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Abstract
In this paper, we study nonparametric estimation of instrumental variable (IV) regressions. Re-
cently, many flexible machine learning methods have been developed for instrumental variable
estimation. However, these methods have at least one of the following limitations: (1) restricting
the IV regression to be uniquely identified; (2) only obtaining estimation error rates in terms of
pseudometrics (e.g., projected norm) rather than valid metrics (e.g., L2 norm); or (3) imposing
the so-called closedness condition that requires a certain conditional expectation operator to be
sufficiently smooth. In this paper, we present the first method and analysis that can avoid all three
limitations, while still permitting general function approximation. Specifically, we propose a new
penalized minimax estimator that can converge to a fixed IV solution even when there are multiple
solutions, and we derive a strong L2 error rate for our estimator under lax conditions. Notably,
this guarantee only needs a widely-used source condition and realizability assumptions, but not the
so-called closedness condition. We argue that the source condition and the closedness condition are
inherently conflicting, so relaxing the latter significantly improves upon the existing literature that
requires both conditions. Our estimator can achieve this improvement because it builds on a novel
formulation of the IV estimation problem as a constrained optimization problem.
Keywords: Instrumental variables, Inverse problems, Empirical risk minimization

1. Introduction

Instrumental variable (IV) estimation is an important problem in many applications. Examples
include causal inference (Angrist and Imbens, 1995; Newey and Powell, 2003; Deaner, 2018; Cui
et al., 2020), missing data problems (Wang et al., 2014; Miao et al., 2015), asset pricing models
(Chen et al., 2014; Christensen, 2017; Escanciano et al., 2020), dynamic discrete choice models
(Kalouptsidi et al., 2021), and reinforcement learning (Liao et al., 2021; Uehara et al., 2021).

In this paper, we focus on the estimation of nonparametric IV (NPIV) regression (Newey and
Powell, 2003). This problem involves three sets of variables X , Y , and Z that take values in compact
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Euclidean sets DX , DY , and DZ , respectively. In the original IV estimation problem, X stands
for endogenous variables, Y stands for an outcome variable, and Z stands for exogenous IVs. We
define L2(X), L2(Z) as the L2 spaces of functions of X,Z respectively, defined in terms of their
distributions. We are interested in solving the following equation with respect to h ∈ L2(Z):

E [Y − h(X) | Z] = 0.

This equation can be alternatively written as T h = r0, where r0(Z) = E[Y | Z], and T : L2(X) →
L2(Z) is a bounded linear operator that maps every h ∈ L2(X) to E [h(X) | Z] ∈ L2(Z). Here both
the function r0 and the operator T are unknown. Instead, we only have access to a set of independent
and identically distributed observations D := {Xi, Yi, Zi}ni=1.

There has been a surge in interest in NPIV regressions. A number of classical works have
proposed sieve or kernel-based estimators (e.g., Carrasco et al., 2007; Horowitz, 2011; Newey, 2013;
Newey and Powell, 2003; Chen, 2007). However, NPIV estimation is notoriously difficult because
it is an ill-posed inverse problem. In particular, the solution to the NPIV equation T h = r0 may
not be unique, and even if it is unique, the solution may depend on the underlying data distribution
discontinuously (Carrasco et al., 2007). Therefore, existing works typically assume that the NPIV
solution is unique (Andrews, 2017; Newey and Powell, 2003). Even if it is not the case, they restrict
the linear operator T and the NPIV solution (Florens et al., 2011; Chen, 2021). A widely used
restriction is the source condition, which assumes that the IV solution belongs to a subspace defined
by the operator T (e.g., Carrasco et al., 2007; Cavalier, 2011; Chen and Reiss, 2011). Under these
conditions, the estimators proposed in these classic literature can have strong theoretical guarantees.
However, these traditional nonparametric estimators do not allow for the integration of modern,
flexible general function approximation methods such as neural networks or tree-based methods.

To overcome this limitation, recent works have proposed various algorithms that can accommo-
date general function approximation. These algorithms typically employ two function classes, H and
G. In particular, the function class H is the hypothesis class for the solution to the NPIV equation
T h = r0. The function class G, often referred to as a witness function class or discriminator class,
is introduced to witness how much each given function h violates the NPIV equation. Then, NPIV
estimators are defined as solutions to a minimax optimization problem (Lewis and Syrgkanis, 2018;
Bennett et al., 2019; Dikkala et al., 2020; Liao et al., 2020; Muandet et al., 2020):

argmin
h∈H

max
g∈G

L(h, g)

where L(h, g) is an objective function mapping from H× G to R.
Although highly flexible, these minimax approaches have several limitations. First, they typically

assume that the solution to the NPIV equation T h = r0 is unique. However, this assumption can be
easily violated if the instrumental variables are not very strong (Andrews and Stock, 2005; Andrews
et al., 2019), and they usually do not hold in proximal causal inference (Kallus et al., 2021). Secondly,
the minimax estimators may not give strong L2 error rate guarantees, and instead only have error
rate guarantees in terms of a weaker projected mean squared error (MSE) (Dikkala et al., 2020).
However, even when the projected MSE vanishes to zero, the minimax estimator may not converge
to any fixed IV solution since the projected MSE is a pseudometric unlike the L2 metric. Thirdly,
current minimax estimators typically need some form of closedness condition, such as T h ∈ G
for any h ∈ H (Dikkala et al., 2020; Liao et al., 2020) or other close variant (Bennett et al., 2022).
However, this assumption may impose stringent restrictions on the operator T , noting that G must be
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Table 1: Summary of current literature of minimax estimation with general function approximation.
Our goal is to solve T h = r0 with respect to h with unknown T and r0. We denote its set
of solutions by H0 and the least norm solution by h0. Estimators are defined as solutions
to certain minimax optimizations minh∈Hmaxg∈G L(h, g) where H and G are hypothesis
classes. For simplicity, we focus on comparison for VC classes H and G (while the results
in both our and these papers deal with general function classes) and for source condition
with exponent 1. We let T ∗ be the adjoint of T , Ḡ0 = {ḡ0 : T ∗ḡ0 = h0} (nonempty under
source condition), h0,α = argminh ∥T h− r0∥22 + α∥h∥22, and α0 > 0 a positive number.
Note our condition is strictly weaker than that of Bennett et al. (2022).

Primary assumptions Guarantee Rate

Dikkala et al. (2020) realizability H0 ∩H ̸= ∅, closedness T H ⊂ G + r0 Projected MSEs n−1/2

Liao et al. (2020)
source h0 ∈ R(T ∗T ) , uniqueness of h0,

realizability h0,α ∈ H ∀α ≤ α0, closedness T H ⊂ G + r0
L2 rates n−1/6

Bennett et al. (2022)
source h0 ∈ R(T ∗T ),

realizability h0 ∈ H, Ḡ0 ∩ G ̸= ∅ and closedness T ∗G ⊂ H L2 rates n−1/4

This work
source h0 ∈ R(T ∗T )

realizability h0 ∈ H, Ḡ0 ∩ G ̸= ∅ L2 rates n−1/4

a restricted class to ensure bounded statistical complexity. In particular, the closedness assumption is
at odds with the widely used source condition, since we will show that the closedness assumption
is more plausible when the spectrum of T decays more slowly while the source condition is more
plausible when the spectrum decays more rapidly.

To the best of our knowledge, all current approaches incorporating general function approximation
for IV problems suffer from at least one of the three limitations listed above. In this paper, we propose
the first method that avoids all three of these limitations. Specifically, we do not assume that the
NPIV solution is unique, and instead we target the least norm solution h0. This is a standard approach
for inverse problems with non-unique solutions (Florens et al., 2011; Babii and Florens, 2017; Chen,
2021; Bennett et al., 2022). We show that our proposed estimator can converge to the least norm
IV solution and derive its L2 error rate guarantee. These theoretical guarantees only need the fairly
standard source condition and realizability assumptions (i.e., well-specification of H and G). Table 1
summarizes the assumptions and guarantees in our paper and related ones.

Our proposed estimator and its theory are grounded in the novel insight that finding the least norm
solution h0 to T h = r0 can be viewed as a constrained optimization problem. In particular, we show
that the least norm solution can be uniquely identified as a saddle point of the minimax optimization
of the Lagrangian. Although previous minimax estimators also leverage minimax optimization, their
inner maximization is used to approximate the projected MSE E[([T h](Z)− r0(Z))2], which neces-
sitates the closedness assumption. In contrast, the inner maximization in our methods results from
the method of Lagrange multipliers, and it does not need the closedness assumption. Interestingly,
we prove that the source condition is the sufficient and necessary condition for the existence of
stationary Lagrange multipliers and thus the saddle point to our minimax optimization problem. This
also reveals a new role of the source condition widely used in inverse problems.

