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Abstract
We study the concentration phenomenon for discrete-time random dynamical systems with an un-
bounded state space. We develop a heuristic approach towards obtaining exponential concentration
inequalities for dynamical systems using an entirely functional analytic framework. We also show
that existence of exponential-type Lyapunov function, compared to the purely deterministic setting,
not only implies stability but also exponential concentration inequalities for sampling from the sta-
tionary distribution, via transport-entropy inequality (T-E). These results have significant impact
in reinforcement learning (RL) and controls, leading to exponential concentration inequalities even
for unbounded observables (i.e., rewards), while neither assuming reversibility nor exact knowledge
of the considered random dynamical system (assumptions at heart of concentration inequalities in
statistical mechanics and Markov diffusion processes).
Keywords: Transportaion inequalities, Exponential Lyapunov function, Sample complexity and
Nonlinear random dynamical systems

1. Introduction

Motivation. Last decade has seen tremendous advancements in non-asymptotic analysis of system
identification and optimal control for linear time-invariant (LTI) dynamical systems (e.g., Tu and
Recht (2018); Hao et al. (2020); Oymak (2019); Fazel et al. (2018); Simchowitz et al. (2018); Sarkar
et al. (2019); Zahavy et al. (2019)). Techniques and analysis developed in this paper have been
initially motivated by non-asymptotic analysis of average reward-based optimal control of linear
dynamical system (LDS) and switched linear dynamical system (SLDS) where expected value of
the reward w.r.t stationary distribution of a Markov chain is approximated, with high probability, by
its empirical averages. Although sample complexity for control/dynamical systems on continuous
state spaces has been extremely popular recently, we still lack fundamental understanding of the
factors leading to sharp concentration inequalities.

For example, every ergodic Markov chain is mixing (i.e., correlation decreases asymptotically),
but as we will see in the following sections that does not necessarily imply exponential concentration
(vaguely speaking: empirical averages concentrate sharply around expectation w.r.t to stationary
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measure ), especially from a single trajectory. To begin with, concentration with respect to (w.r.t)
which class of functions? To expound upon these questions, in this work we leverage upon concen-
tration of measure phenomenon for the process level law of a Markov chain via transport-entropy
inequality (T-E) inequalities (for a good monograph on this topic see e.g., Marton et al. (2004);
Djellout et al. (2004)). The T-E approach is compact, concise and clear; even leading to exponential
concentration for unbounded reward function of the form r(x) := ∥x∥ for dynamical systems.

Related work. Techniques used to prove concentration of a measure include martingale methods,
exchangeable pairs (e.g., see Chatterjee (2007)) and functional inequalities (transportation-entropy,
logarithmic Sobolev/hypercontractivity and Poincare) Ledoux (2001). However, exploring measure
concentration for dependent random variables as in Markov chains on unbounded spaces limits
the application of martingale methods and exchangeable pairs. The RL and system identification
communities, pretty much exclusively, have used independent block technique Oymak (2019); Tu
and Recht (2018) that seems to work when observables (i.e., rewards) are bounded. SLDS fall into
the category of Harris ergodic Markov chain and following relevant work on them in Łatuszyński
et al. (2013), by using martingale and independent block techniques, authors in Naeem and Pajic
(2020) were able to bound the mean-squared error between the empirical average and the expected
reward (unbounded) from stationary distribution of SLDS; however, the employed probabilistic
methods are tedious, opaque and lead to weak results.

Stein methods (see e.g., Chatterjee and Dey (2010)), are well suited towards discrete setting in
statistical physics but have limitations for the models under consideration. Only recently, Wang and
Wu (2020) started a formal, functional analytic study for concentration inequalities in discrete-time
setting using the transport-information (T-I) inequality. Verification of T-I is plausible either in the
discrete state space setting, or when a Markov chain is reversible and posseses a spectral gap in space
of square integrable functions w.r.t its stationary distribution (see Wang and Wu (2020) for more
details). As we will see in concentration for nonlinear random dynamical systems, spectral gaps
might only exist in Wasserstein sense. Reversibility assumption originates from study of Langevin-
type stochastic differential equations used to model physical phenomenons in the nature; however,
the scope of this paper is not limited to the reversibility assumption.

