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Abstract 
Acute kidney injury (AKI) is a life-threatening and heterogeneous syndrome. Timely and etiology-based personalized 
treatment is crucial. AKI sub-phenotyping can lead to better understanding of the pathophysiology of AKI and help 
developing more targeted intervention. Current dimensionality reduction and similarity-based clustering for AKI sub-
phenotyping suffer from limited interpretability and specificity. To address these limitations, we propose a pattern 
mining approach with multiobjective evolutionary algorithm (MOEA) for AKI sub-phenotyping. AKI sub-phenotypes 
are presented as explicit rules, so no post-hoc explanation is needed. Also, our method can search feature subspace 
efficiently for minor and highly specific sub-phenotypes. We aimed to discover sub-phenotypes for AKI patients 
against non-AKI patients (AKI vs non-AKI) and moderate-to-severe AKI patients against mild AKI patients (AKI-2/3 
vs AKI-1). We identified 174(178) significant sub-phenotypes with average confidence of 0.33(0.33). Our method can 
assign patients to a sub-phenotype with higher confidence than k-means clustering, with average improvement of 
0.20(0.23). 

Introduction 
AKI is a prevalent and life-threatening clinical syndrome in hospitalized patients, affecting ~15% of all 
hospitalizations and >50% of patients in intensive care units1-3. Currently, AKI patient management is based on clinical 
manifestation assessed by serum creatinine, which is a delayed biomarker of AKI and disregards the underlying 
pathophysiology4. In contrast, appropriate and immediate interventions should be etiology-based. For example, 
cardiac failure associated AKI would encourage cardiac failure management while hypovolaemic-AKI would 
encourage volume replacement.  
Recent availability of electronic health record (EHR) and advancement in machine learning have fostered a variety of 
data-driven approaches to study AKI. Machine learning methods have been applied mostly for AKI risk prediction5, 

6, with the area under the receiver operating characteristics curve (AUROC) ranging from 0.66-0.80 in internal 
validation studies and 0.65-0.71 in external validation studies7-9. However, the traditional prediction models tend to 
bias toward high-ranking features in general population and produce unstable prediction for minority subgroups. A 
recent study10 showed that localized prediction models trained on stratified subgroups can improve performance and 
discrepancies in feature ranking when compared to the global model, which highlights the importance of personalized 
prediction based on local/minority subgroup. 
Sub-phenotyping is challenging due to the high dimensionality of EHR data. Several studies aimed to subgroup 
patients via data driven approach. Xu et. al. performed k-means clustering with t-distributed Stochastic Neighbor 
Embedding11 (t-SNE). Chaudhary et. al. utilized autoencoder for dimensionality reduction and performed k-means 
clustering on the extracted features12. Baytas et. al. used a similar method but applied LSTM network to exploit the 
temporalities of EHR data13. While these approaches are promising, sub-phenotyping based on k-means clustering has 
several disadvantages. First, clustering depends on feature selection and minority clusters are only distinguishable in 
certain feature subspace. Second, similarity-based clusters often require post-hoc explanations, especially after feature 
space projection with autoencoder or t-SNE. Third, number of clusters must be pre-defined, and outliers are assigned 
to the nearest big cluster. Typically, only a small k (<10) is tested. As a result, many features are used and only a few 
major clusters are identified. Rare subphenotypes of order <10% are often hidden or grouped into neighboring big 
clusters, thus it is difficult to associate a cluster to one specific clinical origin. Fourth, the result of similarity-based 
clustering is sensitive to the similarity metric used, which are often chosen without justification. 
To address the above limitation, we propose a rule mining approach for sub-phenotyping AKI patients. With rule 
mining, sub-phenotypes are determined by rules instead of patient similarities. Rule mining can effectively explore a 
large amount of feature subspace and identify minor subgroups that are highly specific. In addition, rules that define 
a cluster are precise and inherently interpretable, which is useful for subsequent clinical analysis. Rule Mining have 
been previously applied to discover the temporal relations in the EHR data for prediction analysis, I. Batal et. al.14 and 
D. Patel et. al.15 explored the temporal interval relations based on Allen's interval algebra16, whereas Z. Huang et. al.17