Our paper is organized as follows. In Section 2, we present our setup of IV estimation and the
limitations of current works in this setting. In Section 3, we introduce our minimax estimator by
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framing the problem as a constrained optimization problem. In Section 4, we demonstrate that the
minimax optimization identifies the least norm solution given infinite data. In Section 5, we present
the finite-sample error guarantee, i.e., L2 convergence rate. In Section 6, we compare our estimator
and theory to those in closely related works. Finally, we conclude our paper in Section 7.

1.1. Related Works

Instrumental variable estimation has received considerable attention as a subclass of inverse problems,
as detailed in the works of Carrasco et al. (2007); Cavalier (2011); Newey (2013); Ito and Jin (2014).

Even when the operator T and response r0 are known, nonparametric instrumental variable
estimation poses significant difficulties due to its ill-posed nature. The ill-posedness often refers
to the presence of one or more of the following characteristics: (1) the absence of solutions, (2)
the existence of multiple solutions, and (3) the discontinuity of the inverse of T . To address these
challenges, various regularization techniques have been proposed, such as compactness of the solution
space (Newey and Powell, 2003), Tikhonov regularization, and Landweber–Fridman regularization
(Carrasco et al., 2007; Cavalier, 2011). In practical settings where T and r0 are unknown, a range of
estimators have been proposed in the literature, including series-based estimators (Ai and Chen, 2003;
Hall and Horowitz, 2005; Blundell et al., 2007; Chen and Reiss, 2011; Darolles et al., 2011; Chen
and Pouzo, 2012; Florens et al., 2011; Chen, 2021), kernel-based estimators (Hall and Horowitz,
2005; Horowitz, 2007), and RKHS-based estimators (Singh et al., 2019; Muandet et al., 2020).

Recently, there has been growing interest in the application of general function approximation
techniques, such as deep neural networks and random forests, to instrumental variable problems
in a unified manner (Dikkala et al., 2020; Lewis and Syrgkanis, 2018; Bennett et al., 2019; Zhang
et al., 2020). Among these approaches, Dikkala et al. (2020); Liao et al. (2020); Bennett et al. (2022)
provide finite-sample convergence rate guarantees. Specifically, Liao et al. (2020) establishes L2

convergence by linking minimax optimization with Tikhonov regularization under the assumption of
the source condition. Bennett et al. (2022) establishes an L2 convergence guarantee under the source
condition from a distinct perspective. Notably, the assumptions we need are strictly weaker than
those of Bennett et al. (2022). Dikkala et al. (2020) guarantees convergence in terms of projected
mean squared error without the source condition; however, this guarantee is insufficient to identify
a specific element when the solution is not unique. These works (Dikkala et al., 2020; Liao et al.,
2020; Bennett et al., 2022) rely on the so-called closedness assumption, which imposes restrictions
on the smoothness of the operator T via the witness class. This assumption has been the subject of
considerable discussion in the context of offline reinforcement learning, with researchers exploring
ways to relax it (Chen and Jiang, 2019; Uehara et al., 2020; Foster et al., 2021; Huang and Jiang,
2022). In this paper, we examine the relaxation of this assumption in a more general IV setting. This
is of importance since the source condition and closedness are inherently conflicting.

We note that there are a number of alternative approaches for integrating machine learning into
instrumental variable estimation (Hartford et al., 2017; Yu et al., 2018; Xu et al., 2020; Liu et al.,
2020; Kato et al., 2021; Lu et al., 2021). However, to the best of our knowledge, these approaches do
not offer an L2 convergence rate guarantee in the absence of the assumption of uniqueness.

2. Problem Setup

We aim to solve the following equation with respect to h:
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T h = r0 (1)

where r0(Z) = E[Y | Z] ∈ L2(Z) is an unknown function and T : L2(X) → L2(Z) is an
unknown conditional expectation operator that maps any h ∈ L2(X) to E[h(X) | Z]. Note that T
is a bounded operator since its norm is upper-bounded by 1 via Jensen’s inequality. Moreover, we
use T ⋆ : L2(Z) → L2(X) to denote the adjoint operator of T , i.e., ⟨g, T h⟩L2(Z) = ⟨T ⋆g, h⟩L2(X)

for any h ∈ L2(X), g ∈ L2(Z) where ⟨·, ·⟩L2(X) and ⟨·, ·⟩L2(Z) are inner products over L2(X) and
L2(Z), respectively. It is known that T ∗ is given by [T ∗g](X) = E[g(Z) | X] for any g ∈ L2(Z)
(Carrasco et al., 2007). Importantly, here we do not assume compactness of T , because compactness
is violated whenever X,Z include common variables, as is the case in many applications (Deaner,
2018; Cui et al., 2020). Moreover, we denote the range space of T by R(T ), i.e., R(T ) = {T h :
h ∈ L2(X)}.

Throughout this work, we assume that there exists a solution to Equation (1).

Assumption 1 (Existence of solutions). We have r0 ∈ R(T ), i.e., Nr0(T ) := {h ∈ H : T h =
r0} ̸= ∅.

Most of the existing literature further assumes that T is injective and the solution to Equation (1)
is unique. However, even in this case, Equation (1) still corresponds to an ill-posed inverse problem,
since the inverse operator T −1 is generally unbounded, so the NIPV solution can be very sensitive to
even slight perturbations to the data distributions. Without further restrictions, we can only obtain
an estimator ĥ with convergence guarantee in terms of the projected MSE E[{T ĥ − r0}2(Z)] =
E[{T (ĥ− h)}2(Z)] for h ∈ Nr0(T ). However, the projected MSE is only a pseudometric. Hence,
even if E[{T (ĥ − h)}2(Z)] vanishes to zero, the estimator ĥ may not converge to a fixed point.
Furthermore, the projected MSE is weaker than the valid metric such as the L2 metric. Indeed,
according to Jensen’s inequality, we have E[{ĥ − h)}2(X)] ≥ E[{T (ĥ − h)}2(Z)]. However,
the other direction generally does not hold. Thus E[{ĥ − h)}2(X)] may not vanish even when
E[{T (ĥ− h)}2(Z)] does.

In many problems, L2 rate guarantees are preferable or even necessary (Hall and Horowitz, 2005;
Chen and Reiss, 2011; Kallus et al., 2021; Uehara et al., 2021). In order to achieve L2 convergence,
we need to further restrict the ill-posedness of the NPIV problem. One common way is to restrict
the magnitude of the ill-posedness measure suph∈H

E[{h−h′)}2(X)]
E[{T (h−h′)}2(Z)]

for any solution h′ ∈ Nr0(T ),
where H is the function class used to obtain the estimator (e.g., Dikkala et al., 2020; Chen and
Pouzo, 2012). This allows us to translate projected MSE guarantees to corresponding L2 error rates
under the uniqueness of Equation (1).

However, in this paper, we do not assume a unique solution to Equation (1), because it may not
hold in many practical settings. In particular, uniqueness is violated when instrumental variables
are weak (Andrews and Stock, 2005; Andrews et al., 2019). For instance, when the spaces DX

and DZ are discrete and the cardinality of DZ exceeds that of DX , uniqueness generally does not
hold. Moreover, uniqueness is usually violated in proximal causal inference, as Kallus et al. (2021)
demonstrates in various examples. When solutions are non-unique, Equation (1) becomes even more
ill-posed. In this case, existing estimators may still have projected MSE guarantees, but obtaining L2

rate guarantees becomes much more difficult. In particular, the ill-posedness measure is generally
infinity and thus uninformative. Most of the existing estimators do not necessarily converge to any
particular solution in Nr0(T ) in terms of the L2 metric.
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Given that there may be (infinitely) many solutions in Nr0(T ), we propose to target a particular
solution that achieves the least norm, that is,

h0 = argmin
h∈Nr0 (T )

0.5⟨h, h⟩L2(X). (2)

This least norm solution is well-defined as it is the projection of the origin in L2(X) onto a closed
affine space Nr0(T ) ⊆ L2(X). We formalize this in the following lemma.

Lemma 1. Suppose Assumption 1 holds. Then the least norm solution h0 ∈ Nr0(T ) uniquely exists,
and {h0} = R(T ⋆) ∩Nr0(T ), where R(T ⋆) is the closure of the range space R(T ⋆).

We note that some of the existing literature also targets the least norm solution when the IV
equation admits non-unique solutions (Florens et al., 2011; Santos, 2011; Chen, 2021), but they all
focus on classic sieve or kernel-based estimators. The only exception is Bennett et al. (2022) as they
employ general function approximation while allowing for non-unique solutions. But as we discuss
in Section 6.3, their method requires a closedness assumption that puts strong restrictions on the
operator T . In this paper, we propose a new estimator for the least norm solution h0 with a strong L2

convergence guarantee. Importantly, our estimator accommodates general function approximation
but does not need the closedness assumption, thereby improving upon the existing literature.

