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Abstract
We present the first polynomial-time algorithm to exactly compute the number of labeled chordal
graphs on n vertices. Our algorithm solves a more general problem: given n and Ê as input, it
computes the number of Ê-colorable labeled chordal graphs on n vertices, using O(n7) arithmetic
operations. A standard sampling-to-counting reduction then yields a polynomial-time exact sampler
that generates an Ê-colorable labeled chordal graph on n vertices uniformly at random. Our counting
algorithm improves upon the previous best result by Wormald (1985), which computes the number
of labeled chordal graphs on n vertices in time exponential in n.

An implementation of the polynomial-time counting algorithm gives the number of labeled
chordal graphs on up to 30 vertices in less than three minutes on a standard desktop computer.
Previously, the number of labeled chordal graphs was only known for graphs on up to 15 vertices.
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1 Introduction

Generating random graphs from a prescribed graph family is a fundamental task for running
simulations and testing conjectures. Although generating a random labeled graph on n

vertices is easy (just flip an unbiased coin for each potential edge), the first polynomial-time
algorithm for generating an unlabeled graph uniformly at random was only given in 1987, by
Wormald [36]. The algorithm of Wormald runs in polynomial time in expectation, and to
the best of our knowledge, the existence of a worst-case polynomial-time sampler of random
unlabeled graphs remains open.

Naturally, when we wish to sample from a specified graph family, there are many interesting
families of graphs for which this problem is nontrivial, even when the graphs are labeled. For
the class of labeled trees, a sampling algorithm using Prüfer sequences [27] was discovered in
1918. More recently, a fast (exact) uniform sampler was presented by Gao and Wormald for
d-regular graphs with d = o(

Ô
n) in 2017 [11], and then for power-law graphs in 2018 [12]. A
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58:2 Counting and Sampling Labeled Chordal Graphs in Polynomial Time

more general problem is the following: given an arbitrary degree sequence, generate a random
graph with those specified degrees – this has been resolved for bipartite graphs [21, 3] as well
as for general graphs when the maximum degree is not too large [16, 1]. See Greenhill [15]
for a survey of random generation of graphs with degree constraints. For planar graphs,
Bodirsky, Gröpl, and Kang presented a polynomial-time algorithm [6], which uses dynamic
programming to exactly compute the number of labeled planar graphs on n vertices and
generate a planar graph uniformly at random in time ÂO(n7). This was improved to O(n2)
expected time by Fusy [10], using a Boltzmann sampler.

Our results fall naturally within this line of work. We consider the problem of generating
a labeled chordal graph on n vertices uniformly at random. A graph is chordal if it has
no induced cycles of length at least 4. Despite being one of the most fundamental and
well-studied graph classes, prior to our work, the fastest uniform sampling algorithm for
labeled chordal graphs was the exponential-time algorithm of Wormald from 1985 [35]. (To
be precise, optimizing the running time of an algorithm for counting chordal graphs was
not the main focus of Wormald; rather, the main goal of the paper was to determine the
asymptotic number of chordal graphs with given connectivity, and the exponential-time
algorithm is a corollary of these results.) Since then, various algorithmic approaches have
been proposed for generating chordal graphs (e.g., [23, 32, 33, 8, 24]), but these algorithms
do not come with any formal guarantees about their output distribution. In particular, [32]
specifically asks for the existence of a polynomial-time algorithm to sample chordal graphs
uniformly at random as an open problem. In a recent abstract, Sun and Bezáková [33]
proposed a Markov chain for sampling chordal graphs, but this Markov chain comes with
few mixing time guarantees.

We obtain the first polynomial (in n) time algorithm to exactly count the number of
labeled chordal graphs on n vertices, as well as the first polynomial-time uniform sampling
algorithm for the class of labeled chordal graphs. Our algorithm also easily extends to
counting and sampling Ê-colorable labeled chordal graphs. A graph G is Ê-colorable if there
exists a function c : V (G) æ {1, . . . , Ê} such that every edge uv œ E(G) satisfies c(u) ”= c(v).

I Theorem 1. There is a deterministic algorithm that given positive integers n and Ê Æ n,
computes the number of Ê-colorable labeled chordal graphs on n vertices using O(n7) arithmetic
operations. Moreover, there is a randomized algorithm that generates a graph uniformly
at random from the set of all Ê-colorable labeled chordal graphs on n vertices using O(n7)
arithmetic operations.

By the known equivalence between chromatic number, maximum clique size, and treewidth
of chordal graphs [5], Theorem 1 can be reinterpreted as counting and sampling labeled
chordal graphs of clique size at most Ê, or treewidth at most Ê ≠ 1. The running time
bound of Theorem 1 is stated in terms of the number of arithmetic operations. Since there
are at most 2n2 labeled graphs on n vertices, the arithmetic operations need to deal with
n

2-bit integers. Therefore, using the O(n log n)-time algorithm for multiplying two n-bit
integers [19] yields an O(n9 log n)-time upper bound for our algorithm in the RAM model.

A straightforward implementation of our counting algorithm gives the number of labeled
chordal graphs on up to n = 30 vertices in less than three minutes on a standard desktop
computer. Previously, the number of labeled chordal graphs was only known for graphs on
up to 15 vertices [25]. In addition, we use our implementation to compute the number of
Ê-colorable labeled chordal graphs for n Æ 12 and Ê Æ 12. We chose to stop at n = 12 to
keep the table at a reasonable size, not because of the computation time. We present the
computational results in Section 4.
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1.1 A Brief Survey on Chordal Graphs
The literature on chordal graphs is so vast that it would be impossible to fully do it justice.
Discussions of chordal graphs in the literature go as far back as 1958 [18]. What follows is a
summary of some of the most notable problems and milestones.