investigated patterns based on temporal separation of events. To applying rule mining for sub-phenotype discovery,
we focus on mining non-temporal rule for easier interpretation and more tolerance to noise in EHR data.
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Method 
Rule Mining 
Rule mining aims to describe a dataset in forms of rules. Given a binary dataset 𝐷𝐷, with features set 𝐼𝐼 and binary labels 
𝐿𝐿 = {𝑙𝑙0, 𝑙𝑙1}, a pattern 𝑝𝑝 can be defined as a collection of features 𝑝𝑝 = {𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3, … } ⊆ 𝐼𝐼 and a rule 𝑟𝑟 is defined as a 
pattern associating with a label 𝑙𝑙 ∈ 𝐿𝐿, denoted as 𝑝𝑝 → 𝑙𝑙. A rule can be interpreted as an if-then association. If a data 
point satisfies the antecedent (pattern p), then the data is predicted by the rule as having a label l. Rule mining is a 
procedure to discover rules that satisfy certain predefined measures. In the rest of the paper, a pattern p will be used 
as a representation of the antecedent of a rule r. 
The difficulty of rule mining lies in the power law dependencies of the number of possible patterns. Traditional 
algorithms like Apriori18 has been implemented for medical sub-phenotyping but it is highly computationally intensive 
due to the high dimensionality of EHR. The length of pattern can grow and produce a very large sets of rules that are 
difficult to analyze. Other algorithms like pattern tree19 are less computationally intensive but still lack scalability for 
high dimensional data. Since EHR often consists of hundreds to thousands of features, it would be impractical to adopt 
classical rule mining algorithms to mine full EHR dataset without reducing the number of features to the order of 
tenth, or resort to distributed computing18 which is hard to implement.  
To address the above limitation, we employed multiobjective evolutionary algorithm20 (MOEA) in this paper. MOEAs 
have been successfully applied to biomedical fields such as cervix lesion classification21, medical speciality 
classification22, gene selection23 and biclustering24. MOEAs aim to discover a set of solutions, called Pareto set, 
through optimization of multiple criterions. When applied to rule mining, the solutions are the rules, and the criterions 
will be defined as the predefined measures25. Given the randomness nature of MOEA, the rule set is not complete and 
the quality is subject to the amount of computational time spent, but the rule set is often smaller in size, and the rules 
are more distinct. Also, MOEA requires less memory and more scalable to high dimensional data. The choice of 
criterions is independent of the algorithms and thus can be customized for finding more relevant rules. 
One of the most frequently used measures in rule mining is support25, which is defined as  

𝑠𝑠𝑠𝑠𝑝𝑝𝐷𝐷(𝑝𝑝) =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝐷𝐷(𝑝𝑝)

|𝐷𝐷|
 

where 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝐷𝐷(𝑝𝑝) is the number of instances in 𝑑𝑑 ∈ 𝐷𝐷 that 𝑝𝑝 matches, i.e., 𝑝𝑝 ⊆ 𝑑𝑑. But given the imbalanced nature of 
EMR, support can be an ineffective measure that would filter out useful rules in targeted labels, which is often a 
minority group. Instead, we use the following measures as the criterions for the rules: 
True positive rate25 is defined as the support of rule in the targeted label group 𝐷𝐷𝑙𝑙 , i.e.  

𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑠𝑠𝑠𝑠𝑝𝑝𝐷𝐷𝑙𝑙(𝑝𝑝) 

We used true positive rate instead of support because we wanted to focus on discovering significant sub-phenotypes 
of the targeted label. True positive rate allows the discovery of rules that are populated in the targeted group instead 
of the general populations, which is more clinically useful in differentiating different groups of patients. In this paper, 
true positive rate is both set as a criterion and a constraint with a minimum value of 0.01. 
Length of pattern is the cardinality |𝑝𝑝| of the pattern. Given the sparsity of EHR, the true positive rate drops rapidly 
with the length of the pattern. As such, the resulting rule set often consist of rules with a single feature pattern, which 
defeats the purpose of rule mining. To counter this trend, the length of pattern is set as a criterion to maximize so that 
longer patterns will be preferred in the Pareto set. In addition, the minimum length of patterns is constrained to two. 
Growth rate25 is defined as the ratio between the support of the targeted class against the non-targeted class, i.e. 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑟𝑟) =
𝑠𝑠𝑠𝑠𝑝𝑝𝐷𝐷𝑙𝑙(𝑝𝑝)
𝑠𝑠𝑠𝑠𝑝𝑝𝐷𝐷~𝑙𝑙(𝑝𝑝)

