
SmoothQuant: Accurate and Efficient
Post-Training Quantization for Large Language Models

Guangxuan Xiao * 1 Ji Lin * 1 Mickael Seznec 2 Hao Wu 2 Julien Demouth 2 Song Han 1

https://github.com/mit-han-lab/smoothquant

Abstract
Large language models (LLMs) show excel-

lent performance but are compute- and memory-

intensive. Quantization can reduce memory and

accelerate inference. However, existing methods

cannot maintain accuracy and hardware efficiency

at the same time. We propose SmoothQuant, a

training-free, accuracy-preserving, and general-

purpose post-training quantization (PTQ) solution

to enable 8-bit weight, 8-bit activation (W8A8)

quantization for LLMs. Based on the fact that

weights are easy to quantize while activations are

not, SmoothQuant smooths the activation outliers

by offline migrating the quantization difficulty

from activations to weights with a mathematically

equivalent transformation. SmoothQuant enables

an INT8 quantization of both weights and activa-

tions for all the matrix multiplications in LLMs,

including OPT, BLOOM, GLM, MT-NLG, and

LLaMA family. We demonstrate up to 1.56×
speedup and 2× memory reduction for LLMs

with negligible loss in accuracy. SmoothQuant

enables serving 530B LLM within a single node.

Our work offers a turn-key solution that reduces

hardware costs and democratizes LLMs.

1 Introduction
Large-scale language models (LLMs) show excellent per-

formance on various tasks (Brown et al., 2020a; Zhang

et al., 2022). However, serving LLMs is budget and energy-

consuming due to their gigantic model size. For exam-

ple, the GPT-3 (Brown et al., 2020a) model contains 175B

parameters, which will consume at least 350GB of mem-

ory to store and run in FP16, requiring 8×48GB A6000

*Equal contribution 1Massachusetts Institute of Technology
2NVIDIA. Correspondence to: Guangxuan Xiao <xgx@mit.edu>,
Ji Lin <jilin@mit.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1: The model size of large language models is devel-

oping at a faster pace than the GPU memory in recent years,

leading to a big gap between the supply and demand for

memory. Quantization and model compression techniques

can help bridge the gap.

GPUs or 5×80GB A100 GPUs just for inference. Due to

the huge computation and communication overhead, the

inference latency may also be unacceptable to real-world

applications. Quantization is a promising way to reduce

the cost of LLMs (Dettmers et al., 2022; Yao et al., 2022).

By quantizing the weights and activations with low-bit in-

tegers, we can reduce GPU memory requirements, in size

and bandwidth, and accelerate compute-intensive operations

(i.e., GEMM in linear layers, BMM in attention). For instance,

INT8 quantization of weights and activations can halve the

GPU memory usage and nearly double the throughput of

matrix multiplications compared to FP16.

However, unlike CNN models or smaller transformer mod-

els like BERT (Devlin et al., 2019), the activations of LLMs

are difficult to quantize. When we scale up LLMs beyond

6.7B parameters, systematic outliers with large magnitude

will emerge in activations (Dettmers et al., 2022), leading

to large quantization errors and accuracy degradation. Ze-

roQuant (Yao et al., 2022) applies dynamic per-token ac-

tivation quantization and group-wise weight quantization

(defined in Figure 3 Sec. 2). It can be implemented effi-

ciently and delivers good accuracy for GPT-3-350M and

GPT-J-6B. However, it can not maintain the accuracy for

the large OPT model with 175 billion parameters (see Sec-

tion 5.2). LLM.int8() (Dettmers et al., 2022) addresses

1

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models

|X | |W |
qu

an
t.

le
ve

ls

̂|X | ̂|W |smoothed

(a) Original

(b) SmoothQuant

hard to quantize very easy to quantize

easy to quantize easy to quantize

|W |

|X |smoothed

outlier

low effective bits

| |

low effective bitslow effective bitl ff ti bit

qu
an

t.
le

ve
ls

|W |

10 0.1

1 1

0

0

0

0

migrate difficulty

Figure 2: SmoothQuant’s intuition: the activation X is hard

to quantize because outliers stretch the quantization range,

leaving few effective bits for most values. We migrate the

scale variance from activations to weights W during offline

to reduce the quantization difficulty of activations. The

smoothed activation X̂ and the adjusted weight Ŵ are both

easy to quantize.

that accuracy issue by further introducing a mixed-precision

decomposition (i.e., it keeps outliers in FP16 and uses INT8

for the other activations). However, it is hard to imple-

ment the decomposition efficiently on hardware accelera-

tors. Therefore, deriving an efficient, hardware-friendly, and

preferably training-free quantization scheme for LLMs that

would use INT8 for all the compute-intensive operations

remains an open challenge.

We propose SmoothQuant, an accurate and efficient

post-training quantization (PTQ) solution for LLMs.

SmoothQuant relies on a key observation: even if activations

are much harder to quantize than weights due to the presence

of outliers (Dettmers et al., 2022), different tokens exhibit

similar variations across their channels. Based on this obser-

vation, SmoothQuant offline migrates the quantization diffi-

culty from activations to weights (Figure 2). SmoothQuant

proposes a mathematically equivalent per-channel scaling

transformation that significantly smooths the magnitude

across the channels, making the model quantization-friendly.

Since SmoothQuant is compatible with various quantization

schemes, we implement three efficiency levels of quantiza-

tion settings for SmoothQuant (see Table 2, O1-O3). Exper-

iments show that SmoothQuant is hardware-efficient: it can

maintain the performance of OPT-175B (Zhang et al., 2022),

BLOOM-176B (Scao et al., 2022) , GLM-130B (Zeng et al.,

2022), and MT-NLG 530B (Smith et al., 2022), leading

to up to 1.51× speed up and 1.96× memory saving on

PyTorch. SmoothQuant is easy to implement. We inte-

grate SmoothQuant into FasterTransformer, the state-of-the-

art transformer serving framework, achieving up to 1.56×

speedup and halving the memory usage compared with

FP16. Remarkably, SmoothQuant allows serving large mod-

els like OPT-175B using only half number of GPUs com-

pared to FP16 while being faster, and enabling the serving

of a 530B model within one 8-GPU node. Our work democ-

ratizes the use of LLMs by offering a turnkey solution to

reduce the serving cost. We hope SmoothQuant can inspire

greater use of LLMs in the future.

