓

h+1,k(sh+1,k, bh+1,k)
)2

, (Azuma 2)

and

H∑
h=1

K∑
k=1

Es′∼P⋆(sh,k,ah,k),r∼R(sh,k,ah,k)

[(
V ρ̂k

h+1(s
′, bh,k − r)− V̂ ↓

h+1,k(s
′, bh,k − r)

)2
| Ek,Hh,k

]

≤
√
HKL+

H∑
h=1

K∑
k=1

(
V ρ̂k

h+1(sh+1,k, bh+1,k)− V̂ ↓
h+1,k(sh+1,k, bh+1,k)

)2
, (Azuma 3)

where we’ve used that the envelope is at most 1 and bh+1,k = bh,k − rh,k. Here, Hh,k = (st,k, at,k, rt,k)t∈[h−1] denotes
the history before h for the k-th episode. Also, for all h ∈ [H],

K∑
k=1

Vars′∼P⋆(sh,k,ah,k)

(
Er∼R(sh,k,ah,k)

[
V ρ̂k

h+1(s
′, bh,k − r)

])
≤ 2L+ 2

K∑
k=1

Eρ̂k ,̂bk

[
Vars′∼P⋆(sh,ah)

(
Er∼R(sh,ah)

[
V ρ̂k

h+1(s
′, bh,k − r)

])
| Ek
]
. (Azuma 4)

Also, for all h, t ∈ [H] where t ≥ h,

K∑
k=1

Eρ̂k,sh=sh,k,bh=bh,k

[
2BONBERN

t,k (st, bt, at) + ξt,k(st, at) | Ek
]
≤ 6L+ 2

K∑
k=1

2BONBERN
t,k (st,k, bt,k, at,k) + ξt,k(st,k, at,k).

(Azuma 5)
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Finally a standard Azuma also gives, for all h ∈ [H],

K∑
k=1

Eρ̂k ,̂bk

[
2BONBERN

h,k (sh, bh, ah) + ξh,k(sh, ah) | Ek
]
≤ 3

√
KL+

K∑
k=1

2BONBERN
h,k (sh,k, bh,k, ah,k) + ξh,k(sh,k, ah,k)

(Azuma 6)

Henceforth, we always condition on the union of these high probability statements to be true.

G.2. Key lemmas for CVaR-UCBVI

In general, the bonus should be designed to satisfy for all h ∈ [H], k ∈ [K],

∀s, b, a :

∣∣∣∣(P̂k(s, a)− P ⋆(s, a)
)⊤

Erh∼R(s,a)

[
V ⋆
h+1(·, b− rh)

]∣∣∣∣ ≤ BONh,k(s, b, a). (BON⋆)

The bonus only needs to satisfy this inequality for our proofs to work. WLOG, since the left hand side is the difference
between two numbers in [0, 1], we can always assume bonus to be truncated by 1, i.e. has envelope 1.

We say that pessimism is satisfied at h ∈ [H], k ∈ [K] if

∀s, b : V̂ ↓
h,k(s, b) ≤ V ⋆

h (s, b). (Pessimism (V ↓))

Lemma G.3. For any k ∈ [K], h ∈ [H], suppose Pessimism (V ↓) holds at (h + 1, k) and BON⋆ holds at (h, k). Then
Pessimism (V ↓) holds at (h, k).

Proof. First, we prove pessimism for Û↓
h,k. For any s, b, a, we have

Û↓
h,k(s, b, a)− U⋆

h(s, b, a)

= P̂k(s, a)
⊤Erh∼R(s,a)

[
V̂ ↓
h+1,k(·, b− rh)

]
− BONh,k(s, b, a)− P ⋆(s, a)⊤Erh∼R(s,a)

[
V ⋆
h+1(·, b− rh)

]
≤
(
P̂k(s, a)− P ⋆(s, a)

)⊤
Erh∼R(s,a)

[
V ⋆
h+1(·, b− rh)

]
− BONh,k(s, b, a) (IH)

≤ 0. by BON⋆

To complete the proof, if V̂ ↓
h,k(s, b) = 0, it is trivially pessimistic, and if not,

V̂ ↓
h,k(s, b)− V ⋆

h (s, b) = min
a

{
Û↓
h,k(s, b, a)

}
−min

a
{U⋆

h(s, b, a)}

≤ max
a

{
Û↓
h,k(s, b, a)− U⋆

h(s, b, a)
}

≤ 0.

Remarkably, we show Simulation lemma also holds for CVaR-UCBVI. Here, it is also required that the bonus satisfies
BON⋆. As for notation, recall Ek represents the episodes before and not including k.
Lemma G.4 (Simulation Lemma). Fix any k ∈ [K], t ∈ [H]. Then, for all st, bt, we have

V ρ̂k

t (st, bt)− V̂ ↓
t,k(st, bt)

≤
H∑
h=t

Eρ̂k,st,bt

[
BONh,k(sh, bh, ah) +

(
P ⋆(sh, ah)− P̂k(sh, ah)

)⊤
V̂ ↓
h+1,k(·, bh+1) | Ek

]
. (11)

Furthermore, if we assume that BON⋆ holds, then for all st, bt,

V ρ̂k

t (st, bt)− V̂ ↓
t,k(st, bt) ≤

H∑
h=t

(1 + 1/H)
h−tEρ̂k,st,bt [2BONh,k(sh, bh, ah) + ξh,k(sh, ah) | Ek]. (12)
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In particular,

V ρ̂k

1 (s1, b)− V̂ ↓
1,k(s1, b) ≤ e

H∑
h=1

Eρ̂k [2BONh,k(sh, bh, ah) + ξh,k(sh, ah) | Ek].

Proof. Fix any k and t. All expectations in the proof will condition on Ek; this way, the randomness is only from rolling in
the policy ρ̂k and not over any of the prior episodes.

First claim: Let’s first show Eq. (11) by induction. The base case is t = H+1, we have V ρ̂k

H+1(s, b) = V̂ ↓
H+1,k(s, b) = b+,

so V ρ̂k

H+1 − V̂H+1,k = 0.

For the inductive step, fix any t ≤ H and suppose Eq. (11) is true for t + 1. Let us denote
at = ρ̂kt (st, bt) = argmina Ût,k(st, bt, a), so V̂ ↓

t,k(st, bt) = max
{
Û↓
t,k(st, bt, at), 0

}
≥ Û↓

t,k(st, bt, at) ≥

P̂t,k(st, at)
⊤Ert

[
V̂ ↓
t+1,k(·, bt+1)

]
− BONt,k(st, bt, at), where bt+1 = bt − rt is the random next budget. So, we have

V ρ̂k

t (st, bt)− V̂ ↓
t,k(st, bt)

≤ U ρ̂k

t (st, bt, at)− Û↓
t,k(st, bt, at)

= BONt,k(st, bt, at)− P̂t,k(st, at)
⊤Ert

[
V̂ ↓
t+1,k(·, bt+1)

]
+ P ⋆

t (st, at)
⊤Ert

[
V ρ̂k

t+1,k(·, bt+1)
]

= BONt,k(st, bt, at) +
(
P ⋆
t (st, at)− P̂t,k(st, at)

)⊤
Ert

[
V̂ ↓
t+1,k(·, bt+1)

]
+ P ⋆

t (st, at)
⊤Ert

[
V ρ̂k

t+1(·, bt+1)− V̂ ↓
t+1,k(·, bt+1)

]
≤ BONt,k(st, bt, at) +

(
P ⋆
t (st, at)− P̂t,k(st, at)

)⊤
Ert

[
V̂ ↓
t+1,k(·, bt+1)

]
+ Est+1∼P⋆

t (st,at)

[
H∑

h=t+1

Eρ̂k,st+1,bt+1

[
BONh,k(sh, bh, ah) +

(
P ⋆(sh, ah)− P̂k(sh, ah)

)⊤
V̂ ↓
h+1,k(·, bh+1)

]]
(IH)

=
H∑
h=t

Eρ̂k,st,bt

[
BONh,k(sh, bh, ah) +

(
P ⋆(sh, ah)− P̂k(sh, ah)

)⊤
V̂ ↓
h+1,k(·, bh+1)

]
.

This concludes the proof for the first claim.

