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Abstract

This work considers the problem of transferring
causal knowledge between tasks for Individual
Treatment Effect (ITE) estimation. To this end, we
theoretically assess the feasibility of transferring
ITE knowledge and present a practical framework
for efficient transfer. A lower bound is introduced
on the ITE error of the target task to demonstrate
that ITE knowledge transfer is challenging due to
the absence of counterfactual information. Never-
theless, we establish generalization upper bounds
on the counterfactual loss and ITE error of the
target task, demonstrating the feasibility of ITE
knowledge transfer. Subsequently, we introduce
a framework with a new Causal Inference Task
Affinity (CITA) measure for ITE knowledge trans-
fer. Specifically, we use CITA to find the closest
source task to the target task and utilize it for ITE
knowledge transfer. Empirical studies are provided,
demonstrating the efficacy of the proposed method.
We observe that ITE knowledge transfer can sig-
nificantly (up to 95%) reduce the amount of data
required for ITE estimation.

1 INTRODUCTION

Assessing the effects of treatments on people (i.e., the In-

dividual Treatment Effect (ITE) estimation) is of signifi-
cant interest to various research communities, such as those
studying medicine and social policy making. In order to
study the causal relationship between the outcome and the
treatment, however, researchers must gather sufficient data
samples from randomized control trials. This process can be
both costly and time-consuming [Kaur and Gupta, 2020]. To
this end, it is desirable to utilize knowledge from different
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but closely related problems with transfer learning. For in-
stance, new vaccines must be developed for treatment when
the viruses undergo mutation. Suppose the mutated viruses
can be related to the known ones by a similarity measure. In
that case, the effects of vaccine candidates can be quickly
estimated based on this similarity with a small amount of
data collected from the new scenario. Hence, this approach
can notably accelerate the study.

While the recent progress in transfer learning is very promis-
ing [Wang and Deng, 2018, Alyafeai et al., 2020, Pan and
Yang, 2010, Zhuang et al., 2021], a major challenge for
transferring causal knowledge arises from non-causal (spu-
rious) correlations to which the statistical learning models
are vulnerable. For example, a classifier may learn to use
the background colors to differentiate images of camels and
horses, as these objects are frequently depicted against dif-
ferent colored backgrounds [Arjovsky et al., 2019, Geirhos
et al., 2018, Beery et al., 2018]. In practice, the performance
of the ITE estimation models can never be evaluated be-
cause the counterfactual data is inaccessible, as shown in
Figure 1. This problem is known in the literature as the

fundamental problem of causal inference [Rubin, 1974, Hol-
land, 1986]. For instance, to compute the effect of vaccina-
tion on a person at some given time, that individual must
both be administered the vaccine, and also remain unvac-
cinated, which is obviously absurd. This scenario is very
different from the conventional supervised learning prob-
lems, where researchers often use a separate validation set
in order to estimate the accuracy of the trained model.

The aforementioned challenge implies that much attention
must be paid to selecting the appropriate source model in
causal knowledge transfer. Additionally, similar scenarios
to the given target task must be determined using a distance
accounting for the immeasurable counterfactual losses in
scenarios under consideration. In this work, we first present
a lower bound and a set of generalization bounds for transfer
learning between causal inference tasks in order to demon-
strate both the difficulty and viability of causal knowledge
transfer. While these theoretical bounds are informative, a
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Figure 1: Inaccessibility to counterfactual data (e.g., a par-
allel universe where the treatments are reversed) makes
transferring causal knowledge more challenging.

method is needed for selecting the optimal source model
from multiple source tasks. This is discussed in Section 5,
where we introduce a framework endowed with a new task
affinity, namely the Causal Inference Task Affinity (CITA),
tailored explicitly for causal knowledge transfer. This task
affinity is used for selecting the “closest” source task. Subse-
quently its knowledge (e.g., trained models, source dataset)
is utilized in the learning of the target task, as depicted in
Figure 2. Our contributions are summarized below:

1. We establish a new lower bound to demonstrate the
challenges of transferring ITE knowledge. Addition-
ally, we prove new regret bounds for learning the
counterfactual outcomes and ITEs of the target tasks
in causal transfer learning scenarios. These bounds
demonstrate the feasibility of transferring ITE knowl-
edge by stating that the error of any source model on
the target task is upper bounded by quantifiable mea-
sures related to (i) the performance of the source model
on the source task and (ii) the differences between the
source and the target causal inference tasks.

2. We introduce CITA, a task affinity for causal inference,
which captures the symmetry of ITEs (i.e., invariance
to the relabeling of treatment assignments under the ac-
tion of the symmetric group). Additionally, we provide
theoretical (e.g., Theorem F.3) and empirical evidence
to show that CITA is highly correlated with the coun-
terfactuals loss, which is not measurable in practice.

3. We propose an ITE estimation framework and a set of
causal inference datasets suitable for learning causal

knowledge transfer. The empirical evidence on the
above datasets demonstrates that our methods can es-
timate the ITEs for the target task with significantly
fewer (up to 95% reduction) data samples compared to
the case where transfer learning is not performed.

2 RELATED WORK

Many approaches in transfer learning [Thrun and Pratt,
2012, Blum and Mitchell, 1998, Silver and Bennett, 2008,
Sharif Razavian et al., 2014, Finn et al., 2016, Fernando
et al., 2017, Rusu et al., 2016, Le et al., 2020] have been
proposed, analyzed and applied in various machine learning
applications. Transfer learning techniques inherently assume

that prior knowledge in the selected source model helps with
learning a target task [Pan and Yang, 2010, Zhuang et al.,
2021]. In other words, these methods often do not consider
the selection of the base task to perform knowledge transfer.
Consequently, in some rare cases, transfer learning may
even degrade the performance of the model Standley et al.
[2020]. In order to avoid potential performance loss during
knowledge transfer to a target task, task affinity (or task
similarity) is considered as a selection method that identifies
a group of closest base candidates from the set of the prior
learned tasks. Task affinity has been investigated and applied
to various domains (e.g., transfer learning [Zamir et al.,
2018, Dwivedi and Roig, 2019, Wang et al., 2019], neural
architecture search [Le et al., 2021, 2022a, Le et al., 2021],
few-shot learning [Pal and Balasubramanian, 2019, Le et al.,
2022b], multi-task learning [Standley et al., 2020], continual
learning [Kirkpatrick et al., 2017, Chen et al., 2018]).

While transfer learning and task affinity have been inves-
tigated in numerous application areas, their applications
to causal inference have yet to be thoroughly investigated.
Neyman-Rubin Causal Model [Neyman, 1923, Donald,
2005] and Pearl’s Do-calculus [Pearl, 2009] are popular
frameworks for causal studies based on different perspec-
tives. A central question in the Neyman-Rubin Causal Model
framework is determining conditions for identifiability of
causal quantities such as Average and Individual Treatment

Effects. Previous work considered estimators for Average
Treatment Effect based on various methods such as Covari-
ate Adjustment [Rubin, 1978], weighting methods such as
those utilizing propensity scores [Rosenbaum and Rubin,
1983], and Doubly Robust estimators [Funk et al., 2011].
With the emergence of Machine Learning techniques, more
recent approaches to causal inference include the appli-
cations of decision trees[Wager and Athey, 2018, Athey
and Imbens, 2016], Gaussian Processes [Alaa and Van
Der Schaar, 2017], and Generative Modeling [Yoon et al.,
2018] to ITE estimation. In particular, deep neural networks
have successfully learned ITEs and estimated counterfactual
outcomes by data balancing in the latent domain [Johansson
et al., 2016, Shalit et al., 2017]. Please note that the trans-
portation of causal graphs is another well-studied closely
related field in the causality literature [Bareinboim and Pearl,
2012]. It studies transferring knowledge of causal relation-
ships in Pearl’s do-calculus framework. In contrast, in this
paper, we are interested in transferring knowledge of ITE
from a source task to a target task in the Neyman-Rubin
framework using representation learning. A closely related
problem to ours is the domain adaptation problem for ITE
estimation, as explored in [Bica and van der Schaar, 2022,
Vo et al., 2022, Aglietti et al., 2020]. These works primarily
focus on situations where only the distribution of popula-
tions changes, leaving the causal functions unaltered. In
our research, we provide theoretical analysis and empirical
studies for the case where both the population distributions
and the causal mechanisms can change.
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3 MATHEMATICAL BACKGROUND

3.1 CAUSAL INFERENCE

Let X ∈ X ⊂ R
d be the covariates (i.e., input features),

A ∈ {0, . . . ,M} be the treatment, and Y ∈ Y ⊂ R be
the factual (observed) outcome. For every j ∈ {0, . . . ,M}
we define Yj to be the potential outcome [Rubin, 1974]
that would have been observed if only the treatment A =
j, j ∈ {0, 1, · · · ,M} was assigned. In the medical context,
for instance, X is the individual information (e.g., weight,
heart rate), A is the treatment assignment (e.g., A = 0 if
the individual did not receive a vaccine, and A = 1 if the
individual is vaccinated), Y is the outcome (e.g., mortality
data). A causal inference dataset is a collection of factual
observations DF = {(xi, ai), yi}Ni=1, where N is the num-
ber of samples. We assume these samples are independently
drawn from the same factual distribution pF . In a parallel
universe, if the roles of the treatment and control groups
were reversed, we would have observed a different set of
samples DCF sampled from the counterfactual distribution
pCF . In this work, we present our results for the binary case,
i.e., M = 1. However, our approach can be easily extended
to any positive integer M < ∞. In the binary case, the
individuals who received treatments A = 0 and A = 1 are
respectively denoted by the control and treatment groups.