3. Penalized Minimax Instrumental Variable Regression

In this section, we propose our estimator for the least norm solution h0 in Equation (2). To this end,
we first provide a reformulation of the solution h0. Note that

h0 = argmin
h∈L2(X)

0.5⟨h, h⟩L2(X), subject to T h = r0.

This is a constrained optimization problem over the Hilbert space L2(X). Following the method of
Lagrange multipliers, we can consider an alternative minimax optimization:

h0 = argmin
h∈L2(X)

sup
g∈L2(Z)

L(h, g), L(h, g) := 0.5⟨h, h⟩L2(X) + ⟨r0 − T h, g⟩L2(Z), (3)

where g corresponds to a Lagrange multiplier.
In Equation (3), the objective function L(h, q) is unknown since the two inner products involve

the unknown function r0, the unknown operator T , and the unknown distribution of X and Z. To
construct an estimator based on Equation (3), we first rewrite the inner products into expectations
with respect to the distribution of X and Z:

⟨h, h⟩L2(X) = E
[
h2(X)

]
, ⟨r0 − T h, g⟩L2(Z) = E [(Y − h(X)) g(Z)] .

Then we can replace the unknown expectations with empirical averages, and restrict the functions h
and g to some classes H ⊂ [DX → R] and G ⊂ [DZ → R]. This leads to the following estimator:

ĥmn ∈ argmin
h∈H

max
g∈G

Ln(h, g), Ln(h, g) := 0.5En[h
2(X)] + En [(Y − h(X)) g(Z)] , (4)

where En [·] stands for the empirical average operator based on sample data D = {Xi, Yi, Zi}. For
example, we have En[h

2(X)] = 1
n

∑n
i=1 h

2(Xi). Notably, the term En[h
2(X)] in Equation (4) can
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be viewed as a penalization term, so we call our estimator a penalized minimax estimator. The role
of this penalization term is later discussed in Theorem 1.

The estimator ĥmn in Equation (4) has a minimax optimization formulation. The computational
perspective will be discussed in Section C. This is in line with many recent machine learning IV
estimators with general function approximation (see a review in Section 1.1). However, our minimax
optimization in Equation (4) is motivated by the method of Lagrange multipliers, while existing
minimax estimators are based on fundamentally different principles. As a result, our objective
function Ln(h, g) differs from those used in existing minimax estimators. In particular, our minimax
estimator requires quite different conditions, as we will discuss in Section 6.

To justify the objective function in (4), we need to further guarantee that

h0 = argmin
h∈H

max
g∈G

L(h, g). (5)

In Section 4, we establish Equation (5) under fairly mild conditions. Based on this, we then further
derive the L2 convergence rate of our proposed estimator ĥmn.

4. Identification of the Least Norm Solution

In this section, we establish that our proposed minimax formulation can indeed identify the least
norm solution h0 as shown in Equation (5). We start with introducing a key assumption for our result,
and then present our identification result under this assumption.

4.1. Source Condition

Our identification crucially depends on the following source condition.

Assumption 2 (Source condition). The function r0 satisfies that r0 ∈ R(T T ⋆).

Assumption 2 further strengthens Assumption 1 in that it restricts r0 to a smaller subspace
R(T T ⋆) ⊆ R(T ). In particular, we have R(T ) = T (R(T ⋆))1 and R(T T ⋆) = T (R(T ⋆)), so
R(T T ⋆) is generally a strict subset of R(T ), unless R(T ⋆) is a closed set. It is well known that for
ill-posed inverse problems, the operator T ⋆ generally does not have a closed range space (Carrasco
et al., 2007), thus in general Assumption 2 imposes non-trivial restrictions on the ill-posedness of the
inverse problem. In Section 6.4, we provide a more concrete example to illustrate these restrictions.

Source conditions are common assumptions used to derive strong convergence rate guarantees in
the inverse problem literature. They have been widely used for both inverse problems with known
operators (e.g., Engl et al., 1996; Ito and Jin, 2014) and IV problems with unknown operators (e.g.,
Florens et al., 2011; Carrasco et al., 2007; Liao et al., 2021). A standard source condition in the
literature is that the solution h0 satisfies h0 ∈ R((T T ⋆)β/2) for a positive exponent β > 0. Our
source condition in Assumption 2 can be shown to be equivalent to h0 ∈ R((T T ⋆)1/2) via the
spectral theory of linear operators (Cavalier, 2011). Thus, our Assumption 2 is a source condition of
this kind with source exponent β = 1.

Assumption 2 implies that there exists ḡ0 ∈ L2(Z) such that

r0 = T T ⋆ḡ0. (6)

In fact, any ḡ0 satisfying Equation (6) is closely related to the least norm solution h0.

1. To see this note that L2(X) = R(T ⋆)⊕R(T ⋆)⊥, and R(T ⋆)⊥ = N (T ), so T (L2(X)) = T (R(T ⋆)).

7



BENNETT KALLUS MAO NEWEY SYRGKANIS UEHARA

Lemma 2. If Assumption 2 holds, then ḡ0 satisfies (6) if and only if T ⋆ḡ0 = h0.

In particular, given Lemma 2, the functions ḡ0 that satisfy Equation (6) are given by:

Nh0(T ⋆) := {g ∈ L2(Z) : T ⋆g = h0}. (7)

In the next subsection, we will show the importance of the source condition given by Assump-
tion 2. In particular, this condition ensures that we can obtain h0 from the saddle points of L(h, g).

4.2. Saddle Points of the Minimax Optimization

Here, we characterize the saddle points of L(h, g) under Assumption 2, as follows:

Lemma 3. Suppose Assumption 2 holds and let h0 be the least norm solution in Equation (2) and
Nh0(T ⋆) be the set of functions given in Equation (7). Then, the set of saddle points of L(h, g) over
h ∈ L2(X), g ∈ L2(Z), i.e., the points (h′, g′) that satisfy

L(h, g′) ≥ L(h′, g′) ≥ L(h′, g), ∀h ∈ L2(X), ∀g ∈ L2(Z),

is given by the set {h0} × Nh0(T ⋆) = {(h0, ḡ) : ḡ ∈ Nh0(T ⋆)}.

It is well-known that (h′, g′) is a saddle point if and only if we have the “strong duality” condition
infh∈L2(X) supg∈L2(Z) L(h, g) = supg∈L2(Z) infh∈L2(X) L(h, g) and

h′ ∈ argmin
h∈L2(X)

sup
g∈L2(Z)

L(h, g), g′ ∈ argmax
g∈L2(Z)

inf
h∈L2(X)

L(h, g).

We provide formal proof for this in Section I. Given this equivalent characterization of the saddle
point, we can obtain the following corollary from Lemma 3.

Corollary 1. If Assumption 2 holds, then we have

h0 = argmin
h∈L2(X)

sup
g∈L2(Z)

L(h, g), Nh0(T ⋆) = argmax
g∈L2(Z)

inf
h∈L2(X)

L(h, g). (8)

It is worth noting that the equality for h0 in Equation (8) holds even without the source condition.
Moreover, the strong duality infh∈L2(X) supg∈L2(Z) L(h, g) = supg∈L2(Z) infh∈L2(X) L(h, g) also
holds in the absence of this source condition. However, the source condition is important to establish
the existence of argmaxg∈L2(Z) infh∈L2(X) L(h, g) and the second statement in (8). Equivalently,
this shows that the source condition guarantees the existence of stationary Lagrangian multipliers for
the problem in Equation (2), and the set of stationary Lagrangian multipliers is given by Nh0(T ⋆).

So far we have demonstrated that Assumption 2 is a sufficient condition for the existence of
saddle points. Interestingly, it is also a necessary condition for their existence.

Lemma 4. Suppose Assumption 1 that r0 ∈ R(T ) holds. Then, there exists a saddle point of L(h, g)
if and only if Assumption 2 holds.

The above lemma is proved by first showing that the saddle point exists if and only if there
exists a solution to argming∈L2(Z) ∥T ∗g − h0∥22. We then demonstrate that the existence of this
optimization problem is equivalent to the source condition (2). Our Lemma 3 and Lemma 4 show that
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the source condition is closely related to the existence of stationary Lagrangian multipliers for the
constrained optimization formulation of h0. To our knowledge, this relation is novel in the literature.

