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Abstract. Automated relation extraction without extensive human-annotated data
is a crucial yet challenging task in text mining. Existing studies typically use
lexical patterns to label a small set of high-precision relation triples and then
employ distributional methods to enhance detection recall. This precision-first
approach works well for common relation types but struggles with unconventional
and infrequent ones. In this work, we propose a recall-first approach that first
leverages high-recall patterns (e.g., a per:siblings relation normally requires
both the head and tail entities in the person type) to provide initial candidate
relation triples with weak labels and then clusters these candidate relation triples
in a latent spherical space to extract high-quality weak supervisions. Specifically,
we present a novel framework, RCLUS, where each relation triple is represented
by its head/tail entity type and the shortest dependency path between the entity
mentions. RCLUS first applies high-recall patterns to narrow down each relation
type’s candidate space. Then, it embeds candidate relation triples in a latent space
and conducts spherical clustering to further filter out noisy candidates and identify
high-quality weakly-labeled triples. Finally, RCLUS leverages the above-obtained
triples to prompt-tune a pre-trained language model and utilizes it for improved
extraction coverage. We conduct extensive experiments on three public datasets
and demonstrate that RCLUS outperforms the weakly-supervised baselines by
a large margin and achieves generally better performance than fully-supervised
methods in low-resource settings.

Keywords: Relation Extraction · Weak Supervision · Latent Space Clustering.

1 Introduction

Relation extraction, which aims to extract semantic relationships between the head
and tail entities as shown in Figure 1, is crucial to various downstream tasks including
hypernymy detection [34], knowledge base construction [26], and question answering
[35,41,39]. A common practice of relation extraction is to fine-tune pre-trained language
models with massive human annotations as full supervisions. As human annotations are
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Sentence: It’s a meeting of L.C.K., a civil 
rights organization founded by Shawn.
Head Entity: L.C.K.
Tail Entity: Shawn

Relation between Head & Tail Entities:
org:founded_by
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Fig. 1. Sentence’s relation is explicitly contained in the dependency path. Head entities are indicated
in blue while tail entities are indicated in red. The shortest dependency path connecting each pair
of head entity and tail entity is indicated in light yellow.

expensive to acquire, potentially outdated or even noisy, such supervised methods are
unable to scale. Instead of relying on massive human annotations, weakly-supervised
relation extraction has been explored to tackle the data scarcity issue [25,27,49]. To
improve the efficiency and minimize the expense of obtaining annotations, weakly-
supervised relation extraction leverages only an incomplete set of pre-defined patterns to
automatically annotate a portion of the corpus with weak labels as supervision [15,28].

In general, weakly-supervised relation extraction methods can be divided into two
types: alignment-based and distributional. Alignment-based approaches obtain weak
labels by exactly aligning pre-defined lexical patterns (e.g., certain tokens between
entities or entity co-occurrence) with unlabeled examples from the corpus [25,21,29,15].
However, due to such context-agnostic hard matching process, the labels annotated by
alignment-based approaches are noisy and suffer from limited recall and semantic drift
[8]. Distributional approaches try to tackle such issues by encoding textual patterns
with neural models so that the pattern matching can be conducted in a soft matching
way [5,49,27]. Typically, distributional approaches utilize the alignment-based weak
supervision or scarce human annotations at the initial stage to train neural encoder
models [34]. However, such dependence introduces the severe problem of initial noise
propagation [47,46]. Besides, the dependence on the initial alignment-based weak
supervision along with the noise propagation also causes such distributional approaches
to suffer from semantic drift and generalization problems.

To tackle the above mentioned high precision but low recall issue, we propose a
novel recall-first framework RCLUS for weakly-supervised relation extraction which
takes the sentence, head entity and tail entity as input and return the extracted relations as
output (see Figure 1 for an example). Instead of sticking to the traditional precision-first
philosophy for weak supervision, RCLUS starts with initial weak supervisions with high
recall and then further refines the weak supervision. Our RCLUS framework features
three key designs as follows.
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First, instead of relying on annotated data, RCLUS utilizes pre-defined patterns to
obtain weak labels. To maximize the recall of weak supervision, RCLUS uses entity
types along with relation-indicative words as relation identifiers for weak supervision.
The head and tail entity types are usually fixed for a specific relation type. For example,
the relation org:founded_by generally specifies the head entity as an organization and
the tail entity as a person. Utilizing the entity requirements along with occurrence of
relation-indicative words, such as “founder” and “establish”, maximizes the recall of the
weak supervision.

Second, based on the maximized recall, RCLUS tries to compensate the precision
by presenting a novel representation of relation triples and conducting clustering on the
representations. As utilizing relation-indicative words for weak supervision ignores the
complete semantics for the relation expression, RCLUS adopts the shortest dependency
path as the relation-related context within which the relation-indicative words will
be searched. For example, the shortest dependency path in Figure 1 helps neglecting
irrelevant information including It’s a meeting of and civil rights. The shortest dependency
path is adopted as it retains the most relevant information to the target relation which is
hence beneficial to the precision [44,36,13,7]. Furthermore, as the above alignment-
based weakly-supervised extraction only focuses on local indicative words in the
relation-related contexts, the assigned weak labels still suffer from noise. For example,
William talks with the founder team of the company D.M.. will give ⟨org., company −
founder_team− talks, person⟩ which satisfies the entity requirements and contains
the indicated word “founder” of relation org:founded_by. However, based on the
complete semantics from the sentence expression, it’s unclear whether D.M. is founded
by William or not. To prevent such noisy extractions, RCLUS proposes to cluster on a
latent space which accommodates the objective to highlight the salient relation-related
contexts across the corpus to isolate noisy contexts.

