
An Optimization-based Algorithm for Non-stationary Kernel Bandits without
Prior Knowledge

Kihyuk Hong Yuhang Li Ambuj Tewari
University of Michigan University of Michigan University of Michigan

Abstract

We propose an algorithm for non-stationary ker-
nel bandits that does not require prior knowledge
of the degree of non-stationarity. The algorithm
follows randomized strategies obtained by solving
optimization problems that balance exploration
and exploitation. It adapts to non-stationarity by
restarting when a change in the reward function
is detected. Our algorithm enjoys a tighter dy-
namic regret bound than previous work on non-
stationary kernel bandits. Moreover, when ap-
plied to non-stationary linear bandits by using a
linear kernel, our algorithm is nearly minimax
optimal, solving an open problem in the non-
stationary linear bandit literature. We extend our
algorithm to use a neural network for dynami-
cally adapting the feature mapping to observed
data. We prove a dynamic regret bound of the
extension using the neural tangent kernel theory.
We demonstrate empirically that our algorithm
and the extension can adapt to varying degrees of
non-stationarity.

1 INTRODUCTION

The linear bandit (LB) problem (Dani et al. 2008) and the
kernel bandit (KB) problem (Srinivas et al. 2010) are im-
portant paradigms for sequential decision making under
uncertainty. They extend the multi-armed bandit (MAB)
problem (Robbins 1952) by modeling the reward function
with the side information of each arm provided as a feature
vector. LB assumes the reward function is linear. KB ex-
tends LB to model non-linearity by assuming the reward
function lies in the RKHS induced by a kernel.

A recent line of work studies the non-stationary variants of
LB and KB where the reward functions can vary over time

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

subject to two main types of non-stationarity budgets: the
number of changes and the total variation in the sequence
of reward functions. A common algorithm design principle
for adapting to non-stationarity is the principle of forgetting
the past. It has been applied to the non-stationary MAB
to design nearly minimax optimal algorithms (Garivier et
al. 2011; Besbes et al. 2014). Similarly, the principle has
been applied to the non-stationary LB (Cheung et al. 2019;
Russac et al. 2019; Zhao et al. 2020; Kim et al. 2020) and
the non-stationary KB (Zhou et al. 2021; Deng et al. 2022).

Recently, Zhao et al. (2021) found an error in a key technical
lemma by Cheung et al. (2019) that affects the concentra-
tion bound of regression-based reward estimates under non-
stationarity. Unfortunately, the error is inherited by Russac
et al. (2019), Zhao et al. (2020) and Kim et al. (2020). The
corrected regret bounds of the affected papers are worse
than what were originally reported. Since the correction,
finding a nearly minimax optimal algorithm for the non-
stationary LB setting has been an open problem. The same
error affected the work on non-stationary KB by Zhou et al.
(2021) and they had to correct their initially reported regret
bound to a worse one.

Algorithms using the principle of forgetting require the
knowledge of the non-stationarity budgets. For example,
sliding window algorithms (Garivier et al. 2011; Cheung et
al. 2019; Zhou et al. 2021) that forget the past by discarding
data older than certain time window require the knowledge
of the non-stationarity budgets to optimally tune the size
of the window. Since having a prior knowledge of the non-
stationarity budgets may not be realistic in practical settings,
researchers have developed change detection based algo-
rithms that do not require the knowledge of non-stationarity
budgets. A seminal paper by Auer et al. (2018) demonstrates
a change detection based algorithm for the non-stationary
two-armed bandit setting. Their design principle has been
applied to MAB (Auer et al. 2019) and the contextual bandit
setting (Chen et al. 2019). More recently, Wei et al. (2021)
proposed a reduction called MASTER that equips an algo-
rithm designed for a stationary environment with change
detection subroutines to adapt to non-stationarity without the
knowledge of non-stationarity budgets. They provided a re-
duction of the OFUL algorithm (Abbasi-yadkori et al. 2011)

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

and claimed near-minimax optimality for non-stationary lin-
ear bandits. However, due to the aforementioned error, they
had to correct their regret bound to a suboptimal one.

In this paper, we design an algorithm that sidesteps the
error and recover the tighter dynamic regret bounds for non-
stationary LB and KB that were once thought to be achieved.
We make the following contributions.

• We design a novel optimization-based algorithm OPKB
for stationary kernel bandits that uses inverse propensity
score based reward estimates that sidestep the aforemen-
tioned error specific to regression based reward estimates.

• We design an algorithm ADA-OPKB that adapts OPKB
to non-stationary settings using change detection. ADA-
OPKB does not require the knowledge of the non-
stationarity budgets and enjoys a dynamic regret bound
tighter than previous work on non-stationary KB.

• We show ADA-OPKB is nearly minimax optimal in the
non-stationary linear bandit setting, solving an open prob-
lem in the non-stationary linear bandit literature.