Definition 3.1 (ITE). The Individual Treatment Effect
(ITE), referred to as the Conditional Average Treatment
Effect (CATE) [Imbens and Rubin, 2015], is defined as:

∀x ∈ X , τ(x) = E[Y1 − Y0|X = x] (1)

We assume that the data generation process respects the
overlap, i.e. ∀x ∈ X , 0 < p(a = 1|x) < 1, and conditional

unconfoundedness, i.e. (Y 1, Y 0) ⊥⊥ A|X [Robins, 1986].
These assumptions are sufficient conditions for the ITE to
be identifiable [Imbens, 2004]. We also assume that the
true causal relationship is described by a function f(x, a),
which can be expressed as an expected value in the non-
deterministic case. By definition τ(x) = f(x, 1)− f(x, 0).
Let f̂(x, a) denote a hypothesis that estimates the true
function f(x, a). Thus, the ITE function can then be es-
timated as τ̂(x) = f̂(x, 1) − f̂(x, 0). We use `f̂ (x, a, y)
to denote a loss function that quantifies the performance
of f̂(·, ·). A possible example is the L2 loss defined as
`f̂ (x, a, y) = (y − f̂(x, a))2.

Definition 3.2 (Factual Loss). For a hypothesis f̂ and a loss
function lf̂ , the factual loss is defined as:

εF (f̂) =

∫

X×{0,1}×Y

lf̂ (x, a, y) pF (x, a, y)dxdady (2)

We also define the factual loss for the treatment (a = 1) and

control (a = 0) groups respectively as:

εa=1
F (f̂) =

∫

X×Y

lf̂ (x, 1, y) pF (x, y|a = 1)dxdy (3)

and

εa=0
F (f̂) =

∫

X×Y

lf̂ (x, 0, y) pF (x, y|a = 0)dxdy (4)

Definition 3.3 (Counterfactual Loss). The counterfactual
loss is defined as:

εCF (f̂) =

∫

X×{0,1}×Y

lf̂ (x, a, y) pCF (x, a, y)dxdady

(5)

We also define the counterfactual loss for the treatment
(a = 1) and control (a = 0) groups respectively as:

εa=1
CF (f̂) =

∫

X×Y

lf̂ (x, 1, y) pCF (x, y|a = 1)dxdy (6)

and

εa=0
CF (f̂) =

∫

X×Y

lf̂ (x, 0, y) pCF (x, y|a = 0)dxdy (7)

The counterfactual loss corresponds to the expected loss
value in a parallel universe where the roles of the control
and treatment groups are exchanged.

Definition 3.4. The Expected Precision in Estimating Het-

erogeneous Treatment Effect (PEHE) is defined as:

εPEHE(f̂) =

∫

X

(τ̂(x)− τ(x))
2
pF (x)dx. (8)

Here, εPEHE [Hill, 2011] is often used as the performance
metric for estimation of ITEs [Shalit et al., 2017, Johans-
son et al., 2016]. A critical connection between the factual
loss (εF ), the counterfactual loss (εCF ), and εPEHE is that
for small values of εF and εCF causal models have good
performance (i.e., low εPEHE). However, the εPEHE is
not directly accessible in causal inference scenarios because
the calculation of τ(x) (i.e., the ground truth ITE values)
requires access to the counterfactual values. In this light, we
choose a hypothesis that instead optimizes an upper bound
of εPEHE given in Equation 10.

3.2 REPRESENTATION LEARNING FOR ITE

ESTIMATION

In this work, we consider The TARNet model Shalit et al.
[2017] for causal learning. TARNet was developed as a
framework to estimate ITEs using counterfactual balancing.
It consists of a pair of functions (Φ, h) where Φ : Rd → R

l

is a representation learning function, and h : Rl ×{0, 1} →
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R is a function learning the two potential outcomes func-
tions in the representation space. The hypothesis learning
for the true causal function is f̂(x, a) = h(Φ(x), a) and the
loss function `f̂ is denoted by `(Φ,h). To ensure the simi-
larity between the features of the treatment group and that
of the control group in the representation space, TARNet
uses the Integral Probability Metric in order to measure the
distance between distributions, defined as:

IPM
G

(p, q) := sup
g∈G

∣

∣

∣

∣

∫

S

g(s)(p(s)− q(s))ds

∣

∣

∣

∣

(9)

where the supremum is taken over a given class of functions
G. It follows from the Kantorovich-Rubinstein duality Vil-
lani [2009] that IPM reduces to the 1-Wassertein distance
when G is the set of 1-Lipschtiz functions as is the case
in our numerical experiments. Here, the TARNet model
learns to estimate the potential outcomes by minimizing the
following objective:

L(Φ, h) = 1

N

N
∑

i=1

wi · `(Φ,h)(xi, ai, yi)

+ α · IPM
G

(

{Φ (xi)}i:ai=0 , {Φ (xi)}i:ai=1

)

(10)

where wi =
ai

2v
+

1− ai

2(1− v)
, v =

1

N

N
∑

i=1

ai, and α is the

balancing weight which controls the trade-off between the
similarity of the representations in the latent domain and the
model’s performance on the factual data.

4 THEORETICAL FRAMEWORK

In this section, we provide learning bounds on the counter-
factual loss of the target task, and εPEHE (i.e., the error
in estimating ITE). These bounds are inspired by the work
of Ben-David et al. [2010] in the non-causal setting. We
use superscripts T and S to respectively denote quantities
related to the target and source tasks. Let τT denote the
individual treatment effect function of the target task. We
consider the performance of a well-trained source model
f̂S : X × {0, 1} → Y when applied to a target task:

εTPEHE(f̂
S) =

E
x∼pT

F

[

(

τT (x)− [f̂S(x, 1)− f̂S(x, 0)]
)2

]

(11)

4.1 THE CHALLENGE OF ITE KNOWLEDGE

TRANSFER

We first provide a lower bound on εPEHE that consists of
both the factual and the counterfactual losses. This bound
implies that good performance on the counterfactual data is
a necessary condition for accurate estimation of ITE.

Theorem 4.1. Let f̂S be a model trained on a source task,

and u = pTF (A = 1) then

εTF (f̂
S) + uε

T,a=0
CF (f̂S) ≤ εTPEHE(f̂

S) (12)

According to the bound in Theorem 4.1, simply minimizing
the factual loss of the target may not guarantee a good
performance. Hence, choosing a source model with low (or
zero) factual loss on the target task cannot perform well if
the (immeasurable) counterfactual loss of the target becomes
excessively high. In other words, the performance of the
chosen source model can be arbitrarily inadequate, while its
performance appears perfect on factual data.

While Theorem 4.1 has implied that causal knowledge can-
not be transferred without any assumption, the learning
bounds presented in the following section prove the via-
bility of transferring causal knowledge under reasonable
assumptions.

4.2 GENERAL LEARNING BOUNDS

The problem of ITE knowledge transfer can be expressed as
two triples (pSF , p

S
CF , f

S) and (pTF , p
T
CF , f

T ) where:

• pSF and pTF respectively denote the factual probability
distribution of the source and target tasks.

• pSCF and pTCF respectively denote the counterfactual
distribution of the source and target tasks.

• fS and fT respectively denote the underlying causal
function of the source task and the target task.