Note that Blower and Bolley (2005); Djellout et al. (2004) have studied T-E inequalities for the
case of stable LDS. However, a general framework to provide exponential concentration inequali-
ties for deviation of empirical averages of a Markov chain with respect to (w.r.t) some unbounded
test function is missing. Concentration for nonlinear random dynamical systems is not well ex-
plored, partly because they are not necessarily contractive in trivial metric. However, leveraging
on weighted transport-entropy inequalities introduced by Bolley and Villani (2005) and exponen-
tially fast convergence of Harris ergodic Markov chains in Wasserstein metric (Hairer and Mattingly
(2011)), in this work, we still manage to provide sharp concentration by introducing an exponential
Lyapunov condition.

Notation. We use In ∈ Rn×n to denote the n dimensional identity matrix. For random variables
x and y, Cov(x, y) denote the covariance. Bn

α := {x ∈ Rn : ∥x∥ := ∥x∥2 ≤ α} is the α-ball in
Rn. χ{}() is the indicator function, whereas ρ(A) and ∥A∥2 represent the spectral radius and the
usual matrix 2-norm of A ∈ Rn×n, respectively. A sequence {a(N)}N∈N ∈ O(N), if it increases
at most linearly in N (this is not limited to asymptotic results). Space of probability measure on
X (continuous space) is denoted by P(X ) and space of its Borel subsets is represented by B

(
P(X )

)
.
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For a function r and µ ∈ P(X ), we use < r >µ to denote expectation of r w.r.t µ. Finally, for a set
K ⊆ {1, ...,M}, its complement is K∁ := {1, ...,M} \ K.

On a metric space (X , d), for µ, ν ∈ P(X ), we define Wasserstein metric of order p ∈ [1,∞) as

Wp
d (ν, µ) =

(
inf

(X,Y )∈Γ(ν,µ)
E dp(X,Y )

) 1
p

; (1)

here, Γ(ν, µ) ∈ P (X 2), and (X,Y ) ∈ Γ(ν, µ) implies that random variables (X,Y ) follow some
probability distributions on P (X 2) with marginals ν and µ. Another way of comparing two proba-
bility distributions on X is via relative entropy, which is defined as

Ent(v||u) =


∫
log

(
dν
dµ

)
dν, if ν << µ,

+∞, otherwise.
(2)

1.1. Problem Statement

Under the action of some state dependent policy π, we consider a closed-loop random dynamical
system of the form

xk+1 = F
(
xk, π(xk), ϵk

)
, with ϵk i.i.d, 1 (3)

where xk ∈ Rn for all k ∈ N and F : Rn × Rn × Rn −→ Rn. We assume that the transition
kernel converges to some stationary distribution µπ under Wasserstein metric Wd equipped with
some distance function d.

If we have access to empirical averages of some unbounded reward function r(x), in this work,
we explore the following questions:

• Concentration from simulating a single trajectory: When, how and why can we provide some-
thing similar to following exponential concentrations

µN

[∣∣∣∣ 1N
N∑
i=1

r(xi)− < r >µπ

∣∣∣∣ > ϵ

]
≤ 2 exp

(
− Nϵ2

Ksys(r)

)
, (4)

where r can be some unbounded function, in a control-theoretic or RL framework (e.g.,
r(x) := ∥x∥), and Ksys(r) is a constant dependent on system properties and ’smoothness’ of
r (related to Lipschitz constant)?

• When explicit knowledge of the stationary distribution and system dynamics is not available,
what are easy-to-verify sufficient conditions/functional inequalities to derive concentration
from a single trajectory?

• In which ways stability of the considered dynamical system affects the concentration? and

• Is correlation between samples dependent on system stability?

1. For the sake of brevity, from now on we will exclude the reference to π in the state update equations as a state-
dependent policy implies there exists some function G such that F

(
xk, π(xk), ϵk

)
= G(xk, ϵk).
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1.2. Contribution and Main Results

Accordingly, the main contributions of this paper are as follows:

• This paper’s fundamental contribution is a novel point of view towards getting exponential
concentration inequalities for a random dynamical system, in an extremely tractable manner.
To achieve this, we connect ideas and techniques from particle methods, functional inequali-
ties and convergence of Markov chains in Wasserstein distance.

• For contractive LDS, we show how to obtain exponential concentration of the form (4) from
single trajectory. The idea is that we can find a common metric on the space of probability
measures, such that the transition kernels are contractive and uniformly satisfy transportation-
entropy inequality.