• We provide an extension of ADA-OPKB called ADA-
OPNN that trains a neural network to dynamically adapt
the feature mapping to observed data. We show a dynamic
regret bound for ADA-OPNN when the width of the net-
work is sufficiently large using the neural tangent kernel
theory (Jacot et al. 2018).

1.1 Related Work

Non-stationary Linear/Kernel Bandits Common ap-
proaches for non-stationary bandits include restarting pe-
riodically, using recent data within fixed time window
(sliding-window) and exponentially decaying past obser-
vations (discounting). These approaches require the knowl-
edge of non-stationarity. Zhou et al. (2021) analyze restart-
ing and sliding-window approaches for adapting a UCB-
based algorithm for kernel bandits. Deng et al. (2022) ana-
lyze a discounting approach for kernel bandits. Russac et al.
(2019), Cheung et al. (2019) and Zhao et al. (2020) pro-
pose discounting, sliding-window and restarting approaches
for adapting a UCB-based algorithm for linear bandits re-
spectively. Cheung et al. (2022) discuss restarting adversar-
ial linear bandit algorithm. For the non-stationary setting
where the learner does not have the knowledge of the non-
stationarity, Cheung et al. (2019), Zhao et al. (2020) and
Cheung et al. (2022) discuss bandit-over-bandit (BOB) re-
duction. Wei et al. (2021) propose a change detection based
reduction (MASTER) and show a reduction of a UCB-based
algorithm for linear bandits.

Optimization-based Algorithms First proposed for con-
textual bandits optimization-based algorithms solve opti-
mization problems to find randomized strategies that balance

exploration and exploitation (Dudik et al. 2011; Agarwal
et al. 2014). The idea is adapted to linear bandits (Lattimore
et al. 2017; Hao et al. 2020; Lee et al. 2021). Our paper is
the first to apply the approach to kernel bandits.

2 PROBLEM STATEMENT

We consider a bandit problem where the learner and the
nature interact sequentially for T time steps. At each time
t, the learner plays an action xt chosen from a finite set
of actions X = {a1, . . . , aN} ⇢ Rd. Then the nature
reveals a noisy reward yt = rt(xt) + ⌘t where rt : X ! R
is an unknown reward function at time t and {⌘t}Tt=1 are
independent zero-mean noises with a bound |⌘t|  S. 1

Following the kernel bandit setting commonly used in the
literature, we make the following regularity assumption on
the reward functions.
Assumption A (Kernel bandit). The reward functions rt
live in the RKHS H induced by a continuous positive semi-
definite kernel k : X ⇥ X ! R with k(x, x)  1 for all
x 2 X . Their norms satisfy krtkH  B for all t = 1, . . . , T .
The kernel k and the bounds S, B are known to the learner.

Note that Assumption A implies |rt(x)| = hrt, k(·, x)iH 
krtkHkk(·, x)kH  B for all t = 1, . . . , T and x 2 X by
the reproducing property of RKHS and Cauchy-Schwarz.
For the rest of the paper, when making Assumption A, we
assume that the learner scales the problem (by S + B) so
that |rt(x)|  1 and |yt(x)|  1 for simpler exposition.

Before the learner interacts with the nature, the nature
chooses a sequence of reward functions {rt}Tt=1 subject to
two types of non-stationarity budgets simultaneously. The
first budget VT limits the total variation of the sequence of
reward functions:

P
T�1
t=1 krt+1 � rtk1  VT . The second

budget LT limits the number of changes in the sequence of
reward functions: 1 +

P
T�1
t=1 I{rt+1 6= rt}  LT .

The learner aims to minimize the dynamic regret REGT :=P
T

t=1(rt(x
?

t
) � rt(xt)) where x?

t
:= argmax

x2X
rt(x) is

the best action at time t. Note that REGT is the cumula-
tive expected regret against the optimal strategy with full
knowledge of the sequence of reward functions.

2.1 Preliminaries and Notations

Feature Mapping By Mercer’s theorem, given a contin-
uous positive semi-definite kernel k : X ⇥ X ! R, there
exists a feature mapping : X ! `2 with k(x, x0) =
h (x), (x0)i for all x, x0 2 X . We say feature map-
pings '1 and '2 are equivalent if h'1(x),'1(x0)i =

1The boundedness noise assumption is for making use of the
Freedman-style inequality (Lemma D.2). We can relax this as-
sumption to a subgaussian noise assumption by modifying the
Freedman-style inequality using a truncation argument. See Ap-
pendix D.7 for detail.