2 Preliminaries
Quantization maps a high-precision value into discrete

levels. We study integer uniform quantization (Jacob et al.,

2018) (specifically INT8) for better hardware support and

efficiency. The quantization process can be expressed as:

X̄INT8 = �X
FP16

Δ
�, Δ =

max(|X|)
2N−1 − 1

, (1)

where X is the floating-point tensor, X̄ is the quantized

counterpart, Δ is the quantization step size, �·� is the round-

ing function, and N is the number of bits (8 in our case).

Here we assume the tensor is symmetric at 0 for simplicity;

the discussion is similar for asymmetric cases (e.g., after

ReLU) by adding a zero-point (Jacob et al., 2018).

Such quantizer uses the maximum absolute value to calcu-

late Δ so that it preserves the outliers in activation, which

are found to be important for accuracy (Dettmers et al.,

2022). We can calculate Δ offline with the activations of

some calibration samples, what we call static quantization.

We can also use the runtime statistics of activations to get Δ,

what we call dynamic quantization. As shown in Figure 3,

quantization has different granularity levels. The per-tensor
quantization uses a single step size for the entire matrix. We

can further enable finer-grained quantization by using dif-

ferent quantization step sizes for activations associated with

each token (per-token quantization) or each output channel

of weights (per-channel quantization). A coarse-grained

version of per-channel quantization is to use different quanti-

zation steps for different channel groups, called group-wise
quantization (Shen et al., 2020; Yao et al., 2022).

For a linear layer in Transformers (Vaswani et al., 2017)

Y = X · W,Y ∈ R
T×Co ,X ∈ R

T×Ci ,W ∈ R
Ci×Co ,

where T is the number of tokens, Ci is the input channel,

and Co is the output channel (see Figure 3, we omit the

batch dimension for simplicity), we can reduce the storage

by half compared to FP16 by quantizing the weights to INT8.

However, to speed up the inference, we need to quantize

both weights and activations into INT8 (i.e., W8A8) to

utilize the integer kernels (e.g., INT8 GEMM), which are

supported by a wide range of hardware (e.g., NVIDIA GPUs,

Intel CPUs, Qualcomm DSPs, etc.).

2

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models

X * WT

Ci
Co

 Ci

ΔW
[1]

ΔX
[1]

per-tensor quant. per-tensor quant.

(a) per-tensor quantization
ΔX

[T×1]

X * W
T

Ci
Co

 Ci

ΔW
[1×C0]

per-token quant. per-channel quant.
(b) per-token + per-channel quantization

Figure 3: Definition of per-tensor, per-token, and per-

channel quantization. Per-tensor quantization is the most

efficient to implement. For vector-wise quantization to ef-

ficiently utilize the INT8 GEMM kernels, we can only use

scaling factors from the outer dimensions (i.e., token di-

mension T and out channel dimension Co) but not inner

dimension (i.e., in channel dimension Ci).

3 Review of Quantization Difficulty
LLMs are notoriously difficult to quantize due to the outliers

in the activations (Dettmers et al., 2022; Wei et al., 2022;

Bondarenko et al., 2021). We first review the difficulties

of activation quantization and look for a pattern amongst

outliers. We visualize the input activations and the weights

of a linear layer that has a large quantization error in Figure 4

(left). We can find several patterns that motivate our method:

1. Activations are harder to quantize than weights. The

weight distribution is quite uniform and flat, which is easy

to quantize. Previous work has shown that quantizing the

weights of LLMs with INT8 or even with INT4 does not

degrade accuracy (Dettmers et al., 2022; Yao et al., 2022;

Zeng et al., 2022), which echoes our observation.

2. Outliers make activation quantization difficult. The

scale of outliers in activations is ∼ 100× larger than most of

the activation values. In the case of per-tensor quantization

(Equation 1), the large outliers dominate the maximum mag-

nitude measurement, leading to low effective quantization
bits/levels (Figure 2) for non-outlier channels: suppose the

maximum magnitude of channel i is mi, and the maximum

value of the whole matrix is m, the effective quantization

levels of channel i is 28 ·mi/m. For non-outlier channels,

the effective quantization levels would be very small (2-3),

leading to large quantization errors.

3. Outliers persist in fixed channels. Outliers appear

in a small fraction of the channels. If one channel has an

outlier, it persistently appears in all tokens (Figure 4, red).

The variance amongst the channels for a given token is large

Table 1: Among different activation quantization schemes,

only per-channel quantization (Bondarenko et al., 2021) pre-

serves the accuracy, but it is not compatible (marked in gray)

with INT8 GEMM kernels. We report the average accuracy

on WinoGrande, HellaSwag, PIQA, and LAMBADA.

Model size (OPT-) 6.7B 13B 30B 66B 175B

FP16 64.9% 65.6% 67.9% 69.5% 71.6%

INT8 per-tensor 39.9% 33.0% 32.8% 33.1% 32.3%
INT8 per-token 42.5% 33.0% 33.1% 32.9% 31.7%
INT8 per-channel 64.8% 65.6% 68.0% 69.4% 71.4%

(the activations in some channels are very large, but most

are small), but the variance between the magnitudes of a

given channel across tokens is small (outlier channels are

consistently large). Due to the persistence of outliers

and the small variance inside each channel, if we could per-

form per-channel quantization (Bondarenko et al., 2021) of

the activation (i.e., using a different quantization step for

each channel), the quantization error would be much smaller

compared to per-tensor quantization, while per-token quan-

tization helps little. In Table 1, we verify the assumption

that simulated per-channel activation quantization success-

fully bridges the accuracy with the FP16 baseline, which

echos the findings of Bondarenko et al..

However, per-channel activation quantization does not map

well to hardware-accelerated GEMM kernels, that rely on a

sequence of operations executed at a high throughput (e.g.,

Tensor Core MMAs) and do not tolerate the insertion of

instructions with a lower throughput (e.g., conversions or

CUDA Core FMAs) in that sequence. In those kernels, scal-

ing can only be performed along the outer dimensions of the

matrix multiplication (i.e., token dimension of activations

T , output channel dimension of weights Co, see Figure 3),

which can be applied after the matrix multiplication finishes:

Y = diag(ΔFP16
X) · (X̄INT8 · W̄INT8) · diag(ΔFP16

W) (2)

Therefore, previous works all use per-token activation quan-

tization for linear layers (Dettmers et al., 2022; Yao et al.,

2022), although they cannot address the difficulty of activa-

tion quantization (only slightly better than per-tensor).