Third, in order to generalize to implicit and other varied expression patterns of
relations to further improve the recall of the whole system, RCLUS prompt-tunes a
pre-trained language model based on the limited but quality samples selected from the
clustering space. To consolidate the pre-defined rules as the foundation for generalization,
RCLUS selects quality samples from the clustering for tuning as these samples are noise-
reduced and well represent the pre-defined patterns for relations. Meanwhile, RCLUS
aggregates sub-prompts to extract relation-related components from the entire sentence
and to improve context understanding. Compared with fine-tuning, prompt-tuning has
a closer objective to the pre-training objective of language models. Thus, RCLUS can
more efficiently distill the knowledge acquired from pre-training for generalizing the
relation patterns under low resource setting.

To summarize, our main contributions are as follows: (1) We have proposed a weakly-
supervised relation extraction framework based on the novel recall-first philosophy of
weak supervision construction and then improve precision to tackle the data scarcity
issue, (2) we have designed the relation triple representation extraction and the latent
space clustering to mitigate the noisy labeling and noise propagation issues and we
have incorporated prompt-tuning to mitigate the generalization issues, and (3) we have
conducted extensive experiments on three relation extraction datasets to verify the
effectiveness of our framework.
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Fig. 2. Framework overview. Our model mainly consists of three steps: (1) relation triple extraction,
(2) relation triple clustering, and (3) prompt-tuning with sub-prompts.

2 Problem Formulation

Let corpus S := {S1, . . . , SN} be a set of sentences with each sentence Si consists of
a word sequence [wi,1, . . . , wi,ni

]. For relation extraction, it is assumed that for each
sentence Si, a head entity Wh,i and a tail entity Wt,i are given, and both of them are
represented by a sub-sequence of the sentence. Given Si, Wh,i and Wt,i, the goal of
relation extraction is to predict the relation yi ∈ Y between Wh,i and Wt,i which is the
most appropriate based on the sentence, where Y is a set of pre-defined relations.

3 Methodology

In Figure 2, we outline our framework that extracts relations from corpus in three major
steps: (1) initial weak supervision extraction which matches the extracted representations
of relation triple with pre-defined patterns to obtain weak labels with high recall
(Section 3.2), (2) weak supervision noise reduction via clustering in a latent spherical
space which mines salient relation-related contexts to filter the noisy weak labels for
improving precision (Section 3.3), and (3) generalization via prompt-tuning which
leverages salient samples from the clustering space to recall implicit and varied relation
expressions (Section 3.4).

3.1 Representation of Relation Triple

We first introduce the concept of representations of relation triples which is fundamental
for our initial weak supervision extraction. Then we introduce the method to construct
the corresponding embeddings for representations of relation triple which will be used
for latent space clustering.
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Representation of Relation Triple The relation triple is defined to be in the form
of ⟨head entity, relation, tail entity⟩. Based on the definition of relation triples, we
further define the representation of relation triple which is the example-specific triple
containing the essential relation-related information. The formulation of relation triple
representations is aimed to automatically annotate examples with most suitable weak
labels while maximally reducing the noise under the low resource setting. To assign
weak relation labels with maximal suitability, the head and tail entity types along
with the relation-indicative words serve as strong relation identifiers. For example,
instead of using only the entity mentions L.C.K. and Shawn in Figure 1, the entity
types organization and person together with the word founded also indicate the
relation label founded_by. However, directly matching the relation-indicative words
(e.g. founded above) in the whole sentence will likely get distracted by the noise from
parts of sentence which are irrelevant to the target entities’ relationship. Previous studies
suggest that shortest dependency paths between head and tail entities retain the most
relevant information to their relation [44,36,13,7] which makes it perfect to isolate noise
from irrelevant contexts. As shown in Figure 1, the semantics of founded in the shortest
dependency path between L.C.K. and Shawn is clearly relevant to entities’ semantic
relationship. Meanwhile, other parts of the sentence beyond the shortest dependency path
such as “a civil right organization” is not relevant to the semantic relationship. Therefore
the use of shortest dependency paths further avoids noise from directly matching with
relation-indicative words.

Based on the above intuitions, we define a representation of relation triple K as
⟨h, r, t⟩ where h indicates the head entity type, t indicates the tail entity type, and r
indicates the shortest dependency path starting from head entity mention to tail entity
mention. Each valid representation of relation triple K is associated with a relation y. For
the sentence in Figure 1, a representation of relation triple would be ⟨org., organization-
founded, person⟩ associated with relation org:founded_by.

Embedding for Representation of Relation Triple Suppose relation triple representation
extraction gives M representations of relation triples {K1, . . . ,KM}. For each relation
triple representation Ki = ⟨hi, ri, ti⟩, we acquire its initial features in the form of
relation triple representation embeddings

〈
h⃗hi

, h⃗ri , h⃗ti

〉
which includes: head entity

embedding h⃗hi
, dependency path embedding h⃗ri and tail entity embedding h⃗ti .

Head/Tail Entity Embedding: We derive the embedding for head or tail entity
based on their entity type surface names. Namely, head entity embedding h⃗hi ∈ Hh is
obtained by retrieving and averaging pre-trained token embeddings 4 of the head entity
type surface name hi. The tail entity embedding h⃗ti ∈ Ht is constructed likewise. Here
Hh and Ht denote the semantic spaces for head and tail entities respectively.

