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Abstract

We propose an algorithm for non-stationary ker-
nel bandits that does not require prior knowledge
of the degree of non-stationarity. The algorithm
follows randomized strategies obtained by solving
optimization problems that balance exploration
and exploitation. It adapts to non-stationarity by
restarting when a change in the reward function
is detected. Our algorithm enjoys a tighter dy-
namic regret bound than previous work on non-
stationary kernel bandits. Moreover, when ap-
plied to non-stationary linear bandits by using a
linear kernel, our algorithm is nearly minimax
optimal, solving an open problem in the non-
stationary linear bandit literature. We extend our
algorithm to use a neural network for dynami-
cally adapting the feature mapping to observed
data. We prove a dynamic regret bound of the
extension using the neural tangent kernel theory.
We demonstrate empirically that our algorithm
and the extension can adapt to varying degrees of
non-stationarity.

1 INTRODUCTION

The linear bandit (LB) problem (Dani et al. 2008) and the
kernel bandit (KB) problem (Srinivas et al. 2010) are im-
portant paradigms for sequential decision making under
uncertainty. They extend the multi-armed bandit (MAB)
problem (Robbins 1952) by modeling the reward function
with the side information of each arm provided as a feature
vector. LB assumes the reward function is linear. KB ex-
tends LB to model non-linearity by assuming the reward
function lies in the RKHS induced by a kernel.

A recent line of work studies the non-stationary variants of
LB and KB where the reward functions can vary over time

Proceedings of the 26™ International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

Yuhang Li
University of Michigan

Ambuj Tewari
University of Michigan

subject to two main types of non-stationarity budgets: the
number of changes and the total variation in the sequence
of reward functions. A common algorithm design principle
for adapting to non-stationarity is the principle of forgetting
the past. It has been applied to the non-stationary MAB
to design nearly minimax optimal algorithms (Garivier et
al. 2011; Besbes et al. 2014). Similarly, the principle has
been applied to the non-stationary LB (Cheung et al. 2019;
Russac et al. 2019; Zhao et al. 2020; Kim et al. 2020) and
the non-stationary KB (Zhou et al. 2021; Deng et al. 2022).

Recently, Zhao et al. (2021) found an error in a key technical
lemma by Cheung et al. (2019) that affects the concentra-
tion bound of regression-based reward estimates under non-
stationarity. Unfortunately, the error is inherited by Russac
et al. (2019), Zhao et al. (2020) and Kim et al. (2020). The
corrected regret bounds of the affected papers are worse
than what were originally reported. Since the correction,
finding a nearly minimax optimal algorithm for the non-
stationary LB setting has been an open problem. The same
error affected the work on non-stationary KB by Zhou et al.
(2021) and they had to correct their initially reported regret
bound to a worse one.

Algorithms using the principle of forgetting require the
knowledge of the non-stationarity budgets. For example,
sliding window algorithms (Garivier et al. 2011; Cheung et
al. 2019; Zhou et al. 2021) that forget the past by discarding
data older than certain time window require the knowledge
of the non-stationarity budgets to optimally tune the size
of the window. Since having a prior knowledge of the non-
stationarity budgets may not be realistic in practical settings,
researchers have developed change detection based algo-
rithms that do not require the knowledge of non-stationarity
budgets. A seminal paper by Auer et al. (2018) demonstrates
a change detection based algorithm for the non-stationary
two-armed bandit setting. Their design principle has been
applied to MAB (Auer et al. 2019) and the contextual bandit
setting (Chen et al. 2019). More recently, Wei et al. (2021)
proposed a reduction called MASTER that equips an algo-
rithm designed for a stationary environment with change
detection subroutines to adapt to non-stationarity without the
knowledge of non-stationarity budgets. They provided a re-
duction of the OFUL algorithm (Abbasi-yadkori et al. 2011)
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and claimed near-minimax optimality for non-stationary lin-
ear bandits. However, due to the aforementioned error, they
had to correct their regret bound to a suboptimal one.

In this paper, we design an algorithm that sidesteps the
error and recover the tighter dynamic regret bounds for non-
stationary LB and KB that were once thought to be achieved.
We make the following contributions.

* We design a novel optimization-based algorithm OPKB
for stationary kernel bandits that uses inverse propensity
score based reward estimates that sidestep the aforemen-
tioned error specific to regression based reward estimates.

* We design an algorithm ADA-OPKB that adapts OPKB
to non-stationary settings using change detection. ADA-
OPKB does not require the knowledge of the non-
stationarity budgets and enjoys a dynamic regret bound
tighter than previous work on non-stationary KB.

* We show ADA-OPKB is nearly minimax optimal in the
non-stationary linear bandit setting, solving an open prob-
lem in the non-stationary linear bandit literature.

* We provide an extension of ADA-OPKB called ADA-
OPNN that trains a neural network to dynamically adapt
the feature mapping to observed data. We show a dynamic
regret bound for ADA-OPNN when the width of the net-
work is sufficiently large using the neural tangent kernel
theory (Jacot et al. 2018).

1.1 Related Work

Non-stationary Linear/Kernel Bandits Common ap-
proaches for non-stationary bandits include restarting pe-
riodically, using recent data within fixed time window
(sliding-window) and exponentially decaying past obser-
vations (discounting). These approaches require the knowl-
edge of non-stationarity. Zhou et al. (2021) analyze restart-
ing and sliding-window approaches for adapting a UCB-
based algorithm for kernel bandits. Deng et al. (2022) ana-
lyze a discounting approach for kernel bandits. Russac et al.
(2019), Cheung et al. (2019) and Zhao et al. (2020) pro-
pose discounting, sliding-window and restarting approaches
for adapting a UCB-based algorithm for linear bandits re-
spectively. Cheung et al. (2022) discuss restarting adversar-
ial linear bandit algorithm. For the non-stationary setting
where the learner does not have the knowledge of the non-
stationarity, Cheung et al. (2019), Zhao et al. (2020) and
Cheung et al. (2022) discuss bandit-over-bandit (BOB) re-
duction. Wei et al. (2021) propose a change detection based
reduction (MASTER) and show a reduction of a UCB-based
algorithm for linear bandits.

Optimization-based Algorithms First proposed for con-
textual bandits optimization-based algorithms solve opti-
mization problems to find randomized strategies that balance

exploration and exploitation (Dudik et al. 2011; Agarwal
et al. 2014). The idea is adapted to linear bandits (Lattimore
et al. 2017; Hao et al. 2020; Lee et al. 2021). Our paper is
the first to apply the approach to kernel bandits.

2 PROBLEM STATEMENT

We consider a bandit problem where the learner and the
nature interact sequentially for 7' time steps. At each time
t, the learner plays an action z; chosen from a finite set
of actions X = {ay,...,ay} C RZ Then the nature
reveals a noisy reward y; = r¢(x¢) + n; where r, : X — R
is an unknown reward function at time ¢ and {n;}._, are
independent zero-mean noises with a bound || < S. !

Following the kernel bandit setting commonly used in the
literature, we make the following regularity assumption on
the reward functions.

Assumption A (Kernel bandit). The reward functions r
live in the RKHS H induced by a continuous positive semi-
definite kernel k : X x X — R with k(z,x) < 1 for all
x € X. Their norms satisfy ||r¢||» < B forallt =1,...,T.
The kernel k and the bounds S, B are known to the learner.

Note that Assumption A implies |r¢(z)| = (r¢, k(- x)) 3y <
l7ell2||k (-, z)||pe < Bforallt =1,...,T and z € X by
the reproducing property of RKHS and Cauchy-Schwarz.
For the rest of the paper, when making Assumption A, we
assume that the learner scales the problem (by S + B) so
that |r;(x)| < 1 and |y¢(x)| < 1 for simpler exposition.

Before the learner interacts with the nature, the nature
chooses a sequence of reward functions {7 }7_, subject to
two types of non-stationarity budgets simultaneously. The
first budget V' limits the total variation of the sequence of
reward functions: ZtT;ll lr¢+1 — 7¢|loo < V. The second
budget Ly limits the number of changes in the sequence of
reward functions: 1 + ZtT;ll Kripr #re} < L.

The learner aims to minimize the dynamic regret REGy =
ZtT:l(rt(xt*) — r¢(x;)) where 7 = argmax, y r(z) is
the best action at time ¢. Note that REGt is the cumula-
tive expected regret against the optimal strategy with full
knowledge of the sequence of reward functions.

2.1 Preliminaries and Notations

Feature Mapping By Mercer’s theorem, given a contin-
uous positive semi-definite kernel £ : X x X — R, there
exists a feature mapping v : X — (2 with k(x,2') =
(W(z),y(z")) for all z,2" € X. We say feature map-
pings 1 and @9 are equivalent if {pi(x),p1(z’)) =

'The boundedness noise assumption is for making use of the
Freedman-style inequality (Lemma D.2). We can relax this as-
sumption to a subgaussian noise assumption by modifying the
Freedman-style inequality using a truncation argument. See Ap-
pendix D.7 for detail.
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Table 1: Regret Bound Comparison of Algorithms for Non-stationary Kernel/Linear Bandits

. i inO Required
Setting Algorithm Regret bound in O(-) Kouledge
T
Kernel R/SW-GPUCB (Zhou et al. 2021) v T3 (1+ VT)% -
Bandit WGPUCB (Deng et al. 2022) AETI(1+ Vi)t 2 Vr

GPUCB+MASTER (Appendix E)

min{yrv/TLr, VTT%VF + VT\/T}

ADA-OPKB (Ours)

min{ydyrTLz, d5v3 T3V, + /Ao T}

D-LinUCB (Russac et al. 2019)

dETV} +dVT Vi

Linear SW-UCB+BOB (Cheung et al. 2019)

dETAVE 4+ dVT

Bandit RestartUCB+BOB (Zhao et al. 2020)

dET5VE +dyT

Restart-Adv (Cheung et al. 2022)

ATV +dVT Vr

Restart-Adv+BOB (Cheung et al. 2022)

BTV + d3TH

LinUCB+MASTER (Wei et al. 2021)

min{dyTLr,dT3V; + dvT}

ADA-OPKB (Ours)

min{dyTLz,d3 T3V, +dvT}

(p2(x), p2(x')) for all z,2’ € X. Given a feature map-
ping v, we can always find an equivalent N-dimensional
feature mapping ¢ : X — R™. For example, we can de-
compose the kernel matrix K = {(y(a;), v (a;))}i je[n]
into K = ®®7 using the Cholesky decomposition where
® € RV*N then take p(a;) = ®Te; foralli=1,...,N.

Maximum Information Gain The maximum informa-
tion gain (Srinivas et al. 2010) of the RKHS induced by a
kernel k is defined as the maximum mutual information be-
tween observations { f(z;) + ¢ }1_, with ¢, ~ N (0, 1) and
f(-) sampled from a Gaussian process GP (0,0 1k(-,-)).
It is a widely used dimensionality measure of RKHS. As
done by Camilleri et al. (2021), we generalize the orig-
inal definition to support 1" fractional observations, and
define v, 7 = maxpep, logdet S,(T'P/o,1) where P4
is the set of probability distributions on A, S,(Q,\) =
>wer Q@)o(x)p(z)” 4+ Al and ¢ is an N-dimensional
feature mapping of k. It can be shown that for equivalent
feature mappings 1 and @2 of k, we have v,, 7 = Ve, 1
(see Appendix I). Hence, 7, 7 is fully determined by the
underlying kernel k£ and does not depend on the particular
choice of the feature mapping ¢ induced by the kernel. We
suppress the subscript ¢ and write S(-, -) and yr when clear
from the context. For the connection between the origi-
nal definition of the maximum information gain and our
definition, see Appendix C.

Other Notations We use [n] to denote {1,...,n}. Fora
semi-positive definite matrix M and a vector x, we write
|z||3; = T Mx. We denote by E,[-] and Var,[] the condi-
tional expectation and variance respectively given history
up to time ¢ — 1. For an interval Z = [s, t], we define V7 =

Zf—_:ls 7741 = 7rlloo and Lz = 1 + Zj—_:ls {rri1 # 77}

3 MAIN RESULT

The main result of this paper provides a worst-case bound
on the dynamic regret of our novel algorithm called ADA-
OPKB for the non-stationary kernel bandit setting.

Theorem 3.1. Under Assumption A, without the knowledge
of non-stationarity budgets Vr and L, the dynamic regret
of ADA-OPKB is bounded, with high probability, by

O(min{\/yrLrTlog N,
(vr Vi log N)V3T?% 4 \/37Tlog N}).

When the action set X C R? is an infinite bounded set,
we can take a hypercube of side length R that contains X
and discretize it into O((Rd/e)?) hypercubes as done by
Chowdhury et al. (2017) where € is the maximum error
of expected reward from discretization. Discretizing the
action set with e = 1/7" and running ADA-OPKB on the
discretized action set lead to a dynamic regret bound of
O(min{v/dyr LT, (dyp V) 3T?/3 4\ /dyrT}). We use
this bound to compare with previous work on the setting
with an infinite action set.

We can reduce the kernel bandit setting to the linear ban-
dit setting by using the linear kernel k(z,z') = (z,2’).
As shown in Lemma C.3, the maximum information gain
of the linear space is yr = O(dlogT) and the dynamic
regret bound of ADA-OPKB that uses the linear kernel
becomes O(min{\/dLrTlog N, (dVrlog N)*/3T2/3 4
VdL1Tlog N}) for the finite action set. For the infinite ac-
tion set, we get O(min{dy/T7 T, d*/3V,}/*T2/3 1+ dV'T})
using the discretization technique.

’The dimensionality measure 7 used in Deng et al. (2022) is
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Relation to Previous Work Table 1 compares the regret
bound of our work to the corrected regret bounds of pre-
vious works. The regret bound of ADA-OPKB for non-
stationary kernel bandits is tighter than previous work. Ap-
plying to non-stationary linear bandits by using the lin-
ear kernel, ADA-OPKB nearly achieves the lower bound
Q(d§ VT%Tg) (Cheung et al. 2019), solving an open prob-
lem of finding a nearly minimax optimal algorithm for
non-stationary linear bandits. The best regret bound be-
fore our work is by Cheung et al. (2022) who discuss that
an algorithm for adversarial linear bandits, e.g. Exp3 algo-
rithm (Lattimore et al. 2020), equipped with periodic restarts
(Restart-Adv) achieves O(d3 T3 VT% ). However, it requires
the knowledge of V7 to tune the frequency of restarts. They
also discuss a bandit-over-bandit reduction of Restart-Adv
(Restart-Adv+BOB) that does not require the knowledge
of Vr. However, the reduction suffers an additional regret
term of d2T'% .

The dependence of v in the regret bound for kernel bandits
is crucial since yr can grow with 7T'. For example, vy for
the Matérn kernel with smoothness parameter v scales as
(:)(Tﬁid) (Vakili et al. 2021b). Previous works on non-
stationary kernel bandits (Zhou et al. 2021; Deng et al.
2022) show a regret bound of order fy;/ 8T73/4, which may
not be sublinear in 7". For example, it is not sublinear in T’
for Matérn kernel when v/d < 5/4. Our improved regret
bound for ADA-OPKB is of order min{~3/*T2/3, \/77T?},
which is sublinear in 7" as long as 7 is sublinear in T
As shown by Vakili et al. (2021b), v is sublinear for a
class of kernels of which eigenvalues decay polynomially
or exponentially, which includes the Matérn kernel and the
squared exponential kernel.

4 ALGORITHMS AND ANALYSES

We first study stationary kernel bandits where the reward
functions do not vary over time.