 

where ~𝑙𝑙 indicates the other label. Growth rate represents the statistical difference of a pattern between the associated 
group and the other group, which is set as a criterion to discover rules that are more representative in the targeted 
class. 
Confidence25 is defined as the conditional probability of target label 𝑙𝑙 given an instance matching pattern 𝑝𝑝, i.e. 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟) =
𝑠𝑠𝑠𝑠𝑝𝑝𝐷𝐷(𝑝𝑝 ∪ {𝑙𝑙})
𝑠𝑠𝑠𝑠𝑝𝑝𝐷𝐷(𝑝𝑝)

 

Confidence is set as a criterion for identifying rules that better predict outcome label for patients.  
Confidence difference is defined in this paper as  
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𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟) − max
i∈𝑝𝑝

(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐({𝑖𝑖})) 

The idea of confidence difference is to focus on rules that have additional predictive power arising from the 
combination of features used in the pattern. Without this criterion, the discovered rules are often dominated by a 
certain feature, which made it non-distinctive to one feature patterns. Note that a stricter criterion 
min
𝑞𝑞⊂𝑝𝑝

(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞)) > 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝) is often used in traditional rule mining26, which would require a complete 

knowledge of sub-patterns to compute. This criterion is computationally ineffective to be applied in MOEA, thus we 
used the confidence difference instead. 
 
Study Design 
AKI definition. Following the clinical practice guideline for AKI by KDIGO, we staged AKI severity based on the 
SCr-based criteria27. AKI Stage 1 is defined as an increase of 0.3 md/dL within 48h or 1.5 times of baseline SCr within 
7 days. The baseline SCr level is chosen to be the most recent SCr after admission if past measurement is not available. 
Stage 2 AKI is defined as an increase of 2.0 to 2.9 times of the baseline SCr level in 7 days. Stage 3 AKI is defined 
as an increase of 4mg/dL after an acute increase of at least 0.3 mg/dL in 48h, an increase of more than 3.0 times of 
the baseline SCr level in 7 days or an initiation of renal replacement therapy.  
Data Source. The clinical data for this study is collected from the University of Kansas Medical Center’s data 
warehouse that has mapped EHR data to the common data model (CDM) developed by The National Patient-Centered 
Clinical Research Network28 (PCORnet). The data is de-identified according to the Health Insurance Portability and 
Accountability Act of 1996 (HIPAA) ‘Safe Harbour’ criteria. This study was determined by the institutional review 
board as non-human subject research because it only involved the collection of existing and de-identified patient 
medical data. 
Data Extraction. Patients aged between 18 and 90, admitted from the beginning of 2010 to the end of 2019, 
hospitalized for at least 2 days (n=286,723) and with at least two SCr records are extracted (n=247,457). Patients who 
had evidence of severe kidney dysfunction at or before admission are excluded using the criteria29 (a) estimated 
glomerular filtration rate <15 mL/min/1.73 m^2 (n=11,778), or (b) has undergone any dialysis procedure or renal 
transplantation (RRT) prior to the visit (n=16,419), (c) required RRT within 48h of their SCr measurement record 
(n=1,702), or (d) has pre-existing end stage renal disease (n=15,800). Burn patients are also excluded since SCr is less 
reliable in accessing renal function during hypermetabolic phase30 (n=653). The resulting cohort contained 218,365 
records, with 183,235 non-AKI patients, 32,407 AKI stage 1 patients, 2,402 AKI stage 2 patients and 1,321 AKI stage 
3 patients. 
Data preprocessing. We collected clinical variables available in the PCORnet CDM schema, including demographic 
details (age, gender, race, Hispanic), diagnosis code (ICD-9 or ICD-10), procedure code (ICD and CPT code), lab test 
(LOINC code), medication (RXNORM and NDC code) and vital signs (weight, systolic, diastolic, BMI). Each record 
is timestamped relative to admission date. Patient data consist of most recent measures of vital signs and lab test values 
relative to onset day, historical record of diagnosis within a year and medication record between 30 days before 
admission and onset day. Multiple measurements of vitals and labs in the same day are averaged. Diagnosis codes are 
separated as before and after 6 months relative to the admission date, with ICD-10 code converted to ICD-09 code 
and all ICD-09 code are rolled up to the 3-digit category level. Medications are converted to the Anatomical 
Therapeutic Chemical (ATC) code and rolled up to 4th level. Then the dataset was converted to one-hot encoding 
with numerical features binned using quantiles (with a maximum of 5 bins). Features with less than 5% positive 
occurrence (not NaN for numerical features or True for binary/categorical features) are dropped. The label of patients 
is assigned to the most severe AKI stage in record. The final dataset consists of 1,020 features. 
Learning Algorithm. The MOEA employed in this study is Nondominated Sorting Genetic Algorithm II31 (NSGA2), 
implemented by the pymoo32 package in Python. We chose NSGA2 because of its ability to handle binary data type. 
All one feature patterns are used as biased initialization of the algorithm. Hyper parameters include population size = 
10000, number of offspring = 10, crossover = half uniform, mutation = bitflip, number of generation = 10000.  
Experimental Design. Two sets of experiments were performed. First evaluation used AKI patients of all stages as the 
targeted label against the non-AKI patients as the other group (AKI vs non-AKI). The experiment aims to identify 
patient subgroups that have higher risk in developing AKI. Second evaluation treated AKI-2 and AKI-3 patients as 
targeted label while AKI-1 patients are treated as another group (AKI-2/3 vs AKI-1). This experiment would allow 
discovery of sub-phenotypes of AKI patients that are more likely to progress to more severe form of AKI. 
Evaluation. The p-value of the rules discovered by the algorithm were calculated using fisher’s exact test and rules 
with 𝑝𝑝 ≥ 0.05 were discarded to ensure statistical significance. The quality of a rule was characterized by measures 
(length of rule, growth rate, confidence, confidence difference, true positive rate) used in the algorithm and their 7-
day mortality rate.  
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Result and Discussion 
Validation of current method. To validate our method against clinical knowledge, we examined the one feature rules 
of AKI vs non-AKI, where clinical result is more readily available. Table 1 shows the one feature rules with top-3 
confidence. Multiple studies have confirmed the association of both high base deficit and high B-type Natriuretic 
peptide with risk of AKI. Relation between Base Deficit as a predictive factor of AKI has been suggested by Gerent 
et. al.33, while that of Natriuretic peptide B has been studied by Nowak et. al.34 Our data and method confirms with 
the existing studies at base level. 
 