Dependency Path Embedding: To capture the complete semantics of the dependency
information, we construct the contextualized embedding h⃗cont

ri as one component of
the dependency path embedding h⃗ri . To accommodate the word choice variation of the
dependency path (e.g., “founded” and “established” alternatively for the same relation

4 For simplicity in feature acquisitions, we adopts BERT-Large [10] as the pre-trained language
model for all the encoding.
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org:founded_by), we construct masked language modeling embedding h⃗mask
ri with

BERT [10] to obtain the other component of the dependency path embedding h⃗ri .
Assume the dependency path ri is composed of mri words {wiK ,1, . . . , wiK ,mri

}
from original sentence SiK ∈ S which are not necessarily consecutive in SiK but are
necessarily consecutive in the dependency parse tree by definition. To obtain hcont

ri , we
feed sentence SiK to pre-trained language model and retrieve the corresponding encoded
vecors of ri as {h⃗wiK,1

, . . . , h⃗wiK,mri
}. h⃗cont

ri can be calculated with average pooling.

To obtain h⃗mask
ri , we replace each word in the dependency path with a mask token

[MASK], feed the masked sentence to the pre-trained language model and retrieve the
corresponding encoded vectors of ri as {h⃗maskiK,1 , . . . , h⃗maskiK,mri

}. h⃗mask
ri can be

similarly calculated with average pooling.
Finally, the dependency path embedding is constructed by the concatenation of two

components:
h⃗ri = [⃗hmask

ri ; h⃗cont
ri ] ∈ Hr (1)

where Hr denotes the semantic space for dependency path.
After the above feature acquisition process, for each extracted representation of the

relation triple Ki, we have obtained the relation triple embedding
〈
h⃗hi , h⃗ri , h⃗ti

〉
∈

Hh ×Hr ×Ht for relation triple representation clustering.

3.2 Initial Weak Supervision Extraction

Based on weakly-supervised setting and the formulation of relation triple representation,
we maintain corresponding entity types and a limited set of relation-indicative words for
each relation to construct the pre-defined relation patterns (see the table in Figure 2 as
an example). In contrast to previous weakly-supervised approaches that applies pattern
matching in a precision-first manner, we first adopts the philosophy of recall-first and
later improve the precision for weak supervision. Given our pursuit of high recall, we
assign weak labels once the entity types are matched and the relation-indicative words
are captured in the shortest dependency path.

Utilizing the pre-defined relation patterns for constructing initial weak supervision,
we first conduct dependency parsing and named entity typing 5 on each sentence Si ∈
S. Based on the parsing results, we find the shortest dependency path between each
pair of head entity Wh,i and tail entity Wt,i so that each sentence Si will correspond
to one candidate representation of relation triple. Second, we align the pre-defined
relation patterns and the relation triple representation candidates so that relation triple
representations which have the matched entity types and the indicative words will be
assigned with a weak label.

3.3 Weak Supervision Noise Reduction via Clustering

As the matching-based extraction of the initial weak supervision only focuses on in-
sentence indicative words which leads to noisy weak labels and hence low precision,

5 For convenience, we use the Stanford CoreNLP toolkit [20].
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RCLUS introduces latent space clustering which highlights salient relation-related
contexts across the corpus for noise filtering. Given the semantic spaces of the head
entity, the tail entity and the relation-related context, RCLUS fuses the three semantic
spaces onto a joint latent spherical space of much lower dimensionality for clustering.
The rationale for such fusing method for clustering are two folds: (1) Angular similarity
in spherical space is more effective than Euclidean metrics to capture word semantics
[24,22], and (2) clustering while optimizing the projection onto a joint lower dimensional
space can force the RCLUS to model the interactions between the head entity, the
tail entity and the relation related contexts, discarding irrelevant information in the
relation-related contexts. In contrast, a naïve clustering method on the dimension reduced
or simply concatenated semantic spaces of the relation triple representations without
integrating any clustering promoting objective is weak to guarantee the above suitability.

Clustering Model We use the clustering model to regularize the interactions between the
head entity and the tail entity and discard noise in relation-related contexts. We assume
that there exists a latent space Z ⊂ Sd−1 6 with C clusters. Each cluster corresponds to
one relation and is represented by a von Mises-Fisher (vMF) distribution [4].

The vMF distribution is controlled by a mean vector µ ∈ Z and a concentration
parameter κ ∈ R+ ∪ {0}. The vMF probability density function for a unit vector z is
given by

p(z|µ, κ) = nd(κ) · exp(κ · cos(z, µ)). (2)

Here nd(κ) is the normalization constant defined as

nd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, (3)

where Id/2−1(·) represents the modified Bessel function of the first kind at order d/2−1.
With the assumption on the relation clusters, we further make assumptions on the

generation of relation triple embeddings
〈
h⃗hi , h⃗ri , h⃗ti

〉
as follows: (1) A relation type c

is uniformly sampled over C relations: c ∼ Uniform(C), (2) a latent embedding zi is
generated from the vMF distribution with mean vector µc and concentration parameter
κ: zi ∼ vMFd(µc, κ), (3) three functions gh(·), gr(·), gt(·) respectively map the latent
embedding zi to the original relation triple embeddings h⃗hi , h⃗ri and h⃗ti :

h⃗hi = gh(zi), h⃗ri = gr(zi), h⃗ti = gt(zi) (4)

To enhance joint optimization, we follow the autoencoder structure [16] to jointly
optimize the decoding mappings gh : Z → Hh, gr : Z → Hr, gt : Z → Ht and an
encoding mapping f : Hh ×Hr ×Ht → Z.

Model Training To optimize the salient context mining without supervision, we adopt
a pre-training and EM optimization process [9] with the reconstruction objective and the
clustering-promoting objective.