We use the L1 distance to measure the similarity between
probability distributions, defined as:

V (p, q) =

∫

S

|p(s)− q(s)|ds. (13)

Theorem 4.2. For any hypothesis f̂ , we have:

εTCF (f̂) ≤εSF (f̂) + V (pTF , p
S
F ) + V (pTF , p

T
CF )

+ E
(x,a)∼pS

F

[|fS(x, a)− fT (x, a)|] (14)

and

εTPEHE(f̂) ≤4εSF (f̂) + 4V (pTF , p
S
F ) + 2V (pTF , p

T
CF )

+ 4 E
(x,a)∼pS

F

[|fS(x, a)− fT (x, a)|]

(15)

We note that the learning bounds consist of (1) the source
factual loss, (2) the difference between the causal func-
tions, and (3) a measure of similarities between probability
distributions. However, the L1 distance in Theorem 4.2 is in-
tractable in practice. A more reasonable candidate distance
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is IPM distance as defined in Equation 9. The L1 distance
can be replaced with the IPM distance as demonstrated by
the following Theorem 4.3.

Theorem 4.3. Suppose that the function class G is stable

under addition and multiplication and f̂ , fT ∈ G, then

εTCF (f̂) ≤εSF (f̂) + IPM
G

(pTF , p
S
F ) + IPM

G
(pTF , p

T
CF )

+ E
(x,a)∼pS

F

[|fS(x, a)− fT (x, a)|]

and

εTPEHE(f̂) ≤4εSF (f̂) + 4IPM
G

(pTF , p
S
F ) + 2IPM

G
(pTF , p

T
CF )

+ 4 E
(x,a)∼pS

F

[|fS(x, a)− fT (x, a)|]

4.3 BOUNDS FOR COUNTERFACTUAL

BALANCING FRAMEWORKS

Suppose that we have a representation learning model (e.g.,
TARNet) f̂S = (Φ, h) trained on a source causal inference
task. We apply the source model to a different target task.
For notational simplicity, we denote P (Φ(X)|A = a) by
P (Φ(Xa)) for a ∈ {0, 1}. We make the following assump-
tions A1, A2, A3:

• A1: Φ is injective (thus Ψ = Φ−1 exists on Im(Φ)).

• A2: There exists a real function space G on Im(Φ)
such that the function r 7→ `TΦ,h(Ψ(r), a, y) ∈ G.

• A3: There exists a function class G′ on Y such that
y 7→ `Φ,h(x, a, y) ∈ G′.

The above theorem guarantees that causal knowledge can
be transferred under reasonable assumptions. The following
Lemma provides an upper bound on the counterfactual loss
for transferring causal knowledge.

Lemma 4.4. Suppose that Assumptions A1, A2, A3 hold.

Then the counterfactual loss of any model (Φ, h) on the

target task satisfies:

εTCF (Φ, h) ≤ε
S,a=1
F (Φ, h) + ε

S,a=0
F (Φ, h)

+ IPM
G

(P (Φ(XT
1 )), P (Φ(XS

1 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XS

0 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XT

1 ))) + 2γ∗

where

γ∗ = E
x∼pS

F

[

IPM
G′

(P (Y S
a |x), P (Y T

a |x))
]

(16)

measures the fundamental difference between two causal

inference tasks.

Theorem 4.5. (Transferability of Causal Knowledge) Sup-

pose that Assumptions A1, A2, A3 hold. The performance

of source model on target task, i.e. εTPEHE(Φ, h), is upper

bounded by:

εTPEHE(Φ, h) ≤2(εS,a=1
F (Φ, h) + ε

S,a=0
F (Φ, h)

+ IPM
G

(P (Φ(XT
1 )), P (Φ(XS

1 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XS

0 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XT

1 )) + 2γ∗)

Theorem 4.5 implies that good performance on the target
task is guaranteed if (1) the source model has a slight factual
loss (e.g., the first and second term in the upper bound) and
(2) the distributions of the control and the treatment group
features are similar in the latent domain (e.g., the last three
terms in the upper bound). This upper bound provides a
sufficient condition for transfer learning in causal inference
scenarios, indicating the transferability of causal knowledge.

5 TASK-AWARE ITE KNOWLEDGE

TRANSFER

In Section 4, the regret bounds indicate the transferabil-
ity of causal knowledge between pair of causal inference
tasks. In this section, we propose a causal inference learning
framework (illustrated in Figure 2) capable of identifying
the most relevant causal knowledge, when multiple sources
exist, to train the target task. Note that although the general-
ization bounds are informative for understanding viability
of transferring causal knowledge, they may not be the most
constructive approach to select the best source task because
the order of the upper bounds of errors is not necessarily the
same as the order of the errors. To this end, we first propose
a task affinity (CITA) that satisfies the symmetry property
of causal inference tasks (see Sec 5.2) to find the closest
source task to the target task. We observe that CITA strongly
correlates with counterfactual loss. After obtaining the clos-
est task using the computed task distances, its knowledge
(e.g., trained model, bundled data) is utilized for training
the target task.

5.1 TASK AFFINITY SCORE

Let (T,D) denote the pair of a causal inference task T

and its dataset D = (X,A, Y ), where D consists of the
covariates X , the corresponding treatment assignments A,
and the factual outcomes Y . We formalize a sufficiently

well-trained deep network representing a causal task-dataset
pair (T,D) in Appendix (see Sec F). Here, all the previous
tasks’ models are assumed to be sufficiently well-trained
to represent the corresponding tasks. Next, we recall the
definitions of the Fisher Information matrix and the Task
Affinity Score [Le et al., 2022b,a].
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Definition 5.1 (Fisher Information Matrix). For a neural
network Nθs with weights θs trained on data Ds, a given
test dataset Dt and the negative log-likelihood loss function
L(θ,D), the Fisher Information matrix is defined as:

Fs,t = ED∼Dt

[

∇θL(θs, D)∇θL(θs, D)T
]

(17)

Definition 5.2 (Task Affinity Score). Let (Ts, Ds) and
(Tt, Dt) denote the source and target task-dataset pairs,
respectively. Let the source task be represented by the ε-
approximation network Nθs . Let Fs,s be the Fisher Infor-
mation matrix of Nθs using the source data Ds. Let Fs,t be
constructed analogously using the target data Dt on Nθs .
The distance from the source task Ts to the target task Tt is
defined as:

d[s, t] =
1√
2
‖F 1/2

s,s − F
1/2
s,t ‖F , (18)

where the norm is the Frobenius norm. It has been shown
that 0 ≤ d[s, t] ≤ 1, where d[s, t] = 0 denotes perfect
similarity and d[s, t] = 1 indicates perfect dissimilarity. In
Appendix (see Theorem F.3), we prove that under stringent
assumptions, the order of task distances between candidate
source tasks and the target task is preserved in a parallel
universe where the roles of the control and treatment groups
are exchanged.

5.2 CAUSAL INFERENCE TASK AFFINITY (CITA)

Symmetry of Causal Inference Tasks. We first observe that
causal inference tasks present a unique symmetry. Specifi-
cally, causal inference tasks have multiple regression prob-
lems, one for each treatment group. Given a source task,
if we alternate the treatment labels (i.e., 0 to 1 and 1 to 0),
the treatment effect (i.e., E[Y1 − Y0|X]) will be negated.
Consequently, the non-symmetric task affinity measure [Le
et al., 2022b] between the original task and the permuted
task can still be considered. Moreover, the original model
does not need to be retrained for transfer learning as we only
need to permute the roles of output layers of the model to
predict the individual treatment effects correctly for each
group. In other words, the causal task affinity between these
two permuted tasks must intuitively equal to zero. CITA
lends itself to this property of causal inference tasks.

Properties of CITA. In this work, assume that all causal
inference tasks under consideration have the same num-
ber of treatment labels, and each task is represented by
a TARNet network. Let (Ts, Ds) and (Tt, Dt) be the
source and target causal inference tasks, respectively. Here,
Ds = (Xs, As, Ys), Dt = (Xt, At, Yt), and As, At ∈
{0, 1, . . . ,M}.