Many NP-hard optimization problems (such as coloring [13] and maximum independent
set [9]), as well as #P-hard counting problems (such as independent sets [26, 4]), and many
others [29], are polynomial-time solvable on chordal graphs. Chordal graphs have a wide
variety of applications, including phylogeny in evolutionary biology [17, 28] and Bayesian
networks in machine learning [34]. When doing Gaussian elimination on a symmetric matrix,
the set of matrix entries that are nonzero for at least one time-point of the elimination process
corresponds to the edge set of a chordal graph. Thus the problem of finding an ordering
in which to do Gaussian elimination that minimizes the number of nonzero matrix entries
can be reduced to finding a chordal supergraph of a given graph with the minimum number
of edges [30]. This problem, known as minimum fill-in, was shown to be NP-complete by
Yannakakis [37]. Chordal graphs have a central place in graph theory [7], both through their
connection to treewidth [20] and through their connection to perfect graphs [14]. From an
algorithms perspective, chordal graphs can be recognized in linear time [31].

An interesting and relevant result by Bender et al. [2] is that a random n-vertex labeled
chordal graph is a split graph with probability 1 ≠ o(1), i.e., the fraction of labeled chordal
graphs that are not split is o(1). This yields a simple approximately uniform sampler for
labeled chordal graphs: simply sampling a random labeled split graph leads to an output
distribution with total variation distance o(1) from the uniform distribution on labeled
chordal graphs. This simple sampling algorithm is unsatisfactory because it can never output
a non-split chordal graph. Nevertheless, this result suggests two things: The first is that it
might be possible to find a simple and e�cient uniform random sampler for labeled chordal
graphs. The second is that the type of chordal graphs that one usually envisions when
thinking of a chordal graph (namely those with relatively small treewidth) are di�erent
from those most likely to be generated by a uniform random sampler (namely split graphs).
Therefore, to generate the type of chordal graphs that one usually envisions, one should be
sampling not from the set of all chordal graphs but rather from a subset, e.g., the set of all
Ê-colorable chordal graphs. Fortunately, Theorem 1 provides this functionality.

1.2 Methods
Our exact counting algorithm is based on dynamic programming. While clique trees and
tree decompositions are never explicitly mentioned in the description of the algorithm, the
intuition behind the algorithm is based on these notions. Essentially, we generate a rooted
clique tree where the dynamic-programming table encodes certain properties of the graph,
including how it relates to the root node of the clique tree. A clique tree of a graph G is a tree
T together with a function f that maps each vertex of G to a connected vertex subset of T ,
such that for every pair u,v of vertices in G, uv is an edge in G if and only if f(u) fl f(v) ”= ÿ.
It is well known that a graph G has a clique tree if and only if it is chordal [5].

The main di�culty with this approach is that di�erent chordal graphs have di�erent
numbers of clique trees, so if we count the total number of clique trees, this will not give us an
accurate count of the number of n-vertex chordal graphs. Therefore, the key idea behind our
algorithm is to assign to each labeled chordal graph a unique “canonical” clique tree and to
only count these canonical clique trees. The information stored in the dynamic-programming
table is su�cient to ensure that every clique tree that we do count is the canonical tree of
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some chordal graph, and that the canonical clique tree of every chordal graph is counted. As
it turns out, the best way to phrase our algorithm is not in terms of clique trees at all, but
rather in terms of an (essentially) equivalent notion that we call an “evaporation sequence.”
An evaporation sequence is closely related to the standard notion of a perfect elimination
ordering (PEO) of a chordal graph. A simplicial vertex is a vertex whose neighborhood
is a clique, and a PEO is an ordering of the vertices such that each is simplicial in the
current induced subgraph, if we delete the vertices in that order (see Section 3.1 for more
details). An evaporation sequence is a type of “canonical” PEO: at each step, we remove
all simplicial vertices from the current subgraph, rather than making an arbitrary choice
of a single simplicial vertex. We say that all of the simplicial vertices evaporate at time 1.
Next, all of the vertices that become simplicial once the first set of simplicial vertices has
been removed are said to evaporate at time 2, and so on. It is easy to see that every labeled
chordal graph has a unique evaporation sequence, and that this sequence does not depend
on the labeling of the vertices.

Therefore, the number of chordal graphs on n vertices is the sum over all evaporation
sequences of the number of labeled chordal graphs with that evaporation sequence. While
di�erent evaporation sequences correspond to di�erent numbers of chordal graphs, because
this number is independent of the labels, we can simply guess the number x of vertices that
evaporate at any given time, and then without loss of generality assign the labels 1, . . . , x to
those vertices.

In our dynamic-programming algorithm, the recursive subproblems deal with counting
rooted clique trees. In this context, the root of a clique tree is the set of vertices that evaporate
last. Just as we would like to “force” a set of nodes to be in the root of the tree, we will
sometimes want to force a set of nodes to evaporate last. This is done using what we call an
exception set, i.e., a set of vertices that do not evaporate even if they are simplicial.

The random sampling algorithm in Theorem 1 follows from our counting algorithm using
the standard sampling-to-counting reduction of [22].

1.3 Overview of the Paper
Our dynamic-programming algorithm, including the associated recurrences, is presented
in Section 3. For a glimpse of the proof of correctness, one can find the proof of the first
recurrence (the reduction to counting connected chordal graphs) in Section 3.4. The complete
proof of correctness, as well as the details of how to obtain the random sampling algorithm
using the counting algorithm, can be found in the full version of the paper.