6 Sd−1 := {z ∈ Rd|∥z∥ = 1}. We assume that d ≪ min(dim(Hh), dim(Hr), dim(Ht)).
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In the E-step, we update the clustering assignment estimation q(µc|zi) by computing
the posterior distribution as

p(µc|zi) =
p(zi|µc)p(µc)∑C

c′=1 p(zi|µc′)p(µc′)
=

exp(κ · zTi · µc)∑C
c′=1 exp(κ · zTi · µc′)

(5)

. The target distribution is derived as q(µc|zi):

q(µc|zi) =
p(µc|zi)2/sc∑C

c′=1 p(µc′ |zi)2/sc′
(6)

with sc :=
∑K

j=1 p(µc|zj). The squaring-then-normalizing formulation is shown to
introduce a sharpening effect which shifts the estimation towards the most confident area
so that different clusters will have more distinct separation [23,43].

The corresponding clustering-promoting objective is defined as

Oclus =

K∑
j=1

C∑
c′=1

q(µc′ |zj) · log p(µc′ |zj) (7)

and the reconstruction objective is defined as

Orecon =

K∑
j=1

∑
l∈{h,r,t}

cos(⃗hlj , gl(f (⃗hhj , h⃗rj , h⃗tj ))) (8)

The reconstruction objective leads the model to preserve the input space semantics while
conducting mappings.

In the M-step, the mapping functions gh(·), gr(·), gt(·), f(·) and cluster distribution
parameters are updated by maximizing Orecon + λOclus.

After convergence, there are C well-separated clusters {µc′}Cc′=1. Each cluster
centroid µc′ is associated with a cluster of relation triples {K(c′)

j }Mc′
j=1 where Mc′ denotes

the number of relation triples affiliated with cluster centroid µc′ .

3.4 Generalization via Prompt-Tuning

Even with high recall and the improved precision, the weak supervision still suffer from
following deficiencies. First of all, the weak supervision extraction by hard matching
the pre-defined patterns with the extracted relation triple representations is deficient to
handle implicitly expressed relations that need to be inferred from the whole sentence
context beyond dependency path. One example for the relation per:grandparent is
Alice, the wife of Mike, gave birth to Beck three months before Mike’s father, John, visited
her. This example sentence indicates John is the grandparent of Beck by incorporating
the per:mother, per:spouse and per:father relations and it is hard to cover such
complicated and implicit patterns for applying weak supervision. Second, the pre-defined
relation patterns suffer from limited coverage due to the hard matching nature of the
weak supervision construction. For example, the set of relation-indicative words for
org:founded_by is far from completeness.
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To tackle the first deficiency, we select samples with salient relation-related contexts
from the clustering space for tuning pre-trained language models7. These high-quality
samples well represent the pre-defined patterns whose noise from initial weak supervision
construction is largely reduced after clustering. By tuning the pre-trained language
models leveraging these samples, RCLUS is capable to learn the essence of the pre-
defined patterns and to generalize to other implicit relation patterns that need to be
reasoned from the context.

To tackle the second deficiency, instead of fine-tuning, we tune the language models
with prompts. As prompt-tuning has a much closer objective to the pre-training objective,
RCLUS is hence much more efficient in distilling the knowledge acquired from pre-
training for generalizing the high-quality patterns under low resource setting. Sticking to
our philosophy of designing the pre-defined relation patterns, we follow [14] to aggregate
three sub-prompts to jointly contribute to the inference of prompt-tuning. As each target
relation is generally equivalent to the combination of the head entity type, the tail entity
type and the semantic relationship between the head and the tail. The three sub-prompts
are hence designed corresponding: (1) the sub-prompt for inferring the head entity type
and it consists of a mask and the head entity mention, (2) the sub-prompt for inferring the
semantic relationship independent to entity types (e.g., “gave birth to”) and it consists of
three masks, and (3) the sub-prompt for inferring the tail entity type same as (1). The
original sentence and the three sub-prompts will be concatenated in order to tune the
pre-trained language model. RCLUS integrates the inference of the three sub-prompts
to give the extracted relation. As an example, to give the relation org:founded_by, the
three sub-prompts will need to predict the head entity as an organization, the tail entity
as a person and the semantic relationship between entities as “was founded by”.

Model TACRED TACREV ReTACRED
K 4 8 16 Mean 4 8 16 Mean 4 8 16 Mean

w/ weak supervision
EXACT MATCHING* - - - 47.98 - - - 53.67 - - - 54.86
COSINE 23.28 26.60 37.16 29.01 21.43 30.85 41.21 31.16 28.12 35.00 44.54 35.89
COSINE* - - - 58.88 - - - 60.80 - - - 68.59
RCLUS NOISY 45.35 50.94 55.73 50.67 50.41 61.67 66.85 59.64 56.89 65.81 71.09 64.60
RCLUS BALANCED 45.19 55.71 59.33 53.41 55.36 58.74 64.56 59.55 53.84 65.27 69.60 62.90
RCLUS 49.89 56.65 60.26 55.60 56.94 63.75 66.50 62.40 61.03 68.78 72.23 67.35

w/ ground truth supervision
FINE-TUNING 13.62 26.09 32.07 23.93 18.75 25.21 35.12 26.36 17.36 31.77 42.63 30.59
GDPNET 13.79 28.42 43.11 28.44 15.61 24.59 42.12 27.44 19.20 35.79 52.84 35.94
PTR 39.16 49.46 54.67 47.76 47.18 51.58 59.17 52.64 51.27 62.60 71.11 61.66

Table 1. F1 scores (%) on full test set with different sizes (K = 4, 8, 16) for each relation label.
3 seeds (212, 32, 96) are used for uniformly random sampling and the median value is taken as
the final result for robustness against extreme values. Note that - means for that setting, no size
limitation on labeled samples for training is assumed and the evaluation results will be indicated
under Mean column. Models under such setting is also indicated with *.