Consider the symmetric group SM+1 consisting of all per-
mutations of labels {0, 1, . . . ,M}. For σ ∈ SM+1, let Aσ(t)

Algorithm 1: Task-Aware ITE Knowledge Transfer

Data: Source tasks: S = {{(Xi, Ai, Yi)}, 1 ≤ i ≤ m},
Target task: T = (Xt, At, Yt)

Input: Causal Inference Models Nθ1 , Nθ2 , . . . , Nθm

Output: Causal Inference model for the target task T

1 Function TAS(Xs, As, Xs, As, Nθs):

2 Compute Fs,s using Nθs with Xs, As

3 Compute Fs,t using Nθt with Xt, At

4 return d[s, t] =
1√
2
‖F 1/2

s,s − F
1/2
s,t ‖F

5 Function Main:
. Find the closest tasks in S

6 for i = 1, 2, . . . ,m do

7 Train Nθi for source task i using (Xi, Ai, Yi)
8 Compute the distance from source task i to

target task T :
9 d+i = TAS(Xi, Ai, Xt, At, Nθi)

10 Compute the distance from source task i to
target task T ′, where a′’s treatments are
inverted treatments of a:

11 d−i = TAS(Xi, Ai, Xt, 1−At, Nθt)

12 CITA: ssymi
= min(d+i , d

−
i )

13 return closest tasks: i∗ = argmin
i

dsymi

. ITE Knowledge Transfer

14 Fine-tune Nθ∗

i
with the target task’s data

(Xt, At, Yt)

15 return Nθ∗

i

denote the permutation of the target treatment labels under

the action of σ. Let dσ =
1√
2
‖F 1/2

a,a − F
1/2
a,σ(t)‖F then

dsym[s, t] = min
σ∈SM+1

(dσ)

is the label-invariant task affinity between causal tasks Ts

and Tt. Similar to the Task Affinity Score [Le et al., 2022b],
the proposed distance is robust to the architectural choice of
the representation networks (e.g., TARNet). In other words,
the order of closeness of tasks found using this distance
remains the same across different choices of network archi-
tecture or hyper-parameters. Notably, our approach involves
a minimization problem with (M+1)! candidates. However,
in real-life applications, the number of treatments M + 1 is
often a a small number. It is nevertheless still important to
note that it may be challenging to apply our method in the
scenarios with large M or for a continuum of treatments.

5.3 CAUSAL KNOWLEDGE TRANSFER FROM

CITA

Based on CITA, we propose a task-aware causal inference
learning framework, whose procedure is illustrated in Fig-
ure 2, that is capable of utilizing past experiences to learn
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Figure 2: Overview of transfer learning in causal inference. Task affinity (CITA) is used to identify the closest task(s) from
prior tasks. The models and datasets from the relevant prior tasks are transferred to the target task.

Table 1: Overview of the causal inference datasets con-
structed for Transfer Learning.

Name Type Task CF Avail

IHDP SEMI-SYNTHETIC REG YES
TWINS REAL-WORLD CLS NO
JOBS REAL-WORLD CLS NO
RKHS SYNTHETIC REG YES
MOVEMENT SYNTHETIC REG YES
HEAT SYNTHETIC CLS YES

Name Subject #Task #Sample

IHDP HEALTH 100 747
TWINS HEALTH 11 2000
JOBS SOCIAL SCIENCES 10 619
RKHS MATHEMATICS 100 2000
MOVEMENT PHYSICS 12 4000
HEAT PHYSICS 20 4000

REG/CLS: Regression/Classification, CF Avail: Counterfactual
Data Availability

the target task’s ITE quickly. In particular, given multiple
trained source tasks, the closest task is identified via causal
inference task affinity (CITA). Subsequently, its knowledge
(e.g., trained causal model, weights, parameters, initializa-
tion settings) is applied to learn the causal effect of the target
task. Here, the source task’s model is fine-tuned with the
target task’s data for estimating ITEs. In our experiments,
we compare the performance of our method to training from
scratch. We also compare our method to data-bundling, as
illustrated in Figure 1 in the Appendix. The pseudo-code of
the proposed framework is provided in Algorithm 1.

6 EXPERIMENTS

We first describe the datasets we have used for our empiri-
cal studies. Subsequently, we present empirical results that

Table 2: The impact of causal knowledge transfer on the
performance and the required size of the training dataset.

Dataset IHDP RKHS MOVEMENT HEAT

ORI Size 747 2000 4000 4000
TL Size 150 50 750 500
W/O TL(I) 0.61 0.68 0.021 6.7E-6
W/O TL (P) 0.97 0.96 0.025 1.4E-5
W TL (P) 0.65 0.46 0.011 4.2E-6
Data Gain > 80% > 95% > 80% > 85%

Perf Gain > 30% > 50% > 55% > 70%

ORI/TL Size: Number of data required without and with TL,
W/O TL (I & P): Performance achieved without TL (ideal & prac-

tice); (ideal) is the model with the lowest εPEHE (not attainable);
(practice) is the model with the lowest training loss, W TL (P):
Performance with TL, Data Gain: Data Reduction with TL, Perf

Gain: Error Reduction with TL.

(1) show that CITA identifies the symmetries within causal
inference tasks, (2) demonstrate the strong correlation be-
tween CITA and the counterfactual loss, and (3) quantify
the gains of transfer learning for causal inference.

6.1 CAUSAL INFERENCE DATASETS

We present a representative family of causal inference
datasets suitable for studying ITE knowledge transfer. Some
of these are well-established datasets in the literature, while
others are motivated by known causal structures in diverse
areas such as social sciences, physics, health, and mathe-
matics. Table 1 provides a brief description of the datasets
used in our studies. A more detailed description is provided
in Appendix (see Sec B). For each dataset, a number of cor-
responding causal inference tasks exist, which can be used
to study transfer learning scenarios. Please note that we can
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Figure 3: The symmetry of CITA. p (on the x-axis) de-
notes the probability of flipping treatment assignments of
the original dataset. Left column: CITA; right column: non-
symmetrized task affinity.

only access the counterfactual data of the synthetic/semi-
synthetic datasets (i.e., IHDP, RKHS, Movement, Heat). We
do not possess the counterfactual data of real-world datasets
(i.e., Twins, Jobs).

6.2 THE SYMMETRY OF CITA

Our numerical results for the Jobs and Twins datasets ver-
ify that the CITA can capture the symmetries within causal
inference problems. We flip treatment labels (0 and 1) with
probability p (without any changes to the features and the
outcomes) independently for each control and treatment
data point. In Figure 3, we depict the trend of CITA between
the original and the altered dataset by varying p, p ∈ [0, 1].
The symmetry of CITA is evident (with some deviation due
to limited training data for calculating CITA). The altered
dataset with p = 1 is the closest to the original dataset (as it
should be) since we have completely flipped the treatment
assignments. The altered dataset with p = 0.5 is the furthest
(as it should be) since we have randomly shuffled the con-
trol and the treatment groups. We also compare CITA with
the nonsymmetrized task affinity [Le et al., 2022b] on the
Jobs and the Twins datasets. Figure 3 shows that CITA has
successfully captured the symmetries within causal infer-
ence tasks. We observe that CITA demonstrates symmetry
at p = 0.5, indicating the symmetry of the causal inference
tasks. In contrast, the original nonsymmetrized task affinity
fails to capture this symmetry property.

Figure 4: CITA vs. Counterfactual Error on causal inference
datasets. CITA strongly correlates with the (immeasurable)
counterfactual loss.

6.3 CITA AND THE COUNTERFACTUAL LOSS

In this experiment, we empirically show the strong corre-
lation between CITA (which only uses available data) and
counterfactual loss (which is impossible to measure directly
except for synthetic datasets). In Figure 4, for different bal-
ancing weights α (see Equation 10), we give the correlation
between CITA and counterfactual error on the IHDP, RKHS,
Movement(Physics), and Heat(Physics) datasets (for which
counterfactuals are known). It is both intuitively appealing
and empirically observed that CITA and the counterfactual
loss have a strong correlation: the model of a source task
has a smaller counterfactual loss on the target data if the
target task is closer (in terms of CITA). Note that the points
in Figure 4 for different values of α (i.e., balancing weight)
are extremely close. In other words, CITA highly relates to
the counterfactual loss and is robust to hyper-parameters
shift. This property is desirable, especially in causal infer-
ence scenarios where no validation data can be accessed
to cross-validate the hyper-parameters. Additionally, it can
also be observed that CITA trends are robust to variations in
the balancing weight for all datasets.