4.1 OPKB: Optimization-based Algorithm for
Stationary Kernel Bandits

Central to the OPKB algorithm is the optimization problem
(OP) designed to return a randomized strategy that balances
exploration and exploitation. OP uses an empirical subop-
timality gap of each action computed based on the inverse
propensity score (IPS) estimator (Camilleri et al. 2021).

Definition 4.1. The inverse propensity score (IPS) estimator
Sor the expected reward r(x) with respect to p using the
observed reward y; is defined as

Roi(@) = p(@)" S (P, 0 /T) " p(ar)ye

related to y7 but they use a discounted kernel matrix computed
with an approximate feature mapping for computing 7.

-

(8

for all x € X where P, is the randomized strategy
used at time t. Averaging over an interval I, we define
Ry z(z) = ﬁ > ez Ro,t(x). The empirical suboptimal-
ity gap of action x from observations in 1 is defined as
A%I(l‘) = maXyex RLP,I('I/) — RLP,I(I).

OP minimizes over P € Py the objective function
~ 2

> P(z)A(x) - 3 log det S, (P,0/T) (1)

zeX

where the first term is the weighted average of the empirical
suboptimality gaps that encourages exploitation and the
second term is a regularizer that encourages exploration.
That the second term encourages exploration can be seen by
the property of the optimal design defined as follows.

Definition 4.2. Given a set of actions A C X and a
feature mapping ¢ : X — RP, we define n,(A) =
argmaxpep, logdet S, (P,o/T) and call it the optimal
design on A with respect to .

The optimal design is a generalization of the Bayesian
D-optimal design for linear models that maximizes
logdet(}", c 4 P(z)zz” + R), where R is some regular-
izer. The Bayesian D-optimal design is one of the explo-
ration strategies used in the Bayesian experimental design
literature (Chaloner et al. 1995). As shown in the follow-
ing lemma, by playing our definition of the optimal design
7,(A), we can uniformly bound the variance of the IPS
estimators over all actions in A. See Appendix D.2 for
proof.

Lemma 4.3. Consider an optimal design 7, (A) with re-
spect to a feature mapping ¢ on a set of actions A C X.
If we play an action sampled from ©,(A) at time t and
observe vy, then for all x € X, we have

Var(Ry:(z)) < “(P(I)“%w(ﬂw(A))g/T)—l < Ve, T

The full OP algorithm is presented below. Note that due
to the concavity of logdet(-), the optimization problem
used by OP and the optimal design can be solved efficiently,
for example, by using the interior-point method in Vanden-
berghe et al. (1998).

Algorithm 1: OP: Optimization Problem

Input: ¢, A = {A(@)}ex, . B, T

Find a minimizer P* € P of (1).

Find A+ {z € X: A(x) < 2av,,1/B8}.
Return: The mixed strategy @ = P* + 17, (A)

The parameter 3 controls the balance between exploration
and exploitation. As stated in Lemma 4.4, the greater tge 3,
the smaller the expected empirical regret ), Q(z)A(x)
and the greater the variance bound. See Appendix D.3 for
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the proof. Note that OP mixes the minimizer P* with the
optimal design on the set A computed in Line 2. This step
is required to get the bound (4), which is the key to bound
the bias of the reward estimator for the regret analysis.

Lemma 4.4. The distribution Q returned by the algorithm
OP(p, A, o, B, T) satisfies

~ 1
> Q@A) < (”‘B)WT, 2)
reX
H(p(m)ll%q,(Q,a/T)*l < BA(z) +2v,r, VT EX,  (3)
23(30)2
2 LAl L, Ve X. (4
le(@)ls, (@,0/m-1 < oot + 27,1, VT € 4)

Now, we present the OPKB algorithm (Algorithm 2). OPKB
takes a feature mapping ¢ as an input. Assuming the
knowledge of the kernel k corresponding to the RKHS in
which the reward function lies, we use any feature mapping
¢ : X — RY equivalent to the feature mapping ¢ : X — £2
corresponding the kernel. The choice of ¢ among the fea-
ture mappings equivalent to ) does not affect the algorithm
and the analysis. See Appendix I for details. OPKB runs
in blocks of doubling sizes. In the first block, it follows
the optimal design for E time steps. Before starting a new
block j, it computes the empirical suboptimality gaps using
all past history, then runs OP to find the strategy Q) and
mixes it with the optimal design. The mixed strategy PU) is
run in block j. Every block, OPKB increases the parameter
{3 by a factor of v/2 when calling OP to increase the degree
of exploitation.

Algorithm 2: OPKB
Input: feature map ¢, horizon 7', confidence 6 € (0, 1).
Definition: 11; = ¢1277/2, E = [c37, 1 log(CoN/6)],
Bj = c2v, 122, a = c40/log(CoN/6)
Initialize: ¢ < 1, P(O) «+ 7, (X)
for j =0,1,... do
Set block B(j) « [t,t + 2/ E — 1] and cumulative
block C(j) + UL_,B(k).
if 7 > 1 then
Compute empirical gap A + {A%C(jq) () }zex-
Find strategy QU) < OP(p, 37 o, B;,T).
Set PU) (1 — 11;)QY) + 1y (X).
while ¢ € B(j) do
L Play x; ~ P(j); receive y,; increment ¢ <— ¢ + 1.

4.2 Analysis of OPKB

For the analysis of OPKB, we use the following concen-
tration bounds for the reward estimate R, ¢(,,,) () and the
gap estimate ﬁ%c(m) shown under a more general setting
of non-stationary kernel bandits. The proof is based on a

Freedman-style inequality on the martingale difference se-

A~

quence {Ry () — E¢[Ry t(2)] }ec(j)- See Appendix D.5
for the full proof.

Lemma 4.5. With probability at least 1 — 0, when running
the OPKB algorithm, we have for all block indices j =
0,1,... and actions x € X that

CoHty
4
o)
(©)
™)

where C(j) is the interval from time 1 to the end of block
J, ¢o is a universal constant, Rz(x) = % Yoz Te(x) is

R 1
Ry (@) =R ()] < §AC(j)(ﬂf) + Ve +

Aciy () < 284 c(j) (@) + 4Ve ) + copy

Ag (@) < 28¢5 () + 4Ve ) + copy

the average reward in T and Az () = max, cx Rz(x') —
Rz(z).

Remark 1. Concentration bounds for regression-based re-
ward estimates for the non-stationary LB and KB given by
Lemma 2 in Zhao et al. (2021) and Lemma 1 in Zhou et al.
(2021) are analogous to (5). However, their bounds have
an additional factor of v/d and /Y1 Tespectively for the
term V¢ (5, leading to suboptimal regret bounds. Their con-
centration bounds were believed to have a constant factor
for the term Vc( ) but they had to be corrected due to an
error found by Zhao et al. (2021). The error is specific to
regression-based reward estimates. See Zhao et al. (2021)
for details. Our algorithm sidesteps the error by using IPS
reward estimates instead of regression-based reward esti-
mates. The main motivation for using randomized strategies
in our algorithm is to use IPS reward estimates, which can
only be constructed when randomized strategies are used.

Remark 2. Consider the stationary setting where V¢ ;) = 0.
The expected one step regret when following P is

ZPO)(L’?)ACU—U@)

reX

< QU @)A1y (@) + 25 Y mo(x)

reX reX
<23 QU(@)A, c(-1)(x) + O) < O(s;)
reX

where 7, is the optimal design on X, the first inequality
uses Ac(j—1) < 2 and the last inequality uses Lemma 4.4.

By the remark above, we can show the following theorem.
Theorem 4.6. Under Assumption A with stationary reward
Sunctions r4() = r(-) for all t € [T), the dynamic regret
bound of OPKB using a feature mapping induced by the
kernel k is bounded with high probability by

ReGr < O (/3 Tlog V).

Proof sketch. By Remark 2, the expected regret of the block
B(j) is O(|B(j)|vV2=7) = O(EV/27). Summing over all



An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

blocks gives the bound O(+/y7rT log N) on the expected
total regret. See Appendix D for a full proof. |

Our regret bound for OPKB is order-optimal (Salgia et al.
2021) and matches work by Salgia et al. (2021), Camilleri
et al. (2021), Li et al. (2022), and Valko et al. (2013). It is
an improvement over Srinivas et al. (2010) and Chowdhury
et al. (2017).

4.3 ADA-OPKB: Adapting OPKB to Non-Stationarity

In this section, we propose an algorithm called ADA-OPKB
for the non-stationary kernel bandit setting that does not
require the knowledge of the non-stationarity budgets.

Remark 3. Before our paper, the most natural attempt for
designing an algorithm for non-stationary KB is to use the
MASTER reduction (Wei et al. 2021) on GPUCB (Chowd-
hury et al. 2017), a UCB-based algorithm for stationary
kernel bandits. This is because the MASTER reduction
most naturally works for a UCB-based base algorithm. Also,
the required analysis of GPUCB under non-stationary en-
vironment is available in the literature (Zhou et al. 2021).
However, as shown in Appendix E, the reduction of GPUCB
gives worse dynamic regret bound compared to ADA-OPKB
due to the suboptimal concentration bound of regression
based reward estimates.

ADA-OPKB adapts OPKB to non-stationarity by restarting
upon detecting a significant change in reward functions. The
key is to use past strategies as change detectors. Lemma 4.5
suggests that the strategy PU) can detect changes in subop-
timality gaps greater than ~ /27 after running for ~ 27
time steps. ADA-OPKB replays older strategies with small
indices to detect large changes fast and more recent strate-
gies to detect small changes after running for longer time
intervals. Algorithm 3 shows the full algorithm. Highlighted
lines indicate the difference from OPKB.

Before starting a new block j, ADA-OPKB calls
SCHEDULE (Algorithm 4), similar to the scheduler in Wei
et al. (2021)), for determining when to use which of the
strategies P(®), ..., PU)_ The procedure generates a set
of replay intervals denoted by (m,Z) where m indicates
the strategy index and Z indicates the time interval sched-
uled for playing the strategy P(™). A replay schedule of
index m has length 2™ E and there are 27~ slots in block
7 available to be scheduled. For each slot, the algorithm
randomly schedule a replay of index m with probability
v/2m=3, When multiple replay intervals are scheduled at a
given time ¢, the algorithm selects the one with the smallest
index. The strategy used at time ¢ is denoted by m;. Upon
completion of a replay interval Z, the change detection test
(8) is run. A restart is triggered if the test detects a signif-
icant change in reward functions. The test is based on the
comparison of the empirical gap A, 7 and A, ¢ (i) where
C(k) is any cumulative block prior to Z.

o=

Algorithm 3: ADA-OPKB: ADAptive Optimization Prob-
lem based Kernel Bandit Algorithm

Input: feature map ¢, horizon T, confidence 6 € (0, 1).
Definition: 11; = ¢1277/2, 3; = ca7, 1727/2,
E = [e3y,,710g(N/d)], o = ca0/log(N/9)
Initialize: ¢ < 1, epoch index i < 1, Q(®) «+ o (X)
for j =0,1,... do
Set B(j) « [t,t +2/E — 1] and C(j) + Ul _B(k).
if 7 > 1 then
Compute A < {Ay cj—1)(T) }eex-
Find strategy QU) < OP(p, 37 o, B;,T).
| Set PY) ¢ (1 — i) QUm) + pujmy (X).
Generate replay schedule S + SCHEDULE(Z, j).
while ¢t € B(j) do
my < min{m : (m,Z) € S with t € } ;
// smallest index of scheduled
intervals
Play z; ~ P(m): receive y¢; increment ¢ <— t + 1.

If Test triggers a restart, increment 7; go to Line 1.

Test: Trigger a restart if for any (m,Z) € S with Z ending
att and k < j, the following holds

oz(x) — 43%5(,6) () > deopimar,  OF ®

> D

o,y (T) — 4&0,1(33) > 4co k-

4.4 Analysis of ADA-OPKB

With the key lemmas proved for analyzing OPKB, we use
ideas from Chen et al. (2019) and Wei et al. (2021) to ana-
lyze ADA-OPKB. We provide a sketch of the proof below.
We suppress the dependency of the regret bound on 7 and
log N for simplicity. See Appendix F for the full proof.

Step 1: Interval Regret Using a martingale concentration,
we can bound the regret of an interval 7 inside a block j as
REGy < O ic s tim, + |T|V7 + |T|C7) where (7 =
maxzex (Ag(x) — 8£C(j_1) (z)) measures the change in
average reward in J compared to the previous block 7 — 1.

Algorithm 4: SCHEDULE

Input: starting time ¢, block index j, base block size 2
Initialize: S < {(j,[t,t + 2/ E —1])}
forr=0,...,27E — 1do

form=0,...,7—1do
if 7 is a multiple of 2™ E then
With probability %, add

L

Return: S

(m, [t-’-T,t—l—T—‘r.QmE— 1)) to S.
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See Appendix F.3 for the proof. Note that the interval regret
is a sum of the expected one step regret assuming stationarity
(Remark 2), the degree of non-stationarity within 7, and
the magnitude of the change in reward function compared
to the last block.

Step 2: Block Regret To bound the regret of a block
j, we partition the block into nearly stationary intervals
Ji,- .., Jesothat Vi, < g, where jz == c|Z|~'/2. Sum-
ming over the interval regret of Jj, in Step 1 and applying
Cauchy-Schwarz, we get REGp(j) < O(X;cp(j) Pme +

\[|B( )|/1‘J + Zk 1 |*7k?‘<.7kﬂ{<.7k >c /"ij}) The first
term ), 5 ;) Hm, can be shown to be O(|B(j j)|145), which
suggests the replays of past strategies are not overdone
(Lemma F.6). To bound the third term, we use the prop-
erty of change detection test that when (7, is above ¢ 7,
then replaying a suitable strategy within Jj, triggers a restart
(Lemma E.5). We can show that the replays of past strategies
are done frequently enough to terminate the block before the
third term gets too large, leading to a bound O(\f [B(5)]15)
(proof of Lemma F.11). Finally, we can greedily con-
struct a partition with £ = O(min{Lyg/;), VBQ(/;’) IB(5)[*/3})
(Lemma F.10), which gives a block regret bound of

O(min{\/27 L), V!> (2)%/3}) (Lemma F.11).

B(J)
Step 3: Epoch Regret Since the block size is doubling,
there can be at most O(log, T') blocks in an epoch. Sum-
ming up regret bounds of the blocks and applying Cauchy-
Schwarz and Holder’s inequalities, we can bound the epoch

regret by O(min{+/Leg, |&], Vgli/3|€i|2/3}) (Lemma F.13).

Step 4: Total Regret By the property of the change de-
tection test, restarts can be triggered only when the de-
gree of non-stationarity is large enough (Lemma F.3). Us-
ing this property, we can bound the number of epochs
by O(min{Ly,V;?/*T1/3} (Lemma F.12). The epoch
regret bound in Step 3 gives total regret bound of
O(min{y/I7T, V,t/*T2/3}) (Theorem 3.1).

S DYNAMIC FEATURE MAPPING USING
A NEURAL NETWORK

Recall that OPKB and ADA-OPKB use a fixed feature map-
ping induced by a kernel. In this section, we present exten-
sions of OPKB and ADA-OPKB called OPNN and ADA-
OPNN respectively that use dynamic feature mappings in-
duced by a neural network trained using past history.

5.1 Preliminaries and Notations

Neural Network Following Zhou et al. (2020), we use a
fully connected neural network with width m and depth L:
fx; W) = VymWro(Wp_10(---0(Wiz)---)) where
o(x) = max{z, 0} is the ReLU activation function, W; €

10

R™¥d W, e Rm*™ fori =2,...,L — 1, W, € Rmx1
and W [vee(W)T, ... ,vec(W)T]T € RP with
p = m+ md+ m?(L — 1). We denote by g(z; W) =
Vw f(x; W) € RP the gradient of the neural network func-
tion. We call g(-; W) the feature mapping induced by the
neural network f with parameter W. Each entry of the ini-
tial weights W (©) of the network is sampled independently
from N(0,2/m).