Lemma 3 characterizes the saddle points over the unrestricted L2(X) and L2(Z) spaces. How-
ever, in practical estimation, we can only use some function classes H ⊂ L2(X),G ⊂ L2(Z) with
limited statistical complexity. For these two restricted classes to capture some saddle points, we need
them to satisfy the following realizability assumptions.

Assumption 3 (Realizability of the least norm solution). We have h0 ∈ H.

Assumption 4 (Realizability of the stationary Lagrange multiplier). We have Nh0(T ⋆) ∩ G ̸= 0.

The realizability assumptions above require that the function classes H and G are well-specified,
in that they contain at least some true saddle points. In particular, Assumption 4 is equivalent to
h0 ∈ T ∗G. In the following theorem, we further extend the saddle point characterization of h0 in
Corollary 1 to these restricted classes under these realizability conditions.

Theorem 1 (Key identification theorem). Suppose Assumptions 2 to 4 hold. Then

h0 = argmin
h∈H

max
g∈G

L(h, g).

Theorem 1 shows that under the source condition and the realizability assumptions, the min-max
optimization of our proposed objective over the function classes H,G can recover the saddle points
in the classes. At a high level, the proof of this theorem works by showing: (1) saddle points over
the original class remain saddle points over the restricted classes; (2) any additional saddle points
over the restricted classes are best-responses to saddle points over the original class; and (3) h0 is a
unique best response to any ḡ ∈ Nh0(T ⋆) as a result of strong convexity of L(h, g) in h induced by
⟨h, h⟩L2(X). See Section B for details.

5. Finite Sample Guarantees

As discussed in Section 4, our proposed minimax optimization formulation can identify the target
least norm solution h0 when the population distribution is known. In this section, we further show
that our finite-sample estimator ĥmn in Equation (4) converges to h0, and we derive its L2 error rate.

Theorem 2 (L2 convergence rates). Suppose Assumptions 2 to 4 hold. Then, we have

∥ĥmn − h0∥2 ≤
√
2 sup
h∈H,g∈G

∣∣∣(En − E)[(Y − h(X)) g(Z) + 0.5h(X)2]
∣∣∣.

Notably, the assumptions required in Theorem 2 are identical to those in Theorem 1. In particular,
both theorems only require that the function classes H and G satisfy the realizability conditions
Assumptions 3 and 4. Realizability is a fundamental assumption in statistical learning theory.
However, we can easily extend our theorem when realizability does not hold as we will later see in
Theorem 3. To the best of our knowledge, existing minimax IV regression estimators additionally
require much stronger conditions such as T H ⊂ G or T ∗G ⊂ H. These conditions are often
referred to as the closedness condition, and they impose additional restrictions on the operator T .
See Section 6 for a detailed discussion.
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It then remains to bound the right-hand side term in Theorem 2. This is an empirical process
term, which can be easily upper-bounded by invoking standard statistical learning theory for any
reasonable function classes H,G with bounded statistical complexities. In particular, we can use
standard symmetrization arguments to bound the right-hand side of Theorem 2 with the Rademacher
complexities of H,G. The Rademacher complexity Rn(H) of class H is defined as Rn(H) =
n−1E[suph∈H

∑n
i=1 σih(Xi)] where {σ1, . . . , σn} are independent random variables drawn from the

Rademacher distribution. The Rademacher complexity Rn(G) of class G can be defined analogously.

Corollary 2. Suppose Assumptions 2 to 4 hold. Let ∥Y ∥ ≤ CY , ∥h∥∞ ≤ CH for any h ∈ H and
∥g∥∞ ≤ CG for g ∈ G. Then, there exists a universal positive constant c such that with probability
at least 1− δ, we have

∥ĥmn − h0∥2 ≤ c

√
(CH + CG)(Rn(G) +Rn(H)) + (CG + CH)CH

√
ln(1/δ)/n

Furthermore, for given function classes H,G, we can obtain final L2 convergence rates by
plugging in off-the-shelf results of Rademacher complexities. For example, the following corollary
is obtained by instantiating Theorem 2 to finite classes.

Corollary 3. When H,G are finite classes, with probability at least 1− δ, we have ∥ĥmn − h0∥2 =

Poly(CH, CG)
(
ln(|H||G|/δ)

n

)1/4
where Poly(CH, CG) is a polynomial term in CH and CG .

As another example, we instantiate Theorem 2 for more general nonparametric classes whose
complexity are characterized by their covering numbers.

Corollary 4. Let M(ϵ,H, ∥ · ∥∞) and M(ϵ,G, ∥ · ∥∞) be covering numbers of H,G with respect
to L∞-norm. Suppose ln(M(ϵ,H, ∥ · ∥∞)) = O(ϵ−β) and ln(M(ϵ,G, ∥ · ∥∞)) = O(ϵ−β) for some
β > 0, and the conditions of in Corollary 2 hold. Then with probability at least 1− δ, we have

∥ĥmn − h0∥2 =


Poly(CH, CG){n−1/4 + (ln(1/δ)/n)1/4}, (β < 2)

Poly(CH, CG){n−1/4 ln(n) + (ln(1/δ)/n)1/4}, (β = 2)

Poly(CH, CG){n−1/(2β) + (ln(1/δ)/n)1/4} (β > 2).

If we specialize Corollary 4 to Sobolev balls H,G with smoothness parameter α and input
dimension d, we have β = d/α, so the rates become O(n−1/4) when α/d > 2 and O(n−α/(2d))
when α/d ≤ 2. It is an interesting question whether this rate is optimal. Although Chen and Reiss
(2011) derives a minimax rate for NPIV regression estimation, their result requires the NIPV equation
to have a unique solution and they impose stronger conditions on the function classes, so it is not
directly comparable to our rate. A thorough investigation of the rate optimality is left for future work.

Finally, we also consider the case where the function classes H,G are misspecified so they
may not satisfy the realizability assumptions. This result is useful when we use sieve estimators
based on sample-dependent function classes H and G, that approximate certain function spaces.
For example, H,G can be linear models with polynomial basis functions or neural networks with
growing dimensions, which can gradually approach Hölder or Sobolev balls (Chen, 2007).

Theorem 3 (Finite sample result under misspecification). Suppose Assumption 2 holds, and there
exists h† ∈ H and g† ∈ G such that ∥h† − h0∥2 ≤ ϵh and inf ḡ0∈Nh0

(T ⋆) ∥g† − ḡ0∥2 ≤ ϵg. Then

∥ĥmn − h0∥2 ≤
√
{2CH + CG}ϵh + CHϵg + 2 sup

h∈H,g∈G
|(En − E)[(Y − h(X)) g(Z) + 0.5h(X)2]|.

10
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Compared to Theorem 2, the upper bound in Theorem 3 involves additional misspecification
errors ϵh, ϵg due to misspecified H,G. The empirical process term in Theorem 3 can be again
bounded by Rademacher complexities.

6. Discussions

In this section, we compare our method with existing minimax NPIV estimators in Dikkala et al.
(2020); Liao et al. (2020); Bennett et al. (2022) as they are most relevant. Other existing minimax
estimators are similar so we only briefly review them in Section 1.1.

6.1. Comparisons to Dikkala et al. (2020)

Dikkala et al. (2020) considers the following minimax estimator:

ĥpro = argmin
h∈H

max
g∈G

L̃n(h, g), L̃n(h, g) := −0.5En[g
2(Z)] + En[(Y − h(X)) g(Z)].

Here for simplicity, we omit possible additional regularizers for h and g.
Dikkala et al. (2020) assumes the closedness condition that T (H − h⋄0) ⊂ G where h⋄0 can

be an arbitrary solution to T h = r0 (note this condition is invariant to the choice of h⋄0). Un-
der this condition, letting L(h, g) be the population analog of L̃n(h, g), it can be shown that
maxg∈G E[L̃(h, g)] = 0.5E[(T (h⋄0 − h)[Z])2] = 0.5E[([T h](Z)− r0(Z))2]. In other words, the
minimax objective in Dikkala et al. (2020) is used to approximate the projected MSE objective under
the closedness condition. In contrast, our proposed minimax objective is motivated by the method of
Lagrange multipliers, and it does not need the closedness condition.

To compare the theory in Dikkala et al. (2020) with our theory, we consider finite classes H,G
for simplicity. Then the theory in Dikkala et al. (2020) implies that if Nr0(T ) ∩ H ̸= 0 and

T (H− h⋄0) ⊂ G for h⋄0 ∈ Nr0(T ), then we have E[{T (ĥpro − h⋄0)}2(Z)] = O

((
ln(|H||G|/δ)

n

)1/2
)

with probability 1− δ.
Note that the rate O((ln(|H||G|)/n)1/2) above is faster than our rate O((ln(|H||G|)/n)1/4) in

Corollary 3. However, the rate above is for the weak projected MSE, while our rate in Corollary 3 is
for the stronger L2 error, so they are not comparable. In particular, the projected MSE rate cannot
translate into an L2 rate without further restrictions. Dikkala et al. (2020) consider restrictiting the
ill-posedness measure suph∈H

E[{ĥ−h)}2(X)]

E[{T (ĥ−h)}2(Z)]
. However, this ill-posedness measure may generally

be infinite, and in fact is guaranteed to be infinite when the solutions to the NPIV problem are
nonunique, so using it to get L2 convergence rates is often problematic.