4 SmoothQuant
Instead of per-channel activation quantization (which is

infeasible), we propose to “smooth” the input activation

by dividing it by a per-channel smoothing factor s ∈ R
Ci .

To keep the mathematical equivalence of a linear layer, we

scale the weights accordingly in the reversed direction:

Y = (Xdiag(s)−1) · (diag(s)W) = X̂Ŵ (3)

Considering input X is usually produced from previous

linear operations (e.g., linear layers, layer norms, etc.), we

3

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models

Figure 4: Magnitude of the input activations and weights of a linear layer in OPT-13B before and after SmoothQuant.

Observations: (1) there are a few channels in the original activation map whose magnitudes are very large (greater than 70);

(2) the variance in one activation channel is small; (3) the original weight distribution is flat and uniform. SmoothQuant

migrates the outlier channels from activation to weight. In the end, the outliers in the activation are greatly smoothed while

the weight is still pretty smooth and flat.

can easily fuse the smoothing factor into previous layers’

parameters offline, which doe not incur kernel call overhead

from an extra scaling. For some other cases, when the input

is from a residual add, we can add an extra scaling to the

residual branch similar to Wei et al. (2022).

Migrate the quantization difficulty from activations to
weights. We aim to choose a per-channel smoothing factor

s such that X̂ = Xdiag(s)−1 is easy to quantize. To reduce

the quantization error, we should increase the effective quan-
tization bits for all the channels. The total effective quanti-

zation bits would be largest when all the channels have the

same maximum magnitude. Therefore, a straight-forward

choice is sj = max(|Xj |), j = 1, 2, ..., Ci, where j corre-

sponds to j-th input channel. This choice ensures that after

the division, all the activation channels will have the same

maximum value, which is easy to quantize. Note that the

range of activations is dynamic; it varies for different input

samples. Here, we estimate the scale of activations channels

using calibration samples from the pre-training dataset (Ja-

cob et al., 2018). However, this formula pushes all the

quantization difficulties to the weights. We find that, in this

case, the quantization errors would be large for the weights

(outlier channels are migrated to weights now), leading to

a large accuracy degradation (see Figure 10). On the other

hand, we can also push all the quantization difficulty from

weights to activations by choosing sj = 1/max(|Wj |).
Similarly, the model performance is bad due to the activa-

tion quantization errors. Therefore, we need to split the

quantization difficulty between weights and activations so

that they are both easy to quantize.

Here we introduce a hyper-parameter, migration strength

α, to control how much difficulty we want to migrate from

activation to weights, using the following equation:

sj = max(|Xj |)α/max(|Wj |)1−α (4)

Figure 5: Main idea of SmoothQuant when α is 0.5. The

smoothing factor s is obtained on calibration samples and

the entire transformation is performed offline. At runtime,

the activations are smooth without scaling.

We find that for most of the models, e.g., all OPT (Zhang

et al., 2022) and BLOOM (Scao et al., 2022) models,

α = 0.5 is a well-balanced point to evenly split the quan-

tization difficulty, especially when we are using the same

quantizer for weights and activations (e.g., per-tensor, static

quantization). The formula ensures that the weights and

activations at the corresponding channel share a similar

maximum value, thus sharing the same quantization dif-

ficulty. Figure 5 illustrates the smoothing transformation

when we take α = 0.5. For some other models where acti-

vation outliers are more significant (e.g., GLM-130B (Zeng

et al., 2022) has ∼30% outliers, which are more difficult

for activation quantization), we can choose a larger α to

migrate more quantization difficulty to weights (like 0.75).

Applying SmoothQuant to Transformer blocks. Lin-

ear layers take up most of the parameters and computation

of LLM models. By default, we perform scale smoothing

for the input activations of self-attention and feed-forward

layers and quantize all linear layers with W8A8. We also

quantize BMM operators in the attention computation. We de-

sign a quantization flow for transformer blocks in Figure 6.

We quantize the inputs and weights of compute-heavy opera-

tors like linear layers and BMM in attention layers with INT8,

4

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models

Figure 6: SmoothQuant’s precision mapping for a Trans-

former block. All compute-intensive operators like linear

layers and batched matmul (BMMs) use INT8 arithmetic.

Table 2: Quantization setting of the baselines and

SmoothQuant. All weight and activations use INT8 repre-

sentations unless specified. For SmoothQuant, the efficiency

improves from O1 to O3 (i.e., lower latency).

Method Weight Activation

W8A8 per-tensor per-tensor dynamic
ZeroQuant group-wise per-token dynamic
LLM.int8() per-channel per-token dynamic+FP16
Outlier Suppression per-tensor per-tensor static

SmoothQuant-O1 per-tensor per-token dynamic
SmoothQuant-O2 per-tensor per-tensor dynamic
SmoothQuant-O3 per-tensor per-tensor static

while keeping the activation as FP16 for other lightweight

element-wise operations like ReLU, Softmax, and Layer-

Norm. Such a design helps us to balance accuracy and

inference efficiency.

5 Experiments

5.1 Setups
Baselines. We compare with four baselines in the INT8

post-training quantization setting, i.e., without re-training

of the model parameters: W8A8 naive quantization, Zero-

Quant (Yao et al., 2022), LLM.int8() (Dettmers et al.,

2022), and Outlier Suppression (Wei et al., 2022). Since

SmoothQuant is orthogonal to the quantization schemes,

we provide gradually aggressive and efficient quantization

levels from O1 to O3. The detailed quantization schemes of

the baselines and SmoothQuant are shown in Table 2.

Models and datasets. We choose three families of LLMs

to evaluate SmoothQuant: OPT (Zhang et al., 2022),

BLOOM (Scao et al., 2022), and GLM-130B (Zeng

et al., 2022). We use seven zero-shot evaluation tasks:

LAMBADA (Paperno et al., 2016), HellaSwag (Zellers

et al., 2019), PIQA (Bisk et al., 2020), WinoGrande (Sak-

aguchi et al., 2019), OpenBookQA (Mihaylov et al., 2018),

RTE (Wang et al., 2018), COPA (Roemmele et al., 2011),

and one language modeling dataset WikiText (Merity et al.,

2016) to evaluate the OPT and BLOOM models. We use

MMLU (Hendrycks et al., 2020), MNLI (Williams et al.,

2018), QNLI (Wang et al., 2018) and LAMBADA to eval-

uate the GLM-130B model because some of the afore-

mentioned benchmarks appear in the training set of GLM-

130B. We use lm-eval-harness* to evaluate OPT and

BLOOM models, and GLM-130B’s official repo† for its own

evaluation. Finally, we scale up our method to MT-NLG

530B (Smith et al., 2022) and for the first time enabling the

serving of a >500B model within a single node. Note that

we focus on the relative performance change before and

after quantization but not the absolute value.