Kihyuk Hong, Yuhang Li, Ambuj Tewari

Table 1: Regret Bound Comparison of Algorithms for Non-stationary Kernel/Linear Bandits

Setting Algorithm Regret bound in eO(·) Required
knowledge

Kernel
Bandit

R/SW-GPUCB (Zhou et al. 2021) �
7
8
T
T

3
4 (1 + VT)

1
4 VT

WGPUCB (Deng et al. 2022) �̇
7
8
T
T

3
4 (1 + VT)

1
4 2 VT

GPUCB+MASTER (Appendix E) min{�T
p
TLT , �TT

2
3V

1
3
T

+ �T
p
T}

ADA-OPKB (Ours) min{
p
d�TTLT , d

1
3 �

1
3
T
T

2
3V

1
3
T

+
p
d�TT}

Linear
Bandit

D-LinUCB (Russac et al. 2019) d
7
8T

3
4V

1
4
T

+ d
p
T VT

SW-UCB+BOB (Cheung et al. 2019) d
7
8T

3
4V

1
4
T

+ d
p
T

RestartUCB+BOB (Zhao et al. 2020) d
7
8T

3
4V

1
4
T

+ d
p
T

Restart-Adv (Cheung et al. 2022) d
2
3T

2
3V

1
3
T

+ d
p
T VT

Restart-Adv+BOB (Cheung et al. 2022) d
2
3T

2
3V

1
3
T

+ d
1
2T

3
4

LinUCB+MASTER (Wei et al. 2021) min{d
p
TLT , dT

2
3V

1
3
T

+ d
p
T}

ADA-OPKB (Ours) min{d
p
TLT , d

2
3T

2
3V

1
3
T

+ d
p
T}

h'2(x),'2(x0)i for all x, x0 2 X . Given a feature map-
ping , we can always find an equivalent N -dimensional
feature mapping ' : X ! RN . For example, we can de-
compose the kernel matrix K = {h (ai), (aj)i}i,j2[N]

into K = ��T using the Cholesky decomposition where
� 2 RN⇥N , then take '(ai) = �T ei for all i = 1, . . . , N .

Maximum Information Gain The maximum informa-
tion gain (Srinivas et al. 2010) of the RKHS induced by a
kernel k is defined as the maximum mutual information be-
tween observations {f(xt) + ✏t}Tt=1 with ✏t ⇠ N(0, 1) and
f(·) sampled from a Gaussian process GP (0,��1k(·, ·)).
It is a widely used dimensionality measure of RKHS. As
done by Camilleri et al. (2021), we generalize the orig-
inal definition to support T fractional observations, and
define �',T = maxP2PX log detS'(TP/�, 1) where PA

is the set of probability distributions on A, S'(Q,�) :=P
x2X

Q(x)'(x)'(x)T + �I and ' is an N -dimensional
feature mapping of k. It can be shown that for equivalent
feature mappings '1 and '2 of k, we have �'1,T = �'2,T

(see Appendix I). Hence, �',T is fully determined by the
underlying kernel k and does not depend on the particular
choice of the feature mapping ' induced by the kernel. We
suppress the subscript ' and write S(·, ·) and �T when clear
from the context. For the connection between the origi-
nal definition of the maximum information gain and our
definition, see Appendix C.

Other Notations We use [n] to denote {1, . . . , n}. For a
semi-positive definite matrix M and a vector x, we write
kxk2

M
= xTMx. We denote by Et[·] and Vart[·] the condi-

tional expectation and variance respectively given history
up to time t� 1. For an interval I = [s, t], we define VI =P

t�1
⌧=s
kr⌧+1 � r⌧k1 and LI = 1 +

P
t�1
⌧=s

I{r⌧+1 6= r⌧}.

3 MAIN RESULT

The main result of this paper provides a worst-case bound
on the dynamic regret of our novel algorithm called ADA-
OPKB for the non-stationary kernel bandit setting.

Theorem 3.1. Under Assumption A, without the knowledge
of non-stationarity budgets VT and LT , the dynamic regret
of ADA-OPKB is bounded, with high probability, by

eO(min{
p
�TLTT logN,

(�TVT logN)1/3T 2/3 +
p
�TT logN}).

When the action set X ⇢ Rd is an infinite bounded set,
we can take a hypercube of side length R that contains X
and discretize it into O((Rd/✏)d) hypercubes as done by
Chowdhury et al. (2017) where ✏ is the maximum error
of expected reward from discretization. Discretizing the
action set with ✏ = 1/T and running ADA-OPKB on the
discretized action set lead to a dynamic regret bound of
eO(min{

p
d�TLTT , (d�TVT)1/3T 2/3+

p
d�TT}). We use

this bound to compare with previous work on the setting
with an infinite action set.