• Leveraging upon weighted T-E inequalities developed by Bolley and Villani (2005), we intro-
duce an exponential-type Lyapunov condition for Markov chains; if the Lyapunov condition
holds, the stationary distribution satisfies the transport-entropy inequality. Consequently, em-
pirical averages of the test function, evaluated on i.i.d samples from the stationary distribution,
concentrate sharply around their mean.

• In case of non-linear random dynamical systems, such as Harris ergodic Markov chains
(HEMCs), if exponential Lyapunov function exists, we show that one can simulate indepen-
dent trajectories and, after a small burn-in period, average their rewards to obtain with high
probability, a sharp estimate of the expected reward w.r.t the stationary distribution.

Outline of paper. In Section 2, we lay down a mathematical framework to obtain concentration
for dependent random variables under the assumptions of uniform transport-entropy constants for
a Markov transition kernel and Wasserstein contractivity. We conclude Section 2 with verification
of the developed results on the problem of sample complexity in policy evaluation for average-
reward based optimal control for LDS. Section 3 focuses on concentration for HEMCs that are not
necessarily convergent in Wasserstein metric with the trivial euclidean distance. We show that if
exponential-type Lyapunov function exists, empirical averages of test function evaluated on i.i.d
samples from stationary distribution of Harris chain are sharply concentrated. Finally, this phe-
nomenon is verified on an example of an SLDS.

2. Extending Concentration to Dependent Random Variables via Tensorization

2.1. Preliminaries

Before we introduce the mathematical framework to derive concentration for dependent random
variables, we introduce the following results utilized later in this work.

Definition 1 Consider metric space (X , d) and reference probability measure µ ∈ P (X ). Then we
say that µ satisfies T d

1 (C) or to be concise µ ∈ T d
1 (C) for some C > 0 if for all ν ∈ P (X ) it

holds that
Wd(µ, ν) ≤

√
2CEnt(ν||µ). (5)
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Lemma 2 (Bobkov and Götze (1999)) µ satisfies T d
1 (C) if and only if for any Lipschitz function

f with < f >µ:= Eµf , it holds that∫
eλ(f−<f>µ)dµ ≤ exp(

λ2

2
C∥f∥2L(d)), where ∥f∥L(d) := sup

x̸=y

|f(x)− f(y)|
d(x, y)

. (6)

Remark 3 (6) along with the Markov inequality implies that if we sample x from µ ∈ T d
1 (C), then

P

[∣∣∣∣r(x)− < r >µ

∣∣∣∣ > ϵ

]
≤ 2 exp

(
− ϵ2

2C∥r∥2L(d)

)
. (7)

Now, consider a Markov chain xN := (xi)
N
i=1 with distribution µN ∈ P (XN ) and Pm(x,B) :=

P(xm ∈ B|x0 = x), for all Borel subsets B of X . We can extend the metric d to XN as

d(N)(x
N , yN ) =

N∑
i=1

d(xi, yi). (8)

If µN ∈ T d(N)

1

(
O(N)

)
and r is one Lipschitz, i.e., ∥r∥L(d) ≤ 1, then Φ(xN ) := 1

N

∑N
i=1 r(xi)

satisfies ∥Φ∥L(d(N)) ≤
1
N ; plugging these results into (6), we obtain that

µN

[∣∣∣∣ 1N
N∑
i=1

r(xi)− E

(
1

N

N∑
i=1

r(xi)

)∣∣∣∣ > ϵ

]
≤ 2 exp

(
− Nϵ2

2C

)
. (9)

2.2. Contractivity and Uniform Transport Constants

As one would wonder from (8), when does the T-E for process level law of Markov chain, increases
at worse linearly with dimension (in sample term)? Sufficient conditions (see e.g., Djellout et al.
(2004); Bolley and Villani (2005)) are

(i) P (x, ·) ∈ T d
1 (C), for all x ∈ X , and some C > 0, (10)

(ii) Wd(P (x, ·), P (y, ·)) ≤ λ̂d(x, y), for all (x, y) ∈ X 2and some λ̂ ∈ [0, 1). (11)

Property (10) is often referred to as existence of a uniform transportation constant and (11) rep-
resents contractivity of the Markov Chain in the Wasserstein metric / spectral gap in the Wasserstein
sense. Now, the following result holds.

Lemma 4 If (10) and (11) hold, process level distribution of samples from a Markov chain (x1, . . . , xN ),

which we will denote as Law(x1, . . . , xN ), denoted by µN satisfies T
d(N)

1

(
CN

(1−λ̂)2

)
, for all N ∈ N.