Table 1. Statistics of single feature rules in AKI vs non-AKI. 
 

 Rule Support TPR Confidence 

1 Base deficit in Arterial blood (>7 mmol/L) 0.011 0.029 0.457 

2 Natriuretic peptide B [Mass/volume] in Blood (>770 pg/mL) 0.042 0.103 0.414 

3 Base deficit in Blood (>5.1 mmol/L) 0.023 0.056 0.413 

 

 
Figure 1. General trend of rule sets for (a) AKI vs non-AKI and (b) AKI-2/3 vs AKI-1. Each point represents a rule 
and the colormap represents the length of the rule. The blue crosses are the rules used as examples in the following 
section. The green dashed line represents the global 7-day mortality and the blue dashed line indicates that of the 
targeted label. 
 
Rule statistics and trends. The advantage of rule mining lies in the ability of discovering complex rules. In the AKI 
vs non-AKI and AKI-2/3 vs AKI-1 experiments, total 174 and178 significant rules were discovered with average 
length of 3.51 and 3.65 and average confidence of 0.33 and 0.33, respectively. Compared to the class ratio of 0.17 and 
0.14, the rule set shows significant distinction over general population. Figure 1 shows the trends of the measures of 
the discovered rules. The confidence difference, growth rate, 7-day mortality and the rule length are directly 
proportional to the confidence of the rule while the true positive rate are inversely proportional. The trend indicates 
that longer rules have higher predictability but have limited generalizability, thus more personalized. The higher 
quality rules are those with high true positive rate and high confidence. In the following section, two rules from the 
AKI-2/3 vs AKI-1 experiment are used as an illustration, the positions of those rules are indicated as blue crosses in 
Figure 1(b). Details of those rules are shown in Table 2. 
Clinical interpretation of rules. While the individual features of the rule shown in Table 2 are associated with kidney 
problem, there are also other possible causes making their confidence low, especially for differentiating AKI-2/3 
against AKI-1. For example, protein in urine can be caused by high blood pressure and high phosphate can be due to 
dietary habit. But in combination, bilirubin in urine is usually associated with liver problem where unitary tract 
infection, as suggested by nitrite presence in urine, is one of its complications35. Rule #169 is likely associated with 
patients having advanced liver cirrhosis, which is a cause of AKI36, 37. Protein in urine and high anion gap are both 
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associated with diabetes, and high phosphate can be a symptom of diabetic ketoacidosis. So, rule #87 is likely to be 
associated with diabetic patients, which is shown to be an independent risk factor of AKI38, 39. Both rules suggest that 
patients who develop AKI as a complication from diabetes and liver cirrhosis are more susceptible to advanced stage 
of AKI. Rule #119 is another example of significant rules that has high improvement in confident. 
 