Neural Tangent Kernel By Jacot et al. (2018),
(g(z; W) g(z'; W©)) converges in probability to
H(x,2') for all x,2’ € X where the deterministic kernel
H(-,-) is called the neural tangent kernel. We denote by
= {H(z,2')}s 1 cx the neural tangent kernel matrix.

Algorithm 5: OPNN: Optimization Problem based algo-
rithm using Neural Network

Input: network width m, network depth L, time horizon T,
confidence level ¢ € (0, 1).
Initialize: ¢ < 1, initialize network weights W (%),
compute feature mapping ¢(?) equivalent to
g(-; W©)_find optimal design
P(O) — T (0) ()()
Definition: ;1; = ¢,277/2, 3; = 027¢<o))T2j/2,
E = c37 0 plog(CoN/6),
o = cq0/log(CoN/J)
for j =0,1,... do
Set B(j) « [t,t +2/E — 1] and C(j) + UL_,B(k).
if 7 > 1 then
W(]) - TRAINNN({(J;T’ yr)}TEC(jfl)a W(O))
Find a mapping ¢) equivalent to g(-; W) //m.
Compute A < {A ) ¢(j—1)(T) }zex-
Find strategy QU) < OP(o\), A, o, 8;,T).
Set PO« (1 — 1;)QY) + pujm i (X).
while ¢t € B(j) do
L Play x; ~ PU), Receive y¢. Increment ¢ <— ¢ + 1.

For the analysis of OPNN and ADA-OPNN, we make the
following assumptions. The first assumption is on the in-
vertibility of the neural tangent kernel matrix H.

Assumption B. For some Ao > 0, we have H = \oI.

This is a mild assumption commonly made when analyzing
neural networks (Du et al. 2019a; Arora et al. 2019) and for
analyzing neural bandit algorithms (Salgia et al. 2022; Zhou
et al. 2020; Zhang et al. 2020; Gu et al. 2021; Kassraie et al.
2021). It is satisfied, for example, as long as no two actions
in X are parallel (see Theorem 3.1 in Du et al. (2019b)).
The second assumption is on the regularity of the reward
functions commonly made in the neural bandits literature
(Zhou et al. 2020; Zhang et al. 2020; Gu et al. 2021).

Assumption C. We have \/r] H-1r, < B forallt =
1,...,T where ry = (r¢(a1),...,r(an)).
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5.2 OPNN and ADA-OPNN

Unlike OPKB that uses a fixed feature mapping determined
by a prespecified kernel, OPNN (Algorithm 5) uses the
feature mapping induced by a neural network trained using
past history. For the initial block, OPNN uses the feature
mapping induced by the initial weight W (), Before starting
a new block, OPNN trains the neural network with all past
history using the procedure TRAINNN (Algorithm 6) and
recomputes the feature mapping using the newly trained
weight. The TRAINNN algorithm takes in training history
and perform J steps of gradient descent on the squared error
loss regularized by L2 distance of the weight W from the
initial weight W (), Rest of the algorithm is the same as
OPKB.

To adapt to non-stationarity, ADA-OPNN equips OPNN
with change detection just as ADA-OPKB does with OPKB.
See Appendix B for the full algorithm of ADA-OPNN.

Algorithm 6: TRAINNN: train neural network
Input: training history {(x, y;) }+cz, regularization
parameter ), step size n, number of gradient descent
steps J, network width m, initial parameter W ()
Define L(W) =
ez (f W) = ye)?/2+ mA|W = WO3/2.
forj=0,...,J —1do
L WU+ W) —pvL(W)).

Return: W (/).

5.3 Analysis of OPNN and ADA-OPNN

Jacot et al. (2018) show that the neural tangent kernel stays
constant during training in the infinite network width limit.
Hence, in the infinite width limit, OPNN and ADA-OPNN
are equivalent to OPKB and ADA-OPKB respectively that
use the feature mapping corresponding to the kernel H. We
can expect that in the finite width regime, the regret bound
for OPNN and ADA-OPNN are the same as that for OPKB
and ADA-OPKB respectively as long as the network width
is large enough. Theorem 5.1 and Theorem G.1 confirm
this. See Appendix G for the full proof.

Remark 4. The current NTK theory limits us to work in
the infinite width regime where the feature mapping re-
mains fixed. However, we empirically show in Appendix J
that using the dynamic feature mapping induced by a finite
width neural network is beneficial. This finding is consistent
with numerous empirical results demonstrated by Fort et al.
(2020) and Lee et al. (2020) in the supervised learning set-
ting. We leave the analysis beyond the infinite width regime
as future work.

Theorem 5.1 (Informal). Under Assumption B and Assump-
tion C, the ADA-OPNN algorithm using a neural network of

sufficiently large width achieves a dynamic regret bound of

O(min{\/yrLrTlog N,
(vrVrlog N)/AT?% 4 /37T log N3)

with high probability, where ~r is the maximum information
gain corresponding to the neural tangent kernel H of the
neural network used in the algorithm.

Relation to Previous Work Our regret bound of ADA-
OPNN becomes O (/7T log N) when adapted to the sta-
tionary setting, which is an improvement over previous work
(Zhou et al. 2020; Gu et al. 2021; Jia et al. 2022) by a factor
of \/7r and is comparable to work by Kassraie et al. (2021).

6 EXPERIMENTS

The most notable feature of our algorithms is that they can
adapt to non-stationarity without prior knowledge of the
degree of non-stationarity. In this section, we illustrate this
feature by comparing to previous work SW-GPUCB (Zhou
etal. 2021) and WGPUCB (Deng et al. 2022), both of which
require the knowledge of the degree of non-stationarity to
tune parameters. For the parameter tuning and the exper-
iments, we used an internal cluster of nodes with 20-core
2.40 GHz CPU and Tesla V100 GPU. The total amount of
computing time was around 300 hours.

Experiment Design We run all algorithms in two environ-
ments: an environment with a single switch and the other
with two switches. We first tune the algorithms for the first
environment. Then, we run the tuned algorithms on the
second environment to see how the algorithms adapt to the
new non-stationarity.

Environments We run all simulations for 77 = 10000
rounds. For each simulation, we randomly sample an ac-
tion set of size N = 100 from the unit sphere in R%. We
follow Chowdhury et al. (2017) and sample the reward vec-
tor {r(z)},cx from the multivariate normal distribution
N(0, K) where K = {k(z,2")}s .cx and k is the radial
basis function kernel with length scale 0.2. We scale the
reward vector so that the maximum absolute reward is 0.8,
We sample the noises 7; from N(0,0.12). We run exper-
iments on two environments: the first environment has a
single switch at time 3000 and the second environment has
switches at time 1500 and 5000.

Algorithm Tuning We tune SW-GPUCB, WGPUCB,
ADA-OPKB, ADA-OPNN on the first environment with
a single switch. For SW-GPUCB, we do a grid search
for A over the range {0.01,0.02,0.05,0.1,...,100}, the
UCB scale parameter v over [0.001,1], and the win-
dow size over {100,200, 500,1000,...,10000}. See
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Algorithm 8 for the definition of A. For WG-
PUCB, we do a grid search for A over the range
{0.01,0.02,0.05,0.1,...,100}, the UCB scale parame-
ter over {0.001,0.002,0.005,0.01,...,1}, and the dis-
counting factor over {0.99,0.995,0.999, 0.9995,0.9999}.
See Algorithm 8 for the definition of . For
ADA-OPKB and ADA-OPNN, we do a grid search
for o over {1,2,5,10,20,50,100,200,500,1000} and
Co, €1, C2, €3, ¢4 over {0.001,0.002,0.005,0.01,...,100}.
For ADA-OPNN, we do a grid search for the learning
rate 7 over {1072,1078 1077}, training steps J over
{100, 1000,10000} and regularization parameter A over
{1,10,100, 1000}. We use a neural network of depth L = 3
and width m = 2048.

Remark 5. Compared to SW-GPUCB and WGPUCB,
ADA-OPKB and ADA-OPNN have many parameters to
tune. We leave designing a simpler algorithm with less
parameters that does not require the knowledge of non-
stationarity as future work.

Results The cumulative regrets of SW-GPUCB, WG-
PUCB, ADA-OPKB and ADA-OPNN averaged over 25
random seeds are shown in Figure 1. Error bars indicate
standard errors of the means. Plot (a) shows the perfor-
mances of the algorithms tuned under the first environment
(a single switch). We remark that SW-GPUCB outperforms
ADA-OPKB and ADA-OPNN in the initial stationary inter-
val because ADA-OPKB and ADA-OPNN have overhead of
running change detections. We conjecture that ADA-OPNN
performs worse than ADA-OPKB due to kernel mismatch:
ADA-OPKB uses the kernel used by the nature for drawing
reward functions while ADA-OPNN does not.

Plot (b) shows the performances of the algorithms on the
second environment (switches at time 1500 and 5000). SW-
GPUCB optimally tuned for the single switch environment
(window size 3000), performs worse than ADA-OPKB and
ADA-OPNN in the new environment. WGPUCB optimally
tuned for the single switch environment (discounting factor
of 0.9995) performs similarly to ADA-OPNN but is out-
performed by ADA-OPKB. This experiment highlights the
fact that ADA-OPKB and ADA-OPNN can adapt to new
non-stationarity better than SW-GPUCB and WGPUCB.

For an experiment that demonstrates the benefit of dynami-
cally updating feature mapping for OPNN, and an experi-
ment under a slowly varying environment, see Appendix J.

7 CONCLUSION

In this paper, we propose an algorithm for non-stationary
kernel bandits that does not require the knowledge of non-
stationary budgets, and show a simultaneous dynamic regret
bound in terms of the budgets on the total variation and the
number of changes in reward functions. The dynamic regret
bound is tighter than previous work on the non-stationary

2500{ —— ADA-OPKB
—— ADA-OPNN
20001 __ sw-gPuCB
1500] — wepPucB

1000

Cumulative Regret

500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time Step

(a) Environment 1: single switch

3500
3000
2500
2000
1500
1000

500

ADA-OPKB

ADA-OPNN
SW-GPUCB
WGPUCB

Cumulative Regret

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time Step

(b) Environment 2: two switches

Figure 1: Cumulative regret comparison of algorithms in
non-stationary environments

kernel bandit setting. Also, our algorithm is nearly minimax
optimal in the non-stationary linear bandit setting when
run with a linear kernel. We provide an extension of our
algorithm using a neural network. An interesting future
work would be to adapt to a new non-stationary measure
that tracks the number of times the identity of the best arm
changes, which is a smaller measure than the number of
changes in the reward functions. We believe the reward
estimate based change detection algorithm and its analysis
in this paper is suitable for this extension.
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Supplementary Materials

A Notation Table

Notation  Definition Explanation

Sp(Q, ) Yoex Q@)p(2)p(x)" + A

Yo T maxpep, logdet S,(T'P/o, 1) Information gain with respect to ¢

Vis,1] Zi;ls lrre1 — 77 lloo Total variation in interval [s, t]

Lis4 Z:;ls {rrp1 #r0} Number of arm switches in [s, t]

Ty (A) argmaxpep , logdet S,(P,0/T) Optimal design on A with respect to ¢

Rz(x) ﬁ Y ez Te(T) Average reward of arm x over interval 7

Ai(x) maxy cx rt(z’) — re(x) Optimality gap of x at time ¢

Az(x) max, cx Rz(x') — Rz (x) Average optimality gap over the interval 7

ﬁ%t(m o)1 S, (Pyyo/T) Lo(a)ys IPS estimator for r;(z) with respect to

7€¢ z(x ﬁ doier ﬁ%t(a:) IPS estimator for average reward of z over the interval Z
ﬁw 7(z) maxgex ﬁ%z(x’ ) — ﬁ%z(x) Estimated optimality gap of arm x over the interval 7

B Omitted algorithms

The ADA-OPNN algorithm adapts the OPNN algorithm to the non-stationary environment by equipping change detection.

Algorithm 7: ADA-OPNN: ADAptive Optimization Problem based algorithm using Neural Network

Input: network width m, network depth L, time horizon T', confidence level § € (0,1).
Definition: 11; = ¢1277/2, 8; = c27,1727/%, E = [c37,,7 log(C1N/6)], a = c40/ log(C1N/5)
Initialize: time step ¢ < 1, epoch index i < 1, initial strategy Q¥ < 7, (X)

do

Find a feature mapping ¢/) equivalent to g(-; W) /\/m

Compute the empirical gap A + {ﬁq,(,-) c(j—1)() }zex using all past history in epoch 4.
Find strategy QU) « OP(p\), A, Bi, T); Set PU) «— (1 — p;)Q(™e) + P T o) ().

Generate replay schedule S <~ SCHEDULE(Z, j).
while ¢ € B(j) do

my  min{m : (m,Z) € S witht € T} ;
Record P; + P(m), Play x; ~ P, and receive reward y;; Increment ¢ <— ¢ + 1.

// smallest index of scheduled intervals

| If Test with ¢ = ©U) triggers a restart then increment i and go to Line 1.

Test: Trigger a restart if for any (m,Z) € S with Z ending at ¢ and k < j, the following holds

o~

ﬁ%z(x) — 43%(:(1«)(%) > Acofimak OF Ay ey (T) — 43%1@) > 4deomnk-
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C Maximum information gain

In this section, we summarize the properties of the maximum information gain used in this paper. The original definition of
the maximum information gain by Srinivas et al. (2010) is

1
Nr = max 3 log det(a_lKT + I7)

T1,...,s7EX

where K7 = [k(zs,2;)]; jeir) and I7 € RT*T is the identity matrix. For ease of exposition, we drop the factor % that
appears in the original definition of 4. In this paper, we define the continuous version of the maximum information gain
~r as follows

’YLP,T = ]gréap}; logdet Sgp(o_ilTpv IN)

where ¢ : X — RY is a feature mapping corresponding to the kernel k such that k(z,2") = (p(x), p(z')). To see the
connection of y,, 7 to the original definition Y, note that Ky = HK H™ where K = [k(a;, a;)); je(n) and H € {0, 137N
with Hy; = I{x; = a;} is the history matrix that indicates whether the action a; is played at time ¢ for ¢t € [T'] and i € [N].
Using the notation ® = [¢(a1) - - ¢(an)]T € RY*N such that K = ®®7T, we have by the Sylvester’s determinant identity
det(I + AB) = det(I + BA) that

logdet(c ' Kp + Ir) = logdet(c ' HO®T HT + I)
=logdet(c '®THTH® + Iy)
= logdet(c ' ®TDN® + Iy)
= logdet S, (0 '"T Py, In)

where Dy = HTH = diag(ny,...,ny) with n; denoting how many times a; appears in the sequence 1, ..., 27 and
Py = Dy /T is the relative frequency of the actions. Hence,

_ 1 _
Ar = Pxengfx —logdet Sy, (o TP Iy)

where the maximization is over Pr x = {P € Px : P(a;) = n;/T forall i € [N] with n; € Z}. It follows that our
definition ~y,, 7 is a continuous version of the maximum information gain in the sense that it maximizes over Py instead of
the discretized probability space Pr x.

A direct consequence is that v, 7 > Y. To get an upper bound on v, 7 we can use Theorem 3 in Vakili et al. (2021b) that
shows an upper bound of 47 in terms of the eigendecay of the kernel k(- -). It can be seen that their proof can be easily
adapted to the continuous version, which leads to upper bounds for common kernels in the following lemma.