Second claim: Now let us show Eq. (12) by induction. The base case at t = H + 1 is same as the first claim. For the
inductive step, fix any t ≤ H and suppose Eq. (12) is true for t+ 1. Then, continuing from the line before invoking the IH
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of the first claim, we have

V ρ̂k

t (st, bt)− V̂ ↓
t,k(st, bt)

≤ BONt,k(st, bt, at) +
(
P ⋆
t (st, at)− P̂t,k(st, at)

)⊤
Ert

[
V̂ ↓
t+1,k(·, bt+1)

]
+ P ⋆

t (st, at)
⊤Ert

[(
V ρ̂k

t+1(·, bt+1)− V̂ ↓
t+1,k(·, bt+1)

)]
= BONt,k(st, bt, at) +

(
P ⋆
t (st, at)− P̂t,k(st, at)

)⊤
Ert

[
V̂ ↓
t+1,k(·, bt+1)− V ⋆

t+1(·, bt+1)
]

+
(
P ⋆
t (st, at)− P̂t,k(st, at)

)⊤
Ert

[
V ⋆
t+1(·, bt+1)

]
+ P ⋆

t (st, at)
⊤Ert

[
V ρ̂k

t+1(·, bt+1)− V̂ ↓
t+1,k(·, bt+1)

]
≤ BONt,k(st, bt, at) + ξt,k(st, at) +

1

H
P ⋆
t (st, at)

⊤Ert

[
V ⋆
t+1(·, bt+1)− V̂ ↓

t+1,k(·, bt+1)
]

(Lemma G.2)

+ BONt,k(st, bt, at) + P ⋆
t (st, at)

⊤Ert

[
V ρ̂k

t+1(·, bt+1)− V̂ ↓
t+1,k(·, bt+1)

]
(premise (BON⋆))

≤ 2BONt,k(st, bt, at) + ξt,k(st, at) + (1 + 1/H)P ⋆
t (st, at)

⊤Ert

[
V ρ̂k

t+1(·, bt+1)− V̂ ↓
t+1,k(·, bt+1)

]
(V ⋆ ≤ V ρ̂k

)

≤ 2BONt,k(st, bt, at) + ξt,k(st, at)

+ (1 + 1/H)
H∑

h=t+1

(1 + 1/H)h−t−1Eρ̂k,st,bt [2BONh,k(sh, bh, ah) + ξh,k(sh, ah)]. (IH)

This completes the inductive proof. Observing that (1 + 1/H)H ≤ exp(1/H)H = e gives the corollary.

G.3. CVaR-UCBVI with Hoeffding Bonus

The Hoeffding bonus BONHOEFF
h,k (s, a) defined in 5 satisfies the crucial bonus requirement BON⋆ by the uniform Hoeffd-

ing’s inequality result of Eq. (8). Thus, we have pessimism for all k, h with the Hoeffding bonus.

Theorem 5.2. For any δ ∈ (0, 1), w.p. at least 1− δ, CVaR-UCBVI with the Hoeffding bonus (Eq. (5)) enjoys

RegretRL
τ (K) ≤ 4eτ−1

√
SAHKL+ 10eτ−1S2AHL2.

Proof of Theorem 5.2. Let R(ρk, b̂k) denote the distribution of returns from rolling in ρ̂k starting at b̂k. For any k, we have

CVaRτ (R(ρ̂k, b̂k)) = max
b∈[0,1]

b− τ−1Eρ̂k ,̂bk

b−
∑
t∈[H]

rt

+
≥ b̂k − τ−1Eρ̂k ,̂bk

b̂k −
∑
t∈[H]

rt

+
= b̂k − τ−1V ρ̂k

1 (s1, b̂k). (13)

29



Near-Minimax-Optimal Risk-Sensitive RL with CVaR

Therefore,

RegretRL
τ (K)

=
K∑

k=1

CVaR⋆
τ −CVaRτ (R(ρ̂k, b̂k))

=
K∑

k=1

{
b⋆ − τ−1V ⋆

1 (s1, b
⋆)
}
− CVaRτ (R(ρ̂k, b̂k))

≤
K∑

k=1

{
b⋆ − τ−1V̂ ↓

1,k(s1, b
⋆)
}
− CVaRτ (R(ρ̂k, b̂k)) (Pessimism (V ↓))

≤
K∑

k=1

{
b̂k − τ−1V̂ ↓

1,k(s1, b̂k)
}
−
{
b̂k − τ−1V ρ̂k

1 (s1, b̂k)
}

(defn. of b̂k and Eq. (13))

= τ−1
K∑

k=1

(
V ρ̂k

1 (s1, b̂k)− V̂ ↓
1,k(s1, b̂k)

)
≤ eτ−1

∑
(h,k)∈[H]×[K]

Eρ̂k ,̂bk

[
2BONHOEFF

h,k (sh, ah) + ξh,k(sh, ah) | Ek
]

(Simulation Lemma G.4)

≤ 6eτ−1HL+ 2eτ−1
∑

(h,k)∈[H]×[K]

2BONHOEFF
h,k (sh,k, ah,k) + ξh,k(sh,k, ah,k) (Eq. (Azuma 1))

≤ 6eτ−1HL+ 2eτ−1
(
2
√
L ·

√
SAHKL+ 2HSL · SA log(K)

)
(elliptical potential Lemma G.12)

≤ 4eτ−1
√
SAHKL+ 10eτ−1S2AHL2,

which concludes the proof.

G.4. CVaR-UCBVI with Bernstein Bonus

When running Algorithm 2 with the Bernstein bonus BONBERN
h,k (s, b, a) (Eq. (6)), we need to also show that V̂ ↑

h,k are
optimistic for V ⋆

h . We say that optimism is satisfied at (h, k) ∈ [H]× [K] if

∀s, b : V ⋆
h (s, b) ≤ V̂ ↑

h,k(s, b). (Optimism (V ↑))

Lemma G.5. For any k ∈ [K], h ∈ [H], suppose Optimism (V ↑) holds at (h + 1, k) and BON⋆ holds at (h, k). Then
Optimism (V ↑) holds at (h, k).

Proof. First, we prove optimism for Û↑
h,k. For any s, b, a we have

U⋆
h(s, b, a)− Û↑

h,k(s, b, a)

= P ⋆(s, a)⊤Erh

[
V ⋆
h+1(·, b− rh)

]
− P̂k(s, a)

⊤Erh

[
V̂ ↑
h+1,k(·, b− rh)

]
− BONh,k(s, b, a)

≤
(
P ⋆(s, a)− P̂k(s, a)

)⊤
Erh

[
V ⋆
h+1(·, b− rh)

]
− BONh,k(s, b, a) (IH)

≤ 0. by Eq. (BON⋆)

To complete the proof, if V̂ ↑(s, b) = 1, then it is trivially optimistic, and if not

V ⋆
h (s, b)− V̂ ↑

h,k(s, b) = min
a

U⋆
h(s, b, a)− Û↑

h,k(s, b, ρ̂
k(s, b))

≤ U⋆
h(s, b, ρ̂

k(s, b))− Û↑
h,k(s, b, ρ̂

k(s, b))

≤ 0.
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Lemma G.6. For any (h, k) ∈ [H] × [K], if Pessimism (V ↓) and Optimism (V ↑) both hold at (h + 1, k), then BON⋆
holds at (h, k) for the Bernstein bonus BONBERN.

Proof. Recall that uniform empirical Bernstein Eq. (9) gave us the following inequality: for all s, a and b,∣∣∣∣(P̂k(s, a)− P ⋆(s, a)
)⊤

Erh

[
V ⋆
h+1(·, b− rh)

]∣∣∣∣ ≤
√

2Vars′∼P̂k(s,a)

(
Erh

[
V ⋆
h+1(s

′, b− rh)
])
L

Nk(s, a)
+

L

Nk(s, a)
.

Eq. (9) revisited.

Now apply the useful triangle inequality of variances
√
Var(X) ≤

√
Var(Y ) +

√
Var(X − Y ) (Zanette & Brunskill,

2019, Eqn. 51),√
Vars′∼P̂k(s,a)

(
Erh

[
V ⋆
h+1(s

′, b− rh)
])

≤
√

Vars′∼P̂k(s,a)

(
Erh

[
V̂ ↓
h+1(s

′, b− rh)
])

+

√
Vars′∼P̂k(s,a)

(
Erh

[
V ⋆
h+1(s

′, b− rh)− V̂ ↓
h+1,k(s

′, b− rh)
])

.