Activation smoothing. The migration strength α = 0.5 is

a general sweet spot for all the OPT and BLOOM models,

and α = 0.75 for GLM-130B since its activations are more

difficult to quantize (Zeng et al., 2022). We get a suitable α
by running a quick grid search on a subset of the Pile (Gao

et al., 2020) validation set. To get the statistics of activations,

we calibrate the smoothing factors and the static quantiza-

tion step sizes once with 512 random sentences from the

pre-training dataset Pile, and apply the same smoothed and

quantized model for all downstream tasks. In this way, we

can benchmark the generality and zero-shot performance of

the quantized LLMs.

Implementation. We implement SmoothQuant with two

backends: (1) PyTorch Huggingface‡ for the proof of con-

cept, and (2) FasterTransformer§, as an example of a high-

performance framework used in production environments.

In both PyTorch Huggingface and FasterTransformer frame-

works, we implement INT8 linear modules and the batched

matrix multiplication (BMM) function with CUTLASS

INT8 GEMM kernels. We simply replace the original floating

point (FP16) linear modules and the bmm function with our

INT8 kernels as the INT8 model.

5.2 Accurate Quantization
Results of OPT-175B. SmoothQuant can handle the quan-

tization of very large LLMs, whose activations are more

difficult to quantize. We study quantization on OPT-175B.

As shown in Table 3, SmoothQuant can match the FP16

accuracy on all evaluation datasets with all quantization

schemes. LLM.int8() can match the floating point ac-

curacy because they use floating-point values to represent

outliers, which leads to a large latency overhead (Table 10).

*https://github.com/EleutherAI/lm-evaluation-harness
†https://github.com/THUDM/GLM-130B
‡https://github.com/huggingface/transformers
§https://github.com/NVIDIA/FasterTransformer

5

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models

Table 3: SmoothQuant maintains the accuracy of OPT-175B model after INT8 quantization, even with the most aggressive

and most efficient O3 setting (Table 2). We extensively benchmark the performance on 7 zero-shot benchmarks (by reporting

the average accuracy) and 1 language modeling benchmark (perplexity). *For ZeroQuant, we also tried leaving the input

activation of self-attention in FP16 and quantizing the rest to INT8, which is their solution to the GPT-NeoX-20B. But this

does not solve the accuracy degradation of OPT-175B.

OPT-175B LAMBADA HellaSwag PIQA WinoGrande OpenBookQA RTE COPA Average↑ WikiText↓
FP16 74.7% 59.3% 79.7% 72.6% 34.0% 59.9% 88.0% 66.9% 10.99

W8A8 0.0% 25.6% 53.4% 50.3% 14.0% 49.5% 56.0% 35.5% 93080
ZeroQuant 0.0%* 26.0% 51.7% 49.3% 17.8% 50.9% 55.0% 35.8% 84648
LLM.int8() 74.7% 59.2% 79.7% 72.1% 34.2% 60.3% 87.0% 66.7% 11.10
Outlier Suppression 0.00% 25.8% 52.5% 48.6% 16.6% 53.4% 55.0% 36.0% 96151

SmoothQuant-O1 74.7% 59.2% 79.7% 71.2% 33.4% 58.1% 89.0% 66.5% 11.11
SmoothQuant-O2 75.0% 59.0% 79.2% 71.2% 33.0% 59.6% 88.0% 66.4% 11.14
SmoothQuant-O3 74.6% 58.9% 79.7% 71.2% 33.4% 59.9% 90.0% 66.8% 11.17

Table 4: SmoothQuant works for different LLMs. We

can quantize the 3 largest, openly available LLM mod-

els into INT8 without degrading the accuracy. For OPT-

175B and BLOOM-176B, we show the average accuracy

on WinoGrande, HellaSwag, PIQA, and LAMBADA. For

GLM-130B we show the average accuracy on LAMBADA,

MMLU, MNLI, and QNLI. *Accuracy is not column-wise

comparable due to different datasets.

Method OPT-175B BLOOM-176B GLM-130B*

FP16 71.6% 68.2% 73.8%

W8A8 32.3% 64.2% 26.9%
ZeroQuant 31.7% 67.4% 26.7%
LLM.int8() 71.4% 68.0% 73.8%
Outlier Suppression 31.7% 54.1% 63.5%

SmoothQuant-O1 71.2% 68.3% 73.7%
SmoothQuant-O2 71.1% 68.4% 72.5%
SmoothQuant-O3 71.1% 67.4% 72.8%

The W8A8, ZeroQuant, and Outlier Suppression baselines

produce nearly random results, indicating that naively quan-

tizing the activation of LLMs will destroy the performance.

Results of different LLMs. SmoothQuant can be applied

to various LLM designs. In Table 4, we show SmoothQuant

can quantize all existing open LLMs beyond 100B param-

eters. Compared with the OPT-175B model, the BLOOM-

176B model is easier to quantize: none of the baselines

completely destroys the model; even the naive W8A8 per-

tensor dynamic quantization only degrades the accuracy by

4%. The O1 and O2 levels of SmoothQuant successfully

maintain the floating point accuracy, while the O3 level (per-

tensor static) degrades the average accuracy by 0.8%, which

we attribute to the discrepancy between the statically col-

lected statistics and the real evaluation samples’ activation

statistics. On the contrary, the GLM-130B model is more

difficult to quantize (which echos Zeng et al.). Nonethe-

Figure 7: SmoothQuant-O3 (the most efficient setting, de-

fined in Table 2) preserves the accuracy of OPT models

across different scales when quantized to INT8. LLM.int8()

requires mixed precision and suffers from slowing down.

less, SmoothQuant-O1 can match the FP16 accuracy, while

SmoothQuant-O3 only degrades the accuracy by 1%, which

significantly outperforms the baselines. Note that we clip

the top 2% tokens when calibrating the static quantization

step sizes for GLM-130B following Wei et al. (2022). Note

that different model/training designs have different quantiza-

tion difficulties, which we hope will inspire future research.

Results on LLMs of different sizes. SmoothQuant works

not only for the very large LLMs beyond 100B parameters,

but it also works consistently for smaller LLMs. In Fig-

ure 7, we show that SmoothQuant can work on all scales

of OPT models, matching the FP16 accuracy with INT8

quantization.