Proof See Theorem 2.5 of Djellout et al. (2004) for a detailed proof.
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2.3. Sharp Deviation Inequalities for Average-Reward Based Optimal Control

In optimal control and average reward reinforcement learning for continuing task, it is often the
case that under the action of some state dependent policy, the resulting closed-loop dynamical sys-
tem under consideration, (xi)Ni=1, mixes to some stationary distribution µπ ∈ P (X ). When exact
system parameters and state are unknown but time-averages of the reward function r(x) := ∥x∥,
although unbounded, are available, sharp concentration bounds of 1

N

∑N
i=1 r(xi) around < r >µπ

are of utmost importance to ensure policy update algorithm converges in finite time: as knowledge
of < r >µπ is required in actor-critic algorithm for average reward case, see e.g.,Zhang and Ross
(2021). Sufficient conditions for concentration of empirical averages of r(x) := ∥x∥ or any Lip-
schitz function essentially boils down to showing that the process level law of the Markov chain
µN ∈ T d(N)

1

(
O(N)

)
.

Theorem 5 Assume that under a metric d, a random dynamical system uniformly satisfies T-E
inequality with constant C > 0 and is contractive in Wasserstein sense with constant γ ∈ (0, 1).
If we start deterministically with x0 := x, we have for any 1 Lipschitz function r, the following
deviation inequality:

µN

[∣∣∣∣ 1N
N∑
i=1

r(xi)− < r >µπ

∣∣∣∣ > Wd(P (x.·), µπ)

N(1− γ)
+ ϵ

]
≤ 2 exp

(
− Nϵ2(1− γ)2

2C

)
. (12)

Proof Since the theorem assumptions satisfy the claim in (4), it holds that µN ∈ T d(N)

1

(
CN

(1−γ)2

)
.

Let (yi)Ni=1 be i.i.d samples from µπ and assume that the Markov chain starts deterministicly with
x1 = x. Then, we have for all ϵ > 0 it holds

µN

[∣∣∣∣ 1N
N∑
i=1

r(xi)− < r >µπ

∣∣∣∣ > Wd(P (x, ·), µπ)

N(1− γ)
+ ϵ

]

≤ µN

[∣∣∣∣ 1N
N∑
i=1

r(xi)− E

(
1

N

N∑
i=1

r(xi)

)∣∣∣∣+ ∣∣∣∣E
(

1

N

N∑
i=1

r(yi)

)
− E

(
1

N

N∑
i=1

r(xi)

)∣∣∣∣ > Wd(P (x.·), µπ)

N(1− γ)
+ ϵ

]

≤ µN

[∣∣∣∣ 1N
N∑
i=1

r(xi)− E

(
1

N

N∑
i=1

r(xi)

)∣∣∣∣ > ϵ

]
(13)

≤ 2 exp

(
− Nϵ2(1− γ)2

2C

)
, (14)

where (13) follows from contractive dynamics in Wasserstein distance.

Remark 6 The structure of the aforementioned concentration inequality is inspired by the work
in Malrieu (2001) on bounding deviations of empirical measure formed by interacting particle sys-
tems from their infinite particle limit (Mckean-Vlasov diffusion); see e.g., problem section in Villani
(2003) for an involved discussion on this matter. However, there is a subtle difference in our ap-
proach, as we work with an ℓ2 inspired metric on XN as in Malrieu (2001), i.e.,

d2(N)(x
N , yN ) :=

√∑N

i=1
d2(xi, yi). (15)
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Then, Φ(xN ) := 1
N

∑N
i=1 r(xi) w.r.t ℓ2 metric is only 1√

N
Lipschitz — i.e., ∥Φ∥L(d2

(N)
) ≤ 1√

N

and any hope for concentration would require µN ∈ T
d2
(N)

1

(
O(1)

)
(i.e., dimension free concen-

tration), which is very difficult to check; this is feasible only in Markov diffusion processes with
uniformly convex external potentials and symmetric interaction potentials, see e.g., Malrieu (2001).