The first term is in the bonus. The second term is bounded by the correction term of the bonus as follows,

Vars′∼P̂k(s,a)

(
Erh

[
V ⋆
h+1(s

′, b− rh)− V̂ ↓
h+1,k(s

′, b− rh)
])

≤ Es′∼P̂k(s,a)

[(
Erh

[
V ⋆
h+1(s

′, b− rh)− V̂ ↓
h+1,k(s

′, b− rh)
])2]

≤ Es′∼P̂k(s,a),r∼R(s,a)

[(
V ⋆
h+1(s

′, b− r)− V̂ ↓
h+1,k(s

′, b− r)
)2]

(Jensen)

≤ Es′∼P̂k(s,a),r∼R(s,a)

[(
V̂ ↑
h+1,k(s

′, b− r)− V̂ ↓
h+1,k(s

′, b− r)
)2]

. (premise: V̂ ↓
h+1,k ≤ V ⋆

h+1 ≤ V̂ ↑
h+1,k)

This upper bound is a part of the Bernstein bonus. Thus, we’ve shown that BONBERN dominates the error, and so BON⋆ is
satisfied at (h, k).

A key corollary of Lemmas G.3, G.5 and G.6 is that we have Pessimism (V ↓) and Optimism (V ↑) for all (h, k) ∈ [H]×[K]
with the Bernstein bonus. Indeed, for any k, we first apply Lemma G.6 to get that BON⋆ is satisfied at (H, k) (as
optimism/pessimism trivially holds at H + 1). Then, apply Lemmas G.3 and G.5 to get Pessimism (V ↓) and Optimism
(V ↑) at (H, k). Then, apply Lemma G.6 to get that BON⋆ is satisfied at (H − 1, k). Continue in this fashion until we’ve
shown BON⋆, Pessimism (V ↓) and Optimism (V ↑) for all h ∈ [H].
Theorem G.7. The Bernstein bonus satisfies BON⋆, Pessimism (V ↓) and Optimism (V ↑) at all (h, k) ∈ [H]× [K].

We now prove the regret guarantee for the Bernstein bonus. The main body of the proof for Theorem 5.3 and Theo-
rem 5.5 will be the same. The proofs will only diverge at the end when bounding the sum of variances, where we invoke
Assumption 5.4.
Theorem 5.3. For any δ ∈ (0, 1), w.p. at least 1 − δ, CVaR-UCBVI with the Bernstein bonus (Eq. (6)) enjoys a regret
guarantee of

RegretRL
τ (K) ≤ 10eτ−1

√
SAKL+ τ−1ξ,

where ξ ∈ Õ(SAHK1/4 + S2AH) is a lower order term.

Theorem 5.5. Under Assumption 5.4, the bound in Theorem 5.3 can be refined to,

RegretRL
τ (K) ≤ 12e

√
τ−1SAKL+ τ−1p

−1/2
min ξ.

Proof of Theorem 5.3 and Theorem 5.5. Following the same initial steps as Theorem 5.2, we have

RegretRL
τ (K) ≤ 6eτ−1HL+ 2eτ−1

∑
(h,k)∈[H]×[K]

2BONBERN
h,k (sh,k, bh,k, ah,k) + ξh,k(sh,k, ah,k).
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The proof boils down to bounding the sum.

Logarithmic-in-K terms: First, note that any O(1/Nk(s, a)) term will scale logarithmically in K. This includes the
ξh,k(s, a) term, as well as a 2L

Nk(s,a)
from the bonus. Thus,∑

(h,k)∈[H]×[K]

2L+ 2HSL

Nk(sh,k, ah,k)
≤ 4HSL · SA log(K) = 4S2AHL2. (Lemma G.12)

The variance correction term of the bonus:

∑
(h,k)∈[H]×[K]

√√√√√Es′∼P̂k(sh,k,ah,k),r∼R(sh,k,ah,k)

[(
V̂ ↑
h+1,k(s

′, bh,k − r)− V̂ ↓
h+1,k(s

′, bh,k − r)
)2]

Nk(sh,k, ah,k)
. (14)

First, apply a Cauchy Schwarz. The
∑

h,k
1

Nk(sh,k,ah,k)
term is at most SAL by elliptical potential Lemma G.12. Then,

translate P̂ to P ⋆ via Lemma G.2 to get

≤

√√√√√√√√√√
SAL

( ∑
(h,k)∈[H]×[K]

8

√
SL

Nk(sh,k, ah,k)

+
∑

(h,k)∈[H]×[K]

Es′∼P⋆(sh,k,ah,k),r∼R(sh,k,ah,k)

[(
V̂ ↑
h+1,k(s

′, bh,k − r)− V̂ ↓
h+1,k(s

′, bh,k − r) | Ek,Hh,k

)2])

Then, switch to the empirical s, b using Eq. (Azuma 2),

≤

√√√√√SAL

8
√
SL

√
SAHKL+

√
HKL+

∑
(h,k)∈[H]×[K]

(
V̂ ↑
h+1,k(sh+1,k, bh+1,k)− V̂ ↓

h+1,k(sh+1,k, bh+1,k)
)2.

For the sum term, since each term is at most 1, we have
(
V̂ ↑
h,k(sh,k, bh,k)− V̂ ↓

h,k(sh,k, bh,k)
)2

≤(
V̂ ↑
h,k(sh,k, bh,k)− V̂ ↓

h,k(sh,k, bh,k)
)

. Then, applying a simulation-like Lemma G.8 to each summand bounds the sum
by,

H∑
h=2

K∑
k=1

H∑
t=h

Eρ̂k,sh=sh,k,bh=bh,k

[
2BONBERN

t,k (st, bt, at) + ξt,k(st, at) | Ek
]

(simulation-like Lemma G.8)

≤ 6H2L+ 2
H∑

h=2

H∑
t=h

K∑
k=1

2BONBERN
t,k (st,k, bt,k, at,k) + ξt,k(st, at) (Eq. (Azuma 5))

≤ 6H2L+ 2H
H∑
t=1

K∑
k=1

2BONBERN
t,k (st,k, bt,k, at,k) + ξt,k(st, at).

Now, we can loosely bound each Bernstein bonus by 2
√

2L
Nk(s,a)

+ L
Nk(s,a)

, so by elliptical potential Lemma G.12,

H∑
t=1

K∑
k=1

2BONBERN
t,k (st,k, bt,k, at,k) + ξt,k(st, at) ≤ 4

√
2L ·

√
SAHKL+ (L+ 2HSL) · SA log(K)

≤ 6
√
SAHKL+ 3S2AHL2. (15)

Therefore, we’ve shown that

H∑
h=2

K∑
k=1

H∑
t=h

Eρ̂k,sh=sh,k,bh=bh,k

[
2BONBERN

t,k (st, bt, at) + ξt,k(st, at) | Ek
]
≤ 12

√
SAH3KL+ 12S2AH2L2. (16)
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Combining everything together, we have

Eq. (14) ≤
√
SAL

(
9S

√
AHKL+ 12

√
SAH3KL+ 12S2AH2L2

)
≤ 5SAHK1/4L+ 4S3/2AHL2,

which is lower order in K (the dominant term should scale as K1/2).

Bounding the empirical variance term: We now shift our focus to the variance term of the bonus,

∑
(h,k)∈[H]×[K]

√√√√Vars′∼P̂k(sh,k,ah,k)

(
Er∼R(sh,k,ah,k)

[
V̂ ↓
h+1,k(s

′, bh,k − r)
])

Nk(sh,k, ah,k)
. (17)

The key idea here is to apply a sequential Law of Total Variance Lemma G.13, but to do so, we must first con-

vert
√
Vars′∼P̂k(sh,k,ah,k)

(
Erh

[
V̂ ↓
h+1,k(s

′, bh,k − rh)
])

to
√

Vars′∼P⋆
h (sh,k,ah,k)

(
Erh

[
V ρ̂k

h+1(s
′, bh,k − rh)

]
| Ek
)

. So

we need to bound the difference term, i.e.,

∑
(h,k)∈[H−1]×[K]

√√√√Vars′∼P̂k(sh,k,ah,k)

(
Erh

[
V̂ ↓
h+1,k(s

′, bh,k − rh)
])

Nk(sh,k, ah,k)
−

√√√√Vars′∼P⋆
h
(sh,k,ah,k)

(
Erh

[
V ρ̂k

h+1(s
′, bh,k − rh)

]
| Ek

)
Nk(sh,k, ah,k)

(18)