2 Preliminaries

Our algorithm counts vertex-labeled chordal graphs. For simplicity of notation, we assume
the vertex set of each graph is a subset of N = {1, 2, 3, . . .}, which allows the labels to also
serve as the names of the vertices. For example, we will speak of the vertex 5 œ V (G) rather
than a vertex v with label 5.

I Definition 2. A labeled graph is a pair G = (V, E), where the vertex set V is a finite
subset of N and the edge set E is a set of two-element subsets of V .

Henceforth, we implicitly assume all graphs that we consider are labeled graphs. For
nonnegative integers n, we use the notation [n] := {1, 2, . . . , n}. Intervals of integers will
often appear in our algorithm as the vertex set of a graph or subgraph, so we also define

[a, b] := {a, a + 1, . . . , b}

for nonnegative integers a, b. If b < a, then [a, b] = ÿ.
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I Definition 3. Let A = {a1, . . . , ar} and B = {b1, . . . , br} be finite subsets of N such
that |A| = |B|, where the elements ai and bi are listed in increasing order. We define
„(A, B) : A æ B as the bijection that maps ai to bi for all i œ [r].

I Definition 4. Let G1, G2 be two graphs, and suppose C := V (G1) fl V (G2) is a clique in
both G1 and G2. When we say we glue G1 and G2 together at C to obtain G, this indicates
that G is the union of G1 and G2: the vertex set is V (G) = V (G1) fi V (G2), and the edge
set is E(G) = E(G1) fi E(G2).

For a graph G and a vertex subset S ™ V (G), G[S] denotes the induced subgraph on the
vertices of S. For a vertex v œ V (G), we denote the neighborhood of v in G by NG(v), or by
N(v) if the graph is clear from the context. For S ™ V (G), the open neighborhood of S is
denoted by

NG(S) := {v œ V (G) \ S : uv œ E(G) for some u œ S}

and the closed neighborhood of S is denoted by NG[S] := S fi NG(S), or simply N(S) and
N [S], respectively. For S, T ™ V (G), we say S sees all of T if T ™ N(S).

3 Counting labeled chordal graphs

3.1 The evaporation sequence
I Definition 5. A vertex v in a graph G is simplicial if N(v) forms a clique.

A perfect elimination ordering of a graph G is an ordering v1, . . . , vn of the vertices of G

such that for all i œ [n], vi is simplicial in the subgraph induced by the vertices vi, . . . , vn. It
is well known that a graph is chordal if and only if it has a perfect elimination ordering [5].
For our counting algorithm, we define the notion of the evaporation sequence of a chordal
graph, which can be viewed as a canonical version of the perfect elimination ordering. In
the evaporation sequence, rather than making an arbitrary choice for which of the simplicial
vertices in G will go first in the ordering, we place the set of all simplicial vertices as the first
item in the sequence. As an example, if G is a tree, then the set of all simplicial vertices
would be exactly the leaves of G.

To build the evaporation sequence, we use the fact that given a chordal graph G, if we
repeatedly remove all simplicial vertices, then eventually no vertices remain. By observing at
which time step each vertex is deleted, we obtain a partition of V (G), which allows us to
classify and understand the structure of G. In our algorithm, it will also be useful to set
aside a set of exceptional vertices which are never deleted, even if they are simplical.

To formalize this, suppose we are given a chordal graph G and a vertex subset X ™ V (G).
We define the evaporation sequence of G with exception set X as follows: If X = V (G), then
the evaporation sequence of G is the empty sequence. If X ( V (G), then let ÂL1 be the set
of all simplicial vertices in G, and let L1 = ÂL1 \ X. Suppose L2, . . . , Lt is the evaporation
sequence of G \ L1 (with exception set X). Then L1, L2, . . . , Lt is the evaporation sequence
of G.

For this definition to make sense, there is one caveat: we must choose X so that all
vertices outside of X eventually evaporate. For example, X = ÿ is always a valid choice
since every chordal graph contains a simplicial vertex [5]. Without this assumption, we could
potentially reach a point where X ( V (G) but X contains all of the simplicial vertices of
G, in which case the evaporation sequence would not be well-defined (we never reach the
base case X = V (G)). In our algorithm, we will always choose a valid X such that all other
vertices eventually evaporate.

ESA 2023
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If the evaporation sequence L1, L2, . . . , Lt of G has length t, then we say G evaporates at
time t with exception set X, and t is called the evaporation time. We define LG(X) := Lt

to be the last set in the evaporation sequence of G, and we let LG(X) = ÿ if the sequence
is empty. Similarly, we define the evaporation time of a vertex subset: Suppose G has
evaporation sequence L1, L2, . . . , Lt with exception set X, and suppose S ™ V (G) \ X is
a nonempty vertex subset. Let tS be the largest index i such that Li fl S ”= ÿ. We say S

evaporates at time tS in G with exception set X.

3.2 Setup for the counting algorithm
Given positive integers n and Ê, we wish to count the number of Ê-colorable chordal graphs
on n vertices. This can easily be reduced to the problem of counting connected Ê-colorable
chordal graphs on at most n vertices (see Lemma 17 in Section 3.4). Therefore, our main
focus is to describe the following algorithm:

I Theorem 6. There is an algorithm that given n œ N, computes the number of Ê-colorable
labeled connected chordal graphs G with vertex set [n] using O(n7) arithmetic operations.