Decay of correlation. By combining conditions from (10) and (11), with Taylor’s expansion for
small λ (terms of order up to λ2) appearing on both sides in Bobkov-Gotze dual form (6), for all
x ∈ X it holds that

|CovPx [f(xn), f(xn+k)]| ≤
λ̂k

1− λ̂2
C∥f∥2L(d). (16)

Sharp Concentration via Single Trajectory of norm-Stable/ contractive Linear Dynamical Sys-
tems: Consider a discrete-time linear dynamical system (LDS) of the form

yt+1 = Ayt + ϵt, ∥A∥2 = λ̂ < 1 and i.i.d ϵt ∼ N (0, In). (17)

With the trivial euclidean metric d(x, y) := ∥x − y∥, the transition kernel from (17) satisfies
P (x, ·) ∈ T d

1 (1), ∀x ∈ X Talagrand (1996) and W2
d (P (x, ·), P (y, ·)) = ∥Ax − Ay∥ ≤ λ̂d(x, y)

(see e.g., Givens et al. (1984)). Now, an application of Jensens’ inequality reveals Wd(P (x, ·), P (y, ·)) ≤
W2

d (P (x, ·), P (y, ·)) and contractivity follows. As conditions (10) and (11) are satisfied, we can
use coupling technique inspired by Marton et al. (2004) to prove that PN :=Law(y1, . . . , yN ) of the
LDS satisfies T

d(N)

1 ( N
(1−λ̂)2

); and if νπ is the invariant measure corresponding to (17), we have

PN

[∣∣∣∣ 1N
N∑
i=1

∥yi∥− < ∥y∥ >νπ

∣∣∣∣ > Wd(P (x.·), νπ)
N(1− λ̂)

+ ϵ

]
≤

≤ PN

[∣∣∣∣ 1N
N∑
i=1

∥yi∥ − E

(
1

N

N∑
i=1

∥yi∥

)∣∣∣∣ > ϵ

]
≤ 2 exp

(
− Nϵ2(1− λ̂)2

2

)
. (18)

3. Concentration for Nonlinear Random Dynamical Systems: The Case of Harris
Ergodic Markov Chains

The case of nonlinear random dynamical systems suffers from a lack of uniform transport-entropy
constant related to a contractive metric. However, if we can show that the invariant measure sat-
isfies transport-entropy inequality and Markov chain converges exponentially fast to its stationary
distribution: it is plausible to run independent simulations of Markov chain and sample the averages
after some burn-in period.

Since, the results developed in this paper are aimed at facilitating the RL and controls com-
munity. In the absence of exact dynamics, we develop easily verifiable/realistic conditions that
ensures exponential integrability of invariant measure. This brings us to the weighted transportaion-
inequalities introduced in Bolley and Villani (2005) and plays an integral role when studying con-
centration phenomenon for nonlinear random dynamical systems. Their work allows for adding
different weigths to the underlying distance function, precisely said:

Lemma 7 Let ϕ be a non-negative integrable function, such that
∫
eϕ(x)

2
µπ(dx) < ∞- we get an

upper bound on weighted total variation distance

7
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∥ϕ(µπ − ν)∥TV ≤
√
2

(
1 + log

∫
eϕ(x)

2
µπ(dx)

) 1
2√

Ent(ν||µπ). (19)

A remarkable advantage of this formulation is an Lyapunov condition for underlying Markov
chain so as to ensure that at least its’ stationary measure satisfies T-E inequality.

Exponential Lyapunov function. Inspired by the assumption made in (particular case 14 of Bol-
ley and Villani (2005)), we proposed an exponential Lyapunov condition:

1. There exists α̂ > 0, β > 0 and C > 0 such that β < α̂ and:∫
eα̂∥y∥

2
P (x, dy) ≤ Ceβ∥x∥

2
, for all x ∈ X .

Theorem 8 If the exponential Lyapunov condition is satisfied, define Wα̂(x) := eα̂∥x∥
2
, then n−

th step transition kernel Pn(x, ·) satisfy the following transport entropy inequality:

Wd(P
n(x, ·), ν) ≤

√
2

(
1 + logPnWα̂(x)

α̂

) 1
2√

Ent(ν||Pn(x, ·)) (20)

Moreover, if an ergodic invariant measure µπ exists: then exists also a finite positive constant Lα̂,β,C

such that:
Wd(µπ, ν) ≤

√
2Lα̂,β,CEnt(ν||µπ) (21)

Proof We will only prove the result for the invariant measure as the result for n− th step will follow
the same argument. Since the condition in hypothesis can also be written as:∫

eα̂∥y∥
2
P (x, dy) ≤ Ce(β−α̂)∥x∥2eα̂∥x∥

2
(22)