Switch the empirical variance to the (conditional) population one, which incurs a
∑

h,k 2
√

L
Nk(sh,k,ah,k)

term (Appendix B). Then, use√
Var(X + Y ) ≤

√
Var(X) +

√
Var(Y ) (Eqn 51 of (Zanette & Brunskill, 2019)) to get,

≤
∑

(h,k)∈[H−1]×[K]

2
√
L

Nk(sh,k, ah,k)
+

∑
(h,k)∈[H−1]×[K]

√√√√Vars′∼P⋆(sh,k,ah,k)

(
Erh

[
V̂ ↓
h+1,k(s

′, bh+1,k)− V ρ̂k

h+1(s
′, bh+1,k)

]
| Ek

)
Nk(sh,k, ah,k)

≤ 2
√
L · SA log(K) +

√
SAL

∑
(h,k)∈[H−1]×[K]

Vars′∼P⋆(sh,k,ah,k)

(
Erh

[
V ρ̂k

h+1(s
′, bh,k − rh)− V̂ ↓

h+1,k(s
′, bh,k − rh)

]
| Ek

)
,

where the second inequality is due to elliptical potential Lemma G.12 and Cauchy-Schwarz. Focusing on the sum inside
the square root,∑

(h,k)∈[H−1]×[K]

Vars′∼P⋆(sh,k,ah,k)

(
Erh

[
V ρ̂k

h+1(s
′, bh,k − rh)− V̂ ↓

h+1,k(s
′, bh,k − rh)

]
| Ek
)

≤
∑

(h,k)∈[H−1]×[K]

Es′,rh∼(P⋆◦R)(sh,k,ah,k)

[(
V ρ̂k

h+1(s
′, bh,k − rh)− V̂ ↓

h+1,k(s
′, bh,k − rh)

)2
| Ek
]

(Jensen)

≤
√
HKL+

∑
(h,k)∈[H−1]×[K]

(
V ρ̂k

h+1(sh+1,k, bh+1,k)− V̂ ↓
h+1,k(sh+1,k, bh+1,k)

)2
(Eq. (Azuma 3))

≤
√
HKL+

∑
(h,k)∈[H−1]×[K]

(
V ρ̂k

h+1(sh+1,k, bh+1,k)− V̂ ↓
h+1,k(sh+1,k, bh+1,k)

)
(r.v. is in [0, 1])

≤
√
HKL+

∑
(h,k)∈[H−1]×[K]

H∑
t=h

Eρ̂k,sh=sh,k,bh=bh,k

[
2BONBERN

t,k (st, bt, at) + ξt,k(st, at)
]

(simulation lemma Lemma G.4)

≤
√
HKL+ 12

√
SAH3KL+ 12S2AH2L2. (Eq. (16))

Combining the steps, we have shown that the switching cost to the population variance is at most

Eq. (18) ≤ 2SAL2 +

√
SAL

(
13
√
SAH3KL+ 12S2AH2L2

)
≤ 4SAHK1/4L+ 6S3/2AHL2
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which is again lower order.

(Key step) Bounding the dominant (population) variance term:

∑
(h,k)∈[H]×[K]

√√√√Vars′∼P⋆
h (sh,k,ah,k)

(
Er∼R(sh,k,ah,k)

[
V ρ̂k

h+1(s
′, bh,k − r)

]
| Ek
)

Nk(sh,k, ah,k)
, (19)

First apply a Cauchy-Schwarz (as usual) and then the law of total variance,

≤
√
SAL

∑
(h,k)∈[H]×[K]

Vars′∼P⋆
h (sh,k,ah,k)

(
Er∼R(sh,k,ah,k)

[
V ρ̂k

h+1(s
′, bh,k − r)

])

≤

√√√√√SAL

2HL+ 2
∑

(h,k)∈[H]×[K]

Eρ̂k ,̂bk

[
Vars′∼P⋆

h (sh,ah)

(
Er∼R(sh,ah)

[
V ρ̂k

h+1(s
′, bh − r)

])
| Ek
]

(Eq. (Azuma 4))

≤

√√√√√SAL

2HL+ 2
∑

(h,k)∈[H]×[K]

Eρ̂k ,̂bk

[
Vars′∼P⋆

h (sh,ah),r∼R(sh,ah)

(
V ρ̂k

h+1(s
′, bh − r)

)]
| Ek


(joint variance is larger)

=

√√√√√SAL

2HL+ 2

K∑
k=1

Varρ̂k ,̂bk

(b̂k −
H∑
t=1

rt

)+

| Ek

, (Law of Total Variance Lemma G.9)

Below, we give two ways to bound the sum,

K∑
k=1

Varρ̂k ,̂bk

(b̂k −
H∑
t=1

rt

)+

| Ek

. (20)

The first way is to simply bound it by a probability, which is trivially at most 1. This results in Theorem 5.3. To prove
Theorem 5.5, we show a second more refined approach, which uses Assumption 5.4 to bound each variance by τ , plus a
lower order term.

Before doing so, we first prepare to conclude the proof by recapping all the terms in the regret decomposition. First, we
collected 4S2AHL2 from the 1/Nk(s, a) terms. Eq. (14) is the correction term inside the Bernstein bonus. Eq. (18) is
the switching cost from empirical variance (in the Bernstein bonus) to the population variance that we want to bound now,
which is Eq. (19). We also multiply back the 2

√
2L ≤ 3

√
L factor we omitted from above. So,

4S2AHL2 + 3
√
L(Eq. (14) + Eq. (18) + Eq. (19))

≤ 4S2AHL2 + 3
√
L
((

5SAHK1/4L+ 4S3/2AHL2
)
+
(
4SAHK1/4L+ 6S3/2AHL2

)
+ Eq. (19)

)
= 27SAHK1/4L2 + 34S2AHL3 + 3

√
L · Eq. (19).

Thus, the regret is at most

RegretRL
τ (K) ≤ 6eτ−1HL+ 2eτ−1

(
27SAHK1/4L2 + 34S2AHL3 + 3

√
L · Eq. (19)

)
≤ 6eτ−1

√
L · Eq. (19) + 54eτ−1SAHK1/4L2 + 70eτ−1S2AHL3.

First bound for Eq. (19) (for Theorem 5.3): Since x+ = xI [x ≥ 0], for any random variable X ∈ [0, 1], we have
Var(X+) ≤ E

[
X2I [X ≥ 0]

]
≤ Pr(X ≥ 0). Therefore,

K∑
k=1

Varρ̂k ,̂bk

(b̂k −
H∑
t=1

rt

)+

| Ek

 ≤
K∑

k=1

Pr
ρ̂k ,̂bk

(
H∑

h=1

rh ≤ b̂k | Ek

)
≤ K
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Certainly, each probability is bounded by 1. Hence,

Eq. (19) ≤
√
SAL(2HL+ 2K) ≤

√
2SAKL+

√
2SAHL.

Combining everything together, we get

RegretRL
τ (K) ≤ 6

√
2eτ−1

√
SAKL+ 54eτ−1SAHK1/4L2 + 82eτ−1S2AHL3,

which concludes the proof for Theorem 5.3.

Second bound for Eq. (19) (for Theorem 5.5): Define

f(b) = b− τ−1Eρ̂k ,̂bk

(b− H∑
t=1

rt

)+

| Ek

, b⋆k = argmax
b∈[0,1]

f(b),

f̂(b) = b− τ−1V̂ ↓
1,k(s1, b), b̂k = argmax

b∈[0,1]

f̂(b).

So, b⋆k as the τ -th quantile of R(ρ̂k, b̂k). By pessimism, we have V̂ ↓
1,k(s1, b) ≤ V ⋆

1 (s1, b) ≤ Eρ̂k ,̂bk

[(
b−

∑H
t=1 rt

)+]
,

since V ⋆
1 is the minimum amongst all history-dependent policies, including (ρ̂k, b̂k). Thus, we have f̂(b) ≥ f(b) for all

b ∈ [0, 1]. In particular, we have

f(b⋆k)− f (̂bk) = f(b⋆k)− f̂ (̂bk) + f̂ (̂bk)− f (̂bk)

≤ f(b⋆k)− f̂(b⋆k) + f̂ (̂bk)− f (̂bk) (̂bk is argmax of f̂ )

≤ f̂ (̂bk)− f (̂bk) (f(b⋆k) ≤ f̂(b⋆k) by pessimism)

≤ τ−1
(
V ρ̂k

1 (s1, b̂k)− V̂ ↓
1,k(s1, b̂k)

)
.