7 For this work, we use RoBERTa_Large [50] as the backbone model and maintain the consistency
between baselines in experiments.



10 S. Zhou et al.

4 Experiments

In the following experiments8, we first show the effectiveness of RCLUS on three
classical relation extraction datasets (Section 4.1) and the details of prompt tuning data
sampling (Section 4.2). Then, we illustrate the clustering results with the help of t-SNE
[19] (Section 4.3) and study the importance of each part of RCLUS with an ablation
study (Section 4.4). Additionally, we qualitatively show some sources of improvement
brought by RCLUS with a case study (see Appendix C).

4.1 Relation Extraction

Datasets: We carry out the experiments on three relation extraction datasets: (1)
TACRED [48] which is the most widely used large scale dataset for sentence-level
relation extraction. There are 41 common relations and 1 NA9 label for negative samples.
(2) TACREV [3] which corrects wrong labels for part of dev and test data of TACRED.
(3) ReTACRED [37] which refactors the TACRED dataset and also modifies some
relations for suitability.

Without loss of generality, we sampled 30 relations from original relations of
each dataset for the convenience of designing weak supervisions. 27 relations are
shared across 3 datasets. For the left 3 relations, the org:country_of_headquarters,
the org:stateorprovince_of_headquarters and the org:city_of_headquarters,
ReTACRED modifies the headquarters to branch. The statistics are shown in Table 2.

Dataset #train #dev #test #relations

TACRED 65,044 21,226 14,637 30
TACREV 65,044 21,238 14,681 30
ReTACRED 49,419 15,780 10,375 30

Table 2. Statistics about datasets
experimented

Model
TACREV

Precision Recall F1

RCLUS

w/ Weak 59.30 49.02 53.67
w/ Prompt 48.25 75.73 58.95
w/ Weak + Prompt 58.80 72.07 64.76
w/ Weak + Cluster 63.62 40.61 49.57
w/ Weak + Cluster + Prompt 60.76 74.29 66.85
w/ Weak + Cluster + Prompt* 57.85 78.47 66.61

Table 3. Ablation study of RCLUS

Baselines: We compare RCLUS with : (1) EXACT MATCHING: prediction is given
based on our pre-defined relation patterns. (2) COSINE [46]: weakly-supervised model
that utilizes contrastive self-training to extend labeled dataset and de-noise. (3) FINE-
TUNING: a RoBERTa_Large [50] backbone plus a classification head whose input is the
sequence classification embedding concatenated with the averaged embeddings of head
and tail entities. (4) GDPNET [45]: it constructs a multi-view graph on top of BERT.
(5) PTR [14]: RCLUS’s backbone prompt-tuning model except for some modifications.

8 The code for this work is available at https://github.com/KevinSRR/RClus
9 no_relation for TACREV and ReTACRED.
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For training with weak supervision, we assume the negative samples in the train set are
known but only 2×K × Number of Positive Labels of negative samples can be used.

As RCLUS requires applying predefined patterns to positive examples, there will be
examples that do not match any pattern or match with multiple patterns. RCLUS will
ignore such examples while RCLUS NOISY will assign negative label and assign the
first matched relation respectively, only not using them for clustering. This is the only
difference between RCLUS and RCLUS NOISY. For RCLUS, as prompt-tuning requires
data sampled from clusters, it involves sampling of both positive and negative samples.
The sampling details are in Section 4.2.

For fair comparisons, we study the low-resource setting performance. For weakly-
supervised baselines without being denoted with *, we provide small training sets as
weakly-labeled data while leaving the remaining data as unlabeled data. For fine-tuning
based or prompt-tuning baselines, we also provide them same sizes of training sets but
with ground truth labels. The difference between RCLUS and RCLUS BALANCED is
that, after positive data sampling, RCLUS compensate the relation classes with samples
fewer than K using weak supervisions to reach K while RCLUS BALANCED will cut
down exceeded samples after the same compensation to keep the sample size of each
positive relations as K.

Evaluation Metrics: We follows the micro F1 metric adopted by most of the works
that experiment on three datasets. Note that mainstream approaches only calculate this
metric over positive samples while neglecting negative samples.

Experiment Setups: For detailed experimental setups, please refer to Appendix B.
Main Analysis: The results of RCLUS and other baselines are shown in Table 1.

In general, compared with weakly-supervised baselines and supervised baselines with
ground truth, RCLUS achieves better performances under low-resource scenarios. The
advantage is more significant when compared to strong weakly-supervised baselines,
demonstrating the overall effectiveness of RCLUS.

Compared with PTR which is the backbone model of our prompt-tuning method,
it can be seen that with latent space clustering, RCLUS, with weak supervision, has
improved PTR’s performance by a large margin. Additionally, it can be seen that RCLUS
can be easily adapted for integrating other more powerful prompt-tuning backbones for
better performance. This shows the effectiveness of the whole pipeline design as well as
the further potential of RCLUS.

Considering different levels of labeled data scarcity, RCLUS’s advantage over
baselines with ground truth supervision is most significant when the ground truth samples
are scarce, as the pre-defined patterns and the pattern generalizability of RCLUS will
reach a limit as baselines with ground truth supervision get to reach more and more
patterns directly from more provided samples.

In summary, considering low-resource settings where ground truth annotations are
scarce, RCLUS is effective to boost the performance and it maintains the advantage
across different levels of data scarcity compared with current strong baselines.