Lemma C.1 (Theorem 3 in Vakili et al. (2021b)). For the Matérn-v kernel and the SE kernel, the maximum information
gain is upper bounded by

Yoo = O (Tﬁ logﬁ (T)) , for Matérn-v kernel

Yor = O <logd+1(T)) , for SE kernel.

Similarly, adapting the proof of Theorem 2 in Vakili et al. (2021a), we get an upper bound on the maximum information
gain for the neural tangent kernel of a ReLU network as follows.

Lemma C.2. For the neural tangent kernel of a ReLU network, the maximum information gain is upper bounded by
Yorr = O (T*7 logh(T)) .

For the linear kernel, we get the following upper bound on the maximum information gain.

Lemma C.3. For the identity feature mapping o(x) = x for all t € X C R? corresponding to the linear kernel
k(z,z') = (x,a"), we have v, 7 < O(dlog T).
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Proof. Using the identity det(A) < (Tr(A)/d)? for a positive semi-definite matrix A € R4*?, which can be seen by the
AM-GM inequality on the eigenvalues of A, we have

logdet S, (0~ 'TP,1) < dlog(Tr(S, (0~ 'TP,1))/d)

= dlog <cll Tr <Z; Z P(x)za” + Id>>
reX
—dlog< ( > P(z) x||§+d>>
zeX

T
< dlog (d + 1> = O(dlogT)
o

where the second inequality follows by the assumption that ||z||2 < 1. Taking the maximum over P € Py completes the
proof. |

Lemma C.4. For any feature mapping ¢ and any P € Py, we have

ZP Mie(z |‘S¢(P,0/T)—1 < Ye,1-

reX

Proof. We can rewrite the left hand side as

Y P@)le@)|3, posr— =T (Z Se(P, U/T)_lp(x)w(x)w(w)T>

reX reX
=Tt (Su(P,o/T) " (Sp(P,0/T) — (¢/T)IN))
<logdet S,(P,o/T) — logdet(c/T)In
=logdet S, ((T'/o)P,1) < vpr

where the first inequality uses the identity Tr(A~1(A — B)) < logdet A — logdet B for A 3= B = 0 (Lemma 12 in Hazan
et al. (2007)). n

D Analysis of OPKB

In this section, we prove the high probability dynamic regret bound of the OPKB algorithm under the stationary kernel
bandit setting stated below.

D.1 Constants and notations

We use the following parameters in this section (and in Section F) for ease of exposition of the proof: ¢y = 40+ 16/, ¢; =
302 = oyiye 8 = 4 ca = psothat iy = 27UHD/2, 3, = 7“”4?23/2 Co = 8T log, T B = [473,,r log(CoN /).
a = o/(41og(CoN/5)). We define £; = -

Hj 2907 _ Yo, 1 1
Bty = 2vpry & = ZJ 1iBj = Tf] < ;0 &b = %0 =80
We denote by Rz(z) = ﬁztez r¢(z) the average reward of action z in interval Z. We define Az(z) =

maXgy/ex RI(I/) - RI(lL')

D.2 Proof of Lemma 4.3

Proof of Lemma 4.3. For ease of exposition, we write 7* = 7, (A). Recall that the optimal design 7* is a maximizer of
logdet S, (P,0/T) subjectto P(x) > O forallz € Aand ) . , P(z) = 1. Introducing Lagrange multipliers ), for the
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conditions P(z) > O forall z € X and A for ) __ , P(x) = 1, the KKT optimality conditions give

||gp(x)||23¢(ﬂ*7g/T),1 +A:—A=0, forallze A (Stationarity)
Az >0, forall ze A (Dual feasibility)
7 (x)A\; =0, forall x € A (Complementary slackness)

where we use the fact that GPL(z) logdet S, (P,0/T) = |¢(z) ||?9¢ (P.o7)-1- Multiplying 7* () to the stationarity condition
and summing over x € A, we get

0= " @le@I3, ¢ oymyr + DT @A =AY 7 (@

zeA zeA zeA
= Z z)|lp(z ”Sg,(ﬂ'*,a/T)*l —A
reA

where the second equality uses the complementary slackness conditions. Hence,
A=Y 7 @lle@)E, rropmyr < Jmax Z P@) @)%, (po/r)-1 = Your-
€A Y rex
Using this result A < v, 7 to the stationarity conditions and using the dual feasibility conditions A, > 0, we
get H‘P(@H?sw(w* o/m)-1 = A=Az < A < ypr forall x € X as desired. For the proof of Var(R,(z)) <
lo(x) ||§¢(%(A)VU/T),1, refer to the proof of Lemma D.3. |

D.3 Proof of Lemma 4.4

Proof of Lemma 4.4. Recall that the strategy returned by the algorithm OP(y, A ya, 3,T)is Q = lP* + 1 7 where
P* is the minimizer of J(P) = Y _, P(z )A(z) — log det S, (P,o/T) among P~ and we write 7 = 7, (.A) where

A={zec X :Alx) < 20y, 7/} Since the emplrlcal gap estimates satisfy A(z) > 0 for all z € X' and there exists
Z € X with 3( %) = 0, we can check that P* is also a minimizer among the set of sub-distributions Py = {PeRY:
P(z) > 0forallz € X, ., P(xr) < 1}. This can be seen by noting that for any sub-distribution P, the proper
distribution P obtained by increasing the weight of the empirically best action & satisfies J (15) > J(P). Introducing
Lagrange multipliers A, for the conditions P(x) > 0 for all z € X and A for ), P(x) < 1, the KKT optimality
conditions give

~ 2 . .
Az) — B||gp(x)||?9¢(P*7U/T)_1 — Az +A=0, foralz e X (Stationarity)
Az >0, forall z € X (Dual feasibility)
A>0 (Dual feasibility)
P*(x)\; =0, forall z € X. (Complementary slackness)
Multiplying P*(z) to the stationarity conditions and summing over z € X, we get
0=Y P'@A Z PH@) (@) 3, (peoyrys — D PH@A+ A PHa)
TeEX :L’EX TEX reX
= Z P(2)Ax) - = Z P*(z)|le(x ”Sw(P*,a/T)*l +A ©)
zeX reX

where the second equality uses the complementary slackness conditions. Rearranging and using the dual feasibility condition

A >0, we get
" " 27,1
E P (T/) E P (z)|[o(x ||s¢(P*,a/T)—1 —A< 7; :

reX JEX
It follows that ) = %P* + %71'* satisfies
~ 1 ~ 1 ~
S Q@AE) = 5 3 P @A) + 5 3 7 (@A)
TEX zeEX zeA
< 127%T + 120‘7%T _ (1+ )y

2 P 2 B B
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where the inequality uses the fact that ﬁ(x) < 2ay,,7/p for z € Aby the definition of A. This proves the first inequality
of the lemma. Also, since the empirical gaps satisfy A(z) > 0 for all z € X, rearranging (9) gives

* * 2'7 , T
5 Z P* (@)l )||s (P*,0/T)~ Z P( E' :

rzeX zeX

Hence, by the stationarity condition, we have for each x € X that

BA(z)  BA.  BA _ BA(x
@)oo = 25 = B4 G < B

where we use the dual feasibility condition A, > 0. Using the fact that S,,(Q, 0 /T) = 1S,(P*,0/T) gives the second
inequality of the lemma. Finally, for the third inequality of the lemma, we argue for the cases « € A and = ¢ A separately.
If z € A, then using S,(Q,0/T) = 5S,(7*,0/T), we get ||g0(ac)||§w(Q70/T),1 < 2H80(x)||%¢(7r*,a/T)*1 < 2y,1 <

6225;(? + 27, 1. If © ¢ A, then we have Az) > 20y, 7/ by the definition of A. Hence, 1 < faAyE’w)T and the second
B>A%(x)
<

= 2ave,T

inequality of the lemma gives ||50($)||%¢(Q o/T)-1 < BA(z) + 29, + 2,7, as desired. |

D.4 Concentration bound for reward estimates

In this subsection, we prove the following concentration bound for reward estimates.

Lemma D.1. Let Z C [1,T] be a time interval. Let my be the strategy index used by OPKB at time t. Let j be the maximum

strategy index used in I such that m; < j for all t € I. Then, with probability at least 1 — 25, we have
~ log(C'N/9) \/O'/T
Rez(x) — T Z (= HS‘;,(Pt,a/T)*l + T T Z llo(z ||S¢(Pt,J/T)*1
| B> &1 7 2

forall x € X where & = i /(4v,,1).
The proof relies on the following Freedman-style martingale inequality. See Theorem 1 in Beygelzimer et al. 2011 for the
proof of this inequality.

Lemma D.2 (Freedman). Let X1,...,X,, € R be a martingale difference sequence with respect to a filtration Foy, F1, . . ..
Assume X; < R a.s. for all i. Then for any § € (0,1) and £ € [0, 1/ R], we have with probability at least 1 — ¢ that

log(1/5)
;X <EV 4 =2 :

where V=31 | E[X? | Fi_1].

To apply the Freedman inequality, we analyze the distribution of the IPS estimator ﬁ%t(a@) in the following lemma.

Lemma D.3. Suppose the reward function r4(-) lies in a RKHS with a feature mapping 1) : X — (*. Let p : X — R be a
Jfeature mapping equivalent to 1. Let my be the strategy mdex used at time t and P, = P"™*) be the strategy used at time t.
Then, the IPS estimator R%t( z) = ()T S, (P, 0 /T) Lo(xr) yy satisfies

Roi(z)] < 221
p’mf

E¢[Rop.t(2)] — re(z)| < /o /T z)||s,(p,,o/)-1
Vary[Ro, . (z)] < ||<p(x)||5’¢(Pt,a/T)—l

where E; and Var, are the conditional expectation and the conditional variance given the history before time t respectively.

Proof. The first claim follows by

Yo, T
Km,

[Rt(@)] = |0(2)"S(Pey o/ T) " p(@s)ye| < (@) 5(proymy— 0@ s(poymy+ <
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where the first inequality uses the assumption |y;| < 1 and the Cauchy-Schwarz inequality, and the second inequality uses
So(Pyy0/T) = (1 = i, )S(Q™) 0 /T) + pim, Sp(7p(X),0/T) = fim,S(7,(X),0/T) and Lemma 4.3.

To show the second claim, let 6, € ¢? be the parameter such that r,(x) = (¢(z), 6;) for all z € X. Since P, is completely
determined given history up to ¢t — 1, we have

Ei[Rpt(2)] = Ee[to(2) Sy (Pr, 0/T) (@) (v ()T 0r + )]
V(@) Sy (Pr,o/T) " Ee[th(ze)0 ()]0
(x)" Sy (Pry0/T) " (Sy(Pr,0/T) — (a/T)I)6;

ri(x) = (o/T)(x)" Sy (P, o /T) "0,

where the first equality is by Lemma 1.1 and the third equality uses the fact that the strategy P; is deterministic given the
history up to time ¢. The second claim follows by the bound

(0/T) (@) Sy (Prs o/ T) 7 60) < (0/T) @), 0,y [0, iy
<VOIT 0@, (.01

where the first inequality is by the Cauchy-Schwarz inequality and the last inequality uses Sy (P, 0 /T)~! < (T'/o)I, the
assumption that ||0;||2 < 1 and Lemma I.1.

Finally, the third claim follows by

Vary[Ry i (x)] < Ef[{sa( ) Su(Pryo/T)  p(w) )
0(2)T 8 (Pr,o/T) Eelp(ze)p(x:) 1S (P o /T) ()
:w( )T Sy (Pry 0 /T) 1Sy (Pr,0)Sy(Pry o /T)  Lip(a)

< lle( x)||2S¢(Pt,a/T)*1'
where the second inequality uses the assumption |y;| < 1 and the last inequality uses S, (P, 0) < Sy, (P, 0/T). |

We are now ready to prove Lemma D.1.

Proof of Lemma D.I. Fix an action © € X and consider a martingale difference sequence {z; . }tcr Where z;, =
Ry t(x) — E4[Ry ¢ (x)]. We can bound z; ., forall t € Z by

~ ~ ~ —~ 2
2w < [Rot(@)] + B[Rt (@)]] < Rt ()] + Ee[Ry e (2)]] < —”;’fT
J

where the last inequality uses Lemma D.3 and m; < j. Also, by Lemma D.3, we have
Varg[z;,.] = Var Ry o(2)] < [l9(@)%, (p, 07—

Using the Freedman inequality (Lemma D.2) on {z; , }1ez with § =
that

4v g = ¢;, we get with probability at least 1 —

Ry () — Re(x) | Z 2t + B[Ry (2)] — Re(x))

tel

log(CN/§) \/O'/T
IZn@ WE, (posmy1 + 17 >
S & &Il

llo(x ‘|S¢(Pt,a/T)*1

teT

where we use Lemma D.3 to bound the bias term [E; [ﬁw,t (z)] = Rz(x). A union bound over all z € X and the reverse case
Rz(x) — Ry z(x) completes the proof. [ |

Choosing C' = Cjy = 8T log, T', we get by a union bound that for all intervals of sizes £, 2F, 2?E, ... and (2> —1)E, (23—
1)E, ..., the concentration bound in Lemma D.1 holds with probability at least 1 — §. For ease of exposition, we define the
following event.
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Definition D.4 (EVENT;). Denote by EVENT; the event that

PN 3 log(CoN/§) \/J/T
Roz(@) = Rz@)| < G 2 le@ll, mom— + — ¢ g 7 2 le@ls,pio/m
tez & tez

holds for all intervals T C [T of sizes 2/ E forall j = 0,1,... and (27 — 1)E forall j = 1,2,....

By the previous argument, EVENT; holds with probability at least 1 — 4.

D.5 Proof of Lemma 4.5

The following lemma bounds the optimality gaps of an action in two intervals by the total variation of the reward function
throughout an interval that spans the two intervals. The proof is adapted from Lemma 13 by Luo et al. (2018) and Lemma 8
by Chen et al. (2019).

Lemma D.5. For any interval Z, any of its sub-intervals I1,Zo C T and any x € X, we have

|Az, (z) — Az, ()] < 2V7.

Proof. For all z € X, we have

|R11( ) RI2 |7 |I | Z |I ‘ Z Tt((Z?)
s€ly tels
\anz 2, 2 ))’
s€Zly tels
\Il||12\ 2, 2 Inle) ~ @)l < Ve
s€Zly tels

where the last inequality follows since |rs(z) — r¢(z)| < Z |TT+1( ) — r+(x)| < Vz. Hence,
—Vz <Rz, (7) — Rz, (v), Rz, (27,) — Rz, (27,), Rz, (v7,) — Rz, (27,) < Vz
where we use the notation 27 = argmax,, ¢y Rz(z’). It follows that
—Vz < Ry, (27,) — R, (27,) < Rz, (07,) — Ra,(27,) < Ry, (27,) — Ry (27,) < Vz
where we use the optimality of 27, and 27, . Hence, forall x € X,

‘AII (l’) - A12($)| = |R11 (.T%l) - Rz (SC) sz(sz) +R12( )l
< Rz, (27,) = Rz, (27,)| + Rz, (x) — R, (2)] < 2Vz.

Now, we are ready to prove Lemma 4.5.