6.4 COMPARISON OF PERFORMANCE

WITH/WITHOUT TRANSFER LEARNING

This experiment aims to analyze the impact of transferring
causal knowledge on the size of required training data. Here,
we use Heat (Physics), Movement (Physics), IHDP, and
RKHS datasets for which the counterfactual outcomes are
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available. We first fix a target causal inference task. For a
wide range of balancing weights (α), we record the values
of εPEHE for training the model from scratch while increas-
ing the size of training datasets. In this process, the training
datasets are slowly expanded such that smaller training sets
are subsets of larger ones. We then report the minimum
εPEHE achieved for each dataset size. We identify the clos-
est source task to the target task and repeat the above process
with a small amount of target task data. We then compare the
performance with and without transfer learning to quantify
the amount of data needed by transfer learning models to
achieve the best possible performance without transferring
causal knowledge. The results are summarized in Table 2,
which demonstrates that transferring causal knowledge de-
creases the required training data in this setting by 75% to
95%.

7 CONCLUSION

In this paper, we provided theoretical analysis proving the
transferability of causal knowledge and outlined the un-
derlying challenges. We also proposed a method for ITE
transfer learning. Specifically, we constructed CITA, a new
task affinity tailored for causal inference tasks, to measure
the similarity of causal inference tasks that captures the sym-
metry within them. Given a new causal inference task, we
transferred the ITE knowledge from the closest task between
all the available previously trained tasks. Simulations on a
representative family of datasets provide empirical evidence
for the gains of our method and the efficacy of CITA.
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(Supplementary material)
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1 REPRODUCIBILITY STATEMENT

The supplementary material includes the implementation codes for our proposed framework, TARNet, and CITA.

2 CAUSAL INFERENCE: AN EXAMPLE

Let X ∈ X be the features (e.g., age, height, weight), the treatment assignment A ∈ {0, 1} be the indicator representing if

the subject received vaccine 0 or 1. The mortality outcome is denoted by Y ∈ Y .

The main challenge of causal inference arises from the absence of counterfactual observations. We do not observe the

outcomes of individuals upon receiving treatment 1 if they have received treatment 0 and vice versa. The subjects who

received vaccine 1 may differ significantly from those who received treatment 0. This issue is called selection bias. For

instance, older people are more likely to receive the treatment than young people). Thus, estimating the counterfactual

effects is challenging due to the unbalance between the treatment groups.

Let f̂(x, a) be a hypothesis modeling the outcome for an individual x if he/she received treatment a. The factual loss is

defined as follows:

ϵF (f̂) =

∫

X×{C,B}×Y

l
f̂
(x, a, y) p(x, a, y)dxdady (1)

By Bayes rule, we can write the factual loss as

ϵF (f̂)

=

∫

X×Y

l
f̂
(x, a = 0, y) p(x, y|A = 0)p(A = 0)dxdy+

∫

X×Y

l
f̂
(x, a = 1, y) p(x, y|A = 1)p(A = 1)dxdy

= p(A = 0)

∫

X×Y

l
f̂
(x, a = 0, y) p(x, y|A = 0)dxdy+

(1− p(A = 0))

∫

X×Y

l
f̂
(x, a = 1, y) p(x, y|A = 1)dxdy

= p(A = 0)ϵA=0
F (f̂) + (1− p(A = 0)) ϵA=0

F (f̂)

We define the factual loss for the group who received vaccine 0 as follows:

*Equal Contribution.
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Table 1: The settings to generate IHDP datasets

Dataset µ ω
IHDP (Base) (0.6, 0.1, 0.1, 0.1, 0.1) 4

IHDP 1 (0.61, 0.09, 0.1, 0.1, 0.1) 4.1

IHDP 2 (0.62, 0.08, 0.1, 0.1, 0.1) 4.2

IHDP 3 (0.63, 0.07, 0.1, 0.1, 0.1) 4.3

IHDP 4 (0.64, 0.06, 0.1, 0.1, 0.1) 4.4

IHDP 5 (0.65, 0.05, 0.1, 0.1, 0.1) 4.5

IHDP 6 (0.66, 0.04, 0.1, 0.1, 0.1) 4.6

IHDP 7 (0.67, 0.03, 0.1, 0.1, 0.1) 4.7

IHDP 8 (0.68, 0.02, 0.1, 0.1, 0.1) 4.8

IHDP 9 (0.69, 0.01, 0.1, 0.1, 0.1) 4.9

ϵA=0
F (f̂) =

∫

X×Y

l
f̂
(x, a = 0, y) p(x, y|A = 0)dxdy (2)

Similarly, the factual loss for the group who received vaccine 1 is described as:

ϵA=1
F (f̂) =

∫

X×Y

l
f̂
(x, a = 1, y) p(x, y|A = 1)dxdy (3)

Consider a parallel universe where the treatment assignments are flipped (i.e., those who received vaccine 1 receive vaccine

0 and vice versa). The performance of our hypothesis f̂ in this scenario is the counterfactual loss, defined as follows:

ϵCF (f̂) =

∫

X×{0,1}×Y

l
f̂
(x, a, y) p(x, 1− a, y)dxdady (4)

3 DATASETS AND EXPERIMENTS DESCRIPTIONS

3.1 DATASETS

IHDP The IHDP dataset was first introduced by Hill [2011] based on real covariates available from the Infant Health

and Development Program (IHDP), studying the effect of development programs on children. The features in this dataset

come from a Randomized Control Trial. The potential outcomes were simulated using Setting B. The dataset consists of 747
individuals (e.g., 139 in the treatment group and 608 in the control group), each with 25 features. The potential outcomes

are generated as follows:

Y0 ∼ N (exp(βT · (X +W )), 1)

and

Y1 ∼ N (βT (X +W )− ω, 1)

where W has the same dimension as X with all entries equal 0.5 and ω = 4. The regression coefficient β, a vector of

length 25, is randomly sampled from a categorical distribution with the support (0, 0.1, 0.2, 0.3, 0.4) and the respective

probabilities µ = (0.6, 0.1, 0.1, 0.1, 0.1). The dataset generated according to these parameters is referred to as the base

dataset.

Additionally, we generate 9 additional datasets by introducing 9 new settings. These settings, which are constructed by

varying µ and ω, are shown in Table 1. Each of these generated datasets consists of 747 individuals (e.g., 139 in the treatment

group and 608 in the control group).



Jobs The Jobs dataset [LaLonde, 1986] consists of 619 observations. In this experiment, the causal inference task aims to

learn the effect of participation in a specific professional training program on landing a job in the following three years.

Here, we generate a family of related datasets by randomly reverting the original treatment assignments (i.e., 0 ↔ 1) with

the probability p ∈ {0 = 0/9, 1/9, 2/9, 3/9, 4/9, 5/9, · · · , 9/9 = 1}. The dataset corresponding to p = 0 is considered

the original dataset, and the dataset with p = 1 has all treatment assignments reversed. We select the original Jobs dataset,

introduced in [LaLonde, 1986] as the base dataset for our experiments.

Twins The Twins dataset Louizos et al. [2017] is based on the collected birthday data of twins born in the United States

from 1989 to 1991. It is assumed that twins share significant parts of their features. Consider the scenario where one of the

twins was born heavier than the other as the treatment assignment. The outcome is whether the baby died in infancy (i.e.,

mortality). Here, the twins are divided into two groups: the treatment and the control groups. The treatment group consists

of heavier babies from the twins. On the other hand, the control group consists of lighter babies from the twins. All given

observations from this dataset are considered factual.

We first construct a base dataset by selecting a set of 2000 pairs of twins from the original dataset [Louizos et al., 2017].

Each individual is assigned to the treatment group according to a Bernoulli experiment with the probability of q = 0.75. In

an analogous manner to that of the Jobs dataset, we generate a family of related datasets by randomly reverting the treatment

assignments of the base dataset (i.e., 0 ↔ 1) with corresponding probabilities p ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, · · · , 1}. For

instance, to generate dataset i = 1, 2, · · · , 11, we revert the individual treatment assignments in the base dataset using the

Bernoulli experiment with the probability of pi = (i− 1)/10. In particular, p = 0 corresponds to the original dataset, while

p = 1 corresponds to all treatment assignments reverted.

RKHS In this experiment, we generate 100 Reproducing Kernel Hilbert Space (RKHS) datasets, each having 2000 data

points. Next, we generate the treatment and the control populations X1, X0 ∈ R
4 respectively from Gaussian distributions

N (µ1, I4) and N (µ0, I4) for each dataset. We sample µ1 ∈ R
4 and µ0 ∈ R

4 respectively according to Gaussian distributions

N (eee, I4) and N (−eee, I4) where eee = [1, 1, 1, 1]T .