Remark 1 (Enjoy the best of both worlds). Here we observe that the estimator in Dikkala et al.
(2020) can achieve a fast projected MSE rate while our estimator achieves a slow L2 rate. One may
wonder whether it is possible to achieve both guarantees at the same time. We explore this question
in Section A and find this is possible if we put aside computational considerations.

11
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6.2. Comparison to Liao et al. (2020)

Liao et al. (2020) builds on Dikkala et al. (2020) and incorporates additional Tikhonov regularization
into the minimax optimization:

min
h∈H

max
g∈G

−0.5En[g
2(Z)] + En[(Y − h(X)) g(Z)] + αEn[h

2(X)]. (9)

Liao et al. (2020) also needs the closedness assumption in Dikkala et al. (2020) and a realizability
assumption that the Tikhonov regularized solution h0,α is contained in H for small α. In addition, they
assume that the NPIV solution is unique and satisfies a source condition with exponent β ∈ (0, 1], and
the regularization strength α vanishes to 0 at an appropriate rate as n → ∞. Under these conditions,
they can derive an L2 convergence rate. In particular, their L2 rate has the order O(n−1/6) when the
function classes are e.g. finite or VC, and β = 1.

Our proposed estimator and theory significantly differ from Liao et al. (2020). Specifically, our
estimator does not involve the En[g

2(Z)] term and our regularized term En[h
2(X)] has a constant

coefficient 0.5 but Equation (9) needs a vanishing α. Moreover, our theory accommodates non-unique
solutions, and uses different realizability assumptions. Notably, under our source condition β = 1,
our convergence rate O(n−1/4) is faster than the rate O(n−1/6) in Liao et al. (2020).

6.3. Comparison to Bennett et al. (2022)

Under the same source condition, Bennett et al. (2022) 2 formulate the L2 error of h0 as projected
MSEs: E[{h0 − h}2(X)] = E[(T ∗{ḡ0 − g})2(X)] where T ∗g = h and T ∗ḡ0 = h0. First, note that
for any fixed ḡ0 such that T ⋆ḡ0 = h0, we have

Nh0(T ∗) = argmin
g∈G

E[(T ∗{ḡ0 − g})2(X)] = argmin
g∈G

0.5E[(T ∗g)2(X)]− E[Y g(Z)].

Then, under the closedness assumption T ∗G ⊂ H, we have

Nh0(T ∗) = argmax
g∈G

min
h∈H

0.5E[h2(X)] + E[{Y − h(X)}g(Z)].

Then, noting that the inner minimizer h satisfies T ∗g = h for any given g, and recalling the original
goal is to find h0 such that T ∗ḡ0 = h0, we can deduce that 3

{ḡ0, h0} = argmax
g∈G

argmin
h∈H

0.5E[h2(X)] + E[{Y − h(X)}g(Z)].

Finally, their proposed estimator ĥfli is given by replacing expectations with empirical averages.
In comparison to our proposed estimator ĥmn, the difference lies in the flip of argmax and

argmin. Since G,H could be non-convex, the two estimators are generally different. Indeed,
this results in a significant difference in terms of the required assumptions. In ĥfli, the primary
assumptions are the source condition, ḡ0 ∈ G, and T ∗G ⊂ H (note that h0 ∈ H is implicit from
the latter two conditions). Conversely, in our proposed estimator ĥmn, the primary assumptions are
the source condition and ḡ0 ∈ G, h0 ∈ H. This condition is strictly weaker as we dispense with the
requirement of closedness. This improvement is significant due to the inherent conflict between the
source condition and closedness, as elucidated next.

2. Note the main focus of Bennett et al. (2022) is to estimate the Riesz representator (in their notation, q†) with L2 error
rates. However, their argument is easily adapted to our scenario.

3. Here, letting a loss function to be L⋆(h, g), the equation (ḡ0, h0) = argming argmaxh L(h, g) means ḡ0 =
argming maxh L(h, g) and h0 = argmaxh L(h, ḡ0).

12
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6.4. Tension between Source Condition and Closedness

In Sections 6.1 to 6.3, the existing estimators all require certain closedness assumption, either
T (H− h⋄0) ⊂ G for an arbitrary solution h⋄0 to T h = r0, or T ∗G ⊂ H. In contrast, our proposed
estimator does not need any closedness assumption. In this subsection, we show that the closedness
conditions are inherently in tension with the source condition. This illustrates the benefit of getting
rid of the closedness condition. For simplicity, we consider a compact linear operator T that admits a
singular value decomposition (SVD) {σi, ui, vi}∞i=1, where {ui}∞i=1, {vi}∞i=1 are orthonormal bases
in the Hilbert spaces L2(Z), L2(X), respectively, and σ1 ≥ σ2 ≥ · · · are the singular values. It
follows that T vi = σiui, T ∗ui = σivi, and T T ⋆ has the SVD {σ2

i , ui, ui}∞i=1. Here we assume
a compact operator merely for a simple countable SVD. Non-compact operators can be handled
similarly, but involve more cumbersome notations (Cavalier, 2011).

To understand the source condition in Assumption 2, we write the function r0 as r0 =
∑∞

i=1 γiui
with

∑∞
i=1 γ

2
i < ∞. The source condition r0 ∈ R(T T ⋆) means that there exists ḡ0 =

∑∞
i=1 βiui

with
∑∞

i=1 β
2
i < ∞ such that h0 = T ∗T ḡ0. It follows from the SVD of T T ⋆ that γi = σ2

i βi.
Therefore, the source condition requires

∑∞
i=1 γ

2
i /σ

4
i < ∞. This means that the function r0 needs

to be sufficiently smooth relative to the spectrum of T . Obviously, the source condition is more
readily satisfied when the decaying rate of {σi}∞i=1 is slower, i.e., when the operators T and T ⋆ are
less smooth. In contrast, the closedness conditions are generally more easily satisfied when {σi}∞i=1

decays faster and the operators T and T ⋆ are more smooth. Hence, we observe that the source
condition and closedness imply opposing restrictions on the smoothness of the operators T and T ⋆.

7. Conclusion

In this paper, we study NPIV regression with general function approximation. We propose a
penalized minimax estimator based on a novel constrained optimization formulation of the least
norm IV solution. We prove that our estimator converges to this least norm solution, and derive its
L2 convergence rate under a source condition and realizability assumptions on both function classes
for the minimax estimator. Notably, our estimator does not require uniqueness of the NPIV solution,
and it avoids a closedness condition commonly assumed for existing minimax estimators. There are
many interesting future directions of research. One direction is extending our work to more general
inverse problems, including nonlinear inverse problems (Ito and Jin, 2014). Another direction is
extending our work to IV quantile regression (Chernozhukov et al., 2017).
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Appendix A. Enjoy the Best of Both Worlds

Thus far, we have encountered two types of guarantees: slow L2 rates and fast projected MSEs. The
next step is to obtain guarantees that possess both properties. If we put aside issues of computational
efficiency, then this is actually achievable. The estimator is defined as follows:

ĥboth = argmin
h∈Hn

max
g∈G

L̃n(h, g)

where

Hn = {h ∈ H; max
g∈G

Ln(h, g)−min
h∈H

max
g∈G

Ln(h, g) ≤ µn}.

Here, µn is some hyperparameter. The set Hn is defined so that each of its element has the L2

convergence guarantee under the source condition.

Theorem 4 (fast projected MSEs + slow L2 errors). Suppose H,G are finite for simplicity. Suppose
h0 ∈ H, T (H−h0) ⊂ G,Nh0(T ⋆)∩G ̸= ∅. Then, when we take µn = (CH+CG)

2
√

ln(|H||G|/δ)/n,
with probability 1− δ, we have

∥T (ĥboth − h0)∥2 ≤ c(CH + CG)

√
ln(|H||G|/δ)

n
, ∥ĥboth − h0∥2 ≤ c(CH + CG)

(
ln(|H||G|/δ)

n

)1/4

.