Proof of Lemma 4.5. Assume that the event EVENT; holds. We prove by induction on the block index j. For the base case j =
0, note that the strategy used in block B(0) is 7, (X'). Under the event EVENT, using the result [|¢(z)||% (ro(X).0/T)-1 <
Yo, from Lemma 4.3 gives

~ log(CoN/§) [0Ye 1 _ Co
R — R < < —
| »,B(0) (x) B(0) (l‘)‘ > fO’YW,T + £0|B(0)| + T = Ko

where the last inequality follows by &y = ﬁ, |B(0)| = E > 4,1 log(CoN/0) and \/ov, 7/T < 2v/apio. This proves
the base case for the bound (5). Y
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Now, suppose the bound (5) holds for the block inAdices 0,1, ..., 7. Then, for any m = O, ..., 7, using the notations
r* = argmax,c y Re(m) () and = argmax,, ¢ y Ry c(m) (), we have

AC(m) (.’E) - 8go,C(m) (x) = RC(m)(x*) - RC(m)(x) - R(p,C(m) (i') + Rap,C(m) (:L')
< RC(HL)(x*) - RC(m)(x) - R(p,C(m) (x*) + Rap,C(m) (1')
1 c
< §A0(m) (z) +2Ve(m) + goum

where the first inequality uses the optimality of Z, and the second inequality uses the induction hypothesis and the fact that
Ac(m)(2*) = 0. Rearranging gives the bound (6) for the blocks 0, ..., j. Similarly, for m = 0,.. ., j, we have

~

3t,D,C(m) (x) - AC(m) (.’ﬂ) < 7/?\'Lp,(,’(m)(j) - Rtp,C(m) (IL’) - RC(m) (i) + 7?'C(m) (1’)

1 . 1 C
§AC(m) () + §AC(m) () +2Ve(m) + EOUW

IN

1
8¢ (@) + 4Vem) + cottm

where the first inequality uses the optimality of z*, the second inequality uses the induction hypothesis and the last inequality
uses the bound (6) we showed and the optimality of & to bound Ac () (Z) < 24, ;) () +4Ve(j) +copty = 4Ve(j) + copty.
Rearranging gives the bound (7) for the blocks O, .. ., j.

IN

Now, for the block index j + 1, EVENT; gives

5 41 2 log(C'N/6)
IRopcii+1) (@) = Regvn) ()| <57 Z (@)%, (o jm)-1 + :
CG+D &7 §i+11C(G + 1)
o/T
+ o Y 0@, (paoym) - (10)
|C(‘7 + 1)| teC(j+1)
To bound the first term, we use Lemma 4.4 and the bound (7) we showed for blocks 0, .. ., j to get

Elle@|I5, (po/m)-1 < 2£j+1||SD($)H%LP(Q(W’;),U/T)*I

< 2541(Bm, D c(m,—1) (T) + 274,1)

< 2841 (Bm, (2B¢(m,—1) (@) + 4Ve(m,—1) + Cotim,—1) + 27¢,1)
?l()AC(mﬁn(l‘) + TIO
1
20
where the second to last inequality follows by a simple calculation using identities in Section D.1 and the fact that m; < j+1
fort € C(j + 1) and the last inequality follows by Lemma D.5.

3
< Veme—1) + SHi+1 (In

IN

1
Ac(in (@) + 2 Ve+1) + 20541

The second term can be bounded by

log(CN/9) 4, 1 log(CN/6) 1
= : - < — =4, 12
GalCG+ U]~ apn BB gt 2

The third term can be bounded using Lemma 4.4 and the bound (7):

V U/T||%0(33)||S¢(Pz,rr/T)*1 SV 20/T||(P(x>”SV,(Q(mt),a/T)*l
~ ~ 2,/0%o.T
< LﬁmtAw,C(mtfl)(x) + e
\V4 O"‘/@,TT \/T
2 .
%@m@ﬁamt—u(?ﬂ) + AVe(my—1) + Copm,—1) + 4V g4
©,
1 2
gAC(mf,—l)(w) + Ve + (4 + 4V i (13)
1 4
< gAC(j+1)(x) + 5

IN

IN

Ve + (4 +4vVa) ;i
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where the second inequality uses v/a + b < v/a + v/b and the third inequality uses /07, 1/T < 2y/ap; for any block
index j and the second to last inequality follows by a simple calculation and the last inequality follows by Lemma D.5.

Using these three bounds, we can further bound (10) by |7€%C(j+1) (2)—Re(+1)(2)] < $Ac+1) (@) +Vean) + L)1,
which proves the bound (5) for the block 7 + 1. By induction, the proof is complete.

D.6 Proof of Theorem 4.6

Proof of Theorem 4.6. We bound the regret of each block B(j) separately. Using the Azuma-Hoeffding inequality on a
martingale difference sequence {E¢[r(z¢)] — r(2¢) }rem(j). we get

REGs;) = D (r(@") —r(@)) < D (r(@") = Edlr(ar)]) + O(V2E)

teB(j) teB(j)

where we use 7(-) to denote the stationary reward function and #* = argmax,  7(z). Since P; = (1—1;)QY) + 17, (X)
fort € B(j), using Lemma 4.5 with V¢(;) = 0, we get with high probability that

r(z*) — =Y P(@)Acion(2) <2 QU(@)A, ey (@) + O(1y) < O()

reX reX

where the last inequality uses Lemma 4.4 and 1/5; = O(u;). Summing over ¢ € B(j), we get REGp(;) < O(EV29).

Summing over j and applying Cauchy-Schwarz, we get REGr = O(E+/T/E) = O(y/~yrTlog N). |

D.7 Subgaussian case

For the analysis with subgaussian noises, we can use the following modified Freedman-style inequality.

Lemma D.6. Let X1,..., X, € R be a martingale difference sequence with respect to a filtration Fy, F1,. ... Assume X;
are o-subguassian. Then for any 6 € (0,1) and § € [0,1/+/2021og(n/d)], we have with probability at least 1 — 20 that

log(1/6)

ZX <EV 4 =2 :

=1

where V.=3"1"_ | E[X? | Fi_1].

Proof. The proof closely follows the proof of the original Freedman-style inequality by Beygelzimer et al. (2011). Since
X1, ..., X, are o-subguassian, we have X; < B = y/202log(n/d) forall t = 1,...,n with probability at least 1 — ¢.
Define X; = min{Xy, B} fori = 1,...,n. Then,

Eifexp(6X0)] < Bo[l 4+ €X, + € X7] < 1+ EE[X7] < exp(€Ee[X7]) < exp(6°Ee[ X7)) (14)

where the first inequality uses the fact that & < 1/B and the identity e* < 1+ z + 22 for < 1. Define Zy = 1 and
Zt = Zt—l eXp(th — €2Et[Xt2]) Then,

Et[Z:] = Zi—1 exp(—E*Ee[ X)) E¢[exp(£X,)] < 1

where the last inequality holds by (14). Hence, we have E[Z,,] < 1 and by Markov 1nequahty, P(Z, > 1/06) < 6. Note that
by recursive definition, we have Z,, = exp(£ Y}, X, —&2 S E.X?). Hence, > i, X, < EY L By X7 +1og(1/6)/€
with probability at least 1 — 4.

By the previous argument that X; < B forall t = 1,...,n with probability at least 1 — &, we have Y X? = > )?752 with
probability at least 1 — §. By a union bound, we have > X2 = 3" X? < £V + log(1/6) /€ with probability at least 1 — 28
as desired. |
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E MASTER reduction of GPUCB

Wei et al. (2021) introduce the MASTER reduction that converts a base algorithm into an algorithm that adapts to non-
stationarity. They prove that if a base algorithm satisfies Condition E.1 for a constant w, then the converted algorithm
satisfies the dynamic regret bound displayed in Theorem E.2 without prior knowledge of the non-stationarity budgets.
Condition E.1 (Adapted from Assumption 1” in Wei et al. (2021)). Foranyt =1,...,T, as long as wV}; y < p(t), the
base algorithm can produce ft using history up to t — 1 that satisfies

t

i . 1<, -
fr > Trerl[lﬁlt] max ri(x) —wVy and n ;(f‘r —yr) < cp(t) + cwV

with probability at least 1 — = where p(t) > \[, tp(t) is non-decreasing in t, w is some function of the parameters, and c is
a universal constant.

Theorem E.2 (Adapted from Theorem 2 in Wei et al. (2021)). If a base algorithm satisfies Condition E.1 with tp(t) =
g1Vt + ga, then the algorithm obtained by the MASTER reduction guarantees with high probability that

REGr = O (min {(91 + 97 9)VLTT, (97"% + 9297 V) BVEPT 4 (g +91‘192)ﬁ}) '

Now, we show that the GPUCB algorithm (Chowdhury et al. 2017) satisfies Condition E.1, and provide the resulting
dynamic regret bounds.

The GPUCB algorithm (Algorithm 8) is a UCB-based algorithm for stationary kernel bandits introduced by Chowdhury
et al. (2017). They use a surrogate prior model GP(0, k(-,-)) on f and use the posterior distribution G P (i (+), k¢ (-, -))
given observed rewards up to time ¢ for designing the upper confidence bounds of reward estimates. It can be shown that

pe(x) = ()T OT(@OT + M) Tyne,  ke(w,2) = k(z,2') — p(x)T@T (2T + NI) T Rp(a')
where ¢ is a feature mapping induced by the kernel k, ® = [p(z1) - - - (x;)]" and y1.t = (Y1, ..., Yr).

Algorithm 8: GPUCB Chowdhury et al. 2017

Input: kernel k, confidence level 6 € (0, 1), regularization parameter A
fort=1,...,Tdo
L Set B + 1+ /2(vi—1 + 1 +1og(1/6)) and 07 < k¢(z, z)

Play z; = argmax,c y ftt—1(x) + Bro—1(x) and receive reward y;.

The following lemma shows that GPUCB satisfies Condition E.1.
Lemma E.3. The GPUCB algorithm satisfies Condition E.1 with f; = maxgex(p—1(z) + Bior_1(z), p(t) =

Biv/vt-110g(T/6)/t and w = yr+/log(T'/9).

Proof. Let Wy = Z’;:l o(xs)(xs)T 4+ M. It can be shown that oy () = \/k(x, 2) = V\||¢(x) ||W;1. Following the
proof of Lemma 1 in Zhou et al. (2021), we get

t—1

(@)W S ol )pl)T (O 0.)| + Bl

s=1

|7¢(x) — pe—1(z)] <

Following the corrected version of the analysis for the reduction of OFUL in Wei et al. (2021), we get
t—1

‘p(m)TWtill Z plas)p(as)T (0, —

s=1

6. < 3 (@)W ol o) (0 — 6.)]

< Virgllo@)ly IZH@% s

< Viglle@) - | =1 lles)]12 -

< Vi glel@) w1 Vo
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where the second inequality is by Cauchy-Schwarz, [0; — 05| < V}; 4 and the assumption || (zs)|| < 1. The third inequality
is by Cauchy-Schwarz. The last inequality is by

t—1 t—1
S le@alZ, 1 = S U@L, o1y <% (15)
s=1 s=1

where U is the uniform distribution on {x1, ..., z;—1} and the inequality is by Lemma C.4. Hence,

[re(x) = pe1(@)] < (VigvVEre—1 + B)lle(@) w1 < 28:l0(@) -1 = 28,001 (2)/VA

where the last inequality uses V}; 4 < p(t)/w < B¢/v/tyr. Thus,

Z(fﬂ' —Yr) = Z(JZT —rr(2r)) + Z(TT(xT) —yr)

=1 T=1 T=1
= Z(Mr—l(x'r) —rr(2r)) + Z Bror—1(zr) + O(y/tlog(T/6))
= O(Z 570771(3;7') + t10g<T/5))

= O(B:/tyr log(T/5))

where the second equality uses the fact that fT = pr—1(x;) + Bro-—1(z,) due to the optimism principle of the algorithm.
The last equality uses

25707—1(:&) < B ZO’T_l(xT) < O(B/t7)

T=1 T=1

where the last inequality uses Lemma 4 in Chowdhury et al. (2017). This verifies the second condition in Condition E.1.
Also,

f, = ma _1(x) + _1(x)) > maxri(xr) > min maxr,(z
ft Ize}(((ut 1( ) ﬂtot 1( ))_ ze% t< )_-re[l,t] :ve}(( T( )

where the first inequality uses Theorem 2 in Chowdhury et al. (2017). This shows the first condition, completing the
proof. |

The previous lemma allows invoking the MASTER reduction for GPUCB, which gives a dynamic regret bound of

REGT < 6(m1n{7T LT, ’YTV1/3T2/3 + ’YT\/T})

F Analysis of ADA-OPKB

For ease of exposition, we use the same set of parameters listed in Section D.1.

F.1 Change detection

In this subsection, we prove properties of the change detection rules used in ADA-OPKB.

Lemma F.1. Assume the event EVENT; holds. Then, we have for any x € X and replay interval (m,T) that

ﬁ‘,ﬂ,z(l‘) + Cobm, + 4‘/[7—1-’,*,]
Ay z(x) < 207(x) + Coptm + 4Vir, 4

where T; is the starting time of the epoch i in which I is scheduled and t is the end of the interval 1.
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Proof. Consider a replay interval (m,Z) scheduled in a block B(j) in epoch i and let 7; be the starting time of the epoch ¢
and ¢ be the end time of Z. Following the calculation in (11) in the proof of Lemma 4.5, we get

1 3
2
Emlle@)s, (pro/my—1 < g5Bcime—1) (@) + 1OVC(Mf 1+ SHm
1 1
< —A V. 2Ll
<35 z(z) + e Vimn +20

where the second inequality uses Lemma D.5 and the fact that both C(m; — 1) and 7 lie in [, t]. Likewise, following the
calculation in (13) in the proof of Lemma 4.5 and using Lemma D.5, we get

1 2
Vo /Tle@)ls, p,o/my-1 < gAc(m—l)(ﬂf) + ch(mt—l) + (44 4vV) i,

1 4

5

Note that m is the maximum strategy index used in Z due to the index selection logic in Line 9 in Algorithm 3. Hence,
under the event EVENT;, the two bounds above and the bound (12) give

Rpz(x) — Rz ()]

m I CN5 T
< S S @)y 1+ BEND)  VIIT

=z EmlZl 7]

HSW(Pt,a/T)*l

tel tel

1 c
< SAL(@) + Vi + - b (16)

Denoting & = argmax,, c y R, z(2') and 2* = argmax,, . y Rz(z), we have

where the first inequality uses the optimality of 4 and the second inequality uses the bound (16) and Az(z*) = 0.
Rearranging proves the first inequality of the lemma. The second inequality can be shown by

8%1(1‘) - Az(x) < Aw,z(i‘) — ﬁ%z(x) — Rz(i‘) + Rz(x)
1 1
< )+ 352(0)+ Wi + B
1
< 5Az() +4Vir ) + cottm

where the first inequality uses the optimality of x*, the second inequality uses the bound (16) and the last inequality uses the
first inequality of the lemma. Rearranging proves the second inequality of the lemma.