Subsequently, we generate the potential outcome functions f0 and f1 with a Radial Basis Function (RBF) kernel K(·, ·),
described as follows:

Let γ0, γ1 ∈ R
4 be two vectors sampled from N (7eee, I4) and N (9eee, I4), respectively. Let λ ∈ N be sampled uniformly from

{10, 11, . . . , 99, 100}. For j ∈ {0, 1}:

1. We sample mj ∈ N according to the Poisson distribution with parameter λ (i.e., Pois)

2. For every i ∈ {1, . . . ,mj}, we sample xi
j according to N (γj , I4)

3. The potential outcome functions fj , j = 0, 1 are constructed as fj(·) =
∑mj

i=1 K(xi
j , ·)

Given the potential outcome functions fj , j ∈ {0, 1}, the corresponding potential outcomes Y0 and Y1 are generated by:

Y0(x) = f0(x), for every x ∈ R
4,

and

Y1(x) = f1(x), for every x ∈ R
4.

We will refer to the first constructed dataset above as the base dataset. Here, all the generated potential outcome functions

are in the same RKHS.

Heat (Physics) Consider a hot object left to cool off over time in a room with temperature T (0). A person will likely

suffer a burn if he/she touches the object at time u.

The causal inference task of interest is the effect of room temperature T (0) on the probability of suffering a burn. This family

consists of 20 datasets; each includes 4000 observations (e.g., 2000 in the control group and 2000 in the treatment group).

The treatment in our setting is a = 1 when T (0) = 5, and a = 0 when T (0) = 25. The touching times of the treatment and

control groups are sampled from two Chi-squared distributions χ2(5) and χ2(2), respectively, to introduce artificial bias.

From the solution to Newton’s Heat Equation [Winterton, 1999], the underlying causal structure is governed by the following

equation:

T (u) = C · exp(−ku) + T (0)



where T (u) is the temperature at time u and C, k are constants. Let T0 = 25, C = 75 for the control groups and

T0 = 5, C = 95 for the treatment groups in the datasets. We choose 20 values of k = {0.5, · · · , 2} uniformly spaced in

[0.5, 2]. For each value of k, we generate a new dataset. The dataset corresponding to k = 0.5 is referred to as the base

dataset.

Let T 0(u) and T 1(u) denote the temperature at time u for the control and treatment groups, respectively. The potential

outcomes Y0(u) and Y1(u) corresponding to the probability of suffering a burn at time t for the control and treatment groups

are described as follows:

Yj(u) = max

(
1

75
(T j(u)− 25), 0

)

Movement (Physics) Consider a free-falling object encountering air resistance. Opening the parachute can change the air

resistance and control the descent velocity. The causal inference task of interest is the effect of the air resistance (e.g., with

a = 1 or without parachute a = 0) on the object’s velocity at different times.

In this experiment, the family of datasets is generated, consisting of 12 datasets. Each dataset includes 4000 observations

(e.g., 2000 in the treatment group and 2000 in the control group). The covariate is the time u. The outcome is the velocity at

time u. The times of the treatment and control groups are sampled from two Chi-squared distributions χ2(2) and χ2(5),
respectively, to create artificial bias.

The underlying causal structure is governed by an ordinary differential equation (ODE) with the following analytical solution

describing the velocity of a person at time u:

v(u) =
g

C
+ (v(0)−

g

C
)e−Cu (5)

where g = 10 is the earth’s gravitational constant, C = k/m, and m, k are the mass and the air resistance constant,

respectively. We assume that v(0) = 0 corresponds to a free-falling object without initial velocity.

For the control group, m = k = C = 1 and the potential outcome is calculated as Y0(u) = v(u) = 10 − e−u. We use

different sets of (m, k) to generate the treatment groups for each dataset. The values of (m, k) used in this experiment

are as follows: (5, 1), (5, 5), (5, 10), (5, 20), (10, 5), (10, 10), (10, 20), (20, 5), (20, 10), (20, 20), (50, 10), (50, 20). The

potential outcome function Y1(u) is calculated from Equation 5 with the values of m, k shown above. We choose the dataset

corresponding to (m, k) = (5, 1) as the base dataset.

3.1.1 Details of Experiments

In this paper, we first create a number of causal inference tasks from the above families of datasets. For each family of

datasets (e.g., IHDP, Jobs, Twins), the base task is created from its base dataset. Similarly, we construct the other tasks from

the remaining datasets in that family. In order to study the effects of transfer learning on causal inference, we define the

source tasks and the target tasks as follows:

• In the first experiment in Section 6.3, we choose the base task to be the source task and the other tasks to be the target

tasks.

• In the second experiment in Section 6.4, we choose the base task to be the target task and the other tasks to be the

source tasks.

4 PROOFS OF THEOREMS

Theorem 4.1. Let f̂S be a model trained on a source task, then

ϵTF (f̂
S) + uϵT,a=0

CF (f̂S) ≤ εTPEHE(f̂
S)

where u = pTF (a = 1).



Proof of Theorem 4.1. We have:

εPEHE(f̂S)

=

∫

X

[
(f̂S(x, 1)− f̂S(x, 0))− (fT (x, 1)− fT (x, 0))

]2

pTF (x)dx

=

∫

X

[
(f̂S(x, 1)− fT (x, 1))− (fT (x, 0)− f̂S(x, 0))

]2

pTF (x)dx

=

∫

X

(f̂S(x, 1)− fT (x, 1))2pF (x)dx

+

∫

X

(f̂S(x, 0)− fT (x, 0))2pTF (x)dx

− 2

∫

X

(f̂S(x, 1)− fT (x, 1))(fT (x, 0)− f̂S(x, 0))

pTF (x)dx

(6)

First, we have the following properties of the factual and counterfactual distributions:

1. ∀x ∈ X , pF (x) = pCF (x)

2. ∀x ∈ X , ∀a ∈ {0, 1}, pF (x, a) = pCF (x, 1− a)

Applying these properties, the first term of Equation (6) can be expressed as:

∫

X

(f̂S(x, 0)− fT (x, 0))2pTF (x)dx

= u

∫

X

(f̂S(x, 0)− fT (x, 0))2pTF (x|a = 1)dx

+ (1− u)

∫

X

(f̂S(x, 0)− fT (x, 0))2pTF (x|a = 0)dx

= u

∫

X

(f̂S(x, 0)− fT (x, 0))2pTCF (x|a = 0)dx

+ (1− u)

∫

X

(f̂S(x, 0)− fT (x, 0))2pTF (x|a = 0)dx

= uϵT,a=0
CF (f̂S) + (1− u) ϵT,a=0

F (f̂S)

Similarly, the second term of Equation (6) can be expressed as:

∫

X

(f̂S(x, 1)− fT (x, 1))2pTF (x)dx

= (1− u)ϵT,a=1
CF (f̂S) + u ϵT,a=1

F (f̂S)

The potential outcome is independent given the features Y1 ⊥⊥ Y0|X due to its unconfoundedness. Hence, the third term of

Equation (6) can be expressed as:

E
[
(f̂S(X, 1)− fT (X, 1))(fT (X, 0)− f̂S(X, 0))

]

= Ex

[

E

[

f̂S(x, 1)− Y T
1 )(Y T

0 − f̂S(x, 0))|X = x
]
]

= 0

The factual and counterfactual losses of the treatment and control groups are positive. Thus, we have:



uϵT,a=1
F (f̂S) + (1− u)ϵT,a=0

F (f̂S) + uϵT,a=0
CF (f̂S)

= ϵTF (f̂
S) + uϵT,a=0

CF (f̂S)

≤ εTPEHE(f̂
S)

Theorem 4.2. For any hypothesis f̂ , we have:

ϵTCF (f̂) ≤ϵSF (f̂) + V (pTF , p
S
F ) + V (pTF , p

T
CF )

+ EpS
F
[|fS(x, t)− fT (x, t)|]

(7)

and

εTPEHE(f̂) ≤4ϵSF (f̂) + 4V (pTF , p
S
F ) + 2V (pTF , p

T
CF )

+ 4EpS
F
[|fS(x, a)− fT (x, a)|]

(8)

Proof of Theorem 4.2. Adapting the first theorem in Ben-David et al. [2010] to our setting, we have the following two

inequalities:

ϵTCF (f̂) ≤ ϵTF (f̂) + V (pTF , p
T
CF )

and

ϵTF (f̂) ≤ ϵSF (f̂) + V (pTF , p
S
F ) + EpS

F
[|fS(x, a)− fT (x, a)|]