Table 2. Sample rules in AKI-2/3 vs AKI-1 experiment. 
 

 Rule Confidence 
(single) 

TPR Confidence Support 

169 Bilirubin.total [Presence] in Urine by Automated test 
strip  

0.162 0.243 0.360 0.095 

Nitrite [Presence] in Urine by Automated test strip  0.162 

Anion gap in Serum or Plasma (>10.0)  0.278 

Salt solutions (Med) 0.151 

87 Protein [Presence] in Urine by Automated test strip 0.162 0.117 0.572 0.029 

Anion gap in Serum or Plasma (>10.0)  0.278 

Phosphate [Mass/volume] in Serum or Plasma 
(>4.3mg/dL) 

0.335 

119 Urobilinogen [Presence] in Urine by Automated test 
strip 

0.162 0.123 0.478 0.143 

Phosphate [Mass/volume] in Serum or Plasma 
(>4.3mg/dL) 

0.335 

Infusion, normal saline solution, 250 cc 0.175 

 
 

 
Figure 2. Bubble plots of the rule set of (a) AKI vs non-AKI and (b) AKI-2/3 vs AKI-1. Each blue circle represents 
a rule and each yellow circle represents a one feature rule. The edge indicates a feature belongs to a rule and the size 
scales with the confidence of the rule or feature. 
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Rule improvement. Table 2 showed that in general, combination of multiple features would increase the predictability 
over rules with a single feature. To quantify the improvement of the predictability, we compared confidence of the 
combinatorial rule with the maximum confidence of the single featured rules. In this case, rule #169 had a confidence 
difference of 0.082 and rule #87 had a confidence difference of 0.237. The improvement weakly depends on the length 
of rule, as shown in Figure 1. Figure 1 shows the confidence relation between the rules and their features. This 
improvement can be difficult to explore in clinical trials given the number of possible combinations to be tested and 
our algorithm can suggest potential combinations to be studied clinically. Also, these rules can give a more precise 
and personalize diagnose for the patients and suggests additional lab testing if a partial match is found. When compared 
to traditional predictive modeling, the criteria of rules are clearer and more understandable. Figure 2 illustrates the 
connection between the discovered rules and their relative confidence. 
 

 
Figure 3. t-SNE plot of (a) AKI vs non-AKI and (b) AKI-2/3 vs AKI-1. Yellow dots represent the targeted class and 
blue dots represent the other class.  
 

 
Figure 4. t-SNE plot of a rule coverage in (a) AKI vs non-AKI and (b) AKI-2/3 vs AKI-1. Yellow dot represents the 
false negative and blue cross represents the true positive. 
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Coverage of rules. To compare the coverage of the rule set and the similarity, we showed data distribution using t -
SNE40. Figure 3 shows the global distribution for both datasets. From Figure 3, there is no clear cluster of the targeted 
labels, which suggests that clustering technique will not perform well on this data. In contrast, our method is not 
restricted by similarity. Two examples are shown in Figure 4 where the true positive rules are not confined to a specific 
region of the plot. To quantify this behavior, we calculate the root-mean-square deviation from mean of the t-SNE 
coordinates of the true positives for each rule. The average deviation is 5.91±0.38 for AKI vs non-AKI and 14.37±0.74 
for AKI-2/3 vs AKI-1. The above deviation for the targeted class is 6.12 for AKI vs non-AKI and 13.53 for AKI-2/3 
vs AKI-1, which suggests that most rules have approximately the same level of spread as the underlying class and 
MOEA does not depend on similarity. In addition, we compared MOEA, single length rules, and k-means clustering41  
based on t-SNE (k = 2 to 10). Figure 5 demonstrates the resulting performance in which k-means clustering performed 
worse in general. While some single feature rules have the same performance as MOEA at low confidence, more 
specific rules can only be obtained by MOEA.  
 

 
Figure 5. True positive rate vs Confidence of (a) AKI vs non-AKI and (b) AKI-2/3 vs AKI-1 for three models. 
 
Rule Mining as a mean of subphenotype discovery and feature selection. We have shown previously the global t-
SNE plot does not show obvious subgroup of patients that is statistically useful, due to the curse of dimensionality. 
Traditionally, to gather useful information, clinically important features have often been selected by expert. While 
expert selection produces promising result, complex feature correlations is often hard to be identified and established. 
Rule mining can provide a mean for selecting useful features and identifying useful subphenotypes from it. For 
illustration, we used rule #169 from Table 2 for feature selection. The resulting t-SNE plot is shown in Figure 6 (a). 
Under this projection the data is divided into one big cluster and several small clusters, and one of the small clusters 
in blue is the sub-phenotype represented by rule #169 for its distinctive statistical property. 
 