As (β − α̂) < 0, we can find ηα̂ ∈ (0, 1) and Ĉα̂ < ∞ such that Wα̂(x) satisfy:

PWα̂(x) ≤ ηα̂Wα̂(x) + Ĉα̂, and consequently via recursion
∫

eα̂∥x∥
2
µπ(dx) ≤

Ĉα̂

1− ηα̂
. (23)

and by defining ϕ(x) =
√
α̂∥x∥, upper bound on weighted total variation from Lemma 7 implies

that :

∥ϕ(µπ − ν)∥TV ≤
√
2
(
1 + log

[
Ĉα̂

1− ηα̂

]) 1
2
√

Ent(ν||µπ). (24)

Since, Wasserstein distance is upper bounded by weighted total-variation with weight ∥x∥, after

scaling we conclude that µπ ∈ T d
1

(
1+log

[
Ĉα̂

1−ηα̂

]
α̂

)
and the result for n-th step transition kernel

follows via same argument.

8
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Harris chains. As the notion of running multiple independent trajectories is plausible when burn-
in period is negligible : n−th step transition kernel of Markov chain converges exponentially fast to
an invariant measure in Wasserstein metric, this brings us to Harris ergodic Markov chains that by
definition satisfy following conditions:

Lyapunov condition with geometric drift: There exists a Lyapunov function V : X → [0,+∞),
which satisfies:

PV (x) ≤ γ̂V (x) +K, for some γ̂ ∈ (0, 1) , K < ∞ and (25)

minorization condition: A sufficiently large level set of V (ironically it is called ‘small set’),
satisfies the minorization condition: i.e., there exists a set S := {x ∈ X : V (x) ≤ R} for some
R > 2K

1−γ̂ , β ∈ (0, 1) and ν̂ ∈ P(X ) such that:

P(x, ·) ≥ βχS(x)ν̂(·). (26)

Under these conditions it was shown by Hairer and Mattingly (2011) that for some β∗ > 0HEMC is
contractive in Wasserstein metric Wd with distance function: d(x, y) := (2+β∗V (x)+β∗V (y))χx̸=y,
. A unique ergodic invariant measure µπ exists and for some finite C and κ ∈ (0, 1)

Wd

(
Pn(x, ·), µπ) ≤ CκnWd(P (x, ·), µπ). (27)

3.1. Application to Concentration for SLDSs

Model specifications. We consider a discrete-time SLDS of the form

xt+1 =
∑M

j=1
(Ajxt + wj

t )χMj (xt). (28)

Here, xt ∈ Rn denote the system’s state and Aj ∈ Rn×n for j = 1, ...,M capture system dynamics
in each of the M Borel measurable regions that decompose the state-space and are pairwise disjoint
satisfying

⋃M
j=1Mj = Rn. In addition, for a fixed region j, noise vectors wj

t are i.i.d, and satisfy
wj
t ∼ N (0, In) and Cov(wj

t , w
k
s ) = 0, for all t, s ≥ 0 and j ̸= k ∈ {1, 2, ...,M}.

Lemma 9 Assume that there exists ϱ < ∞ such that for all l ∈ Kbdd := {k | (1 ≤ k ≤
M) such that Mk ⊊ Bn

ϱ},it holds that ∥Al∥2 ≤ L < ∞ and ∀j ∈ (Kbdd)
∁ , ∥Aj∥2 ≤ γ < 1.

Then, the system (28) mixes geometrically to a unique ergodic invariant distribution µπ.

Proof Consider function V (x) = ∥x∥2. From (28), we have P (x,A) =
∑M

j=1 Pj(x,A)χMj (x),
where Pj(x, ·) ∼ N (Ajx, In). Assuming the initial state x0 := x ∈ Mk for some k ∈ Kbdd, then:

PV 2(x) = Ey∼N (Akx,In)∥y∥
2
2 = Ez∼N (0,In)∥z∥

2
2 + ∥Akx∥22 ≤ (n+ L2ϱ2). (29)

However, if the initial state is x0 := x ∈ Mj such that j ∈ (Kbdd)
∁, then:

PV 2(x) = Ey∼N (Ajx,In)∥y∥
2
2 = Ez∼N (0,In)∥z∥

2
2 + ∥Ajx∥22 ≤ n+ γ2∥x∥22 = (n+ γ2V 2(x)).