Now we invoke Assumption 5.4 with Lemma G.10 which implies

pmin

2τ

(
b⋆k − b̂k

)2
≤ f(b⋆k)− f (̂bk) ≤ τ−1

(
V ρ̂k

1 (s1, b̂k)− V̂ ↓
1,k(s1, b̂k)

)
=⇒

(
b⋆k − b̂k

)2
≤ 2p−1

min

(
V ρ̂k

1 (s1, b̂k)− V̂ ↓
1,k(s1, b̂k)

)
.

Using Var(X) ≤ 2(Var(Y ) + Var(X − Y )),

Eq. (20) =
K∑

k=1

Varρ̂k ,̂bk

(b̂k −
H∑
t=1

rt

)+

| Ek


≤ 2

K∑
k=1

Varρ̂k ,̂bk

(b⋆k −
H∑
t=1

rt

)+

| Ek

+ 2
K∑

k=1

Varρ̂k ,̂bk

(b̂k −
H∑
t=1

rt

)+

−

(
b⋆k −

H∑
t=1

rt

)+

| Ek


≤ 2

K∑
k=1

Pr
ρ̂k ,̂bk

(
H∑
t=1

rt ≤ b⋆k | Ek

)
+ 2

K∑
k=1

(
b̂k − b⋆k

)2
(ReLU is 1-Lipschitz)

≤ 2Kτ + 4p−1
min

K∑
k=1

(
V ρ̂k

1 (s1, b̂k)− V̂ ↓
1,k(s1, b̂k)

)
≤ 2Kτ + 4p−1

min

K∑
k=1

H∑
h=1

Eρ̂k ,̂bk

[
2BONBERN

h,k (sh, bh, ah) + ξh,k(sh, ah) | Ek
]

(simulation Lemma G.4)

≤ 2Kτ + 4p−1
min

(
3
√
KL+ 6

√
SAHKL+ 3S2AHL2

)
. (Eq. (Azuma 6) and the loose bound in Eq. (15))
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Therefore,

Eq. (19) ≤
√
SAL

(
2HL+ 4Kτ + 72p−1

min

√
SAHKL+ 24p−1

minS
2AHL2

)
≤ 2

√
τSAKL+ 9p

−1/2
min SAHK1/4L+ 5p

−1/2
min S3/2AHL2.

Combining everything together, we get

RegretRL
τ (K) ≤ 12e

√
τ−1SAKL+

(
54 + 9p

−1/2
min

)
eτ−1SAHK1/4L2 +

(
70 + 5p

−1/2
min

)
eτ−1S2AHL3.

This concludes the proof for Theorem 5.5.

Lemma G.8. Fix any k ∈ [K]. Then for all t ∈ [H], for all st, bt, we have

V̂ ↑
t,k(st, bt)− V̂ ↓

t,k(st, bt) ≤
H∑
h=t

(1− 1/H)t−hEρ̂k,st,bt [2BONh,k(sh, bh, ah) + ξh,k(sh, ah) | Ek].

Proof. In this proof, all expectations are conditioned on Ek. We proceed by induction. The base case at t = H+1 trivially
holds since V̂ ↑

H+1,k(s, b)− V̂ ↓
H+1,k(s, b) = b+− b+ = 0. Now suppose t ≤ H and suppose the claim holds for t+1. Then

setting at = ρ̂k(st, bt), we have

V̂ ↑
t,k(st, bt)− V̂ ↓

t,k(st, bt)

≤ Û↑
t,k(st, bt, at)− Û↓

t,k(st, bt, at)

= P̂t,k(st, at)
⊤Ert

[
V̂ ↑
t+1,k(·, bt − rt)− V̂ ↓

t+1,k(·, bt − rt)
]
+ 2BONt,k(st, bt, at)

=
(
P̂t,k(st, at)− P ⋆

t (st, at)
)⊤

Ert

[
V̂ ↑
t+1,k(·, bt − rt)− V̂ ↓

t+1,k(·, bt − rt)
]
+ 2BONt,k(st, bt, at)

+ P ⋆
t (st, at)

⊤Ert

[
V̂ ↑
t+1,k(·, bt − rt)− V̂ ↓

t+1,k(·, bt − rt)
]

≤ 2BONt,k(st, bt, at) + ξt,k(st, at) + (1− 1/H)P ⋆
t (st, at)

⊤Ert

[
V̂ ↑
t+1,k(·, bt − rt)− V̂ ↓

t+1,k(·, bt − rt)
]

(Lemma G.2)

≤ 2BONt,k(st, bt, at) + ξt,k(st, at) +
H∑

h=t+1

(1− 1/H)1+t−(h+1)Eρ̂k,st,bt [2BONh,k(sh, bh, ah) + ξh,k(sh, ah)],

where Ert is short for Ert∼Rt(st,at).

Lemma G.9. For any k ∈ [K], we have

Varρ̂k ,̂bk

(b̂k −
H∑

h=1

rh

)+

| Ek

 =
H−1∑
h=1

Eρ̂k ,̂bk

[
Vars′∼P⋆(sh,ah),rh∼R(s,a)

(
V ρ̂k

h+1(s
′, bh − rh)

)
| Ek
]
.

Proof. Apply Law of Total Variance Lemma G.13 with Y =
(
b̂k −

∑H
h=1 rh

)+
, Xh = (sh, ah, rh−1) for h ∈ [H] (when

h = 1, r0 is omitted), and H = Ek being the trajectories from the past episodes 1, 2, ..., k−1. Here, sh, ah, rh are collected
from rolling in with ρ̂k starting from b̂k, and note that b̂k is a constant conditioned on Ek. Lemma G.13 gives

Varρ̂k ,̂bk

(b̂k −
H∑

h=1

rh

)+

| Ek

 = E[Var(Y | X1:H , Ek) | Ek] +
H∑

h=1

E[Var(E[Y | X1:h, Ek] | X1:h−1, Ek) | Ek]

=

H∑
h=1

E[Var(E[Y | X1:h, Ek] | X1:h−1, Ek) | Ek].
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The first term is zero because once we condition on X1:H , Ek, the term
(
b̂k −

∑
t rt

)+
is a constant, and variance of con-

stants is zero. Now consider each summand. The outer expectation is taken over s1:h−1, a1:h−1, r1:h−2 from rolling
in ρ̂k. The variance is taken over sh ∼ P ⋆(sh−1, ah−1), rh−1 ∼ Rh−1(sh−1, ah−1), and deterministically picking
ah = ρ̂kh(sh, bh) where bh = b̂k −

∑h−1
t=1 rt. The inner expectation is over the remainder of the trajectory, which is

sh+1:H , ah+1:H , rh:H . Therefore,

E[Var(E[Y | X1:h, Ek] | X1:h−1, Ek) | Ek]

= Eρ̂k ,̂bk

Var
Eρ̂k ,̂bk

(b̂k −
H∑
t=1

rt

)+

| X1:h, Ek

 | X1:h−1, Ek

 | Ek


= Eρ̂k ,̂bk

[
Var

(
U ρ̂k

h (sh, bh, ah) | X1:h−1, Ek
)
| Ek
]

(bh−1 = b̂k − r1 − ...− rh−1)

= Eρ̂k ,̂bk

[
Varsh∼P⋆

h−1(sh−1,ah−1),rh−1∼Rh−1(sh−1,ah−1)

(
U ρ̂k

h (sh, bh, ah)
)
| Ek
]

= Eρ̂k ,̂bk

[
Varsh∼P⋆

h−1(sh−1,ah−1),rh−1∼Rh−1(sh−1,ah−1)

(
V ρ̂k

h (sh, bh)
)
| Ek
]
. (ah = ρ̂k(sh, bh))

Note that in the special case of h = 1, we have s1 is not random and r0 is omitted. So, the variance is taken over a constant,
which is zero.

Lemma G.10. Let π be a history-dependent policy such that its return distribution R(π) is continuously distributed and
has a density p lower bounded by pmin. Then, the function

f(b) = τ−1Eπ

(b−∑
h

rh

)+
− b

is τ−1pmin strongly convex.

Proof. Observe that

f ′(b) = τ−1 Pr
π

(∑
h

rh ≤ b

)
− 1.

Since we’ve assumed that R(π) is continuously distributed with density p, so

f ′′(b) = τ−1p(b).