Results on Instruction-Tuned LLM Shown in Table 5,

SmoothQuant also works on instruction-tuned LLMs. We

test SmoothQuant on the OPT-IML-30B model using the

WikiText-2 and LAMBADA datasets. Our results show

that SmoothQuant successfully preserves model accuracy

6

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models

Table 5: SmoothQuant’s performance on the OPT-IML

model.

OPT-IML-30B LAMBADA ↑ WikiText ↓
FP16 69.12% 14.26

W8A8 4.21% 576.53
ZeroQuant 5.12% 455.12
LLM.int8() 69.14% 14.27
Outlier Suppression 0.00% 9485.62

SmoothQuant-O3 69.77% 14.37

Table 6: SmoothQuant can enable lossless W8A8 quanti-

zation for LLaMA models (Touvron et al., 2023). Results

are perplexity on WikiText-2 dataset. We used per-token

activation quantization and α=0.8 for SmoothQuant.

Wiki PPL↓ 7B 13B 30B 65B

FP16 11.51 10.05 7.53 6.17
W8A8 SmoothQuant 11.56 10.08 7.56 6.20

with W8A8 quantization, whereas the baselines fail to do

so. SmoothQuant is a general method designed to balance

the quantization difficulty for Transformer models. As the

architecture of instruction-tuned LLMs is not fundamen-

tally different from vanilla LLMs, and their pre-training

processes are very similar, SmoothQuant is applicable to

instruction-tuned LLMs as well.

Results on LLaMA models. LLaMA models are new

open languange models with superior performance (Touvron

et al., 2023). Through initial experiments, we find LLaMA

models generally have less severe activation outlier issues

compared to models like OPT and BLOOM. Nonetheless,

SmoothQuant still works quite well for LLaMA models. We

provide some initial results of LLaMA W8A8 quantization

in Table 6. SmoothQuant enables W8A8 quantization at a

negligible performance degradation.

5.3 Speedup and Memory Saving

In this section, we show the measured speedup and memory

saving of SmoothQuant-O3 integrated into PyTorch and

FasterTransformer.

Context-stage: PyTorch Implementation. We measure

the end-to-end latency of generating all hidden states for

a batch of 4 sentences in one pass, i.e., the context stage

latency. We record the (aggregated) peak GPU memory

usage in this process. We only compare SmoothQuant with

LLM.int8() because it is the only existing quantization

method that can preserve LLM accuracy at all scales. Due

to the lack of support for model parallelism in Hugging-

face, we only measure SmoothQuant’s performance on a

single GPU for the PyTorch implementation, so we choose

FP16 LLM.int8() SmoothQuant

0

100

200

300

400

128 256 512

223

112
63

371

237
190

296

153

84

0
7

13
20
26

128 256 512

13.612.912.6 14.313.312.8

25.924.924.4

0

175

350

525

700

128 256 512

458

228
136

655

388
276

660

343

190

0
15
30
45
60

128 256 512

30.429.328.9 31.630.029.1

59.057.356.6

La
te

nc
y

(m
s)

M
em

or
y

(G
B

)

OPT-13B OPT-30B

Figure 8: The PyTorch implementation of SmoothQuant-O3

achieves up to 1.51× speedup and 1.96× memory saving for

OPT models on a single NVIDIA A100-80GB GPU, while

LLM.int8() slows down the inference in most cases.

OPT-6.7B, OPT-13B, and OPT-30B for evaluation. In the

FasterTransformer library, SmoothQuant can seamlessly

work with Tensor Parallelism (Shoeybi et al., 2019) algo-

rithm, so we test SmoothQuant on OPT-13B, OPT-30B,

OPT-66B, and OPT-175B for both single and multi-GPU

benchmarks. All our experiments are conducted on NVIDIA

A100 80GB GPU servers.

In Figure 8, we show the inference latency and peak memory

usage based on the PyTorch implementation. SmoothQuant

is consistently faster than the FP16 baseline, getting a 1.51x

speedup on OPT-30B when the sequence length is 256. We

also see a trend that the larger the model, the more signif-

icant the acceleration. On the other hand, LLM.int8()
is almost always slower than the FP16 baseline, which is

due to the large overhead of the mixed-precision activa-

tion representation. In terms of memory, SmoothQuant and

LLM.int8() can all nearly halve the memory usage of

the FP16 model, while SmoothQuant saves slightly more

memory because it uses fully INT8 GEMMs.

Context-stage: FasterTransformer Implementation.
As shown in Figure 9 (top), compared to FasterTrans-

former’s FP16 implementation of OPT, SmoothQuant-O3

can further reduce the execution latency of OPT-13B and

OPT-30B by up to 1.56× when using a single GPU. This is

challenging since FasterTransformer is already more than

3× faster compared to the PyTorch implementation for

OPT-30B. Remarkably, for bigger models that have to be

distributed across multiple GPUs, SmoothQuant achieves

similar or even better latency using only half the number of

GPUs (1 GPU instead of 2 for OPT-66B, 4 GPUs instead

of 8 for OPT-175B). This could greatly lower the cost of

serving LLMs. The amount of memory needed when us-

ing SmoothQuant-O3 in FasterTransformer is reduced by a

factor of almost 2×, as shown on Figure 9 (bottom).

Decoding-stage. In Table 7, we show SmoothQuant can

significantly accelerate the autoregressive decoding stage

7

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models
La

te
nc

y
(m

s)

0
50

100
150
200

128 256 512 1024

125

63
3322

181

87
4428

FP16 SmoothQuant

0
100
200
300
400

128 256 512 1024

249

119
6543

380

186
98

59

0
125
250
375
500

128 256 512 1024

490

229
131

75

489

236
12279

FP16 (2 GPUs)
SmoothQuant (1 GPU)

0
225
450
675
900

128 256 512 1024

720

366
194122

848

432
228

139

FP16 (8 GPUs)
SmoothQuant (4 GPUs)

0

15

30

128 256 512 1024

19171615

30272727

0

35

70

128 256 512 1024

37343232

64616059

0

70

140

128 256 512 1024

74696766

139134131130

0

200

400

128 256 512 1024

200189184182

389378372369

M
em

or
y

(G
B

)

OPT-13B OPT-30B OPT-66B OPT-175B

Figure 9: Inference latency (top) and memory usage (bottom) of the FasterTransformer implementation on NVIDIA

A100-80GB GPUs. For smaller models, the latency can be significantly reduced with SmoothQuant-O3 by up to 1.56x

compared to FP16. For the bigger models (OPT-66B and 175B), we can achieve similar or even faster inference using only

half number of GPUs. Memory footprint is almost halved compared to FP16.