Scalability Evaluation. To demonstrate the scalability of our method, we generated subsamples of our dataset into 
1/1000, 1/100, 1/10, 3/4, 1/2, 1/4, 1 of the original size and performed the algorithm under the same hyperparameter. 
The result is shown in Figure 6 (b). The scaling is weakly linear to the size of the dataset. Given that the current 
working dataset already consists of all AKI patients within 10 years of KUMC record, our model should be practical 
in real world scenario. 
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Figure 6. (a) t-SNE plot after using feature selection by rule #169. Blue crosses represent data point matching rule 
#169 and yellow dots otherwise. (b) The scalability of current method. 
 

 
Figure 7. The histogram for AKI vs non-AKI of (a) confidence of data point using the highest matching rules of the 
rule set combined with the single length rules and (b) the difference in confidence when compared to single length 
rules only (excluding data with no difference). (c) and (d) are the corresponding histogram for AKI-2/3 vs AKI-1. 

Global performance of rule set. To evaluate the predictive power of the rule set as a whole, we tested a simple scheme 
in which we assigned each patient in the targeted class the highest confidence of the matching rule in the rule set 
combined with all single feature rules. To evaluate the additional predictive power resulted from the rule set, we 
repeated the same process but with the single length rules only. Then the difference of confidence for each data is 
calculated. The result is shown in Figure 7. Every patient in the targeted label is covered by at least one rule and only 
0.01% of the patients has confidence less than the class ratio for AKI-2/3 vs AKI-1 (0% for AKI vs non-AKI), 65% 
of patients in AKI vs non-AKI has confidence more than double of the class ratio (70% for AKI-2/3 vs AKI-1). On 
the other hand, the benefit of complex rules is also significant. 56% of patients have increased confidence for AKI vs 
non-AKI and 54% for AKI-2/3 vs AKI-1, while 32% of patients has an increase > 0.1 for AKI vs non-AKI and 33% 
for AKI-2/3 vs AKI-1. Figure 7(b) and (d) show the distribution of patients with increased confidence only. Average 
improvement was 0.14 for AKI vs non-AKI and 0.19 for AKI-2/3 vs AKI-1. When compared to k-means clustering, 
99% of the patients for AKI vs non-AKI (99% for AKI-2/3 vs AKI-1) has increased confidence assigned to a sub-
phenotype using the rule set and one length rules vs assigned to a sub-phenotype defined by k-means clustering, as 
indicated in Figure 5, and 75% for AKI vs non-AKI (71% for AKI-2/3 vs AKI-1) had improvement > 0.1, with an 
average improvement of 0.20 for AKI vs non-AKI (0.23 for AKI-2/3 vs AKI-1). 
Clinical Application. Clinical interpretability of machine-learning models is utmost important in clinical practice. In 
contrast to accuracy-driven black-box models, where shortcomings are difficult to detect and prevent42, all the rules 
discovered in our method can be independently verified and interpretable by clinicians. In practice, a system can 
quickly identified the rules that a patient match. In addition to provide the risk of a patients in developing AKI, the 
system can also provide which factors are contributing to the prediction. Clinician can determine whether a certain 

 

 

(a) 
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rule match is applicable based on their own experience and circumstances. Clinician can also provide more 
personalized treatment based on the group of rules that the patient matches. The system can potentially identify cases 
where occurrence is rare but with high confidence. A partial match of a rule could suggest a potential clinical test to 
perform for narrowing down the possibility. Results from different hospital sites can also be shared and aggregated 
without compromising patient privacy. Furthermore, clinical trials can be expensive and time consuming, as such 
limited to simple and common correlations. Our method can serve as an exploratory research where complex and 
unanticipated relations can be discovered and verified by more rigorous clinical trials. 

Conclusion 
In this paper we proposed to use rule mining algorithm to identify sub-phenotypes of AKI patients. We have 
successfully identified subphenotypes of major and minor subgroups in a human readable format. We have generated 
both major and minor sub-phenotypes (in terms of true positive rate) with increased confidence. We also demonstrated 
the interpretability of our method by associating two sample sub-phenotypes to specific clinical etiology. Our approach 
showed improvement in confidence when compared to k-means clustering, and some specific sub-phenotypes also 
showed increased confidence when compared to baseline sub-phenotypes.  
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