Since f ′′(b) ≥ τ−1pmin for all b, we have f ′′ is strongly convex with that parameter.

G.5. Auxiliary Lemmas

Lemma G.11 (Azuma). Let {Xi}i∈[N ] be a sequence of random variables supported on [0, 1], adapted to filtration
{Fi}i∈[N ]. For any δ ∈ (0, 1), we have w.p. at least 1− δ,

N∑
t=1

E[Xt | Ft−1] ≤
N∑
t=1

Xt +
√

N log(2/δ), (Standard Azuma)

N∑
t=1

E[Xt | Ft−1] ≤ 2
N∑
t=1

Xt + 2 log(1/δ). (Multiplicative Azuma)

Proof. For standard Azuma, see Zhang (2023, Theorem 13.4). For multiplicative Azuma, apply (Zhang, 2023, Theorem
13.5) with λ = 1. The claim follows, since 1

1−exp(−λ) ≤ 2.
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Below we recall the standard elliptical potential lemma (Lattimore & Szepesvári, 2020; Agarwal et al., 2021). Regarding
terminology, we remark that this lemma is also known as the “pigeonhole argument” in the tabular RL literature (Azar
et al., 2017; Zanette & Brunskill, 2019). The term “elliptical potential” is more commonly used in the linear MDP setting
(Jin et al., 2020), of which tabular RL is a special case.

Lemma G.12 (Elliptical Potential). For any sequence of states and actions {sh,k, ah,k}h∈[H],k∈[K], we have

K∑
k=1

H∑
h=1

1

Nk(sh,k, ah,k)
≤ SA log(K),

K∑
k=1

H∑
h=1

1√
Nk(sh,k, ah,k)

≤
√
HSAK log(K).

Proof. For the first claim, observe that in the sum, 1
1 ,

1
2 ,

1
3 , . . . can appear at most SA times. And since we run for K

episodes, the maximum denominator is K. Therefore, we have

K∑
k=1

H∑
h=1

1

Nk(sh,k, ah,k)
≤ SA

K∑
k=1

1

k
≤ SA log(K).

For the second claim,

K∑
k=1

H∑
h=1

1√
Nk(sh,k, ah,k)

≤

√√√√√KH

 K,H∑
k,h=1

1

Nk(sh,k, ah,k)


≤
√
SAHK log(K).

Lemma G.13 (Sequential Law of Total Conditional Variance). For any random variables Y,X1, X2, ..., XN ,H, we have

Var(Y | H) = E[Var(Y | X1:N ,H) | H] +
N∑
t=1

E[Var(E[Y | X1:t,H] | X1:t−1,H) | H].

Notice, for each summand, the inner expectation is taken over Y , the variance is taken over Xt, and outer expectation is
taken over X1:t−1.

Proof. Recall the Law of Total Conditional Variance (LTCV): for any random variables Y,Z1, Z2,

Var(Y | Z1) = E[Var(Y | Z1, Z2) | Z1] + Var(E[Y | Z1, Z2] | Z1).

We now inductively prove the desired claim by recursively applying the (LTCV). The base case is N = 1, which follows
immediately from LTCV applied to Z1 = H, Z2 = X1. For the inductive case, fix any N and suppose the claim is true for
N . Now consider N + 1, where we have Y,X1, X2, ..., XN+1,H. By the IH, we have

Var(Y | H) = E[Var(Y | X1:N ,H) | H] +
N∑
t=1

E[Var(E[Y | X1:t,H] | X1:t−1,H) | H].

Now applying LTCV on the first term with Z1 = (X1:N ,H), Z2 = XN+1, we have

Var(Y | X1:N ,H) = E[Var(Y | X1:N+1,H) | X1:N ,H] + Var(E[Y | X1:N+1,H] | X1:N ,H),

and therefore,

E[Var(Y | X1:N ,H) | H] = E[Var(Y | X1:N+1,H) | H] + E[Var(E[Y | X1:N+1,H] | X1:N ,H) | H],

which concludes the proof.
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H. Proofs for CVaR-UCBVI with discretized rewards
Recall the discretized MDP disc(M), as introduced in Section 6. It is a copy of the true MDP M except its rewards are
rounded to an ε-net. I.e., let ϕ(r) = η⌈r/η⌉ be the rounding up operator of r onto the net, so that 0 ≤ ϕ(r) − r ≤ η.
Concretely, the reward distribution is R(s, a; disc(M)) = R(s, a;M) ◦ ϕ−1. Our proofs are inspired by Bastani et al.
(2022, Lemma B.1,Lemma B.5).

From disc(M) to M: Fix any ρ ∈ ΠAug and b ∈ [0, 1] (which we’ll run in disc(M)). Then define an adapted policy,
which is a history-dependent policy in M, as follows,

adapted(ρ, b)h(sh, r1:h−1) = ρh(sh, b1 − ϕ(r1)− ...− ϕ(rh−1)).

Intuitively, as adapted(ρ, b) runs M, it uses the history to emulate the evolution of b in disc(M). Let Zρ,b,disc(M) be the
returns from running ρ, b in disc(M). Let Zadapted(ρ,b),M be the returns from running adapted(ρ, b) in M. We show that
Zρ,b,disc(M) −Hη ≤ Zadapted(ρ,b),M ≤ Zρ,b,disc(M) w.p. 1 via a coupling argument.

Lemma H.1. We almost surely have Zρ,b,disc(M) − Hη ≤ Zadapted(ρ,b),M ≤ Zρ,b,disc(M). Therefore, if Fρ,b,disc(M) is
the CDF of Zρ,b,disc(M) and Fadapted(ρ,b),M is the CDF of Zadapted(ρ,b),M, we have

∀x ∈ R : Fρ,b,disc(M)(x) ≤ Fadapted(ρ,b),M(x) ≤ Fρ,b,disc(M)(x+Hη).

Proof. Let s1, a1, r1, s2, a2, r2, . . . be the trajectory of running adapted(ρ, b) in M. Let ŝ1, â1, r̂1, ŝ2, â2, r̂2, . . . be the
trajectory of running ρ, b in disc(M). We couple these two trajectories by making adapted(ρ, b) in M follow ρ, b in
disc(M). Set ŝ1 = s1. By definition of adapted(ρ, b), â1 = a1. By definition of disc(M), r̂1 = ϕ(r1). Continuing in
this fashion, we have ŝt = st, ât = at, r̂t = ϕ(rt) for all t ∈ [H]. This is a valid coupling since the actions are sampled
from the exact same distribution, i.e., ah ∼ ρh(b − ϕ(r1) − ... − ϕ(rh−1)), and by the transitions of b̂h in disc(M), we
have b̂h = b− r̂1 − ...− r̂h−1 which is exactly what was inputted into ρh by adapted(ρ, b).

Since r ≤ ϕ(r) for all r, we have

Zadapted(ρ,b),M =

H∑
t=1

rt ≤
H∑
t=1

ϕ(rt) =

H∑
t=1

r̂t = Zρ,b,disc(M).

Since ϕ(r)− η ≤ r for all r, we have

Zρ,b,disc(M) =
H∑
t=1

ϕ(rt) ≤ −Hη +
H∑
t=1

rt = Zadapted(ρ,b),M −Hη.

To conclude the proof, recall a basic fact about couplings and stochastic comparisons. For two random variables X,Y in
the same probability space and a constant c, if P(X ≤ Y + c) = 1, we have FY (t) ≤ FX(t+ c) for all x. This is because
FY (x)− FX(x+ c) = P(Y ≤ t ∩X > t+ c) ≤ P(X − Y > c) = 0.

From M to disc(M): Fix any ρ ∈ ΠAug and b ∈ [0, 1] (which we’ll run in M). Then define a discretized policy, which
is a history-dependent policy in the discretized MDP disc(M) with memory (as in Appendix F), as follows,

disc(ρ, b)h(sh,m1:h−1) = ρh(sh, b−m1 − · · · −mh−1),

mh ∼ R(sh, ah) | ϕ(R(sh, ah)) = rh.

With this definition, although we receive reward r̂h (on the discrete grid) when running in disc(M), the memory element
mh exactly imitates a random reward that would have been received in the true MDP M. Then, the discretized policy
disc(ρ, b) will instead follow these exact rewards mh rather than what has been received.

Let Zρ,b,M be the returns from running ρ, b in M. Let Zdisc(ρ,b),disc(M) be the returns from running disc(ρ, b) in disc(M)
(which memory as described above). We show that Zρ,b,M ≤ Zdisc(ρ,b),disc(M) w.p. 1 via a coupling argument.