4.2 Positive and Negative Samples

As the positive training samples for RCLUS’s final step of prompt-tuning needs to be
sampled from clusters, we design RCLUS’s sampling method to sampling with intervals.
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Fig. 3. Number of false negative samples among first M samples (consider both negative examples
and weakly labeled positive examples) with smallest max assignment probability.

Based on the cluster assignment probability (see Eq. 5), sampling with interval I means,
for each centroid starting from highest assignment probability in descending order,
one sample will be taken among every I candidate samples. The purpose is to avoid
repetitions of similar samples as there are many similar or reused samples from three
datasets.

Opposite to positive samples, for the three datasets, negative samples are defined
to have relations that are beyond labeled relations. The relation triple representation
extraction and clustering is targeted at positive samples that fall into the range of defined
relations. Therefore, for model training, RCLUS needs to obtain negative samples.

To obtain quality negative samples, RCLUS follows a min max approach. After the
latent space clustering on extracted relation triple representations with positive relations,
we apply the trained mapping function f : Hh×Hr×Ht → Z to project the unextracted
relation triple representations (or negative samples) and sort them by their maximal
centroid assignment probability to each centroids given by Eq. 5 in ascending order.
Then the negative relation triples are sampled uniformly from the first Mnegative sorted
relation triple representations.

This method follows the intuition that trained clusters using positive relations well
represent the salient features of positive relations. Therefore, negative samples will
be projected as outliers in the same clustering space. To further enhance the prompt
tuning effectiveness, the range of first Mnegative samples guarantees minimal distinction
between the sampled negative and positive samples. While uniform sampling introduces
different levels of difficulty for prompt tuning to distinguish the sampled positive and
negative samples. Figure 3 verifies our intuition as the ratios of false negative samples
are 0.070%, 0.093%, and 5.46%, against the overall negative sample ratios as 9.92%,
9.54%, and 15.43% for TACRED, TACREV and ReTACRED respectively.

4.3 Cluster Visualization

Clustering result visualized with t-SNE [19] is shown in Figure 4. We can see that
clusters generally have well separated boundaries, which means that the clusters well
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Fig. 4. Visualization of the clusters with t-SNE. For clarity, we sample 6 cluster centroids for
TACREV dataset and visualize them along with first 40 data points closest to each centroid.

capture the salient features of relation triple patterns of different relations. In rare cases,
relations that have semantically close patterns might have close latent representations.
For example, the patterns of org:employee_of and org:shareholders share the same
head and tail entity types and the two relations can generally have similar contexts. So
they are in the same cluster as shown by Figure 4. As our clustering is unsupervised,
some clusters may represent more than one relation. However, instead of being leveraged
to assign labels, our clustering is only used to filter noisy relation triple representations
which are expected to be outliers after clustering. Hence such problem will not influence
any relation extraction results. For example, even the above discussed cluster contains
samples of org:employee_of and org:shareholders, we will only sample them with
their labels assigned by pattern matching as they are not outliers.

4.4 Ablation Study

In order to show the importance of each component of RCLUS, an ablation study is
conducted with results shown in Table 3. Note that we take 16 for few-shot settings and
seed as 212 if needed. Weak refers to weak supervision, Prompt refers to prompt-tuning,
and Cluster refers to relation triple clustering. And * denotes RCLUS BALANCED.
Generally, each component is indispensable to the whole framework based on the
evaluation performance. Specifically, it can be seen that the weak supervision and the
clustering are both important for the precision metric as they are important for the
model to capture certain patterns and reduce initial weak supervision noise. The weak
supervision provides relatively high recall while the clustering provides high precision.
Additionally, the prompt-tuning is important for the boost of recall as it helps the model
to comprehend the whole context, generalize the patterns and infer the implicit relations.
This is in accordance with design expectations.
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5 Related Work

De-noising for Weakly-Supervised Learning: Our work is related to de-noising
models for weakly-supervised learning. Previous methods design probabilistic models to
aggregate multiple weak supervisions to achieve de-noising yet ignoring the contexts for
further improvement [28,38,2]. Other studies either focus on noise transitions without
dealing with instance-level de-noising or require too much supervision to be suitable for
weakly-supervised relation extraction [40,30]. A recent study proposes a contrastive self-
training based de-noising method but cannot bypass potential issues of noise propagations
from initial weak supervision [46]. Different from them, RCLUS adopts unsupervised
relation triple clustering which captures salient semantic features of relation expressions
to filter noises from weak supervision.

Prompt-Tuning: Another related line of research is prompt-tuning for low-resource
settings. Enhanced by the birth of GPT-3 [6], prompt-tuning has introduced various
studies [17,11,31,33,18]. For prompt-tuning with relation extraction, PTR incorporates
logic rules with sub-prompts to construct prompts [14]. KNOWPROMPT tries to include
prior knowledge on labels into prompts for relation extraction. In contrast, their studies
are based on extending prompt models’ generalizability without making use of weak
supervision to boost the performance. Based on prompt-tuning, RCLUS adopts prompt-
tuning to achieve generalizability with a strong base on learnt noise-reduced patterns.

6 Conclusions

In this work, we propose a novel weakly-supervised framework that extracts relations
from unlabeled data. Specifically, our framework: (1) has designed new relation patterns
for a novel recall-first philosophy for weak supervision construction, (2) designed a novel
representation of relation triple for initial weak supervision construction for high recall
and then utilized clustering to mine salient contexts to improve precision, (3) leveraged
the samples from clusters for prompt-tuning to enhance generalization and context
understanding. Experiments show RCLUS largely outperforms the strongest weakly-
supervised baseline and achieves better performance than fully-supervised methods
under low-resource settings. We also show the importance of each component of RCLUS
and verify design expectations quantitatively and qualitatively.
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A Rules for Weak Supervision

The pre-defined relation triple patterns adopted by RCLUS are shown in Table 4 for
reference. Before applying the predefined patterns, named entity recognition will be
applied for each sentence and the recognition results will be aligned with the given
head and tail entity mentions for entity typing. During this step, sentences which are not
recognized will not be considered for training and will be considered as negative sample
if it comes from the test set.