We first give an overview of this algorithm and describe the various dynamic-programming
tables (Definition 7). Next, we describe the recurrences in detail in Section 3.3. In Section 3.4,
we show that the counting portion of Theorem 1 (counting chordal graphs) follows from
Theorem 6 (counting connected chordal graphs). For the complete proof of Theorem 6, see
the full version of the paper.

Algorithm overview. To count Ê-colorable connected chordal graphs G, we classify these
graphs based on the behavior of their evaporation sequence. We make use of several counter
functions (these are our dynamic-programming tables), each of which keeps track of the
number of chordal graphs in a particular subclass. The arguments of the counter functions
tell us the number of vertices in the graph, the evaporation time, the size of the exception
set X, the size of the last set of simplicial vertices LG(X), etc. Initially, we consider all
possibilities for the evaporation time of G with exception set X = ÿ. Then, using several
of our recursive formulas, we reduce the number of vertices by dividing up the graph into
smaller subgraphs and counting the number of possibilities for each subgraph. As we do so,
the exception set X increases in size. When we consider these various subgraphs, we also
make sure that in each subgraph, the maximum clique size is at most Ê. In the end, the
algorithm understands the possibilities for the entire graph, including the cliques that make
up the very first set in its evaporation sequence.

The purpose of the exception set is to allow us to restrict to smaller subgraphs without
distorting the evaporation behavior of the graph. For example, suppose we wish to count
the number of connected chordal graphs on n vertices that evaporate at time t, such that
the vertices 1, 2, . . . , ¸ make up the last set to evaporate, i.e., LG(ÿ) = [¸]. Let L = [¸]. One
subproblem of interest would be to count the number of possibilities for the first connected
component of G \ L. Formally, we count the number of possibilities for G

Õ := G[L fi C], where
C is the connected component of G \ L that contains the vertex ¸ + 1. For each possible
number of vertices in G

Õ, we make a recursive call to count the number of possible subgraphs
G

Õ of that size. However, if we were to restrict to G
Õ with a still-empty exception set, then

the evaporation time of G
Õ alone could be much less than the evaporation time of V (GÕ) in

G. Indeed, there may be vertices in G \ G
Õ adjacent to L that prevent L from evaporating

before time t, so when we restrict to the subgraph G
Õ, L would now evaporate too soon. This

would cause a cascading e�ect, causing vertices near L to evaporate as well, and changing the
entire evaporation sequence of G

Õ. To resolve this, we add the vertices of L to the exception
set to preserve the evaporation behavior of G

Õ.
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The list of counter functions is given in Definition 7. As shown below, the number of
Ê-colorable connected chordal graphs on n vertices is the sum of various calls to the fourth
function g̃1, since g̃1(t, 0, n) is the number of Ê-colorable connected chordal graphs on n

vertices that evaporate at time t with empty exception set. To remember the names of these
counter functions, one can think of them as follows: The g-functions keep track of the size
of the exception set X, but these do not have information about the size of LG(X). The
f -functions have an additional argument ¸, which is the size of LG(X). As a mnemonic,
one can say that g stands for “glued” and f stands for “free.” In the g-functions, X is the
“root,” and all of the vertices of X are glued, in the sense that they cannot evaporate. In the
f -functions, X fi LG(X) is the “root,” and some of the vertices in the root are free, since the
vertices in LG(X) are allowed to evaporate.

I Definition 7. The following functions count particular subclasses of chordal graphs. Unless
stated otherwise, the arguments t, x, ¸, k, z are nonnegative integers.
1. g(t, x, k, z) is the number of Ê-colorable connected chordal graphs G with vertex set [x + k]

that evaporate in time at most t with exception set X = [x], where X is a clique, with the
following property: every connected component of G \ X (if any) has at least one neighbor
in X \ [z]. Domain: t Ø 0, x Ø 1, z < x.

2. g̃(t, x, k, z) is the same as g(t, x, k, z), except every connected component of G \ X (if
any) evaporates at time exactly t in G. Note: A graph with V (G) = X would be counted
because in that case, g̃ is the same as g. Domain: t Ø 1, x Ø 1, z < x.

3. g̃p(t, x, k, z) is the same as g̃(t, x, k, z), except no connected component of G \ X sees all
of X. Domain: t Ø 1, x Ø 1, z < x.

4. g̃1(t, x, k) and g̃Ø2(t, x, k) are the same as g̃(t, x, k, z), except every connected component
of G \ X sees all of X (hence we no longer require every component of G \ X to have
a neighbor in X \ [z]), and furthermore, for g̃1 we require that G \ X has exactly one
connected component, and for g̃Ø2 we require that G \ X has at least two components.
Domain for g̃1: t Ø 1, x Ø 0. Domain for g̃Ø2: t Ø 1, x Ø 1.

5. f(t, x, ¸, k) is the number of Ê-colorable connected chordal graphs G with vertex set
[x + ¸ + k] that evaporate at time exactly t with exception set X = [x], such that G \ X is
connected, LG(X) = [x + 1, x + ¸], and X fi LG(X) is a clique. Domain: t Ø 1, x Ø 0,
¸ Ø 1.

6. f̃(t, x, ¸, k) is the same as f(t, x, ¸, k), except every connected component of G\(XfiLG(X))
evaporates at time exactly t ≠ 1 in G, and there exists at least one such component, i.e.,
X fi LG(X) ( V (G). Domain: t Ø 2, x Ø 0, ¸ Ø 1.

7. f̃p(t, x, ¸, k) is the same as f̃(t, x, ¸, k), except no connected component of G\ (X fiLG(X))
sees all of X fi LG(X). Domain: t Ø 2, x Ø 0, ¸ Ø 1.