Table 7: SmoothQuant ’s performance in the decoding stage.

BS SeqLen
Latency (ms) Memory (GB)

FP16 Ours Speedup (↑) FP16 Ours Saving (↑)

OPT-30B (1 GPU)
1 512 422 314 1.35× 57 30 1.91×
1 1024 559 440 1.27× 58 31 1.87×
16 512 2488 1753 1.42× 69 44 1.59×
16 1024 OOM 3947 - OOM 61 -

OPT-175B (8 GPUs)
1 512 426 359 1.19× 44 23 1.87×
1 1024 571 475 1.20× 44 24 1.85×
16 512 2212 1628 1.36× 50 30 1.67×
16 1024 4133 3231 1.28× 56 37 1.52×

of LLMs. SmoothQuant constantly reduces the per-token

decoding latency compared to FP16 (up to 1.42x speedup).

Additionally, SmoothQuant halves the memory footprints

for LLM inference, enabling the deployment of LLMs at a

significantly lower cost.

Table 8: SmoothQuant can quantize MT-NLG 530B to

W8A8 with negligible accuracy loss.

LAMBADA HellaSwag PIQA WinoGrande Average

FP16 76.6% 62.1% 81.0% 72.9% 73.1%
INT8 77.2% 60.4% 80.7% 74.1% 73.1%

5.4 Scaling Up: 530B Model Within a Single Node

We can further scale up SmoothQuant beyond 500B-level

models, enabling efficient and accurate W8A8 quantization

of MT-NLG 530B (Smith et al., 2022). As shown in Table 8

and 9, SmoothQuant enables W8A8 quantization of the

530B model at a negligible accuracy loss. The reduced

model size allows us to serve the model using half number

of the GPUs (16 to 8) at a similar latency, enabling the

serving of a >500B model within a single node (8×A100

80GB GPUs).

Table 9: When serving MT-NLG 530B, SmoothQuant can

reduce the memory by half at a similar latency using half
number of GPUs, which allows serving the 530B model

within a single node.

SeqLen Prec. #GPUs Latency Memory

128 FP16 16 232ms 1040GB
INT8 8 253ms 527GB

256 FP16 16 451ms 1054GB
INT8 8 434ms 533GB

512 FP16 16 838ms 1068GB
INT8 8 839ms 545GB

1024 FP16 16 1707ms 1095GB
INT8 8 1689ms 570GB

5.5 Ablation Study
Quantization schemes. Table 10 shows the inference la-

tency of different quantization schemes based on our Py-

Torch implementation. We can see that the coarser the

quantization granularity (from O1 to O3), the lower the la-

tency. And static quantization can significantly accelerate

inference compared with dynamic quantization because we

no longer need to calculate the quantization step sizes at

runtime. SmoothQuant is faster than FP16 baseline under

all settings, while LLM.int8() is usually slower. We

recommend using a coarser scheme if the accuracy permits.

Migration strength. We need to find a suitable migration

strength α (see Equation 4) to balance the quantization

difficulty of weights and activations. We ablate the effect of

different α’s on OPT-175B with LAMBADA in Figure 10.

When α is too small (<0.4), the activations are hard to

quantize; when α is too large (>0.6), the weights will be

hard to quantize. Only when we choose α from the sweet

spot region (0.4-0.6) can we get small quantization errors

for both weights and activations, and maintain the model

performance after quantization.

8

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models

Table 10: GPU Latency (ms) of different quantization

schemes. The coarser the quantization scheme (from per-

token to per-tensor, dynamic to static, O1 to O3, defined

in Table 2), the lower the latency. SmoothQuant achieves

lower latency compared to FP16 under all settings, while

LLM.int8() is mostly slower. The batch size is 4.

Model OPT-13B OPT-30B

Sequence Length 256 512 256 512

FP16 152.6 296.3 343.0 659.9
LLM.int8() 237.1 371.5 387.9 654.9

SmoothQuant-O1 124.5 243.3 246.7 490.7
SmoothQuant-O2 120.5 235.1 240.2 478.3
SmoothQuant-O3 112.1 223.1 227.6 458.4

Figure 10: A suitable migration strength α (sweet spot)

makes both activations and weights easy to quantize. If the

α is too large, weights will be hard to quantize; if too small,

activations will be hard to quantize.

6 Related Work
Large language models (LLMs). Pre-trained language

models have achieved remarkable performance on various

benchmarks by scaling up. GPT-3 (Brown et al., 2020b) is

the first LLM beyond 100B parameters and achieves impres-

sive few-shot/zero-shot learning results. Later works (Rae

et al., 2021; Smith et al., 2022; Du et al., 2022; Chowdh-

ery et al., 2022) continue to push the frontier of scaling,

going beyond 500B parameters. However, as the language

model gets larger, serving such models for inference be-

comes expensive and challenging. In this work, we show

that our proposed method can quantize the three largest,

openly available LLMs: OPT-175B (Zhang et al., 2022),

BLOOM-176B (Scao et al., 2022) and GLM-130B (Zeng

et al., 2022), and even MT-NLG 530B (Smith et al., 2022)

to reduce the memory cost and accelerate inference.

Model quantization. Quantization is an effective method

for reducing the model size and accelerating inference. It

proves to be effective for various convolutional neural works

(CNNs) (Han et al., 2016; Jacob et al., 2018; Nagel et al.,

2019; Wang et al., 2019; Lin et al., 2020) and transform-

ers (Shen et al., 2020; Kim et al., 2021; Liu et al., 2021;

Wang et al., 2020; Bondarenko et al., 2021). Weight equal-

ization (Nagel et al., 2019) and channel splitting (Zhao et al.,

2019) reduce quantization error by suppressing the outliers

in weights. However, these techniques cannot address the

activation outliers, which are the major quantization bottle-

neck for LLMs (Dettmers et al., 2022).

Quantization of LLMs. GPTQ (Frantar et al., 2022)

applies quantization only to weights but not activations

(please find a short discussion in Appendix A). Zero-

Quant (Yao et al., 2022) and nuQmm (Park et al., 2022)

use a per-token and group-wise quantization scheme for

LLMs, which requires customized CUDA kernels. Their

largest evaluated models are 20B and 2.7B, respectively

and fail to maintain the performance of LLMs like OPT-

175B. LLM.int8() (Dettmers et al., 2022) uses mixed

INT8/FP16 decomposition to address the activation outliers.