Lemma F.2. Let (m,Z) be a replay interval scheduled in S for block j in some epoch i. If no restart is triggered by this
replay interval when performing the change detection test at the end of L, we have with probability at least 1 — 6 for all
x € X that

350,1(:1;) < 2AI(CC) + 400,“/771
Az(w) < 28, 7(x) + Acoim

Proof. Suppose no restart is triggered by the test (8) for (m,Z). Then, A%I(z) — 48%6(@(1’) < 4deopmak and
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E%C(k) (x) — 43%1(33) < Adegpmpr forall k =0,...,7 — 1. Hence, for t € Z, we have

Emllo(@)5, (proym)-1 < 2mlle(@)G, (@uner o)1
< 26, (Bm, A e.C(me—1)(T) +27,.1)
< 26 (Bim, (484 2(x) + ACob(m,—1)rm) + 276.T)
< 8By 2(x) + 8V2008m By i, + 4V, r

1~
<
710A () + 104,

where the first inequality uses 15,(Q),¢/T) < S,(P;,0/T), the second inequality uses Lemma 4.4, the fourth
inequality uses m; < m and umt_l =2 2/4m, . The last inequality holds by simple calculation. Similarly,

Vo /Tle(@)s,po/m)-1 < V20 /T|e(@)|ls, (o o/m)—

o X 2\/0%p,T
< LﬁmtAgp,C(mtfl)(w) + v
vVovyerT VT

20m ~
o 6"7’” (4Aap,1(x) + 400:“(m,,—1)/\m) + 4\/aﬂm
,

8 mMm N 8v2¢ mi~me Fmy
fm B Ryz(z) + V2¢0tm B, 1t aa,
Yo, T Yo, T

2 ~
< 5B z() + 24pm + AVt

where the second inequality uses Lemma 4.4 and v/a + b < v/a + /b, the third inequality uses /0y, 7/T < 2\/au;

Under the event EVENT1, the two bounds above and the bound (12) give

Ry z(x) — Rz<x>|

IN

IN

log(CN/§) \/O’/T
Z ||§0 ||S¢(Pt,a/T)*1 + |I| |I| Z H‘p HSy,(Pt,J/T)*l
teI &m tez
1 1~
§A 7(x) + 38pm + 4V apim < §A%I(aﬁ) + cofim (17)
Denoting & = argmax,, c y ﬁ%z(x') and z* = argmax,, ¢ y Rz(z), we have
- . 1~
By z(z) = Az(2) < Rpz(2) = Ry z(2) = Rz(2) + Rz(2) < 5A4.2(2) + 2c0ptm

where the first inequality uses the optimality of z* and the second inequality uses ﬁ%z(:ﬁ) = 0. Rearranging gives the first
inequality of the lemma. Using this result, we get

Az(z) = Ay 7(2) = Rz(2*) = Rz(2) — Ry z(2) + Ry z()
< Rz(x*) — Re(z) — Rypz(z*) + Ry ()
< %gw,z(x*) + %&a,z(l") + 2coptm
< @A) + deojim) + 3B2(a) + 2eopim
= %ﬁw,z(l“) + 4dcofim

where the first inequality uses the optimality of Z and the second inequality uses the bound (17) and the last equality uses
Az(x*) = 0. Rearranging gives the second inequality of the lemma.

—1/2

For the rest of the analysis, we define pz = ¢1(|Z|/E) so that y1; = pp(j).
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Lemma F.3. Assume the event EVENT; holds. Consider an epoch i that starts at time 7;. If V|7, 1) < pi[r, ¢ holds for some
time t > T;, then no restart is triggered in [7;, t].

Proof. Tt is enough to show that none of the end of replay intervals that lie within [r;, ] trigger a restart when running the
change detection test (8). Suppose S is the replay schedule in a block j. Suppose s is the end of a replay interval (m,Z) € S
with Z C [r;, t]. Then, by Lemma 4.5 and Lemma F.1 (which hold under EVENT; ), we have for any k < j that

A, z(x) < 207(2) + Cofim + 4Vir, 4
< 2AC(k)(l’) + copm + 8V, 4
< 4A (k) () + 8V (k) + 2copik + Copim + 8V]r, o
< 43 (k) () + 3coptmar + 16V, 4
() (

< 43 x) + 4cofbmak

where the second inequality uses Lemma D.5 and the last inequality uses Vi, 4 < pifr, 5] < i < fmak. Similarly, we
have
Agp e () < 28¢(k)(7) + copr + 4Ve (k)
< 2A7(z) + copr + 8Vir,
< 4A I(m + 8Vn s] + 2copbm + copr + 8‘/[7—1, t]
<4A o.2(T) + 3coptmnr + 16V, 4
(

< 4A¢I x) + 4deofbmak-

)
)

Hence, no restart is triggered by the replay interval (m, Z). Since this holds for any (m,Z) € S, proof is complete. |

Definition F.4 (Excess regret). Let [J be an interval, not necessarily a replay interval, that lies in a block B(j) with j > 1
in an epoch i. We define the excess regret of J with respect to a feature mapping p as

Gour = max (A () = 88,051 (@)

Lemma F.5. Assume EVENT; holds. Let J be an interval that lies within a block B(j) with V.y < j7 and g > Dipg
where D1 = 25¢q. Then, there exists an index m* € {0,...,j} such that D141 < (o, < D1+ and o' B < | T
Moreover, any replay interval T of index m* with T C [J triggers a restart.

Proof. We show that there exists m* such that Dy pim+y1 < (o7 < Dijim+. By the definition of the excess regret,
we have (, 7 < maxzex Agy(z) < 2 < Dypp. Also, by the assumption that (, 7 > Dipg > Dl,u] where the last
inequality follows since J C B(j), we have D ,uJ < Cp,7 < Dipg. It follows that there exists m* € {0,..., j} such
that D1 ptnx 41 < (o7 < D1fim+. Also, such m* satisfies Dipty < Cp, 7 < D1ftn+ and it follows that | 7| > 2m" F as
desired.

Now, we show that any replay interval Z C 7 of index m* determined above triggers a restart. We argue by contradiction.
Suppose that no restart is triggered after running a replay interval Z C J of index m*. By the definition of the excess regret,
there exists #’ € & such that (, 7 = A7 (2') — 8A, ¢(j—1)('). Hence, by Lemma D.5, we have
AI(:C/) Z AJ(I/) - QVJ
> 84 c(j-1)(2') + Cp,7 — 217
> 87, c(j—1)(&") + Difim= 11 — 2p1-

Moreover, by Lemma F.2, we have Az(2') < 23%1(%’ ) + 4co i~ under EVENT;. Rearranging the lower bound and the
upper bound of Az(x") we just found, we get

~ ~ D;
A%I(a?/) > 4Atp,c(j71) (.’I}l> +

5 Hmrr1 = 2coftm> — pz > 4A c—1) (") 4 4co i

which must have triggered a restart by the test (8). This contradicts the assumption that no restart is triggered, completing
the proof. |
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F.2 Replay schedule

In this subsection, we analyze the behavior of the replay schedule. Consider a replay schedule S for a block B(j) in an
epoch 4. The following lemma shows that the sum of the errors p,,, over the block B(j) when following the schedule S is
similar to the sum of the errors when using the latest strategy over the entire block.

Lemma F.6. With probability at least 1 — 6, for any block B(j) in any epoch i defined by ADA-OPKB, we have

> tm, = O(B()|ny) = O(V2Iyrlog N).
1€B()

Proof. Consider a block B(j) in an epoch 4 and its replay schedule S. Then,

J

Z fim, = O Z o—mi/2 | — @ Z 2—m/2 Z I{m;=m} | . (13)

teB(j) teB(j) m=0 teB(j5)

Note that the sum ), B() I{m; = m} counts the number of times the replay index m is chosen when following the
schedule S. This sum is bounded by the sum of lengths of all replay intervals of index m in S. Since a replay interval of
index m has length 2™ F, the maximum possible number of replay intervals of index m is |B(j)|/(2™E) = 29~™. Denote

by Z ,im), k=1,...,27~™ a Bernoulli random variable that indicates whether the k-th candidate replay interval of index
m is scheduled in S. By the replay scheduling algorithm (Algorithm 4) used by ADA-OPKB, Z ,(cm) are independent with
success probability p = v/2™—J. Hence, with probability at least 1 — m, we have
27—m
S Hme=m} < @mE) Y 2™ < O(EV2itm)
teB(J) k=1

where we use the Hoeffding’s inequality to bound

27— — 5 _
Y 2 <oy g \/23 log(T(logy T)*/0) _ 5 (T

2
k=1

with probability at least 1 — ﬁ. Applying a union bound over the possible choices of replay index m, we can further

2 T)
bound (18) with probability at least 1 — #%T by

S =0 (2™ Yty = m}| <6 (jEvE) < 6 (Vo)

teB(j) m=0 teB(5)

where we use the fact that the block index j is bounded by log, (T'/E'). Applying a union bound over all possible choices of
the starting time of () and the block index j completes the proof. |

F.3 Regret of an interval

Lemma FE.7. With probability at least 1 — 0, for all intervals J C [T, we have

D (relar) = re(w)) < (re(ap) — Befre(2)]) + /8T [log(T2/9) 19)

teJ teJ

where £} = argmax,c y 1+(2).

Proof. The result follows by applying the Azuma-Hoeffding inequality on the martingale difference sequence {E;[r;(z;)] —
ri(z¢) }re 7. using the fact that |E;[r(z¢)] — r(ze)] < 2. [ |

Definition F.8 (EVENTs). Define EVENT, as the event that the bound (19) holds for all intervals J C [T)].
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Lemma F.9. With probability at least 1 — 6, for any interval J that lies in any block B(j) with j > 1 in any epoch i, the
regret in any sub-interval J' C J is bounded by

REGy <O <Z fm, + 1T pg + 1T Vg + TG0 o7 > D1MJ}>
teJ’

where Dy = 25c¢.

Proof. Fix epoch ¢ and consider an interval J that lies within a block j. Under EVENT,, we have

Y (rulal) —rel@)) < Y (rulah) = Eulre(a)]) + /8] log(4T2/6)

teJ’ teJ’

=Y Px)Ai(x) + /87| log(412/5)

teJ' xeX

=9 (Z 3 QU @A) + 3 i, + |J’|w'>

teJ’ zeX teJ’

where the last inequality uses p = O(1/\/|T'|/E) = O(1/+/|T'/10g(T/6)), P; = (1 — pim,)Q™) + pin, wx and
|A¢(x)| < 2. The first term in the bound above can be bounded by

> QU @)Az) < Y QU (@)Ay(a) +2Vy

rzeX reX

<3 Q) (8B, ¢ 1)(@) + oz ) + 2V

TeEX
<83 Q) (43%0(%,1)(95) + 4c,umt,1) +Cog+2Vs
rzeX
14+«
<O (W + tme—1 + o7 + VJ) < O (tim, +Coo7 + V)
me—1

where the first inequality uses Lemma D.5, the second inequality uses the definition of (, 7 and the third inequality uses the
fact that no restart is triggered by the block B(j — 1). The second to last inequality uses Lemma 4.4. We can further bound
the regret as

Y (re(ap) = re(x)) < O (Z pim, + 1T 'G5 + |T'V7 + J’MJ/) :
teg’ teJ’
Noting that | 7'[(y. 7 < | T |Co,01{Cp,7 > Diptg} + Dipg|J’| completes the proof. |

F.4 Regret of a block

In this section, we fix a block 7 in an epoch ¢ and bound its regret. The strategy is to partition the block into nearly-stationary
intervals to use the interval regret bound we found in Lemma F.9, and argue that the change detection test does not allow the
non-stationarity to accumulate without being detected. First, we show that given an arbitrary interval 7, we can partition it

into nearly-stationary intervals 71, ..., Jy while controlling the size of the partition ¢. For ease of exposition, we write
VT = Yo, T-

Lemma F.10. Given an interval J, we can partition it into a set of intervals {J1, ..., T} such that V., < uz, for all
k=1,...,0and

1 ~1/3
ngin{Lg, <Z'yT10g(ClN/§)> V;/3|j|1/3+1}.

Proof. Following the same procedures described in the proof of Lemma 5 by Chen et al. (2019) and the proof of Lemma
19 by Wei et al. (2021), we partition J by taking intervals consecutively from the beginning of 7 in a greedy manner.
Specifically, given that the first £ — 1 intervals we took are J; = [s1,e1],...,Jk—1 = [Sk—1,€k—1], we take the next
interval Jp = [sy, ex] with s, = ep_1 + 1 (or set sy, to the beginning of 7 if k = 1) that satisfies Vi, c,] < p

Sk,ek]
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and Vi, en] > H[sp,en+1]- In other words, Jj is the maximal interval that immediately follows [Jx 1 and satisfies
Viskien] < Bsi,er]- We repeat this greedy procedure until the end of 7 is reached.

We first show that the number of intervals £ in the partition obtained by the procedure must satisfy ¢/ < L 7. To see this,
consider the partition {Z1,...,Zy, j} of J where each 7, k = 1,..., Ly are stationary, that is Vz, = 0. Then, each
interval J; must contain at least one end point of a stationary interval. Otherwise, J;, must end within some stationary
interval Z, and does not contain the end point of the stationary interval. This contradicts with the greedy procedure because
when the procedure constructs Jj, it must have taken time steps at least until the end point of the stationary interval Zy
since doing so does not affect V7, . Also, each end point of the stationary interval is contained in exactly one of 71, ..., J¢.
Hence, there is a surjection from {Zy,...,Z;,} to {J1,...,J¢} and it follows that £ < L ;.

Now, we show that £ < (1~ log(ClN/(S))*l/SV;/S|j|1/3 + 1. Recall that for any interval Z, pi7 is defined as pz =
1VE|Z|~'/2 where E = [4vyrlog(C1N/§)]. Hence,

-1 -1 JE L -1
1 _
Vs 2 Vieeed > D Bispent1] = - E (1T +1)712 > \/ 377 log(C1N/6) > | Tl ™*/?
k=1 k=1 k=1

k=1
where the second inequality follows by the greedy procedure and the last inequality follows since (z41)~1/2 > (2z)~1/2 =
%m_l/ 2 for all 2 > 1. By the Holder’s inequality, we have
-1 2/3 s 1/3 ! ~1/3
—1/2 2/3
(—1< (Z Tl ) (Z |~.7k|> < <2w 1og<clzv/5)) ViR
k=1 k=1
and the desired bound for ¢ follows. This completes the proof. |

Note that the block B(j) defined by ADA-OPKB spans exactly 27 - E time steps whether the block runs past the time
horizon or a restart is triggered before the block ends. Denote by () the actual block run as part of epoch ¢ before a
restart is triggered or the time horizon is reached.

Lemma F.11. Consider a block B(j) in an epoch i defined by ADA-OPKB. Let B'(j) be the actual block run as part of
epoch i before a restart is triggered or the time horizon is reached. With probability at least 1 — 2§, we have

REGp () = O (min{(’yT log N)\/27 Ly 5y, (r log N/, (222 + (47 1ogN)\/§}>.

Proof. For ease of exposition, we suppress the subscript ¢ and write yr and (7 instead of v, 7 and (, 7. Assume EVENT,
holds. Using the procedure described in Lemma F.10, we partition B(j) into 71, ..., ; such that V;, < g, for all
k=1,...,0 Let J{,...,J} be the non-empty intervals 7, = J, N B'(j) that part1t10n B’(j). Using the interval regret
bound in Lemma F.9 W1th the fact that 7] C Jj and using V7, < pgz, < p J.» We get

Z/ / /
REGp(jy = » REGz <O | > fim, + Z | Tl + Z \TilCn ¢, > Dipg} | - (20)

k=1 teB’ (j) k=1 =

The first term can be bounded using Lemma F.6 by ), B () Pme < o (\/27 ~7 log N') with probability at least 1 — 6.