Lemma H.2. We almost surely have Zρ,b,M ≤ Zdisc(ρ,b),disc(M). Therefore, if Fρ,b,M is the CDF of Zρ,b,M and
Fdisc(ρ,b),disc(M) is the CDF of Zdisc(ρ,b),disc(M), we have

∀x ∈ R : Fdisc(ρ,b),disc(M)(x) ≤ Fρ,b,M.

39



Near-Minimax-Optimal Risk-Sensitive RL with CVaR

Proof. Let s1, a1, r1, s2, a2, r2, ... be the trajectory of running ρ, b in M. Let ŝ1, â1, r̂1, m̂1, ŝ2, â2, r̂2, m̂2, ... be the tra-
jectory of running disc(ρ, b) in disc(M) with memory. We couple these two trajectories by making ρ, b in M follow
disc(ρ, b) in disc(M). Set s1 = ŝ1. By definition of disc(ρ, b), a1 = â1. Then, set r1 = m̂1. Note that r1 is sampled
by first sampling a discrete r̂1, then sampling m̂1 from the conditional reward distribution of the interval that rounds to
r̂1. By law of total probability, this is indeed equivalent to sampling directly from the unconditional reward distribution.
Continuing in this fashion, we have ŝt = st, ât = at, r̂t = ϕ(rt), m̂t = mt for all t ∈ [H]. Importantly, the policies
actions match because b− m̂1 − ...− m̂h−1 = b− r1 − ...− rh−1. Therefore, we always have

Zρ,b,M =
H∑
t=1

rt ≤
H∑
t=1

ϕ(rt) =
H∑
t=1

r̂t = Zdisc(ρ,b),disc(M).

As with the previous proof, stochastic dominance implies the claim on CDFs.

Now we show two useful consequences of the above coupling results.

Theorem H.3. Fix any ρ ∈ ΠAug and b1 ∈ [0, 1]. Then,

∀b : 0 ≤ Eadapted(ρ,b1),M

(b− H∑
h=1

rh

)+
− Eρ,b1,disc(M)

(b− H∑
h=1

rh

)+
 ≤ Hη,

and

−τ−1Hη ≤ CVaRτ (adapted(ρ, b1),M)− CVaRτ (ρ, b, disc(M)) ≤ 0.

Proof. Let f(b) = Eadapted(ρ,b1),M

[(
b−

∑H
h=1 rh

)+]
and let F = Fadapted(ρ,b1),M. Similarly, let disc(f)(b) =

Eρ,b1,disc(M)

[(
b−

∑H
h=1 rh

)+]
and disc(F ) = Fρ,b1,disc(M). Both f(0) = disc(f)(0) = 0. Also, their derivatives

are F and disc(F ) respectively. By Lemma H.1, disc(F )(t) ≤ F (t) ≤ disc(F )(t+Hη).

First, we show disc(f)(b)− f(b) ≤ 0. By the fundamental theorem of Calculus,

disc(f)(b)− f(b) =

∫ b

0

disc(F )(t)− F (t)dt ≤ 0.

Next, we show f(b)− disc(f)(b) ≤ Hη. By the fundamental theorem of Calculus (FTC),

f(b)− disc(f)(b) ≤
∫ b

0

F (t)dt−
∫ b

0

disc(F )(t)dt

≤
∫ b+Hη

Hη

disc(F )(t)dt−
∫ b

0

disc(F )(t)dt (Lemma H.1)

≤
∫ b+Hη

b

disc(F )(t)dt

= disc(f)(b+Hη)− disc(f)(b) (FTC)
≤ Hη, (ReLU is 1-Lipschitz)

Altogether, we’ve shown 0 ≤ f(b)− disc(f)(b) ≤ Hη for all b. This immediately implies the claims about CVaR:

CVaRτ (adapted(ρ, b1),M)− CVaRτ (ρ, b1, disc(M))

= max
b

{
b− τ−1f(b)

}
−max

b

{
b− τ−1 disc(f)(b)

}
≤ τ−1 max

b
(disc(f)(b)− f(b))

≤ 0,
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and similarly,

CVaRτ (ρ, b1, disc(M))− CVaRτ (adapted(ρ, b1),M)

≤ τ−1 max
b

(f(b)− disc(f)(b))

≤ τ−1Hη.

Theorem H.4. We have,

∀b ∈ [0, 1] : V ⋆
1 (s1, b; disc(M)) ≤ V ⋆

1 (s1, b;M),

which implies

CVaR⋆
τ (disc(M)) ≥ CVaR⋆

τ (M).

Proof. Fix any ρ ∈ ΠAug, b ∈ [0, 1]. By Lemma H.2, we have Fdisc(ρ,b),disc(M)(x) ≤ Fρ,b,M. Applying the same
FTC-style arguments in Theorem H.3, we have

∀b′ : Edisc(ρ,b),disc(M)

(b′ − H∑
h=1

rh

)+
 ≤ Eρ,b,M

(b′ − H∑
h=1

rh

)+
.

Setting b′ = b and using the definition of V functions, we have V disc(ρ,b)(s1, b; disc(M)) ≤ V ρ
1 (s1, b;M). Then, since

V ⋆
1 is the minimum history-dependent policy in this memory-MDP (Theorem F.2) implies that

V ⋆
1 (s1, b; disc(M)) ≤ V

disc(ρ,b)
1 (s1, b; disc(M)) ≤ V ρ

1 (s1, b;M).

Since ρ ∈ ΠAug was arbitrary and the minimum is attained by ρ⋆ ∈ ΠAug (Theorem F.2) this implies that
V ⋆
1 (s1, b; disc(M)) ≤ V ⋆

1 (s1, b;M), as needed. For the CVaR claim,

CVaR⋆
τ (M)− CVaR⋆

τ (disc(M))

= max
b

{
b− τ−1V ⋆

1 (s1, b;M)
}
−max

b

{
b− τ−1V ⋆

1 (s1, b; disc(M))
}

≤ τ−1 max
b

(V ⋆
1 (s1, b; disc(M))− V ⋆

1 (s1, b;M)) ≤ 0.

In the proof above, we highlight that disc(M) is the MDP with memory. In the proof of Bastani et al. (2022, Lemma B.6),
this detail was glossed over as their “history-dependent policy” in Bastani et al. (2022, Lemma B.5) does not exactly fit
into the vanilla history-dependent policy framework (as in Section 2); their policies are coupled through time with the α
parameter, which is disallowed a priori by the history-dependent policy framework. Our formalism with the memory-MDP
resolves this ambiguity.

H.1. Amendment of Bernstein proof in the discretized MDP

In this section, we amend the proof of the “Second bound for Eq. (19)” in the Bernstein regret bound.

Theorem H.5. Suppose we’re running CVaR-UCBVI in the discretized MDP and assume Assumption 6.1 holds. For any
δ ∈ (0, 1), w.p. at least δ, we have the regret of Theorem 5.5 plus an additional term,

18eτ−1
√
p−1
minSAHKηL.

Thus, setting η = 1/
√
K makes this an lower order term.
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Proof of Theorem H.5. Recall that

Eq. (19) ≤

√√√√√SAL

2HL+ 2
K∑

k=1

Varρ̂k ,̂bk,disc(M)

(b̂k −
H∑
t=1

rt

)+

| Ek


where note the randomness is taken over trajectories from disc(M), as that’s the MDP we’re working in. Define

f(b) = b− τ−1Eadapted(ρ̂k ,̂bk),M

(b− H∑
t=1

rt

)+

| Ek

, b⋆k = argmax
b∈[0,1]

f(b),

f̂(b) = b− τ−1V̂ ↓
1,k(s1, b), b̂k = argmax

b∈[0,1]

f̂(b).

A priori, the pessimism argument a priori only applies to policies in the discretized MDP. But thanks to Theorem H.4, it
also holds here,

V̂ ↓
1,k(s1, b) ≤ V ⋆

1 (s1, b; disc(M)) ≤ V ⋆
1 (s1, b;M) ≤ Eadapted(ρ̂k ,̂bk),M

(b− H∑
t=1

rt

)+
.