8. f̃p(t, x, ¸, k, z) is the same as f̃p(t, x, ¸, k), except every connected component of
G \ (X fi LG(X)) has at least one neighbor in (X fi LG(X)) \ [z]. Domain: t Ø 2,
x Ø 0, ¸ Ø 1, z Æ x.

3.3 Recurrences for the counting algorithm
We implicitly assume all graphs in this section are connected and Ê-colorable. For k œ N,
let c(k) denote the number of Ê-colorable connected chordal graphs with vertex set [k].
To compute c(n), we first consider all possibilities for the evaporation time. Initially, the
exception set is empty. We observe that g̃1(t, 0, n) is the number of (connected, Ê-colorable)
chordal graphs with vertex set [n] that evaporate at time exactly t with empty exception set.

ESA 2023
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Figure 1 The counter functions. Here L = LG(X) and Z = [z]. An arrow from one function to
another, say from g̃ to g, indicates that the definition of g̃ is the same as that of g, except where
indicated otherwise. The drawing of f̃p represents f̃p(t, x, ¸, k). The function f̃p(t, x, ¸, k, z) is similar
but also keeps track of the argument z.
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Therefore,

c(n) =
nÿ

t=1

g̃1(t, 0, n).

We compute the necessary values of g̃1 by evaluating the following recurrences top-down
using memoization. We take this approach rather than bottom-up dynamic programming to
simplify the description slightly, since by memoizing we do not need to specify in what order
the entries of the various dynamic-programming tables are computed. We simply compute
each value of the counter functions as needed. For the following recurrences, let X = [x]
according to the current value of the argument x, and let L = LG(X).

To compute g̃1(t, 0, n), the number of chordal graphs that evaporate at time exactly t, we
consider all possibilities for the size ¸ of L. Once the size ¸ is given, there are

!n
¸

"
possibilities

for the label set of L. Recall that f counts the number of chordal graphs where L is fixed
and evaporates at time t, and G \ X is connected. Formally, we have the following recurrence
– the first time this is used, the arguments are t, x = 0 and k = n.

I Lemma 8. For g̃1, we have

g̃1(t, x, k) =
kÿ

¸=1

3
k

¸

4
f(t, x, ¸, k ≠ ¸).

The proof of Lemma 8, along with the proofs of all of the other recurrences, can be found
in the full version of the paper. To see the intuition behind Lemma 8, recall that in the
definition of f(t, x, ¸, k) we require a specific label set for LG(X), namely [x + 1, x + ¸]. If we
were to replace that requirement with LG(X) = L

Õ for any other subset L
Õ of [x + 1, x + ¸ + k]

of size ¸, this would not change the value of f(t, x, ¸, k). Therefore, in the recurrence for g̃1,
it is su�cient to compute f(t, x, ¸, k ≠ ¸) and multiply by

!k
¸

"
, rather than computing

!k
¸

"

distinct counter functions.
For f , to count chordal graphs where L is fixed and evaporates at time t, and G \ X is

connected, we consider all possibilities for the set of labels that appear in components of
G \ (X fi L) that evaporate at time exactly t ≠ 1. Recall that f̃ counts the number of chordal
graphs where L is fixed and evaporates at time t, G \ X is connected, and all components of
G \ (X fi L) evaporate at time exactly t ≠ 1. For each possible k

Õ (the size of this label set), f̃

allows us to count the number of possibilities for the subgraph G1 consisting of X fi L and all
components of G \ (X fi L) that evaporate at time exactly t ≠ 1, and g allows us to count the
number of possibilities for the subgraph G2 consisting of X fi L and all other components.

I Lemma 9. For f , we have

f(t, x, ¸, k) =
kÿ

kÕ=1

3
k

kÕ

4
f̃(t, x, ¸, k

Õ)g(t ≠ 2, x + ¸, k ≠ k
Õ
, x).

When f is called for the first time in the initial steps of the algorithm, this is the first
moment when X becomes nonempty, since at this point we are restricting to a subgraph
with fewer than n vertices. When we restrict to the subgraph G2, we want to ensure that
its vertices have the same evaporation behavior as they did in G. In particular, we need to
ensure that the vertices of L do not evaporate too soon, since their presence may be essential
for preventing other vertices from evaporating. For this reason, we let X fi L be the exception
set for G2. For G1, the exception set is simply X because the components that evaporate
at time exactly t ≠ 1 are still present in G1, preventing the vertices of L from evaporating
before time t.
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For the subgraph G2, now that all of L has been pushed into the exception set, we no
longer have information about the argument ¸ since the last set of simplicial vertices in G2

evaporates further back in time. This is why we call g rather than f to count the possibilities
for G2. In fact, G2 \ [x + ¸] might not even be connected, which is required by f . Finally,
the fourth argument of g indicates that every connected component of G2 \ (X fi L) has at
least one neighbor in L. This ensures that G \ X is connected.

For g, to count chordal graphs that evaporate in time at most t, we consider all possibilities
for the set of labels that appear in connected components of G \ X that evaporate at time
exactly t. Recall that g̃ counts the number of chordal graphs where all connected components
of G \ X evaporate at time exactly t.

I Lemma 10. For g, we have

g(t, x, k, z) =
kÿ

kÕ=0

3
k

kÕ

4
g̃(t, x, k

Õ
, z)g(t ≠ 1, x, k ≠ k

Õ
, z).

For g̃, to count chordal graphs where all connected components of G\X evaporate at time
exactly t, we consider all possible label sets for the component C of G \ X that contains the
lowest label not in X. The constraint x

Õ Ø 1 ensures that G is connected. We also subtract
all ways of selecting x

Õ elements from [z] to ensure that N(C) is not entirely contained in [z].