The second term can be bounded using uz = O(\/E/|Z]) as

fjljgw,;go fwww <o (VEIBGIE) <0 (EVE)
k=1 k=1

where the second inequality uses Cauchy-Schwarz and the last inequality uses |B'(j)| < |B(j)|-

The third term is bounded using Lemma F.5 which shows that there exists mj € {0,...,j} with

2"k < |Ji|/E  and Dipimy 1 <z, < Dipimy, @D
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such that running a replay interval of index mj; inside Jj, triggers a restart. Denote by nfcm) the number of replay intervals

of index m that can be scheduled completely inside 7/. Then,
™ > (|7}~ 32" E), /(2" E) (22)
forallm =0,...,7 where (-)+ = max{0, -}. Hence,

\ T¢I ¢ > Dipg,} <3+ 2™ EDy i + (| Ti| — 3+ 2™ E)y Dyt {Cg,, > Dz, }

< 0 (VEIG] + BV2"in™1{¢s, > Dipg,))

where the first inequality uses (7, < Dipp,: stated in (21) and the second inequality uses oM. Pz = O(V2mk) <

O(+/|Jk|/E) which follows by (21) and the lower bound of n;m) shown in (22). Summing over k = 1,..., ¢ and writing
the event {C7, > Dipu, } as Ay, for convenience, we get

VA VA VA
ST AHAY <O [ S VEIT+ EY. Vorinl ™ { A}
k=1 k=1 k=1

J 4
<O BVe2 + B> V2m S al™I{ Ay, m), = m} (23)

m=0 k=1

where the second inequality uses Cauchy-Schwarz and Zilzl \J7x| < |B(j)| = 2E. Denoting by 2\, 1 =1,...,n{™

ko
the Bernoulli random variable that indicates whether the [-th replay interval among the n,(ﬁm) candidate replay intervals

within 7 is scheduled, we have

v 4
SR Ay = m} = 3 0™ Ay, mi = m, 20 =0, Z}if:l);m> — 0}
k=1 k=1 |

(m) —
PN

ZI
<Y Mz =0, 2, =0y <O(V2iTm)
k=1

where the first equality follows under EVENT; by Lemma E.5 since if any of Z ,g";) = 1 for m = mj,, a restart must have
been triggered before reaching the end of 7). The last inequality follows since the second to last term is a geometric random

variable with trials Z{", ..., Zim)(m), o Zlf@(m) with success probability /27—, which is bounded with probability at
nl ’nl/

least 1 — 6 by O(v/2/—™). We can further bound the third term (23) by Zilzl | T ¢ {Ak} < o (E\/£’2j> where we

use j < logy(7'/E). Summing the three bounds we found for the terms in (20), we get REGp/(j) = @(E\/E’Qj). Bounding
¢’ using Lemma F.10 completes the proof. |

F.5 Proof of Theorem 3.1

Lemma F.12. Assume EVENT; holds. The number of epochs H when running ADA-OPKB is bounded by

-1/3
H < min {LT7 (;’yT log(ClN/5)> V;/3T1/3 + 1} .

Proof. Let {7,}%_, with £ < min {LT, (L7 log(CoN/8)~1/3V2/3T1/3 4 1} be a partition of [T] where V7, < j1.7.
forall k =1,...,¢. Such a partition exists by Lemma F.10. Let &1, ..., £y be all the intervals spanned by the epochs in
[1,T]. Note that if an epoch ¢ starts inside an interval Jj, then the epoch must continue at least until the end of 7 since the
total variation in & N Jj is upper bounded by Ve,n 7, < V7, < pg,. < pig;ng, and no restart is triggered under EVENT; in
E; N Jy, due to Lemma E.3. Hence, each &; contains the end point of at least one interval Jj. Also, trivially, the end point of
each JJ; is contained in exactly one epoch. Hence, there is a surjection from {71,..., J¢} to {&1,...,Ex} and it follows
that H < ¢. This completes the proof. |
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Lemma F.13. Given an epoch i in ADA-OPKB, let £; be the interval spanned by the epoch. Then, with high probability, we
have
REGgi =0 <m1n {\/ ’YTL&; ‘55| log N, (’}/TVgi log N)1/3|8i|2/3 + VT log N|51|}> .

Proof. Let J; be the index of the last block in epoch 7. Then &; = U;-ILOB’ (j) where B'(j) = B(j) N &; and B(j) is the j-th
. A Ji . Ji— .

block defined by ADA-OPKB in epoch i. Since |€;| = >°7% [B'(j)| = B+ 2+ --- + 277 + [B'(J;)| > (27 = 1)E,

we have 27t — 1 < |&|/E. Hence, using the regret bound of () in terms of Lp:(;) provided by Lemma F.11 and

REGg, = ZJJ:O REGp (), we have with high probability that

REGe, < O EJJZ(:) J2Lgg | <O (E\/2Ji - h/ﬁ) <0 (\/W)

where the second inequality uses Cauchy-Schwarz and the fact that le]i:O Lpi(jy < Le, + J;, and the last inequality uses
J; <logy(T/E). This shows the first bound of the lemma.

To show the second bound in terms of V,, we use the regret bound of B'(j) in terms of Vi3 (;y provided by Lemma F.11 to
get with high probability that

B'(5)

<0 (Ev;/?’@% - 1)2/3) +0 (E,/Ji@g - 1)) <0 (El/Sv;/3|5i|2/3 + E|&-\)

where the second inequality uses the Holder’s inequality and the Cauchy-Schwarz inequality, and the third inequality uses
the bound 27+ — 1 < |&]|/F and J; < log,(T/E). This completes the proof. |

J7; Ja‘,
REGe, <O [EY V5 @) | +0 B Vai
=0 =0

Now, we are ready to prove Theorem 3.1. To bound the total dynamic regret, we bound the sum of the epoch regret bounds
and use the bound on the number of epochs as shown below.

Proof of Theorem 3.1. Using the epoch regret bound in Lemma F.13 and the bound on the number of epochs H in Lemma F.12,
we can bound REGr = Zfil REGg, as follows. First, using the epoch regret bound in terms of Lg,, we get with high
probability that

Rir <0 (VEY. VEEIET) < 0 (VEVE FAVT) < O (VELT)

where the second inequality uses Cauchy-Schwarz and the last inequality uses the bound H < L.

Now, using the epoch regret bound in terms of Vg,, we get
REGy < O <E1/3 STVPIEPE+VEY \/|5i|> <0 (E1/3VT1/3T2/3 + \/EHT>
i=1 i=1

where the second inequality uses the Holder’s inequality and the Cauchy-Schwarz inequality. Further bounding by
H<O(1+ E’1/3V;/3T1/3) completes the proof. [ |

G Analysis of OPNN

In this section, we prove the following theorem that states a regret bound for the OPNN algorithm under the general
stationary bandit setting.

Theorem G.1 (c.f. Theorem 4.6). Consider the general stationary bandit setting described in Section 2. Assume Assump-
tion D and Assumption E hold. If we run the OPNN algorithm using a neural network with width m and depth L, the

dynamic regret is bounded by
REGT < %} (\/'YTT log N)

with probability at least 1 — § where ~yr is the maximum information gain with respect to the neural tangent kernel of the
neural network as long as m > poly(T, L, N, ™' A\; !, log(1/6)).
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The key insight for the analysis of OPNN is that in the infinite network width regime, OPNN is equivalent to OPKB with the
neural tangent kernel H defined as follows.

Definition G.2 (Jacot et al. (2018), Arora et al. (2019)). Consider a fully connected neural network of depth L with the
ReLU activation function o. For all a;,a; € X, define covariance matrices > and derivative covariance matrices %1 for
l=0,...,Lrecursively as follows:

n=1 »l-1)
50 = {(a;,a;) AW = ( i i
ij 1%/ i (1-1) (I-1)
i N
!
Egj) — QE(U,U)~N(0,A§?)[U(“)7U(U)]
(1 N
Egj) = 2]E(u7v)~N(0,A£?)[O'(u)’ 5 (v)]

where ¢ is the derivative of the activation function. The neural tangent kernel H for the network is defined as

L L
— (-1 (1)
=Y (5 1))
=1 =l
For the analysis, we make the following technical assumptions.
Assumption D. The neural tangent kernel matrix is positive definite with H = Ao I for some Ay > 0.
The assumption that the neural tangent kernel matrix is positive definite is a mild assumption commonly made when

analyzing neural networks (Du et al. 2019a; Arora et al. 2019). The assumption is satisfied, for example, as long as the
actions are normalized to ||a;||2 = 1 for all ¢ € [IN] and no two actions in X are parallel (Du et al. 2019b).

We impose regularity assumption on the reward functions as follows.

Assumption E. Forallt € [T, we have \/2r H~1ry; < B for some constant B where vy = (r¢(a1), ..., ri(an)) is the
vector of reward function values at time t. We assume that the learner knows the upper bound B and scales the problem so

that /2ri H = 1ry < 1 forallt € [T).

This assumption is common in the neural bandits literature (Zhou et al. 2020; Zhang et al. 2020; Gu et al. 2021). As
discussed by Zhou et al. (2020), if r; lies in the RKHS 7 induced by the neural tangent kernel, the quantity v/r.H ~17; is
upper bounded by the RKHS norm ||7;||%. In this sense, the upper bound on v/2r; H —1r; imposes regularity on the reward
functions.

G.1 NTK theory from previous work

We first review results related to the neural tangent kernel in previous work. The lemmas provided in this subsection are
adapted from Zhou et al. (2020) which uses results in Allen-Zhu et al. (2019) and Arora et al. (2019).

Lemma G.3 (Lemma B.5 by Zhou et al. (2020)). With high probability, we have
lg(z; W) = g(a; W)|l2 <O (vlongl/Gm‘l/GA‘”ﬁLsIIg(w; W“J))Ilz)

forall |W — WOy < 2,/T/(mX) as long as m > poly(T, L, \™ ).
Lemma G.4 (Lemma B.6 by Zhou et al. (2020)). With high probability, we have

lg(a: W)]|2 < O(VmL)

forall |W — WOy, < 2./T/(mX\) and = € X as long as m > poly(T, L, \™1).

Lemma G.5 (Lemma 5.2 by Zhou et al. (2020)). Let W be a parameter trained by TRAINNN (Algorithm 6). Then, with
probability at least 1 — §, we have
W — WOy < O(/T/(mX))

as long as m > poly(T, L, \~*, log(1/9)).
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Lemma G.6 (Lemma 5.1 by Zhou et al. (2020)). With probability at least 1 — 6, there exists W* € RP such that

re(z) = (g WY Wr — WO and  /m|Wr — WO |, < \/2rT H-1r, < \/2N/ )¢

forallt € [T] and x € X as long as m > poly(T, L, N, \;*,10g(1/68)) where H is the neural tangent kernel matrix, \o is
the minimum eigenvalue of H and vy = [ry(ay) -+ r¢(an)]?.

Lemma G.7 (Lemma B.1 by Zhou et al. (2020)). Let H be the neural tangent kernel matrix and let Gy =
[g(a1; W) ... glay; WO)]/\/m € RP*N_ Then, with probability at least 1 — 6, we have

|G Go — Hl|r < Ne

as long as m > poly(L, e, log(1/3)).

Lemma G.8 (Lemma B.2 by Zhou et al. (2020)). Let W be the parameter trained by the algorithm TRAINNN with learning
rate n < O((mA + T'mL)~") and initial weight W ©). Then, with probability at least 1 — §, we have

W — WO, < 2/TT(m)
as long as the network width satisfies m > poly(T, L, \=,1og(1/9)).

G.2 More NTK theory

Lemma G.9. Let W be close to the initial weight W) such that |W — W©O|, < 2\/T/(m)). Let G =
[g(ar; W) ---g(an; )]/\F and Gy = [g(ar; W) .. g(an; WO)]/\/m. Then, with probability at least 1 — ,
as long as m > poly(T, L, \™1), we have

IGTGy — GTG||r <O (m—1/3(1og m)T1/3N2)\_1/3L8) .

Proof. For ease of exposition, we write g(-) = g(-; W) and go(-) = g(-; W(?)). Note that

IG5 Gy~ G" Gl = Z a;)) = {go(a:), go(a;)))”
= Z] — go(@:), 9(a;)) — (go(as), go(a;) — g(a;)))?
<= EZ[N] llg(as) = go(ai)l13ll9(a;)lI3 + llgo(ai) 131190 (a;) — g(a;)3)
) i

WN%’) ((log m)T1/3m5/3)\_1/3L8>
=0 ((log m)T1/3N2m_1/3)\_1/3L8)

where the first inequality follows by Cauchy-Schwarz and (a — b)? < 2a? + 2b%, and the second inequality follows by
Lemma G.3 and Lemma G.4. |

Lemma G.10. Consider a weight W close to the initial weight W ©) such that |W — W©O)||y < 2,/T/(m)). Let
@ and ) be feature mappings equivalent to g(-; W)//m and g(-; W) /\/m respectively. Then, as long as m >
poly(T, L, \~1), we have

Yo, T < 7¢(0>,T ) (m—1/3(10gm)T4/3N5/2)\—1/3L8) )

Proof. Let G = [g(a1; W) ---glan; W)]/y/m and Gy = [g(a1; W) g(an; W®)]/\/m. For ease of exposi-
tion, write S = S,/ m and So = Sy.w),ym- Then, S(TP/o,1) = LGDpG” + I, and So(TP/o,1) =
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LGyDpGY + I, where Dp = diag(P(a1), ..., P(ay)) € R¥N*N. Using the Sylvester’s identity log det(I + AB) =
log det(I + BA), we have

logdetS(TP/o,1) = logdet((T/o)GDpGT + I,) = logdet((T /o) DpGT G + Ix)
= logdet((T/o)DpG{ Gy + In + (T/o)DpGTG — (T /a)DpGEGy)
<logdet((T/o)DpGL Gy + Iy)

+{((T/o)DpGT Gy + In)1, (T/o)DpGTG — (T /o) DpGLGy))
<logdet((T/o)DpGL Gy + Iy)
+[((T/o)DpGy Go + In) Ml (T/0)DpGT G — (T /o) DpGg Go) |

where the first inequality follows by the concavity of log det(-) and the last inequality follows by Cauchy-Schwarz. To
bound the second term on the right hand side, we can bound the first factor by

I((T/0)DpGE Go + In) e < VN|((T/o)DpGi Go + In) |2 < VN

where the first inequality uses the identity ||A|r < +/NJ|/A|2 for A € R¥*N and the second inequality uses
(T/o)DpGEGo + Iy = In. Also, we can bound the second factor by

(T/o)IDp(GTG = GG Go)llr < (T/0)|Dpl2|GTG = Gi Gollr < (T/0)IGTG — Gy Gol

where the first inequality uses the identity |AB||r < ||Al|2|| B/ and the second inequality uses || Dp||2 < 1. Using the
bound of the two factors and using Lemma G.9 for bounding ||GT G — G¥ Go||r gives

log det S(T'P/0,1) < logdet So(T'P/o,1) + O ((log m)T4/3 N5/ 2=/ 3A*1/3L8) .
Maximizing over P € Py on the left hand side and denoting the maximizer by P*, we get
o < logdet So(TP* /o, 1) + O ((log m)T4/3N5/2m’1/3)\’1/3L8>
<Yy +0 ((log m)T4/3N5/2m—1/3>\—1/3L8)

where the second inequality follows since ,,0) 1 maximizes log det So(T'P/c, 1) over P € Px. This completes the proof.

Lemma G.11. Let W be a parameter returned by the TRAINNN algorithm. For each t € [T, let W} be a parameter that
satisfies ry(z) = (g(x; W) Wr — WO forall x € X and |W7 — WO |y < \/2rf H-17;/m. Such a parameter
W exists by Lemma G.6. Then, with probability at least 1 — §, we have

re(z) = (g(a; W), Wi = W) < e

forallt € [T and x € X as long as m > poly(T, L, N, A1, \g ', log(1/68), e 1).