(30)

Therefore, starting from any initial condition in Rn, from (29) and (30) it holds that PV 2(x) ≤
γ2V 2(x) + (n+ L2ϱ2) and a trivial application of Jensen inequality reveals

PV (x) ≤ γV (x) +
√
n+ L2ϱ2︸ ︷︷ ︸

K

. (31)

Minorization condition can be verified from Naeem and Pajic (2020) and the result follows.
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Theorem 10 For any α̂ ∈ (0, 1−γ2

2 ), we have
∫
eα̂∥x∥

2
µπ(dx) < ∞ and consequently there exists

a finite positive constant Lγ such that the invariant measure of SLDS, µπ ∈ T d
1

(
Lγ

)
.

Proof An application of Stein’s lemma on transition kernel of (28), reveal:∫
eα∥y∥

2
P (x, dy) =

1

(1− 2α)
n
2

e
∥Ajx∥2(α+ 2α2

(1−2α)
)
=

1

(1− 2α)
n
2

e
∥Ajx∥2 α

(1−2α) , α <
1

2
, x ∈ Mj .

A simple linear algebra exercise reveals existence of a β < α̂ and C when α̂ ∈ (0, 1−γ2

2 ) as
mentioned in Theorem 8 and conclusion follows.

3.2. Gaussian Tail Inequality for Stationary Distribution of SLDS/Harris Chain with
Exponential Lyapunov Function and its Consequences for Sampling

Assume that we have access to sampling (yi)
N
i=1 i.i.d from µπ. Since, r(x) := ∥x∥ is 1− Lipschitz

w.r.t d(x, y) := ∥x− y∥2 and µπ ∈ T d
1

(
1+log

[
Ĉα̂

1−ηα̂

]
α̂

)
, we have that

P

[∣∣∣∣ 1N
N∑
i=1

r(yi)− < r >µπ

∣∣∣∣ > ϵ

]
≤ 2 exp

(
− Nϵ2α̂

2 + 2 log

[
Ĉα̂

1−ηα̂

]). (32)

As any valid α̂ can be written down in the form of 1−γ2

2n for n > 1, comparing with Linear Gaussian
case (18) it is reassuring to see how deviations for SLDS and LDS have similar dependence in terms
of the norm of stable system matrix.

Remark 11 Although, we tried our best to show concentration for process level law of HEMCs
under exponential-type Lyapunov condition, via weigthed T-E inequality but it got intractable due
to non-uniform transport constants.

4. Conclusion and discussion

We have provided with a general framework for getting concentration inequalities for random dy-
namaical systems, with respect to empirical averages of unbounded test functions; validated our
analysis on the example of LDS and SLDS. Summarizing few key observations and open problems:
Exponential-type Lyapunov functions are sufficient for having exponential concentration inequali-
ties (although, we might have to run multiple independent trajectories). Stability is necessary not
sufficient: As it should be evident from the example of HEMCs, under existence of exponential-type
Lyapunov functions we can ensure concentration only by running multiple independent trajectories.
Concentration via single trajectory requires some notion of regularity for transition kernels as well:
one of them is uniform transportation constant and we intend on exploring more such regularity
conditions in our future work. An interesting open problem, can we relax uniform T-E condition
and still get exponential inequalities from a single trajectory? We suspect it might be the case
when samples of Markov chain interact symmetrically; convincing examples include, Kac’s inter-
acting particles model exhibiting propagation of chaos and ubiquity of assumption on reversibility
of Markov chain w.r.t its’ stationary maeasure in discrete and continuous time Large Deviation
Principle, see e.g, Wang and Wu (2020) and Guillin et al. (2009).
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volume 14, pages 331–352, 2005.

Sourav Chatterjee. Stein’s method for concentration inequalities. Probability theory and related
fields, 138(1-2):305–321, 2007.

Sourav Chatterjee and Partha S Dey. Applications of stein’s method for concentration inequalities.
The Annals of Probability, 38(6):2443–2485, 2010.

Hacene Djellout, Arnaud Guillin, Liming Wu, et al. Transportation cost-information inequalities
and applications to random dynamical systems and diffusions. Annals of Probability, 32(3B):
2702–2732, 2004.

Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global convergence of policy gradi-
ent methods for the linear quadratic regulator. In International Conference on Machine Learning,
pages 1467–1476, 2018.

Clark R Givens, Rae Michael Shortt, et al. A class of wasserstein metrics for probability distribu-
tions. The Michigan Mathematical Journal, 31(2):231–240, 1984.
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