However, such implementation leads to large latency over-

head, which can be even slower than FP16 inference. Outlier

Suppression (Wei et al., 2022) uses the non-scaling Layer-

Norm and token-wise clipping to deal with the activation

outliers. However, it only succeeds on small language mod-

els such as BERT (Devlin et al., 2019) and BART (Lewis

et al., 2019) and fails to maintain the accuracy for LLMs (Ta-

ble 4). Our algorithm preserves the performance of LLMs

(up to 176B, the largest open-source LLM we can find) with

an efficient per-tensor, static quantization scheme without

retraining, allowing us to use off-the-shelf INT8 GEMM to

achieve high hardware efficiency.

7 Conclusion
We propose SmoothQuant, an accurate and efficient post-

training quantization method to enable lossless 8-bit weight

and activation quantization for LLMs up to 530B parameters.

SmoothQuant enables the quantization for both weight and

activations for all GEMMs in the LLMs, which significantly

reduces the inference latency and memory usage compared

with the mixed-precision activation quantization baseline.

We integrate SmoothQuant into PyTorch and FasterTrans-

former, getting up to 1.56× inference acceleration and halv-

ing the memory footprint. SmoothQuant democratizes the

application of LLMs by offering a turnkey solution to reduce

the serving cost.

Acknowledgements
We thank MIT-IBM Watson AI Lab, MIT AI Hardware Pro-

gram, Amazon and MIT Science Hub, NVIDIA Academic

Partnership Award, Qualcomm Innovation Fellowship, Mi-

crosoft Turing Academic Program, and NSF for supporting

this research. We thank Haotian Tang, Aohan Zeng, Eric

Lin and Jilei Hou for the helpful discussions.

9

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models

References
Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.

Piqa: Reasoning about physical commonsense in natural

language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Bondarenko, Y., Nagel, M., and Blankevoort, T. Under-

standing and overcoming the challenges of efficient trans-

former quantization. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pp. 7947–7969, Online and Punta Cana, Domini-

can Republic, November 2021. Association for Compu-

tational Linguistics. URL https://aclanthology.org/2021.

emnlp-main.627.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,

Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu,

J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,

M., Gray, S., Chess, B., Clark, J., Berner, C., McCan-

dlish, S., Radford, A., Sutskever, I., and Amodei, D.

Language models are few-shot learners. In Larochelle,

H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.

(eds.), Advances in Neural Information Processing Sys-
tems, volume 33, pp. 1877–1901. Curran Associates, Inc.,

2020a. URL https://proceedings.neurips.cc/paper/2020/

file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

Askell, A., et al. Language models are few-shot learners.

Advances in neural information processing systems, 33:

1877–1901, 2020b.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,

G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,

Gehrmann, S., et al. Palm: Scaling language modeling

with pathways. arXiv preprint arXiv:2204.02311, 2022.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.

Llm.int8(): 8-bit matrix multiplication for transformers

at scale. arXiv preprint arXiv:2208.07339, 2022.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:

pre-training of deep bidirectional transformers for lan-

guage understanding. In NAACL-HLT 2019, pp. 4171–

4186. Association for Computational Linguistics, 2019.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu,

Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., et al. Glam:

Efficient scaling of language models with mixture-of-

experts. In International Conference on Machine Learn-
ing, pp. 5547–5569. PMLR, 2022.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:

Accurate post-training quantization for generative pre-

trained transformers. arXiv preprint arXiv:2210.17323,

2022.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,

Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,

et al. The pile: An 800gb dataset of diverse text for

language modeling. arXiv preprint arXiv:2101.00027,

2020.

Han, S., Mao, H., and Dally, W. J. Deep Compression: Com-

pressing Deep Neural Networks with Pruning, Trained

Quantization and Huffman Coding. In ICLR, 2016.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,

Song, D., and Steinhardt, J. Measuring massive multitask

language understanding. CoRR, abs/2009.03300, 2020.

URL https://arxiv.org/abs/2009.03300.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,

A., Adam, H., and Kalenichenko, D. Quantization

and training of neural networks for efficient integer-

arithmetic-only inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,

pp. 2704–2713, 2018.

Kim, S., Gholami, A., Yao, Z., Mahoney, M. W., and

Keutzer, K. I-bert: Integer-only bert quantization. In

International conference on machine learning, pp. 5506–

5518. PMLR, 2021.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-

hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L.

Bart: Denoising sequence-to-sequence pre-training for

natural language generation, translation, and comprehen-

sion. arXiv preprint arXiv:1910.13461, 2019.

Lin, J., Chen, W.-M., Lin, Y., Gan, C., Han, S., et al. Mcunet:

Tiny deep learning on iot devices. Advances in Neural
Information Processing Systems, 33:11711–11722, 2020.

Liu, Z., Wang, Y., Han, K., Zhang, W., Ma, S., and Gao,

W. Post-training quantization for vision transformer. Ad-
vances in Neural Information Processing Systems, 34:

28092–28103, 2021.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer

sentinel mixture models, 2016.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a

suit of armor conduct electricity? a new dataset for open

book question answering. In EMNLP, 2018.

Nagel, M., Baalen, M. v., Blankevoort, T., and Welling,

M. Data-free quantization through weight equalization

and bias correction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1325–

1334, 2019.

10

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, N. Q.,

Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and

Fernández, R. The LAMBADA dataset: Word prediction

requiring a broad discourse context. In Proceedings of
the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 1525–

1534, Berlin, Germany, August 2016. Association for

Computational Linguistics. doi: 10.18653/v1/P16-1144.

URL https://aclanthology.org/P16-1144.

Park, G., Park, B., Kwon, S. J., Kim, B., Lee, Y., and Lee,

D. nuqmm: Quantized matmul for efficient inference of

large-scale generative language models. arXiv preprint
arXiv:2206.09557, 2022.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury,

J., Levskaya, A., Heek, J., Xiao, K., Agrawal, S., and

Dean, J. Efficiently scaling transformer inference. arXiv
preprint arXiv:2211.05102, 2022.

Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann,

J., Song, F., Aslanides, J., Henderson, S., Ring, R.,

Young, S., et al. Scaling language models: Methods,

analysis & insights from training gopher. arXiv preprint
arXiv:2112.11446, 2021.