I Lemma 11. For g̃, we have

g̃(t, x, k, z) =
kÿ

kÕ=1

xÿ

xÕ=1

33
x

xÕ

4
≠

3
z

xÕ

44 3
k ≠ 1
kÕ ≠ 1

4
g̃1(t, x

Õ
, k

Õ)g̃(t, x, k ≠ k
Õ
, z).

We subtract 1 in the binomial coe�cient
! k≠1

kÕ≠1

"
because the label set for C always contains

the lowest non-X label, along with k
Õ ≠ 1 other labels.

For f̃ , we need to count chordal graphs where L is fixed and evaporates at time t, G \ X

is connected, and all components of G \ (X fi L) evaporate at time exactly t ≠ 1. The number
of such graphs in which zero components see all of X fi L is f̃p(t, x, ¸, k). Now if there is
at least one all-seeing component, then we break this down into two further cases: either
exactly one component sees all of X fi L, or at least two components see all of X fi L. Recall
that f̃p counts the number of chordal graphs where L is fixed and evaporates at time t, all
components of G \ (X fi L) evaporate at time exactly t ≠ 1, and no component sees all of
X fi L. Also, recall that g̃Ø2 counts the number of chordal graphs where all components of
G \ X evaporate at time exactly t, every component sees all of X, and there are at least two
such components. In the first (resp. second) case, g̃1 (resp. g̃Ø2) corresponds to the all-seeing
component(s), and f̃p (resp. g̃p) corresponds to the remaining components.

I Lemma 12. For f̃ , we have

f̃(t, x, ¸, k) = f̃p(t, x, ¸, k) +
kÿ

kÕ=1

3
k

kÕ

4
g̃1(t ≠ 1, x + ¸, k

Õ)f̃p(t, x, ¸, k ≠ k
Õ)

+
kÿ

kÕ=1

3
k

kÕ

4
g̃Ø2(t ≠ 1, x + ¸, k

Õ)g̃p(t ≠ 1, x + ¸, k ≠ k
Õ
, x).

The above cases are relevant because if at least two components of G \ (X fi L) see all of
X fiL, then this prevents the vertices of L from evaporating before time t. Indeed, each vertex
u œ L has a neighbor in each of those two components, meaning u has two non-adjacent
neighbors. Otherwise, if there is at most one such component, then the neighborhoods of
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the remaining components of G \ (X fi L) must together cover L to ensure that L does not
evaporate until time t. In that case, for each vertex u œ L that is covered by a proper-subset
neighborhood N(C) of a component C, u has a neighbor v œ C as well as a neighbor
w œ (X fi L) \ N(C), and v and w are non-adjacent.

The reason we require G \ X to be connected in the definition of f (rather than just
requiring G to be connected) can be seen from the recurrence for f̃ . Since in the first sum over
k

Õ we only wish to consider graphs with exactly one all-seeing component, in the definition
of g̃1 we require G \ X to be connected. The recurrence for g̃1 depends on f , so this carries
over into requiring G \ X to be connected in the definition of f . This explains the need for
the argument z (for example, in g): as mentioned above, keeping track of z lets us ensure
that G \ X is connected in all graphs counted by f .

For g̃Ø2, to count chordal graphs where all components of G\X evaporate at time exactly
t, every component sees all of X, and there are at least two such components, we consider
all possibilities for the label set of the component that contains the lowest label not in X.
For the remaining components, there is either exactly one of them, or at least two.

I Lemma 13. For g̃Ø2, we have

g̃Ø2(t, x, k) =
k≠1ÿ

kÕ=1

3
k ≠ 1
kÕ ≠ 1

4
g̃1(t, x, k

Õ)
1

g̃1(t, x, k ≠ k
Õ) + g̃Ø2(t, x, k ≠ k

Õ)
2

.

For g̃p, to count chordal graphs where all components of G \ X evaporate at time exactly
t and no component sees all of X, we proceed as we did for g̃, except we require x

Õ
< x

rather than x
Õ Æ x.

I Lemma 14. For g̃p, we have

g̃p(t, x, k, z) =
kÿ

kÕ=1

x≠1ÿ

xÕ=1

33
x

xÕ

4
≠

3
z

xÕ

44 3
k ≠ 1
kÕ ≠ 1

4
g̃1(t, x

Õ
, k

Õ)g̃p(t, x, k ≠ k
Õ
, z).

For f̃p, to count chordal graphs where L is fixed and evaporates at time t, all components
of G \ (X fi L) evaporate at time exactly t ≠ 1, and no component sees all of X fi L, we first
declare that no component can see only into X (since G \ X is connected).

I Lemma 15. We have f̃p(t, x, ¸, k) = f̃p(t, x, ¸, k, x).
The following recurrence for f̃p counts the number of such graphs in which every component

of G \ (X fi L) has at least one neighbor in (X fi L) \ [z]. On the first reading, one can
skip the two “otherwise” cases in Lemma 16. In this lemma, we consider all possibilities
for the label set of the component C of G \ (X fi L) that contains the lowest label not in
X fi L. Additionally, we consider all possibilities for the size x

Õ of N(C) fl X and the size ¸
Õ

of N(C) fl L, and we consider all possibilities for their respective label sets. If ¸
Õ
> 0, then

N(C) is automatically not contained in [z] since z Æ x, so there are
! x

xÕ

"
possible label sets

for N(C) fl X.
The intuition behind the two “otherwise” cases is as follows. If ¸

Õ = 0, then we must
subtract

! z
xÕ

"
from the number of possible label sets for N(C) fl X to ensure that N(C) ( [z].