Proof. By Lemma G.8, we have with high probability that |[W — W©)|, < 2,/T/(m)) as long as m >
poly(T, L, \~*,log(1/6)) which allows us to use Lemma G.3 and Lemm G.4 to get

lg(z: W) = gla; W)l < O(logmTY/ ol 2A=HOLT/2)
with high probability as long as m > poly(T, L, \~!,1og(1/4)). Hence, we have

re(x) — (g(a; W), Wy = WO = [(g(z; W) — g(a; W), Wy - W)
< lg(ws W) — g(a; W)Wy = WO
< O(@Tl/Gm—l/ﬁA—l/GAal/QN1/2L7/2) <e

forall ¢ € [T] and = € X as long as m > poly(T, L, N, A=, \;*, e~ 1). This completes the proof. |
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Lemma G.12. Let W be close to the initial weight W©) such that |[W — W ||y < 2,/T/(m\). Let ¢ : X — RN be a
feature mapping equivalent to g(-; W) /\/m. Then, we have

Yo,r = O(Nlog(TL)).
Proof. Using the identity det A < (3; Tr(A))" for positive semi-definite A € R¥*¥ we have

1
logdet S, (0~ 'TP,1) < Nlog (N Tr(S, (o TP, 1)))

= Nlog (jv > Pl + 1)

zeX

< Nlog (UJ;\[ Z P(z)O(L) + 1>

zEX
= O(Nlog(TL))
where the second inequality uses ||o(z)]|3 = ||g(z; W)]||3/m due to equivalence and Lemma G.4. This completes the
proof. |

G.3 Concentration bound on reward estimates

In this subsection, we prove the following concentration bound for the reward estimate analogous to Lemma D.1.

Lemma G.13 (c.f. Lemma D.1). Let T C [T be a time interval. Let my be the strategy index used at time t by OPNN
and ™) the feature mapping computed by OPNN using data in the cumulative block C(m — 1). Let ¢ = {¢; }sc1 be the

sequence of feature mappings used by OPNN where @, = ") If j is such that my < j for all t € T, then with probability

at least 1 — %, we have for all x € X that

~ & log(CN/é
Rya) = Rat@) < 2 S It oymyo + e
tezl

o
+ f||<ﬂt($)||sw(Pt,a/T)—1 +e

as long as m > poly(T, L, N, A\, Aal,log(l/é), e 1) where & = ,uj/(4'yg,<0)7T) and 7/'\’\,%1 = ﬁ D oier Rt

First, we show the following distributional properties of the IPS estimator analogous to Lemma D.3.

Lemma G.14 (c.f. Lemma D.3). Let my be the strategy index used by OPNN at time t and let ¢, : X — RY be the feature
mapping equivalent to g(-; W) /\/m used by OPNN at time t. Let P, = P\") be the strategy used at time t. Then,
with probability at least 1 — 0, the IPS estimator R, +(x) satisfies

= Yer , T
Ry ()] < —F2=
Hm,

~ g
B[R, ()] — re(z)] < 4/ T”@t(I)HSW(Pt,a/T)*l + €
Vary[Ro, +(2)] < lee(2)5,, (p,.0/m) 1
forall x € X and t € [T) as long as m > poly(T, L, N, A\~ Ay !, log(1/6),e71).
Proof. The first and the third inequalities follow by the same proof as in Lemma D.3. We focus on the second in-

equality. By Lemma G.11, with probability at least 1 — §, there exists & , with & ;| < € such that r(x) =
(g(z; W) Wr — WO 1 ¢ forallt € [T]and z € X as long as m > poly(T, L, N, ™', Ay ', log(1/8), ¢ 1).



Kihyuk Hong, Yuhang Li, Ambuj Tewari

Writing Sy = Sy .womoy/ym (P, 0/T) and g.(-) = g(+ W (™)) /\/m for convenience, we have

B[Ry, t(2)] = Edlon(2)T Sy, (Pry o /T) L pi(@e)re ()]
= Et[gt(x)TSt_lgt(xt)(\/mgt(ft)T(Wt* - W(O)) +&2)]
= \/ant(w)TSt‘l(St = (a/T))(W — W(O)) +E; [gt(x)TSt_lgt(xt)ft,w]

= r1(z) = o — "ﬁgtmTS;l(W: = W)+ Bilgu(@)" S gu(@0)6ra]

where the first equality uses the fact that the term with the noise 7; vanishes due to independence and the second equality
uses Lemma I.1. Hence, writing S; = Sy, (P, 0/T'), we have

oym

[Ee[Ropy (@)] = re(@)] < [€ra] + 19¢(2)T 57 (W) = WO+ Ellge ()75 ge(w0)r.a]

oym

< cot TL g @)l gt IW7 = WO g+ coalllge ()5 e (o) 5]
[om

Seoty e (@) g WY — WO, + oEi[ller (@)l g1 e (xe)ll5-1]

where the second inequality uses Cauchy-Schwarz and the last inequality uses Lemma 1.1 and S, g (T'/o)I. Since
Pr= (1= pin, )P + fhn, Ty X 5 Homy Tpy 2 » We have Sy = i, S, (T, 20, 0/T) and it follows that

1 <
||<Pt($)||2§;1 < TH%(@”QSW (Tpp, 2020/ T) 1 Lol < OTY2Nlog(TL)

Hom,
for some constant C' where the second inequality follows by Lemma 4.3 and the last inequality follows by 11; > T-1/2
and Lemma G.12. Also, by Lemma G.6, we have /m| W — W ()|, < 1 with probability at least 1 — §. Hence, we can

further bound the bias term by

~ g
[Be[Re, 1(2)] = re(2)] < e+ [ mllee@)lls,, (pro/m) 1 + CTY/? N log(TL)

g
< T||<Pt($)|\sw(Pt,a/T)*1 +e

where we set ¢ sufficiently small such that ¢y + ¢CTY?Nlog(TL) < ¢ and choose m
poly(T, L, N,A\71, /\0’17 log(1/4), e~ 1) appropriately. This completes the proof.

uv

Using the previous lemma, we are ready to prove Lemma G.13.

Proof of Lemma G.13. Fix an action x € X and consider a martingale difference sequence {z; ,}1cz Where z; ,
R%t( x) — E, [R% ¢+(x)]. We can bound 2, ,, for all t € Z by

N N 29,, 45,00
2t < (R t(@)] + B[R, ()] < L2l < 12T

/”'mt /“L]

where the second inequality uses Lemma G.14 to bound \ﬁ%’t(xﬂ and the last inequality uses Lemma G.10 to choose
m > poly(T, N, A, L) that satisfies v, 7 < 27,0) 1. Also, we have Vary[z; .| = Vary[Ro, +(7)] < H%(x)Hf% (Py,o/T)-1

by Lemma G.14. Using the Freedman inequality (Lemma D.2) on {z; , }:c7 We get with probability at least 1 — C‘SN that
Rez(r) - i > (et + EulRe ()] ~ Re(e)
teT
log(C'N/d)
|I| Z [t (x HSW(Pt /Tyt T T 17 T ||<Pt z)|ls,, (Pro/m)-1 + €
tez

where §; = p; /(47,00 ) and we use Lemma G.14 to bound the bias term E, [ﬁv(mt)’t(x)] — Rz(x). A union bound over
all z € X and the reverse case Rz(x) — ﬁ%z(x) completes the proof. |
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Lemma G.15 (c.f. Lemma 4.5). Let m, be the strategy index used at time t by OPNN and ©'™) the feature mapping
computed by OPNN using data in the cumulative block C(m — 1). Let ¢ = {¢¢ }+c1 be the sequence of feature mappings
used by OPNN where oy = ©\"™). With high probability, when running the OPNN algorithm, we have for all block indices
7 =0,1,... and actions x € X that

~ 1 C
Re.cii) () — Reg ()] < §AC(j)($) + Ve + ZOM (24)
Ac(j) (@) < 28y 005 () + AVe() + cot (25)
Agciy (@) < 2005 (@) + 4Ve(j) + copy (26)

where ¢y = (40 + 16/a).

Proof. Apart from dealing with the error ¢ when applying Lemma G.14 due to the finiteness of the width of the network and
bounding v, 7 < Y, 7 + € using Lemma G.10, the proof is exactly the same as that for Lemma 4.5. As for dealing with

e, we set € < 1 by choosing m > poly(T, L, N, A\™%, A\ *, log(1/3), ¢~ ') appropriately when applying Lemma G.14 and
Lemma G.10. |

Now, we are ready to prove Theorem G.1.

Proof of Theorem G.1. The proof is exactly the same as that of Theorem 4.6. Instead of using Lemma 4.5 as in the proof
of Theorem 4.6, we use Lemma G.15 for the reward estimate concentration bound and the suboptimality gap estimate
concentration bound. u

H Analysis of ADA-OPNN

The analysis of ADA-OPNN is exactly the same as the analysis of ADA-OPKB presented in Section F with the following
adjustments. In place of Lemma D.1 and Lemma 4.5 use Lemma G.13 and Lemma G.15.

I Equivalence of feature mappings

Recall that OPKB and ADA-OPKB use a feature mapping equivalent to a feature mapping corresponding to a given kernel.
Also, OPNN and ADA-OPNN use a feature mapping equivalent to the feature mapping induced by the neural network. In this
section, we show that the choice of feature mapping does not affect the algorithm and the analysis. Note that the algorithm
and the analysis depend on the feature mapping ¢ only through the quantities || () H?% (py)-1 and logdet S, (P, \). The
following lemmas show that these quantities are not affected by the choice of the equivalent feature mapping.

Lemma L1. Let 1) : X — (2 (or v : X — RP) be a feature mapping. Let ¢ : X — R be an equivalent feature mapping.
Then, for all x,x’ € X, we have

p(@)T S, (P,N) () = P(a) T Sy (P, N) ().

Proof. We prove the more general case ¢ : X — (2. Let ® = [p(a1) --plan)]T € R¥*N and ¥ =
[(ar)---(ay)]t € RNX°. The infinite matrix ¥ can be thought of a linear operator ¥ : ¢ — RY with
V() = ((¢(ar),-),..., {¥(ay),-)). We denote by U7 : RN — ¢2 the linear operator with U7 (w) = Zf\; wip(a;). By
the definition of equivalence of feature mappings, we have ®®7 = WUT = K where K = [(¢(z), ¥ (2'))]saex
is the kernel matrix. Defining Dp = diag(P(a1),...,P(an)), we can write S,,(P,\) = ®TDp® + Ay and
Sy(P,A) = 9T DpW + AI. Note that

Sy(P,ANYT = (W' DpU + AU = U7 (DpW T + A y) = U1 (DpK + \y).
Applying the inverses of Sy, (P, \) and (DpK + A y) on both sides, we get U7 (DpK + M y)~t = Sy, (P,A) 10T It

follows that
P(ai) TS (PA) " (ay) = (W(ai), Sy (P,A) 10T ey)
= (P(@), U (DpK + Ay) ;)
= <1/)(a1)7 \IITw>
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Figure 2: Cumulative regret comparison of algorithms in cosine bandit environments

where ¢; € RY is the unit vector with jth entry 1 and w = (DpK + My) te;. Since (¢(a;),¥Tw) =
(W(a;), Zjvzl w;Y(a;)) = Z;\le wjk(a;, a;) = el Kw, it follows by standard matrix algebra that

D(ai)" Sy (P,N) " p(ay) = ef Kw
= el 00T (Dp®dT + \y) e,
= el ®(®TDp® + M) ' 0Te;
= (@) S, (PA) " o(ay)
forall 1 < 4,j < N where the second to last equality uses the fact that ®7(Dp®®T + \I) = (®TDpd + Ny )P7,
which implies @7 (Dp®®T + AI) "' = (®TDp® + M)~ '®T. This completes the proof. |

Lemma L.2. Let o1 : X — RP! and o : X — RP? be equivalent feature mappings. Then, we have

logdet S, (P, A) = logdet S, (P, \).

Proof. Let @1 = [p1(a1) - pi(an)]T € RY>*Pr and @y = [pa(a1)---p2(an)]T € RVN*P2. By the definition of
equivalence of feature mappings, we have ®;®7 = ®,®I = K for some kernel matrix K € RV*Y, Defining Dp =
diag(P(a1),. .., P(ax)), we can write Sy, (P,\) = ®T Dp®; + My and S,,(P,\) = &I Dp®y + A y. Using the
Sylvester’s determinant identity det(AB + I) = det(BA + I), we get
logdet Sy, (P, \) = logdet(®] Dp®; + A,
= log det(@lq){Dp + My
= logdet(®,®I Dp + My
= log det(®2 Dp®y + A,
= logdet S, (P, \)

_ — —

which completes the proof. |

J Additional experiments

In this section, we provide additional experimental results under a simulated environment with the reward function
r¢(z) = 0.8 cos(3z70 + ¢(t)) where the action x and the parameter 6 are randomly sampled from the unit sphere in R,
and ¢(t) denotes the phase over time. We use the parameters tuned in Section 6 for all the experiments in this section.

J.1 Algorithm Tuning

We tune SW-GPUCB, WGPUCB, ADA-OPKB and ADA-OPNN algorithms under the single switch environment.
For SW-GPUCB, we do a grid search for A\ over the range {0.01,0.02,0.05,0.1,...,100}, the UCB scale param-
eter v over [0.001,1], and the window size over {100,200, 500, 1000, ...,10000}. See Algorithm 8 for the defini-
tion of A\. For WGPUCB, we do a grid search for A over the range {0.01,0.02,0.05,0.1,...,100}, the UCB scale
parameter over {0.001,0.002,0.005,0.01,...,1}, and the discounting factor over {0.99, 0.995,0.999, 0.9995,0.9999}.
See Algorithm 8 for the definition of A. For ADA-OPKB and ADA-OPNN, we do a grid search for o over
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{1,2,5,10,20, 50, 100, 200, 500, 1000} and c, c1, 2, c3, ca over {0.001,0.002, 0.005,0.01, .. ., 100}. For ADA-OPNN,
we do a grid search for the learning rate 7 over {1072, 107%,10~7}, training steps J over {100, 1000, 10000} and regular-
ization parameter A over {1, 10,100, 1000}. We use a neural network of depth L = 3 and width m = 2048.

J.2 Stationary cosine bandits

We perform an experiment to demonstrate that OPNN benefits from dynamically adapting the feature mapping. We use the
cosine bandits described earlier with the phase fixed at ¢(¢) = 0. For a comparison, we run the algorithm OPNNO that does
not train the neural network for updating the feature mapping and uses the feature mapping induced by the initial weight of
the neural network for all blocks.

The cumulative regrets averaged over 50 random seeds are shown in plot (b) of Figure 2. Error bars indicates standard errors
of the means. OPNN outperforms OPNNO, suggesting that updating feature mapping by training the neural network with
observed data is beneficial. Also, note that the performance of OPNN is comparable to GPUCB and OPKB.

J.3 Slowly-varying cosine bandits

We perform an experiment on slowly-varying bandits to demonstrate that our change detection based algorithms ADA-OPKB
and ADA-OPNN adapt to slowly-varying environments. We use the cosine bandit described earlier with varying phase ¢(¢).
We keep ¢(t) = 0 from time 0 to 1000, then let it grow from O to 7 linearly from time 1000 to 3000. From time 4000 to
6000, we let ¢(t) grow again from 7 to 27 linearly, and then keep ¢(¢) = 2 until the end of the simulation.

The cumulative regrets averaged over 25 random seeds under the slowly-varying cosine environment are shown in plot(b) of
Figure 2. Error bars indicate standard errors of the means. Note that SW-GPUCB with window size 3000, which is the
best tuned parameter for the switching environment in Section 6, is outperformed by the change detection based algorithms
ADA-OPKB and ADA-OPNN. If we tune SW-GPUCB again and use SW-GPUCB with window size 1000, SW-GPUCB
performs the best. Similarly, the best tuned WGPUCB under the single switching environment in Section 6 is outperformed
by ADA-OPKB and ADA-OPNN in the slowly varying environment.
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