Therefore, we have:

ϵTCF (f̂) ≤ϵSF (f̂) + V (pTF , p
S
F ) + V (pTF , p

T
CF )

+ EpS
F
[|fS(x, a)− fT (x, a)|]

From Shalit et al. [2017], we have:

εTPEHE(f̂) ≤ 2ϵTF (f̂) + 2ϵTCF (f̂)

Therefore, we have:

εTPEHE(f̂) ≤4ϵSF (f̂) + 4V (pTF , p
S
F ) + 2V (pTF , p

T
CF )

+ 4EpS
F
[|fS(x, a)− fT (x, a)|]

Theorem 4.3. Suppose that the function class G is stable under addition and multiplication and f̂ , fT ∈ G, then

ϵTCF (f̂) ≤ϵSF (f̂) + IPM
G

(pTF , p
S
F ) + IPM

G
(pTF , p

T
CF )

+ EpS
F
[|fS(x, a)− fT (x, a)|]

(9)

and

εTPEHE(f̂) ≤4ϵSF (f̂) + 4IPM
G

(pTF , p
S
F ) + 2IPM

G
(pTF , p

T
CF )

+ 4EpS
F
[|fS(x, a)− fT (x, a)|]

(10)

Proof of Theorem 4.3. we have that:

ϵTCF (f̂) ≤ ϵTF (f̂) + ∥

∫

(fT (x, a)− f̂(x, a))2

(pTF (x, a)− pTCF (x, a))dadx∥

≤ϵTF (f̂) + sup
g∈G

∥

∫

g(x, a)

(pTF (x, a)− pTCF (x, a))dadx∥



Hence, we have:

ϵTCF (f̂) ≤ ϵTF (f̂) + IPM
G

(pTF , p
T
CF )

Similarly, we have:

ϵTF (f̂)

≤ ϵSF (f̂) + EpS
F
[|fS(x, a)− fT (x, a)|]

+ ∥

∫

(fS(x, a)− f̂(x, a))2(pSF (x, a)− pSF (x, a))dadx∥

≤ ϵTF (f̂) + EpS
F
[|fS(x, a)− fT (x, a)|] + IPM

G
(pTF , p

S
F )

Thus, we have:

ϵTF (f̂)

≤ ϵSF (f̂) + EpS
F
[|fS(x, a)− fT (x, a)|] + IPM

G
(pTF , p

S
F )

Therefore, we have:

ϵTCF (f̂) ≤ϵSF (f̂) + IPM
G

(pTF , p
S
F ) + IPM

G
(pTF , p

T
CF )

+ EpS
F
[|fS(x, a)− fT (x, a)|]

From Shalit et al. [2017], we have:

εTPEHE(f̂) ≤ 2ϵTF (f̂) + 2ϵTCF (f̂)

Therefore, we have:

εTPEHE(f̂) ≤4ϵSF (f̂) + 4IPM
G

(pTF , p
S
F ) + 2IPM

G
(pTF , p

T
CF )

+ 4EpS
F
[|fS(x, a)− fT (x, a)|]

Next, we will use the following results from Shalit et al. [2017] for causal inference. For x ∈ X , a ∈ {0, 1}, with notation

simplicity, we define:

LT
Φ,h(x, a) =

∫

Y

lΦ,h(x, a, y)P (Y T
a = y|x)dy.

Theorem 4.1 (Bounding The Counterfactual Loss). Let Φ be an invertible representation with inverse Ψ. Let pa=i
Φ =

pφ(r|a = i), a ∈ {0, 1} Let h : R × {0, 1} → Y be a hypothesis. Assume that for a = 0, 1, the function r 7→
LΦ,h(Ψ(r), a) ∈ G then:

ϵCF (Φ, h) ≤

(1− u)ϵa=1
F (Φ, h) + aϵa=0

F (Φ, h)+

IPM
G

(
pa=1
Φ , pa=0

Φ

)
.

(11)

Theorem 4.2 (Bounding the ϵPEHE). The Expected Precision in Estimating Heterogeneous Treatment Effect ϵPEHE

satisfies

εPEHE(Φ, h)

≤ 2 (ϵCF (Φ, h) + ϵF (Φ, h))

≤ 2
(

ϵa=0
F (Φ, h) + ϵa=1

F (Φ, h) + IPM
G

(
pa=1
Φ , pa=0

Φ

))
(12)

In the next section, the performance of target task ϵT,a=0
F (Φ, h) is related to that of a source task ϵS,a=0

F (Φ, h). Without loss

of generality, we present the proof for the case when a = 0.

First, we make the following assumptions:

• A1: Φ is injective (Thus, Ψ = Φ−1 exists on Im(Φ)).



• A2: There exists a real function space G on Im(Φ) such that the function r 7→ ℓTΦ,h(Ψ(r), a, y) ∈ G.

• A3: There exists a function class G′ on Y such that y 7→ ℓΦ,h(x, a, y) ∈ G′.

The measure of the fundamental difference between two causal inference tasks is defined as follows:

γ∗ = Ex∼P (XS)

[

IPM
G′

(P (Y S
a |x), P (Y T

a |x))
]

Lemma 4.3. Suppose that Assumptions 1-3 hold. The factual losses of any model (Φ, h) on source and target task satisfy

for every a ∈ {0, 1}

ϵT,a
F (Φ, h) ≤

ϵS,aF (Φ, h) + IPM
G

(P (Φ(XT
a )), P (Φ(XS

a ))) + γ∗

Proof of Lemma 4.3.

ϵT,a=0
F (Φ, h)− ϵS,a=0

F (Φ, h)

=

∫

X

LT
Φ,h(x, 0)P (XT

0 = x)− LS
Φ,h(x, 0)P (XS

0 = x)dx

=

∫

X

LT
Φ,h(x, 0)P (XT

0 = x)− LT
Φ,h(x, 0)P (XS

0 = x)

+ LT
Φ,h(x, 0)P (XS

0 = x)− LS
Φ,h(x, 0)P (XS

0 = x)dx

=

∫

X

LT
Φ,h(x, 0)P (XT

0 = x)− LT
Φ,h(x, 0)P (XS

0 = x)dx

︸ ︷︷ ︸

Γ

+

∫

X

(
LT
Φ,h(x, 0)− LS

Φ,h(x, 0)
)
P (XS

0 = x)dx

︸ ︷︷ ︸

Θ

To bound Θ, we use the following inequality:

LT
Φ,h(x, t)− LS

Φ,h(x, t)

=

∫

Y

ℓΦ,h(x, a, y)
(
P (Y T

a = y|x)− P (Y S
a = y|x)

)
dy

≤ max
f∈G′

∣
∣
∣
∣
∣

∫

Y

f(y)P (Y T
a = y|x)− P (Y S

a = y|x)dy

∣
∣
∣
∣
∣

= IPM
G′

(
P (Y T

a = y|x), P (Y S
a = y|x)

)

From the above inequality, we have:

Θ =

∫

X

(
LT
Φ,h(x, 0)− LS

Φ,h(x, 0)
)
P (XS

0 = x)dx

≤ Ex∼P (XS)

[

IPM
G′

(P (Y S
a |x), P (Y T

a |x))
]

= γ∗



To bound Γ, we use the change of variable formula:

Γ =

∫

X

LT
Φ,h(x, 0)P (XT

0 = x)−

LT
Φ,h(x, 0)P (XS

0 = x)dx

=

∫

R

LT
Φ,h

(
Ψ(r), 0

)
P
(
Φ(XT

0 ) = r
)
−

LT
Φ,h

(
Ψ(r), 0

)
P
(
Φ(XS

0 ) = r
)
dr

≤ max
g∈G

∣
∣
∣
∣
∣

∫

g(r)
(

P
(
Φ(XT

0 ) = r
)
−

P
(
Φ(XS

0 ) = r
))

dr

∣
∣
∣
∣
∣

= IPM
G

(

P
(
Φ(XT

0 )
)
, P

(
Φ(XS

0

))

Combining the above upper bounds for Γ and Θ, we have:

ϵT,a=0
F (Φ, h)− ϵS,a=0

F (Φ, h)

≤ IPM
G

(

P
(
Φ(XT

0 )
)
, P

(
Φ(XS

0 )
))

+ γ∗

Thus, we conclude that:

ϵT,a=0
F (Φ, h)

≤ ϵS,a=0
F (Φ, h) + IPM

G

(

P
(
Φ(XT

0 )
)
, P

(
Φ(XS

0 )
))

+ γ∗

Lemma 4.4. Suppose that Assumptions A1, A2, A3 hold. Then the counterfactual loss of any model (Φ, h) on the target

task satisfy:

ϵTCF (Φ, h) ≤ϵS,a=1
F (Φ, h) + ϵS,a=0

F (Φ, h)

+ IPM
G

(P (Φ(XT
1 )), P (Φ(XS

1 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XS

0 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XT

1 ))) + 2γ∗

where

γ∗ = E
x∼P (XS)

[

IPM
G′

(P (Y S
a |x), P (Y T

a |x))
]

(13)

measures the fundamental difference between two causal inference tasks.