Appendix B. General Characterization of Saddle Points

First, notice

{h0} = min
h∈L2(X)

L(h, ḡ0) (10)

for any ḡ0 ∈ Nh0(T ∗). In other words, the optimal response to L(h, ḡ0) is uniquely h0. It follows
from two observations: (1) h0 is a best response for any element ḡ0 in Nh0(T ∗), since (h0, ḡ0) is a
saddle point by Lemma 3; and (2) the best response for each ḡ0 is unique, since L(h, ḡ0) is strictly
convex in h, due to the ⟨h, h⟩L2(X) term.

Next, we invoke the following general characterization of saddle points. Here, (x̃, ỹ) ∈
argminx∈X ′ argmaxy′∈Y ′ f(x, y) means x̃ ∈ argminx∈X ′ maxy∈Y ′ f(x, y) and ỹ ∈ argmaxy∈Y ′ f(x̃, y).

Lemma 5 (Characterization of saddle points over constrained sets). Let Z be a set of saddle points for
f(x, y) over X ,Y . Let ZX = argminx∈X maxy∈Y f(x, y), (·, Z̃X ) = argmaxy∈Y argminx∈X f(x, y).
Then, for X ′ ⊂ X ,Y ′ ⊂ Y , if Z ∩ (X ′,Y ′) is non-empty, we have

ZX ∩ X ′ ⊂ argmin
x∈X ′

max
y∈Y ′

f(x, y) (11)

and

argmin
x∈X ′

max
y∈Y ′

f(x, y) ⊂ Z̃X ∩ X ′. (12)
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In Lemma 5, the primary assumption Z ∩ (X ′,Y ′) ̸= ∅ means that some saddle point (with
respect to X ,Y) is included in X ′,Y ′. The equation (11) states that any saddle points (ZX ∩ X ′)
over unconstrained function classes (X ,Y) are still saddle points over constrained function classes
(X ′,Y ′). The equation (12) states that any saddle point over constrained function classes (X ′,Y ′) is
included in Z̃X .

We combine the above characterization of saddle points with Lemma 3 by setting (X ′,Y ′) =
(H,G), (X ,Y) = (L2(X), L2(Z)), f(x, y) = L(h, g). As an immediate consequence, when h0 ∈
H,Nh0(T ⋆) ∩ G ̸= ∅ (i.e., saddle points are included in (H,G)), using (11), we have {h0} ⊂
argminh∈Hmaxg∈G L(h, g). Next, using (12), we have argminh∈Hmaxg∈G L(h, g) ⊂ {h0} since
(·, h0) = argmaxg∈G argminh∈H L(h, g) by (10).

Appendix C. Computational Perspective

To solve the optimization problem in Equation (4), we can leverage the recent advances in minimax
optimization algorithms, even when the function classes H and G are neither convex nor concave,
such as neural network classes (Daskalakis et al., 2017). In particular, using a Reproducing kernel
Hilbert space (RKHS) ball as G is particularly convenient, since then the inner maximization problem
in Equation (4) has a closed form solution. Specifically, when G = {g : ∥g∥K ≤ 1} for a positive
definite kernel K : DZ ×DZ → R and its associated RKHS norm ∥ · ∥K , Equation (4) reduces to

argmin
h∈H

0.5En[h
2(X)] +

 1

n2

n∑
i=1

n∑
j=1

(Yi − h(Xi))K(Zi, Zj) (Yj − h(Xj))

1/2

.

Appendix D. Proof in Section 2

D.1. Proof of Lemma 1

Here, we have Nr0(T ) = h0 +N (T ). The least norm solution h0 among Nr0(T ) is the projection
of any element in Nr0(T ) onto (the closed subspace) N (T )⊥. Hence, {h0} = N (T )⊥ ∩Nr0(T ) =
R(T ⋆) ∩Nr0(T ). Here, we use N (T )⊥ = R(T ⋆).

Appendix E. Proof in Section 4

E.1. Proof of Lemma 2

It is clear from Lemma 1.

E.2. Proof of Lemma 3

The proof is as follows. From Section I, a point (h′, g′) ∈ (L2(X), L2(Z)) is a saddle point
if and only if the strong duality holds and h′ ∈ argminh∈L2(X) supg∈L2(Z) L(h, g) and g′ ∈
argmaxg∈L2(Z) infh∈L2(X) L(h, g). We check this condition.

Hence, we first show

{h0} = argmin
h∈L2(X)

sup
g∈L2(Z)

L(h, g), 0.5∥h0∥22 = min
h∈L2(X)

sup
g∈L2(Z)

L(h, g) (13)
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First, for any h ̸= Nr0(T ), we have supg∈L2(Z) L(h, g) = ∞. Hence, the solution needs to belong
to Nr0(T ). Since supg∈L2(Z) L(h, g) = 0.5E[h2(X)] for any h ∈ Nr0(T ), using Lemma 2, thus,
from the definition of h0, the solution is h0.

Next, we show

Nh0(T ⋆) = argmax
g∈L2(Z)

inf
h∈L2(X)

L(h, g), 0.5∥h0∥22 = max
g∈L2(Z)

inf
h∈L2(X)

L(h, g). (14)

We solve the inner minimization problem first. Then,

inf
h∈L2(X)

L(h, g) = inf
h∈L2(X)

0.5∥h− T ⋆g∥22 + ⟨r0, g⟩L2(Z) − 0.5⟨T ⋆g, T ⋆g⟩L2(X)

= ⟨r0, g⟩L2(Z) − 0.5⟨T ⋆g, T ⋆g⟩L2(X)

= ⟨T h0, g⟩L2(Z) − 0.5⟨T ⋆g, T ⋆g⟩L2(X) (Use r0 = T h0)

= −0.5∥T ⋆g − h0∥22 + 0.5∥h0∥22.

By using Assumption 2, since Nh0(T ∗) is not empty, we have

Nh0(T ∗) = argmax
g∈L2(Z)

inf
h∈L2(X)

L(h, g).

Finally, since the strong duality holds from (13) and (14), the set of saddle points is (h0,Nh0(T ⋆)).

E.3. Proof of Lemma 4

Recall the saddle point exists if and only if argminh∈L2(X) supg∈L2(Z) L(h, g) and argmaxg∈L2(Z) infh∈L2(X) L(h, g)
exist and the strong duality holds. We already show that Assumption 2 is sufficient to ensure the
existence of the saddle point. In this proof, we show Assumption 2 is necessary to ensure the
existence of the saddle point.

To ensure the existence of saddle point, we need to ensure the existence of argmaxg∈L2(Z) infh∈L2(X) L(h, g).
This optimization problem is equivalent to

argmin
g∈L2(Z)

∥T ⋆g − h0∥22 (15)

as we see in the proof of Lemma 3. This solution exists if and only if h0 ∈ R(T ⋆) +R(T ⋆)⊥. To
prove this, we define a projection operator onto R(T ⋆) as PR(T ⋆)

. Then, the solution of (15) exists
if and only if PR(T ⋆)

h0 ∈ R(T ⋆). Here, PR(T ⋆)
h0 ∈ R(T ⋆) implies

h0 = PR(T ⋆)
h0 + (I − PR(T ⋆)

)h0 ∈ R(T ⋆) +R(T ⋆)⊥.

Besides, h0 ∈ R(T ⋆) +R(T ⋆)⊥ implies PR(T ⋆)
h0 ∈ R(T ⋆) recalling H = R(T ⋆)

⊕
R(T ⋆)⊥.

This finishes proving that the solution of (15) exists if and only if h0 ∈ R(T ⋆) +R(T ⋆)⊥.
Finally, recall h0 ∈ R(T ⋆) using Lemma 1. Thus, h0 ∈ R(T ⋆)+R(T ⋆)⊥ implies h0 ∈ R(T ⋆)

since if h0 = h0,2 + h0,3, h0,2 ∈ R(T ⋆), h0,3 ∈ R(T ⋆)⊥, we have h0,3 = h0 − h0,2 ∈ R(T ⋆) ∩
R(T ⋆)⊥ = {0}.

The statement is concluded by the fact h0 ∈ R(T ⋆) implies r0 ∈ R(T T ⋆).
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E.4. Proof of Lemma 5

Clearly, each element in Z ∩ (X ,Y) is a saddle point over X ′,Y ′ since this is a saddle point over
X ,Y . Therefore,

ZX ∩ X ′ ⊂ argmin
x∈X ′

max
y∈Y ′

f(x, y).

Now, we prove the second statement. Let (x0, y0) be an element in Z ∩ (X ,Y) (this exists and
this is a saddle point). Then, take:

x̃ ∈ argmin
x∈X ′

sup
y∈Y ′

f(x, y), ỹ ∈ argmax
y∈Y ′

inf
x∈X ′

f(x, y).