B Experiment Setups

We conduct all the experiments on 2 NVIDIA RTX A6000 GPU’s with PyTorch 1.12.1
wtih Huggingface Library [42]. For all experiments, we set the training epochs as 20 and
the evaluation frequency on dev set is set to be once every 2 epochs. Best performing
checkpoint on dev set is chosen for evaluation on the test set.

B.1 RCLUS Implementation Details

For pre-defined relation triple representation patterns, please refer to Appendix A.
For the clustering model’s decoding function gl(·) with l ∈ {h, r, t}, we implement

them as feed-forward neural networks with each layer followed by the ReLU activation
function [1]. We adopt 100, 1000, 2000, 1000, diml for the hidden states dimensions of
each layer. The diml is 1024 for head/tail entity embeddings and 2048 for dependency
path embeddings. For encoding mapping f , we basically reverse the layout of the three
decoding functions and concatenate them to form the latent space vector z ∈ R300. For
the clustering, the concentration parameter κ of each vMf distribution is set as 10, the
λ is chosen as 5. During training, the batchsize is 256 while the learning rate is 5e− 4.
Additionally, we set the tolerance threshold for optimization convergence as 0.001 which
means when the ratio of the examples with changed cluster assignment is fewer than this
threshold, the training will stop. The pre-training epochs with only objective Orecon is
set as 100, the interval for updating the target assignment distribution q(µc|zi) is set as
100 and the max training epochs is set as 500 which are never reached. The remaining
experiment setups are the same as [32].

For prompt-tuning with sub-prompts, we used the verbalizer and the label word set
from [14] except that we have modified some prompt templates and search the learning
rate from {3e−5, 4e−5} and we search the max input sequence length from {256, 512}.
The computation time on 2 GPU’s are generally within one and half an hour across all
settings.

The hyperparameter search space for sampling interval I is {1, 2, 3} and the Mnegative

is searched among {10000, 20000, 30000}. The currently found best combinations are
I = 3 and Mnegative = 30000

B.2 BASELINE Implementation Details

For baselines that have been originally implemented on TACRED, we adopt the same
experimental setups with the original settings on TACRED.
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Type Ours PTR BaselineExample Relation

Succinctness per:stateorprovince
_of_birth

(i) Jane Matilda Bolin was born on 
April 11, 1908, in Poughkeepsie, NY.

(i) Jane Matilda Bolin was born on April 11, 1908, in Poughkeepsie, NY.
(ii) Jane Matilda Bolin was born on April 11, 1908, in Poughkeepsie, N.Y..
(iii) ``Born, raised and educated in our home state of Ohio, Paul never lost 
sight of the reason he came to Congress -- to serve this great institution 
and his constituents with dedication and distinction, '' House Republican 
Leader John Boehner, also of Ohio, said in a statement.
(iv) ``Born, raised and educated in our home state of Ohio, Paul never lost 
sight of the reason he came to Congress -- to serve this great institution 
and his constituents with dedication and distinction, '' House Republican 
Leader John Boehner, also of Ohio, said in a statement.

Human Annotation 
Noise Filtration 

per:charges

(i) Flowers always contended politics was behind the extortion
investigation, but appeals courts ruled against him.

(ii) Three blocks away, officers discovered a luxury sport 
utility vehicle owned by Remy Ma, 26, that had been 
involved in a single - car crash and abandoned.

(i) In 1968, Flowers was accused with two 
others on federal charges of extorting 
payments from life insurance companies in 
return for being allowed to do business in the 
state when Flowers was attorney general.
(ii) A judge said Wednesday she was denying 
a prosecutor's request to increase bail 
following Remy Ma's new indictment on 
witness tampering and gang assault charges.

(avoids noise from 
human annotations 
by applying explicit 
patterns)

(avoids redundant 
information from 
original corpus)

Fig. 5. Case study for showing the effectiveness of RCLUS’s weakly-supervised relation extraction.
The aspects of effectiveness is shown by the Type column. Ours stands for the relation instances
sampled from the clustering of RCLUS. PTR Baseline stands for the relation instances obtained by
random sampling. To aid the quantitative comparison between RCLUS and PTR, the dataset is
selected as ReTACRED and the training size is selected as 16 per positive relation. Note that head
entities are indicated in blue while tail entities are indicated in red.

One exception is COSINE and we search self_training_eps from {0.7, 0.8},
self_training_update_period from {100}, self_training_max_step from {2000, 3000},
and training epochs from {3, 20}. Other experimental setups are the same as the original
implementation.

C Case Study

In order to qualitatively study the improvement brought by RCLUS, we show the result
of the conducted case study here. The examples are randomly collected on ReTACRED
task for comparison between RCLUS and PTR in terms of their input relation instances.
Note that RCLUS and shares the same prompt-tuning backbone model while RCLUS
achieves a large margin under low-resource settings.