Thus, we also have f̂(b) ≥ f(b) for all b, and the same argument as before gives

f(b⋆k)− f (̂bk) ≤ τ−1

Eadapted(ρ̂k ,̂bk),M

(b̂k −
H∑
t=1

rt

)+

| Ek

− V̂ ↓
1,k(s1, b̂k)


≤ τ−1

(
V ρ̂k

1 (s1, b̂k; disc(M))− V̂ ↓
1,k(s1, b̂k)

)
+ τ−1Hη. (Theorem H.3)

By Assumption 6.1 (which applies to adapted(ρ̂k, b̂k)), Lemma G.10 applies and we have(
b⋆k − b̂k

)2
≤ 2p−1

min

(
V ρ̂k

1 (s1, b̂k; disc(M))− V̂ ↓
1,k(s1, b̂k) +Hη

)
.

Using Var(X) ≤ 2(Var(Y ) + Var(X − Y )),

K∑
k=1

Varρ̂k ,̂bk,disc(M)

(b̂k −
H∑
t=1

rt

)+

| Ek


≤ 2

K∑
k=1

Varρ̂k ,̂bk,disc(M)

(b⋆k −
H∑
t=1

rt

)+

| Ek

+ 2
K∑

k=1

Varρ̂k ,̂bk,disc(M)

(b⋆k −
H∑
t=1

rt

)+

−

(
b̂k −

H∑
t=1

rt

)+

| Ek


≤ 2

K∑
k=1

Pr
ρ̂k ,̂bk,disc(M)

(
H∑
t=1

rt ≤ b⋆k

)
+ 2

K∑
k=1

(
b̂k − b⋆k

)2
(ReLU is 1-Lipschitz)

≤ 2
K∑

k=1

Pr
adapted(ρ̂k ,̂bk),M

(
H∑
t=1

rt ≤ b⋆k

)
+ 4p−1

min

K∑
k=1

(
V ρ̂k

1 (s1, b̂k; disc(M))− V̂ ↓
1,k(s1, b̂k) +Hη

)
(Lemma H.1)

≤ 2Kτ + 4p−1
minHKη + 4p−1

min

K∑
k=1

(
V ρ̂k

1 (s1, b̂k; disc(M))− V̂ ↓
1,k(s1, b̂k)

)
.

Previously in Theorem 5.5, we also had the 2Kτ + 4p−1
min

∑K
k=1

(
V ρ̂k

1 (s1, b̂k; disc(M))− V̂ ↓
1,k(s1, b̂k)

)
term. This can

be bounded as before. We’ve only incurred an extra 4p−1
minHKη term. So, Eq. (19) incurs an extra√

SAL(2 · 4p−1
minHKη).

Finally, Eq. (19) gets multiplied by 6eτ−1
√
L, which gives a final extra regret of 18eτ−1

√
p−1
minSAHKηL.
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H.2. Translating regret from discretized MDP to true MDP

In this section, we prove that running our algorithms in the imagined discretized MDP also has low regret in the true
MDP. Let us first recall the setup. When running CVaR-UCBVI, we will provide the discretization parameter η. The
algorithm will discretize the rewards received from the environment when updating b – in this way, it is running in its own
hallucinated discretized MDP, while the regret we care about is in the true MDP. Since the algorithm is essentially running
in the hallucinated discretized MDP, our regret bound applies in the discretized MDP, i.e., roll-outs in expectations are with
respect to disc(M),

K∑
k=1

CVaR⋆
τ (disc(M))− CVaRτ (ρ̂

k, b̂k; disc(M)) ≤ C.

When rolling out ρ̂k from b̂k in the hallucinated discretized MDP, we are essentially running adapted(ρ̂k) as described in
Theorem H.3. So the true regret in the real MDP is,

K∑
k=1

CVaR⋆
τ (M)− CVaRτ (adapted(ρ̂

k, b̂k);M)

≤
K∑

k=1

CVaR⋆
τ (disc(M))− CVaRτ (ρ̂

k, b̂k; disc(M)) + τ−1Hη (Theorems H.3 and H.4)

≤ C +Kτ−1Hη.

In other words, when discretizing our algorithm, we pay an extra regret of at most Kτ−1Hη, where η is the discretization
parameter. Setting η = 1/K renders this term lower order.

H.3. Computational Complexity

In this section, we compute the running time complexity of CVaR-UCBVI under discretization of η. There are two places
where discretization comes in,

1. At each h, we only compute Û↓
h,k(s, b, a) for all s, a and b in the grid. So assuming each step takes Tstep, the total run

time of DP is O(SAHη−1Tstep).

2. When computing b̂k, we only need to search over gridη([0, 1]), since we know that the returns distribution is supported
on the gridη([0, 1]). Thus, the optimal solution, which is the τ -th quantile, lives on the grid. This computation costs
O(η−1), which is lower order.

So the total runtime is O(K ·SAHη−1Tstep). For running with the Hoeffding bonus, each step is dominated by computing

the expectation P̂k(s, a)
⊤Erh∼R(s,a)

[
V̂ ↓
h+1,k(·, b− rh)

]
, as the bonus term is a constant. In the discretized MDP, this

expectation can be computed using only grid elements, so Tstep = O(Sη−1).

When running with the Bernstein bonus, we also need to consider the complexity of computing the bonus term. In the bonus

term (Eq. (6)), the expectation term Es′∼P̂k(s,a),rh∼R(s,a)

[(
V̂ ↑
h+1,k(s

′, b− rh)− V̂ ↓
h+1,k(s

′, b− rh)
)2]

can be computed

in O(Sη−1). Notably, the variance term Vars′∼P̂k(s,a)

(
Erh∼R(s,a)

[
V̂ ↓
h+1,k(s

′, b′)
])

can also be computed in O(Sη−1)

by first computing the empirical mean (which takes O(Sη−1)). So for the Berstein bonus, we also have Tstep = O(Sη−1).

So the total running time of CVaR-UCBVI with discretized rewards is O(S2AHKη−2). As remarked by (Auer et al.,
2008; Azar et al., 2017), we can also reduce the computational cost by selectively recomputing the DP after sufficiently
many observations have passed.
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I. Minimax Lower Bounds for Quantile Estimation
Theorem I.1. Let m(p) = I[p > 1/2] be the median of Ber(p). For any n,

inf
f :{0,1}n→[0,1]

sup
p∈[0,1]

EY1,...,Yn∼iidBer(p), m̂n∼Ber(f(Y1,...,Yn))[(m̂n −m(p))2] ≥ 1

2
.

That is, the minimax mean-squared error of any (potentially randomized) estimator for the median of a Bernoulli based on
n observations thereon is bounded away from 0 for all n.

Proof. Let g(f, p) denote the value of the game (the objective of the above inf-sup). Let Pp denote the measure of
(Y1, . . . , Yn) ∼ Ber(p)n. Fix any ϵ ∈ (0, e−1

e+1 ]. Then

inf
f :{0,1}n→[0,1]

sup
p∈[0,1]

g(f, p) ≥ inf
f :{0,1}n→[0,1]

(
1

2
g(f, (1 + ϵ)/2) +

1

2
g(f, (1− ϵ)/2)

)
≥ inf

f :{0,1}n→{0,1}

(
1

2
g(f, (1 + ϵ)/2) +

1

2
g(f, (1− ϵ)/2)

)
= inf

f :{0,1}n→{0,1}

(
1

2
P(1+ϵ)/2(f(Y1, . . . , Yn) ̸= 1) +

1

2
P(1−ϵ)/2(f(Y1, . . . , Yn) ̸= 0)

)
= inf

f :{0,1}n→{0,1}

1

2
−
(
1

2
P(1+ϵ)/2(f(Y1, . . . , Yn) = 1)− 1

2
P(1−ϵ)/2(f(Y1, . . . , Yn) = 1)

)
≥ 1

2
− 1

2

√
1

2
KL(P(1+ϵ)/2,P(1−ϵ)/2)

=
1

2
− 1

2

√
1

2
nϵ log((1 + ϵ)/(1− ϵ))

≥ 1

2
−
√

n

8

√
e+ 1

e− 1
ϵ.

The first line is because worst-case risk upper bounds any Bayesian risk. The second because Bayesian risk is optimized
by non-randomized estimators. The third by writing the expectation of a 0-1 variable as a probability. The fourth by
total probability. The fifth by Pinsker’s inequality. The sixth by evaluating the divergence. And the last by convexity of
log((1 + ϵ)/(1− ϵ)).

Since ϵ ∈ (0, e−1
e+1 ] was arbitrary (for fixed n), the conclusion is reached.
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