If ¸
Õ = ¸, then all of the vertices of L have now been pushed into the exception set, so the

evaporation time of the subgraph formed from the remaining components is t ≠ 1. In this
case, we call g̃p since we no longer know the size of the last set of simplicial vertices.1

1 One might wonder whether we depart from the domain of g̃p in the term g̃p(t ≠ 1, x + ¸
Õ
, k ≠ k

Õ
, z), since

x + ¸
Õ = z when ¸

Õ = 0 and x = z. However, if ¸
Õ = 0 and x = z, then we observe that

!
x
xÕ

"
≠

!
z
xÕ

"
= 0.

Thus, for this value of ¸
Õ, we do not need to evaluate the calls to g̃1, f̃p, and g̃p.
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I Lemma 16. For f̃p(t, x, ¸, k, z), we have

f̃p(t, x, ¸, k, z) =
kÿ

kÕ=1

ÿ

0ÆxÕÆx
0Æ¸ÕÆ¸

0<xÕ+¸Õ<x+¸

3
k ≠ 1
kÕ ≠ 1

43
¸

¸Õ

4
g̃1(t ≠ 1, x

Õ + ¸
Õ
, k

Õ) ·

I!
x
xÕ

"
if ¸

Õ
> 0!

x
xÕ

"
≠

!
z
xÕ

"
otherwise

·

I
f̃p(t, x + ¸

Õ
, ¸ ≠ ¸

Õ
, k ≠ k

Õ
, z) if ¸

Õ
< ¸

g̃p(t ≠ 1, x + ¸
Õ
, k ≠ k

Õ
, z) otherwise.

The base cases are as follows. We reach the base case for g when t = 0:

g(0, x, k, z) =
I

1 if k = 0
0 if k > 0.

For g̃ and g̃p, we have g̃(t, x, 0, z) = 1 and g̃p(t, x, 0, z) = 1 when k = 0. For, g̃1 we observe
that g̃1(t, x, k) = 0 if t = 0 or k = 0. Similarly, for g̃Ø2 we have g̃Ø2(t, x, k) = 0 if t = 0 or
k = 0. We reach the base case for f when x + ¸ > Ê, t = 1, or k = 0. If x + ¸ > Ê, then
f(t, x, ¸, k) = 0. Remarkably, this is the only place where Ê appears in the algorithm. If
x + ¸ Æ Ê, then we have

f(1, x, ¸, k) =
I

1 if k = 0
0 otherwise.

If x + ¸ Æ Ê and t Ø 2, then f(t, x, ¸, 0) = 0. For f̃ , we have f̃(t, x, ¸, k) = 0 if t = 1 or k = 0.
Similarly, for f̃p we have f̃p[t, x, ¸, k, z] = 0 if t = 1 or k = 0. For the version of f̃p without
the fifth argument z, we do not need a base case since we always immediately call f̃p with z.

The control flow formed by these recurrences is shown in Figure 2. The algorithm
terminates because either the value of t or the number of vertices in the graph (i.e., x + k

or x + ¸ + k) decreases each time we return to the same function. For the running time,
this is dominated by the arithmetic operations needed to compute f̃p. The recurrence for f̃p

involves a triple summation, and there are five arguments, so a naive implementation uses
O(n8) arithmetic operations. However, in the full version of the paper, we show that the
running time can in fact be improved to O(n7) arithmetic operations.

3.4 Proof of Theorem 1 (counting)
In this section, we prove the counting portion of Theorem 1 using Theorem 6. (See the full
version of the paper for the proof of the sampling portion of Theorem 1.) In other words,
we describe an algorithm to count chordal graphs, assuming we have an algorithm to count
connected chordal graphs. Theorem 6 – counting connected chordal graphs – is proved in
the full version of the paper.

For k œ N, let a(k) denote the number of Ê-colorable chordal graphs with vertex set [k].
Recall that c(k) is the number of Ê-colorable connected chordal graphs with vertex set [k].

I Lemma 17. The number of Ê-colorable chordal graphs with vertex set [n] is given by

a(n) =
nÿ

k=1

3
n ≠ 1
k ≠ 1

4
c(k)a(n ≠ k)

for all n œ N.
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Figure 2 The control flow of the counting algorithm. An arrow from f to g indicates that the
recursive formula for f depends on g. The arrow is red (and dashed) if t decreases by 1, blue (and
dashed) if t decreases by 2, and black if t does not change. The black self-loops do not cause an
infinite loop because in those recursive calls, the number of vertices decreases.

Proof. Suppose G is an Ê-colorable chordal graph with vertex set [n]. Let G1 be the graph
formed by the connected component of G that contains the label 1, and let G

Õ be the graph
formed by all other connected components of G (which can potentially be empty). Let C

be the set of labels that appear in G1, let k = |C|, and let D = [n] \ C, i.e., D is the set
of labels that appear in G

Õ. Now relabel G1 by applying „(C, [k]) to the labels in C, and
relabel G

Õ by applying „(D, [n ≠ k]) to the labels in D. (Recall that „(A, B) is defined in
Section 2.) We can see that G1 is now a connected Ê-colorable chordal graph with vertex
set [k], and G

Õ is a connected Ê-colorable chordal graph with vertex set [n ≠ k]. The map
that takes any chordal graph G to the resulting pair (G1, G

Õ) is injective since „(C, [k]) and
„(D, [n ≠ k]) are both bijections. Therefore, a(n) is at most the number of possible triples
(G1, G

Õ
, C), which is given by the summation above.