In Figure 5, the observed qualitative improvements brought by our weak supervisions
and latent space clustering are summarized into succinctness and human annotation
noise filtration. In terms of succinctness, we can see that our clustering method gets rid
of extremely similar training samples from the original corpus. This might be due to the
fact that our clustering is capable to capture the semantic similarities of relation patterns.
In terms of human annotation noise filtering, we can see RCLUS filters relation instances
that originally contain human annotation noise thanks to our weak supervision rules and
relation triple representation’s condensed formulation of relation expressions.
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Relation Head Type Relation-Indicative Word Tail Type

per:charges Person
face; sentence; sentenced; sentence; sentenced; accused;

charge; charged; charges; convicted; conviction; indictment;
sued; sues; trial;

Criminal_charge

per:date_of_death Person deaths; dies; deaths; dies; dead; death; die; died; killed; Date
per:country_of_death Person death; died; killed; Country
per:cause_of_death Person succumbed; death; deaths; die; died; dies; killed; Cause_of_death

org:founded_by Organization
set; set; create; co-founder; cofounder; established;

form; formed; found; founded;
founder; founders; founding; founds; started;

Person

org:founded Organization
creation; establish; form; establish; co-founder; cofounder; form; founder;

co-founded; created; established; formed; founded; founding; founds; set; started;
Date

per:city_of_death Person murdered; murdered; death; died; dies; killed; City
per:stateorprovince_of_death Person death; died; killed; State_or_province

per:date_of_birth Person birth; birthday; born; Date
per:stateorprovince_of_birth Person native; birth; birthday; born; State_or_province

per:country_of_birth Person native; birth; birthday; birthplace; born; Country
per:city_of_birth Person native; birth; birthday; birthplace; born; City

org:shareholders Person

acquired; bought; holding; share; holding; share;
owned; stock; invest; invested; investment; investor; investors; invests;

owner; owns; shareholder; shareholders;
shares; stake; stakes;

Organization

per:other_family Person
relative; sister-in-law; brother-in-law; father-in-law; mother-in-law;

nephew; nephews; niece; grandfather; grandmother; grandson;
granddaughter; cousin; aunts; uncle;

Person

per:title Person Length(Shortest Dependency Path) ≤ 2 Title

org:dissolved Organization
bankruptcy; shuttering; bankruptcy; shuttering; merger;
close; closed; disband; disbanded; dissolved; merged;

shut; shutdown; split;takeover;
Date

per:countries_of_residence Person

ambassador; congressman; congresswoman; lives; sen.; senator; senators;
undersecretary; ambassador; ambassadors; grew; leave; return; returned; returns;

apartment; citizen; emigrated; home; hometown; house;
inhabitant; live; lived; living; moved; resided; resident; resides;

Country

per:stateorprovinces_of_residence Person

sen.; senator; senators;
congressman; congresswoman; grew; native; raised; represent; representative; represented;

representing; sen.; senator; senators; apartment; emigrated; home; hometown; house;
live; lived; lives; living; moved; resided; resident; resides;

State_or_province

per:cities_of_residence Person
native; settled; settled; grew; move; moving; returned;

apartment; emigrated; home; hometown; house; live; lived; lives; living; moved;
resided; resident; resides;

City

per:religion Person Length(Shortest Dependency Path) ≤ 2 Religion

org:top_members/employees Organization
cfo; heads; leaders; leads; vice-chairman; cfo; governor; heads; leaders; leadership; vice;

vice-chairman; vice-governor; ceo; chairman; chairwoman; chief; commander;
coo; director; head; lead; leader; led; president; vice-president;

Person

org:number_of_employees/members Organization employs; employs; workforce; employees; members; membership; people; workers; Number

per:schools_attended Person
attending; education; studied; studies; education; educated; graduation; students; study;
studying; attended; attends; degree; degrees; doctorate; graduate; graduated; graduates;

graduating; schooled; schools; student
Organization

per:employee_of Person

boss; chief; directors; driver; executive; heads; leader; leaders; manager; officer; officials;
professor; undersecretary; worker; works; chief; attorney; co-chairman; correspondent;
driver; elected; executive; fellow; minister;officer; officials; professor; serve; speaker;

undersecretary; appointed; chairman; chairwoman; director; employed;
employee; employees; head; hired; member; members; official; president;

secretary; served; spokesman; spokeswoman; worked; workers;

Organization

per:siblings Person sibling; siblings; brother; brothers; sister; sisters; Person
per:spouse Person marrying; divorce; marrying; wedding; ex-wife; husband; marriage; married; spouse; wife; Person

org:stateorprovince_of_headquarters Organization base; based; located; founded; firm; firms; office; headquarters; headquartered; belongs; State_or_province
org:country_of_headquarters Organization agency; headquarters; company; companies; based; root; firm; founded; located; Country

org:city_of_headquarters Organization base; located; based; headquarters; headquartered; company; firm; office; founded; City

org:stateorprovince_of_branch Organization

branches; run; runs; base; based; in;
operate; operated; operates; office; site; headquarters;

headquartered; plant; office; company; firm; firms;
branch; operations; operators; operator;

State_or_province

org:country_of_branch Organization

branch; branches; in; office; offices; base;
based; headquarters; headquartered; run; runs; operations;
operate; operated; operates; operators; operator; agency;

company; head; firm; subsidiary; companies; plants;
site; sites;

Country

org:city_of_branch Organization

branch; branches; site; run; runs; in;
operations; operates; operate; operated; base; based;

headquarters; headquartered; plant; office; offices; company;
firm; firms; subsidiary;

City

Table 4. Pre-defined relation patterns of RCLUS. The patterns are designed based on example
sentences and the relation definitions from TAC KBP 2014 Slot Descriptions [12]. Note that the
joint relation-indicative words are in black. Additional relation-indicative words for TACRED are
in red. Additional relation-indicative words for TACREV are in blue. Additional relation-indicative
words for ReTACRED are in cyan.
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