Proof of Lemma 4.4. Theorem 4.1 is applied to establish an upper bound for the counterfactual loss of the target task.

Subsequently, we apply Lemma 4.3.

ϵTCF (Φ, h)

≤ ϵT,a=1
F (Φ, h) + ϵT,a=0

F (Φ, h) + IPM
G

(
Φ(XT

0 ),Φ(X
T
1 )

)

Therefore,

ϵTCF (Φ, h) ≤ ϵS,a=1
F (Φ, h) + ϵS,a=0

F (Φ, h) + 2γ∗

+ IPM
G

(

P
(
Φ(XT

1 )
)
, P

(
Φ(XS

1 )
))

+ IPM
G

(

P
(
Φ(XT

0 )
)
, P

(
Φ(XS

0 )
))

+ IPM
G

(

P
(
Φ(XT

0 )
)
, P

(
Φ(XT

1 )
))



Theorem 4.5. (Transferability of Causal Knowledge) Suppose that Assumptions A1, A2, A3 hold. The performance of

source model on target task, i.e. εTPEHE(Φ, h), is upper bounded by:

εTPEHE(Φ, h) ≤2(ϵS,a=1
F (Φ, h) + ϵS,a=0

F (Φ, h)

+ IPM
G

(P (Φ(XT
1 )), P (Φ(XS

1 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XS

0 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XT

1 )) + 2γ∗)

Proof of Theorem 4.5. By applying Theorem 4.2, we get

εTPEHE(Φ, h)

≤ 2
(

ϵT,a=0
F (Φ, h) + ϵT,a=1

F (Φ, h)

+ IPM
G

(
P
(
Φ(XT

0 )
)
, P

(
Φ(XT

1 )
)) )

After applying Lemma 4.3 to the first and second terms of the above equation, we have:

εTPEHE(Φ, h) ≤ 2 (ϵS,a=1
F (Φ, h) + ϵS,a=0

F (Φ, h)

+ IPM
G

(P (Φ(XT
1 )), P (Φ(XS

1 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XS

0 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XT

1 )) + 2γ∗)

5 BASELINE: DATA BUNDLING

In many causal inference scenarios, we only have access to the trained model, and the corresponding data is unavailable.

This situation could be the case in medical applications due to privacy reasons. Consequently, bundling the datasets of source

tasks with the target task is not feasible. In contrast, the data may be available for some specific applications. In this case, we

create another baseline referred to as data bundling.

In data bundling, we create the bundled dataset by combining the datasets of source tasks and the target task. Here, we

compare our approach with data bundling for the IHDP and the Movement(Physics) datasets. For data bundling, we report

the model’s best performance (i.e., εPEHE) achieved by hyper-parameter search. For our approach, we only report the

model’s performance with the lowest training error. This setup gives more advantage to the data bundling baseline. The

results are illustrated in Figure 1. Even with the aforementioned advantage, the data bundling method achieves poorer

performance than our approach. This is due to data imbalance, lack of precision in determining similarity from propensity

score, and differences in outcome functions.

6 CAUSAL INFERENCE TASK AFFINITY

Let PNθ
(T,Dte) ∈ [0, 1] be a function that measures the performance of a given model Nθ parameterized by θ ∈ R

d on the

test set Dte of the causal task T .

Definition 6.1 (ε-approximation Network). A model Nθ is called an ε-approximation network for a task-dataset pair (T,D)
if it is trained using the training data Dtr such that PNθ

(T,Dte) ≥ 1− ε, for a given 0 < ε < 1.



Figure 1: Performance comparison between data bundling and our approach. Our approach (red horizontal line) significantly

outperforms data bundling. An increase in the size of training data doesn’t improve the performance of data bundling.

Definition 6.2 (Fisher Information Matrix). For a neural network Nθs with weights θs trained on data Ds, a given test

dataset Dt and the negative log-likelihood loss function L(θ,D), the Fisher Information matrix is defined as:

Fs,t = ED∼Dt

[

∇θL(θs, D)∇θL(θs, D)T
]

(14)

= −ED∼Dt

[

H
(
L(θs, D)

)]

, (15)

where H is the Hessian matrix, i.e., H
(
L(θ,D)

)
= ∇2

θL(θ,D), and expectation is taken w.r.t the data. It is proven that the

Fisher Information Matrix is asymptotically well-defined [Le et al., 2022]. In practice, we approximate the above with the

empirical Fisher Information matrix:

F̂s,t =
1

|Dt|

∑

x∈Dt

∇θL(θs, x)∇θL(θs, x)
T . (16)

Here, the empirical Fisher Information Matrix is positive semi-definite because it is the summation of positive semi-definite

terms, regardless of the number of samples.

6.1 TASK AFFINITY BETWEEN COUNTERFACTUAL TASKS

In the following section, we denote the task-dataset pair a = (Ta, Da) by aF = (TaF
, DaF

) where DaF
is sampled

from the factual distribution. Similarly, aCF = (TaCF
, DaCF

) denotes the counterfactual task-dataset pair, where DaCF
is

sampled from the counterfactual distribution. We refer to (TaF
, DaF

) and (TaCF
, DaCF

) as the corresponding factual and

counterfactual tasks.

The following theorem proves that the order of proximity of tasks is preserved even if we observe the counterfactual tasks

instead. In other words, a task, which is more similar to the target task when measured using factual data, remains more

similar to the target task even when measured using counterfactual data.

Theorem 6.3. Let T be the set of tasks and let aF = (TaF
, DaF

), bF = (TbF , DbF ), and cF = (TcF , DcF ) be three factual

tasks and aCF = (TaCF
, DaCF

), bCF = (TbCF
, DbCF

), and cCF = (TcCF
, DcCF

) their corresponding counterfactual

tasks.

Suppose that there exists a class of neural networks (well-trained causal inference neural networks) N = {Nθ}θ∈Θ for



which:

∀a, b, c ∈ T, d[a, b] ≤ d[a, c] + d[c, b] (17)

and the task affinity between the factual and the counterfactual can be arbitrarily small, described as follows:

∀ϵ > 0, ∃Nθ ∈ N , d[aF , aCF ] < ϵ (18)

We have the following result:

d[aF , bF ] ≤ d[aF , cF ] =⇒ d[aCF , bCF ] ≤ d[aCF , cCF ] (19)

Proof of Theorem 6.3. Suppose d[aF , bF ] ≤ d[aF , cF ]. For every ϵ > 0, we have:

d[aCF , bCF ] ≤ d[aCF , aF ] + d[aF , bF ] + d[bF , bCF ]

≤ ϵ+ d[aF , cF ] + ϵ

≤ d[aF , aCF ] + d[aCF , cCF ] + d[cF , cCF ]

+ 2ϵ

≤ d[aCF , cCF ] + 4ϵ

Therefore, d[aCF , bCF ] ≤ d[aCF , cCF ] as ϵ → 0.

References

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan. A theory

of learning from different domains. Machine learning, 79(1):151±175, 2010.

Jennifer L Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational and Graphical Statistics,

20(1):217±240, 2011.

Robert J LaLonde. Evaluating the econometric evaluations of training programs with experimental data. The American

economic review, pages 604±620, 1986.

Cat P. Le, Mohammadreza Soltani, Juncheng Dong, and Vahid Tarokh. Fisher task distance and its application in neural

architecture search. IEEE Access, 10:47235±47249, 2022. doi: 10.1109/ACCESS.2022.3171741.

Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling. Causal effect inference with

deep latent-variable models. Advances in neural information processing systems, 30, 2017.

Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: generalization bounds and

algorithms. In International Conference on Machine Learning, pages 3076±3085. PMLR, 2017.

RHS Winterton. Newton’s law of cooling. Contemporary Physics, 40(3):205±212, 1999.