Since (x̃, ỹ) is a saddle point over X ′,Y ′, we have

f(x0, y0) ≥ f(x0, ỹ) ≥ f(x̃, ỹ) ≥ f(x̃, y0) ≥ f(x0, y0).

Then, the above inequalities are equalities. Hence, we have

f(x0, ỹ) = f(x̃, y0), f(x0, y0) = f(x0, ỹ)

This means that

x̃ ∈ Z ′
X ⊂ X ′.

recalling y0 ∈ argmaxy∈Y minx∈X f(x, y).

E.5. Proof of Theorem 1

We show two proofs.

First Proof. We use Lemma 5. First, using (11),

{h0} ⊂ argmin
h∈H

max
g∈G

L(h, g).

Second, we use (12). Here, recalling the proof of Lemma 3, we have

(Nh0(T ∗), h0)) ∈ argmax
g∈G

argmin
h∈H

L(h, g).

Therefore, using Lemma 3, we have

argmin
h∈H

max
g∈G

L(h, g) ⊂ {h0}.

Hence,

argmin
h∈H

max
g∈G

L(h, g) = {h0}.
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Second Proof. We give more direct proof to show the finite sample result later.
We take some element ḡ0 from Nh0(T ⋆) ∩ G. This satisfies T ∗ḡ0 = h0. We define

L(h, g) := 0.5E[h2(X)] + E[g(Z){Y − h(X)}],
ĝ(h) := argmax

g∈G
L(h, g), ĥ := argmin

h∈H
sup
g∈G

L(h, g),

and ĝ := ĝ(ĥ). Hence, for any h ∈ H,

L(h, ḡ0)− L(h0, ḡ0)

= 0.5E[h2(X)] + E[ḡ0(Z){Y − h(X)}]− 0.5E[{h0}2(X)]0E[ḡ0(Z){Y − h0(X)}]
= 0.5E[h2(X)] + E[ḡ0(Z){h0(X)− h(X)}]− 0.5E[{h0}2(X)]

= 0.5E[h2(X)] + E[h0(X){h0(X)− h(X)}]− 0.5E[{h0}2(X)]
(We use E[h0(X) | Z] = ḡ0(Z))

= 0.5E[{h(X)− h0(X)}2].

Therefore, for any h ∈ H,

E[{h(X)− h0(X)}2] = L(h, ḡ0)− L(h0, ḡ0). (16)

Furthermore,

L(ĥ, ĝ) ≥ L(ĥ, ḡ0) (Construction of estimators)

≥ L(h0, ḡ0) (Saddle point property)

≥ L(h0, ĝ(h0)). (Saddle point property)

Since we have L(ĥ, ĝ) ≤ L(h0, ĝ(h0)) from the definition, all of the above inequalities are equalities.
Then, we have

L(ĥ, ḡ0)− L(h0, ḡ0) = 0. (17)

In conclusion, combining (16) with (17), we have

E[{ĥ(X)− h0(X)}2] ≤ L(ĥ, ḡ0)− L(h0, ḡ0) = 0.

Hence, ĥ(X) = h0(X).

Appendix F. Proof of Section 5

F.1. Proof of Theorem 2

We take some element ḡ0 from Nh0(T ⋆) ∩ G. This satisfies T ∗ḡ0 = h0. We define

L(h, g) := 0.5E[h2(X)] + E[g(Z){Y − h(X)}],
Ln(h, g) := 0.5En[h

2(X)] + En[g(Z){Y − h(X)}],
ĝ(h) := argmax

g∈G
0.5En[h

2(X)] + En[g(Z){Y − h(X)}],

M(H,G) := sup
h∈H,g∈G

|(En − E)[{Y − h(X)}g(Z) + 0.5h(X)2]|.
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Using (16), recall for any h ∈ H, we have

E[{h(X)− h0(X)}2] = L(h, ḡ0)− L(h0, ḡ0).

Here, we have

Ln(ĥ, ĝ(ĥ)) ≥ Ln(ĥ, ḡ0) (Construction of estimators)

≥ L(ĥ, ḡ0)−M(H,G)
≥ L(h0, ḡ0)−M(H,G) (Saddle point property)

≥ L(h0, ĝ(h0))−M(H,G) (Saddle point property)

≥ Ln(h0, ĝ(h0))− 2M(H,G)
≥ Ln(ĥ, ĝ(ĥ)− 2M(H,G). (Construction of estimators.)

Therefore, we have

L(ĥ, ḡ0)− L(h0, ḡ0) ≤ 2M(H,G).

Finally, we have

E[{ĥ(X)− h0(X)}2] ≤ L(ĥ, ḡ0)− L(h0, ḡ0) ≤ 2M(H,G).

F.2. Proof of Corollary 2

We calculate the following empirical process term:

sup
h∈H,g∈G

|(En − E)[{Y − h(X)}g(Z) + 0.5h(X)2]|.

Then, from Wainwright (2019, Theorem 4.10), this is upper-bounded by

c
{
Rn(A1) +Rn(A2) +Rn(A3) + (CG + CH)CH

√
ln(1/δ)/n

}
where

A1 = {yg(z); g ∈ G}, A2 = {h(x)g(z);h ∈ H, g ∈ G}, A3 = {0.5h(x)2;h ∈ H}.

First, we have

Rn(A1) ≲ CGRn(G).

Secondly, we have

Rn(A2) ≲ (CH + CG)(Rn(G) +Rn(H)).

Here, we use the proof of Kallus et al. (2021, Proof of Corollary 3). Thirdly, we have

Rn(A3) ≲ 2CHRn(H).

Combining all results together, the empirical process term is upper-bounded by

c
{
(CH + CG)(Rn(G) +Rn(H)) + (CG + CH)CH

√
ln(1/δ)/n

}
.
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F.3. Proof of Corollary 4

We combine the Dudley integral Theorem 5 with Corollary 2.

F.4. Proof of Theorem 3

We take some element ḡ0 from Nh0(T ⋆) ∩ G. This satisfies T ∗ḡ0 = h0.

L(h, g) := 0.5E[h2(X)] + E[g(Z){Y − h(X)}],
Ln(h, g) := 0.5En[h

2(X)] + En[g(Z){Y − h(X)}],
ĝ(h) := argmax

g∈G
0.5En[h

2(X)] + En[g(Z){Y − h(X)}],

M(H,G) := sup
h∈H,g∈G

|(En − E)[{Y − h(X)}g(Z) + 0.5h(X)2]|.

and ĝ = ĝ(ĥ). Recall for any h ∈ H,

E[{h(X)− h0(X)}2] ≤ L(h, ḡ0)− L(h0, ḡ0).

Furthermore,

L(ĥ, ḡ0)− L(h0, ḡ0)

= −L(h0, ḡ0) + L(h†, ĝ(h†))︸ ︷︷ ︸
(a)

−L(h†, ĝ(h†)) + L(ĥ, g†)︸ ︷︷ ︸
(c)

−L(ĥ, g†) + L(ĥ, ḡ0)︸ ︷︷ ︸
(f)

.

Term (a) is upper-bounded as follows:

L(h†, ĝ(h†))− L(h0, ḡ0) ≤ 0.5E[{h†}2(X)] + ∥ĝ(h†)∥2∥h0 − h†∥2 − 0.5E[h20(X)]

≤ 0.5E[{h†}2(X)] + sup
g

∥g∥2∥h0 − h†∥2 − 0.5E[h20(X)]

≤ 0.5∥h† + h0∥2∥h† − h0∥2 + {sup
g

∥g∥2}∥h0 − h†∥2

≤ {2CH + CG}∥h0 − h†∥2.

Term (c) is upper-bounded as follows:

−L(h†, ĝ(h†)) + L(ĥ, g†) ≤ −L(h†, ĝ(h†)) + Ln(h
†, ĝ(h†))− Ln(h

†, ĝ(h†)) + Ln(ĥ, g
†)− Ln(ĥ, g

†) + L(ĥ, g†)

≤ M(H,G) + (−Ln(h
†, ĝ(h†)) + Ln(ĥ, ĝ)) +M(H,G)

≤ 2M(H,G).

The term (f) is upper-bounded as follows:

L(ĥ, ḡ0)− L(ĥ, g†) ≤ ∥ĥ∥2∥g0 − g†∥2 ≤ CH∥g0 − g†∥2

In conclusion, we have

E[{ĥ(X)− h0(X)}2] ≤ L(ĥ, ḡ0)− L(h0, ḡ0) ≤ {2CH + CG}∥h0 − h†∥2 + CH∥g0 − g†∥2 + 2M(H,G).
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Appendix G. Proof of Section 6

G.1. Proof of Rate in Section 6.1

Recall

ĥpro = argmin
h∈H

max
g∈G

L̃n(h, g), L̃n(h, g) := −0.5En[g
2(Z)] + En[{Y − h(X)}g(Z)].