Roemmele, M., Bejan, C. A., and Gordon, A. S. Choice

of plausible alternatives: An evaluation of commonsense

causal reasoning. In Logical Formalizations of Common-
sense Reasoning, Papers from the 2011 AAAI Spring Sym-
posium, Technical Report SS-11-06, Stanford, California,
USA, March 21-23, 2011. AAAI, 2011. URL http://www.

aaai.org/ocs/index.php/SSS/SSS11/paper/view/2418.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.

Winogrande: An adversarial winograd schema challenge

at scale. arXiv preprint arXiv:1907.10641, 2019.

Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow,

D., Castagné, R., Luccioni, A. S., Yvon, F., Gallé, M.,

et al. Bloom: A 176b-parameter open-access multilingual

language model. arXiv preprint arXiv:2211.05100, 2022.

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A.,

Mahoney, M. W., and Keutzer, K. Q-bert: Hessian based

ultra low precision quantization of bert. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-

ume 34, pp. 8815–8821, 2020.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,

J., and Catanzaro, B. Megatron-lm: Training multi-

billion parameter language models using model par-

allelism. CoRR, abs/1909.08053, 2019. URL http:

//arxiv.org/abs/1909.08053.

Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhan-

dari, S., Casper, J., Liu, Z., Prabhumoye, S., Zerveas, G.,

Korthikanti, V., et al. Using deepspeed and megatron to

train megatron-turing nlg 530b, a large-scale generative

language model. arXiv preprint arXiv:2201.11990, 2022.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,

M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,

Azhar, F., et al. Llama: Open and efficient foundation lan-

guage models. arXiv preprint arXiv:2302.13971, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-

tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and

Bowman, S. R. GLUE: A multi-task benchmark and anal-

ysis platform for natural language understanding. CoRR,

abs/1804.07461, 2018. URL http://arxiv.org/abs/1804.

07461.

Wang, H., Zhang, Z., and Han, S. Spatten: Efficient

sparse attention architecture with cascade token and

head pruning. CoRR, abs/2012.09852, 2020. URL

https://arxiv.org/abs/2012.09852.

Wang, K., Liu, Z., Lin, Y., Lin, J., and Han, S. HAQ:

Hardware-Aware Automated Quantization with Mixed

Precision. In CVPR, 2019.

Wei, X., Zhang, Y., Zhang, X., Gong, R., Zhang, S., Zhang,

Q., Yu, F., and Liu, X. Outlier suppression: Pushing the

limit of low-bit transformer language models, 2022. URL

https://arxiv.org/abs/2209.13325.

Williams, A., Nangia, N., and Bowman, S. A broad-

coverage challenge corpus for sentence understanding

through inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pp. 1112–1122. As-

sociation for Computational Linguistics, 2018. URL

http://aclweb.org/anthology/N18-1101.

Yao, Z., Aminabadi, R. Y., Zhang, M., Wu, X., Li, C., and

He, Y. Zeroquant: Efficient and affordable post-training

quantization for large-scale transformers, 2022. URL

https://arxiv.org/abs/2206.01861.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-

G. Orca: A distributed serving system for {Transformer-

Based} generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pp. 521–538, 2022.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,

Y. Hellaswag: Can a machine really finish your sentence?

CoRR, abs/1905.07830, 2019. URL http://arxiv.org/abs/

1905.07830.

11

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models

Zeng, A., Liu, X., Du, Z., Wang, Z., Lai, H., Ding, M.,

Yang, Z., Xu, Y., Zheng, W., Xia, X., et al. Glm-130b:

An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,

Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., Mi-

haylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D.,

Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,

L. Opt: Open pre-trained transformer language models,

2022. URL https://arxiv.org/abs/2205.01068.

Zhao, R., Hu, Y., Dotzel, J., De Sa, C., and Zhang, Z. Im-

proving neural network quantization without retraining

using outlier channel splitting. In International confer-
ence on machine learning, pp. 7543–7552. PMLR, 2019.

12

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models

A Discussion on Weight-Only Quantization
In this work, we study W8A8 quantization so that we can

utilize INT8 GEMM kernels to increase the throughput and

accelerate inference. There is another line of work that

only quantizes the weight of LLMs (e.g., GPTQ (Frantar

et al., 2022)). It converts the quantized weights to FP16

on the fly for matmul during inference and can also lead to

speed up due to the reduced data loading, especially for the

generation stage with batch size 1.

We mainly compare our method with existing work on

weight-activation quantization (i.e., W8A8) like (Dettmers

et al., 2022; Yao et al., 2022; Wei et al., 2022) since they are

under the same setting. Here we would like to give a short

discussion about the weight-only quantization methods in

LLM settings:

1. Firstly, we were trying to compare our method with

GPTQ (Frantar et al., 2022) but found it difficult due

to different implementations. GPTQ’s low-bit kenerl ¶

only supports the generation stage with batch size 1

(i.e., only processing a single token at a time), and can-

not support the context stage (widely used in different

downstream tasks and chatbot) or batch-based setting.

Furthermore, its low-bit kernel optimization only tar-

gets the OPT-175B model (as stated in the README).

At the same time, our work utilizes FasterTransformer

for serving large models, which may lead to an unfair

advantage if we make a direct comparison.

2. GPTQ may perform better at handling a small number

of input tokens (1 in its experiments) since the process

is highly memory-bounded. In contrast, SmoothQuant

may serve better with a batching setting or for the con-

text stage (i.e., when the number of processed tokens

is more significant). Nonetheless, some work shows

that in production, we can improve the throughput of

serving GPT models by 37× at similar latency with

advanced batching (Yu et al., 2022). We believe in

production, batching will be the future standard, and

SmoothQuant will bring further improvement, even for

the generation stage.

3. Applications like chatbots need to handle a long con-

text length and potentially run under a batch setting.

Due to the two factors, the memory size of the KV

cache can no longer be ignored (as shown in (Pope

et al., 2022), the KV cache totals 3TB given batch size

512 and context length 2048, which is 3× larger than

the model weights). In this case, quantization of activa-

tion can also help reduce the memory cost from storing

the KV cache.

¶https://github.com/IST-DASLab/gptq

4. Finally, we think the two settings are somewhat orthog-

onal. We believe we can integrate GPTQ’s method for

a better weight quantization and potentially achieve

W4A4 quantization, which will lead to even better

hardware efficiency (INT4 instructions are supported

on NVIDIA’s Hopper GPU architecture). We leave this

exploration to future work.

13