To see that a(n) is bounded below by the same summation, suppose we are given 1 Æ k Æ n,
a connected Ê-colorable chordal graph G1 with vertex set [k], a chordal Ê-colorable graph
G

Õ with vertex set [n ≠ k], and a subset C ™ [n] of size k that contains 1. Let D = [n] \ C.
We construct an Ê-colorable chordal graph G with vertex set [n] as follows: Relabel G1 by
applying „([k], C) to its label set, and relabel G

Õ by applying „([n ≠ k], D) to its label set.
Now let G be the union of G1 and G

Õ (by taking the union of the vertex sets and the edge
sets). The map that takes the triple (G1, G

Õ
, C) to the resulting graph G is injective, so a(n)

is at least the summation above, as desired. J

Lemma 17 directly gives a dynamic-programming algorithm to compute the number of
Ê-colorable chordal graphs with vertex set [n], given n as input. First, by Theorem 6, we
can compute c(k) for all k œ [n] at a cost of O(n7) arithmetic operations. Next, we use the
recurrence in Lemma 17 to compute a(n) at a cost of O(n2) arithmetic operations. For the
base case, we observe that a(0) = 1. Therefore, we have an algorithm to count Ê-colorable
chordal graphs on n vertices using O(n7) arithmetic operations.

4 Implementation of the counting algorithm

An implementation of the counting algorithm in C++ can be successfully run for inputs as
large as n = 30 in about 2.5 minutes on a standard desktop computer.2 Previously, the
number of labeled chordal graphs was only known up to n = 15. Table 1 shows the number of

2 Our implementation is available on GitHub at https://github.com/uhebertj/chordal.
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connected chordal graphs on n vertices for n Æ 30, with the chromatic number unrestricted.
Table 2 shows the number of Ê-colorable connected chordal graphs on n vertices for various
values of n and Ê.

Table 1 Numbers of labeled connected chordal graphs on n vertices.

c(n) n

1 1
1 2
4 3

35 4
541 5

13302 6
489287 7

25864897 8
1910753782 9

193328835393 10
26404671468121 11

4818917841228328 12
1167442027829857677 13

374059462390709800421 14
158311620026439080777076 15

88561607724193506845709239 16
65629642803250494352023169033 17

64646285130595946195244365518454 18
84997214469704246545711429635276299 19

149881423568752945444616261913109046421 20
356260551239284266908724943672911100488558 21

1147374494946449194450825817605340123679150461 22
5032486852040265322461550844695939678052967384053 23

30210545039307528599583618386687349227933725131035504 24
249400383130659050580193267861459579254489822650065685961 25

2844134548699568981561554629043146070324332400944867482340313 26
44993294034522185332489548856700572371349354518671249097245374660 27

991277251392360301443460288397009109066708275778086061470009877027739 28
30526157144572224953157514915475479605501638476250575941226904780179348933 29

1318363800739595427128835554231270770209426196402736248743162258824492158995254 30

5 Conclusion

Our main result is an algorithm that given n, computes the number of labeled chordal
graphs on n vertices using O(n7) arithmetic operations (and in O(n9 log n) time in the RAM
model). This yields a sampling algorithm that generates a labeled chordal graph on n vertices
uniformly at random. For the sampling algorithm, once we have run the counting algorithm
as a preprocessing step, each sample can be obtained using O(n4) arithmetic operations.

The main open problem is to design a substantially faster algorithm for counting or
sampling labeled chordal graphs. We presented exact counting and sampling algorithms;
nevertheless, allowing for approximate counting/sampling might enable even faster algorithms.
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Table 2 Numbers of Ê-colorable labeled connected chordal graphs on n vertices.
When Ê = 2, the algorithm counts labeled trees.

n

2 3 4 5 6 7 8 9

1 3 16 125 1296 16807 262144 4782969 2

Ê

4 34 480 9831 268093 9185436 379623492 3
35 540 13136 466683 22732032 1437072780 4

541 13301 488873 25736782 1873146621 5
13302 489286 25863916 1910084529 6

489287 25864896 1910751531 7
25864897 1910753781 8

1910753782 9
n

10 11 12

100000000 2357947691 61917364224 2

Ê

18376225525 1019282908941 63707908718994 3
112588153700 10535042533301 1144261607209084 4
181962472490 22726623077466 3513611793935959 5
192919501307 26158547399061 4666697716137194 6
193325509217 26400465973728 4813890013657154 7
193328830337 26404655450778 4818876084111431 8
193328835392 26404671456933 4818917765689886 9
193328835393 26404671468120 4818917841203841 10

26404671468121 4818917841228327 11
4818917841228328 12

To be precise, for approximate sampling we are aiming for an algorithm that, given n and
” > 0, samples from a distribution ”-close to uniform (say in total variation distance) in time
polynomial in n and log(1/”), where the dependence on n is significantly less than n

7. Two
interesting approaches to consider are Markov Chain Monte Carlo (MCMC) algorithms, such
as the chain proposed in [33], and the Boltzmann sampling scheme used in [10] for planar
graphs.

Moving beyond chordal graphs, there are many interesting graph classes for which the
problem of counting/sampling n-vertex labeled graphs in polynomial time appears to be
open, including perfect graphs, weakly chordal graphs, strongly chordal graphs, and chordal
bipartite graphs, as well as many graph classes characterized by a finite set of forbidden
minors, subgraphs, or induced subgraphs. It is worth noting that for some well-known graph
classes of this form, such as planar graphs, polynomial-time algorithms are known [6, 10].
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