Let

ĝh := argmax
g∈G

L̃n(h, g), gh := E[Y − h(X) | Z = ·],

Γ(h, g) := −0.5g2(Z) + {Y − h(X)}g(Z), κ(h, g) := Γ(h, g)− Γ(h, gh).

First Step. Our goal is to show

∀h ∈ H; |En[κ(h, ĝh)]| ≲
(C2

H + C2
G) ln(|G|/δ)
n

. (18)

We fix h hereafter.
Here, first, we have

E[κ(h, ĝh)] = 0.5E[(ĝh − gh)
2(Z)].

Then,

E[κ(h, ĝh)] ≤ En[κ(h, ĝh)] + |(E− En)[κ(h, ĝh)]|
≤ |(E− En)[κ(h, ĝh)]|.

From the first line to the second line, we use the definition of the estimator and gh ∈ G.
Now, we use Bernstein’s inequality. With probability 1− δ, we have

∀g ∈ G, ∀h ∈ H; (E− En)[κ(h, g)] ≤
√

var[κ(h, g)] ln(|G||H|/δ)
n

+
(C2

H + C2
G) ln(|G||H|/δ)
n

.

In the following, we condition on this event. Then, we have

E[κ(h, ĝh)] ≲
√

var[κ(h, ĝh)] ln(|G||H|/δ)
n

+
(C2

H + C2
G) ln(|G||H|/δ)
n

. (19)

Here, we have

var[κ(h, ĝh)] = E[{Γ(h, gh)− Γ(h, ĝh)}2]
= E[0.25{ĝh(Z)− gh(Z)}2{ĝh(Z) + gh(Z)}2]
≤ C2

GE[{ĝh(Z)− gh(Z)}2].

Therefore, combining the above with (19), we obtain

E[{ĝh(Z)− gh(Z)}2] ≲
(C2

H + C2
G) ln(|G||H|/δ)
n

.
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Hence,

|En[κ(h, ĝh)]| ≤ |E[κ(h, ĝh)]|+ |(En − E)[κ(h, ĝh)]|
= 0.5E[{ĝh(Z)− gh(Z)}2] + |(En − E)[κ(h, ĝh)]|

≲
(C2

H + C2
G) ln(|G||H|/δ)
n

+ |(En − E)[κ(h, ĝh)]|

≲
(C2

H + C2
G) ln(|G||H|/δ)
n

. (Use (19))

Second Step. We define

Ξ(h) := Γ(h, gh)− Γ(h0, gh0).

Note Γ(h0, gh0) = 0 since h0. Furthermore,

E[Ξ(h)] = E[g2h(Z)], E[Ξ2(h)] ≤ (C2
H + C2

G)E[g2h(Z)]. (20)

Then,

E[Ξ(ĥ)] ≤ En[Ξ(ĥ)] + |(E− En)[Ξ(ĥ)]|

Here, using the first conclusion (18), we get

En[Ξ(ĥ)] = En[Γ(ĥ, gĥ)− Γ(h0, 0)]

≤ En[Γ(ĥ, ĝĥ)− Γ(h0, ĝh0)] + c
(C2

H + C2
G) ln(|G||H|/δ)
n

≤ c
(C2

H + C2
G) ln(|G||H|/δ)
n

.

From the first line to the second line, we use h0 ∈ H and (18). From the second line to the third line,
we use the construction of the estimator.

Therefore,

E[Ξ(ĥ)] ≤ c
(C2

H + C2
G) ln(|G||H|/δ)
n

+ |(E− En)[Ξ(ĥ)]|.

Here, we use Bernstein’s inequality. With probability 1− δ, we have

∀h ∈ H; |(E− En)[Ξ(h)]| ≤
√

var[Ξ(h)] ln(|H|/δ)
n

+ c
(C2

H + C2
G) ln(|H|/δ)
n

.

Hereafter, we condition on this event. Thus, using (20), we have

E[g2
ĥ
(Z)] ≤

√
g2
ĥ
(Z) ln(|H|/δ)

n
+ c

(C2
H + C2

G) ln(|H||G|/δ)
n

.

Therefore, by some algebra, we obtain

E[g2
ĥ
(Z)] ≲

(C2
H + C2

G) ln(|H||G|/δ)
n

.
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Appendix H. Proof of Section A

H.1. Proof of Theorem 4

We use the notation in Theorem 2. Take µn such that 2M(H,G) ≤ µn holds with probabiltiy 1− δ.
We condition on this event.

The guarantee in terms of projected MSEs is straightforward as long as h0 is included in the
confidence ball Hn with probability 1− δ by following the proof in Theorem ??. In fact, we have

Ln(h0, ĝ(h0))−min
h

Ln(h, ĝ(h)) = Ln(h0, ĝ(h0))− Ln(ĥ, ĝ(ĥ))

≤ Ln(h0, ĝ(h0))− Ln(ĥ, g(ĥ))

= Ln(h0, ĝ(h0))− L(h0, ĝ(h0))) + L(h0, ĝ(h0)))− L(ĥ, g(ĥ)) + L(ĥ, g(ĥ))− Ln(ĥ, g(ĥ))

≤ Ln(h0, ĝ(h0))− L(h0, ĝ(h0))) + L(h0, g(h0)))− L(ĥ, g(ĥ)) + L(ĥ, g(ĥ))− Ln(ĥ, g(ĥ))

≤ 2M(H,G) ≤ µn.

Hence, h0 ∈ Hn.
Next, we prove the L2 convergence guarantee. Here, for any ĥ in the confidence ball Hn, we

have

Ln(ĥ, ĝ(ĥ)) ≥ Ln(ĥ, ḡ0) (Construction of estimators)

≥ L(ĥ, ḡ0)−M(H,G)
≥ L(h0, ḡ0)−M(H,G) (Saddle point property)

≥ L(h0, ĝ(h0))−M(H,G) (Saddle point property)

≥ Ln(h0, ĝ(h0))− 2M(H,G)
≥ min

h
Ln(h, ĝ(h))− 2M(H,G)

≥ Ln(ĥ, ĝ(ĥ))− 2M(H,G)− µn.

Therefore,

Ln(h0, ĝ(h0))−min
h

Ln(h, ĝ(h)) ≤ 2M(H,G) + µn.

Hence, the L2 rate guarantee is ensured since

E[{ĥ(X)− h0(X)}2] ≤ L(ĥ, ḡ0)− L(h0, ḡ0) ≤ 2M(H,G) + µn.

Appendix I. Auxiliary Lemmas

Lemma 6. (x∗, y∗) is a saddle point of f(x, y) over (X ,Y) if and only if the strong duality holds
and

x∗ ∈ argmin
x∈X

max
y∈Y

f(x, y), y∗ ∈ argmax
y∈Y

min
x∈X

f(x, y).

Proof. Suppose (x∗, y∗) is a saddle point of f(x, y) over X ,Y . Then,

inf
x∈X

sup
y∈Y

f(x, y) ≤ sup
y∈Y

f(x∗, y) ≤ f(x∗, y∗) ≤ inf
x∈X

f(x, y∗) ≤ sup
y∈Y

inf
x∈X

f(x, y).
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Hence, the strong duality holds. The above inequalities are actually equalities. Therefore,

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

f(x∗, y) = f(x∗, y∗) = inf
x∈X

f(x, y∗) = sup
y∈Y

inf
x∈X

f(x, y).

Hence, we have

x∗ ∈ argmin
x∈X

sup
y∈Y

f(x, y), y∗ ∈ argmax
y∈Y

inf
x∈X

f(x, y).

Next, suppose the strong duality holds, and

x∗ ∈ argmin
x∈X

max
y∈Y

f(x, y), y∗ ∈ argmax
y∈Y

inf
x∈X

f(x, y).

Then, we have

max
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

f(x, y∗) ≤ f(x∗, y∗) ≤ sup
y∈Y

f(x∗, y) = min
x∈X

sup
y∈Y

f(x, y).

Finally, using the strong duality, the above is actually equality. Hence,

inf
x∈X

f(x, y∗) = f(x∗, y∗), sup
y∈Y

f(x∗, y) = f(x∗, y∗).

This implies (x∗, y∗) is a saddle point since

∀x ∈ X , ∀y ∈ Y; f(x, y) ≥ f(x∗, y∗) ≥ f(x∗, y).

Theorem 5 (Dudley integral). Consider a function class F containing f : X → R. Then, we have

Rn(F) ≤ inf
ϵ≥0

{
4ϵ+ 12

∫ ∥F∥∞

ϵ

√
lnN (τ,F , ∥ · ∥∞)

n
dτ

}
.
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