We can reduce the kernel bandit setting to the linear ban-
dit setting by using the linear kernel k(x, x0) = hx, x0i.
As shown in Lemma C.3, the maximum information gain
of the linear space is �T = O(d log T) and the dynamic
regret bound of ADA-OPKB that uses the linear kernel
becomes eO(min{

p
dLTT logN, (dVT logN)1/3T 2/3 +p

dLTT logN}) for the finite action set. For the infinite ac-
tion set, we get eO(min{d

p
LTT , d2/3V

1/3
T

T 2/3 + d
p
T})

using the discretization technique.

2The dimensionality measure �̇T used in Deng et al. (2022) is

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

Relation to Previous Work Table 1 compares the regret
bound of our work to the corrected regret bounds of pre-
vious works. The regret bound of ADA-OPKB for non-
stationary kernel bandits is tighter than previous work. Ap-
plying to non-stationary linear bandits by using the lin-
ear kernel, ADA-OPKB nearly achieves the lower bound
⌦(d

2
3V

1
3
T
T

2
3) (Cheung et al. 2019), solving an open prob-

lem of finding a nearly minimax optimal algorithm for
non-stationary linear bandits. The best regret bound be-
fore our work is by Cheung et al. (2022) who discuss that
an algorithm for adversarial linear bandits, e.g. Exp3 algo-
rithm (Lattimore et al. 2020), equipped with periodic restarts
(Restart-Adv) achieves eO(d

2
3T

2
3V

1
3
T
). However, it requires

the knowledge of VT to tune the frequency of restarts. They
also discuss a bandit-over-bandit reduction of Restart-Adv
(Restart-Adv+BOB) that does not require the knowledge
of VT . However, the reduction suffers an additional regret
term of d 1

2T
3
4 .

The dependence of �T in the regret bound for kernel bandits
is crucial since �T can grow with T . For example, �T for
the Matérn kernel with smoothness parameter ⌫ scales as
e⇥(T

d
2⌫+d) (Vakili et al. 2021b). Previous works on non-

stationary kernel bandits (Zhou et al. 2021; Deng et al.
2022) show a regret bound of order �7/8

T
T 3/4, which may

not be sublinear in T . For example, it is not sublinear in T
for Matérn kernel when ⌫/d  5/4. Our improved regret
bound for ADA-OPKB is of order min{�1/3

T
T 2/3,

p
�TT},

which is sublinear in T as long as �T is sublinear in T .
As shown by Vakili et al. (2021b), �T is sublinear for a
class of kernels of which eigenvalues decay polynomially
or exponentially, which includes the Matérn kernel and the
squared exponential kernel.

4 ALGORITHMS AND ANALYSES

We first study stationary kernel bandits where the reward
functions do not vary over time.

4.1 OPKB: Optimization-based Algorithm for
Stationary Kernel Bandits

Central to the OPKB algorithm is the optimization problem
(OP) designed to return a randomized strategy that balances
exploration and exploitation. OP uses an empirical subop-
timality gap of each action computed based on the inverse
propensity score (IPS) estimator (Camilleri et al. 2021).

Definition 4.1. The inverse propensity score (IPS) estimator
for the expected reward rt(x) with respect to ' using the
observed reward yt is defined as

bR',t(x) := '(x)TS'(Pt,�/T)
�1'(xt)yt

related to �T but they use a discounted kernel matrix computed
with an approximate feature mapping for computing �̇.

for all x 2 X where Pt is the randomized strategy
used at time t. Averaging over an interval I, we define
bR',I(x) :=

1
|I|

P
t2I

bR',t(x). The empirical suboptimal-
ity gap of action x from observations in I is defined as
b�',I(x) := maxx02X

bR',I(x0)� bR',I(x).

OP minimizes over P 2 PX the objective function

X

x2X

P (x)b�(x)� 2

�
log detS'(P,�/T) (1)

where the first term is the weighted average of the empirical
suboptimality gaps that encourages exploitation and the
second term is a regularizer that encourages exploration.
That the second term encourages exploration can be seen by
the property of the optimal design defined as follows.

Definition 4.2. Given a set of actions A ✓ X and a
feature mapping ' : X ! Rp, we define ⇡'(A) :=
argmax

P2PA log detS'(P,�/T) and call it the optimal
design on A with respect to '.

The optimal design is a generalization of the Bayesian
D-optimal design for linear models that maximizes
log det(

P
x2A

P (x)xxT + R), where R is some regular-
izer. The Bayesian D-optimal design is one of the explo-
ration strategies used in the Bayesian experimental design
literature (Chaloner et al. 1995). As shown in the follow-
ing lemma, by playing our definition of the optimal design
⇡'(A), we can uniformly bound the variance of the IPS
estimators over all actions in A. See Appendix D.2 for
proof.

Lemma 4.3. Consider an optimal design ⇡'(A) with re-
spect to a feature mapping ' on a set of actions A ✓ X .
If we play an action sampled from ⇡'(A) at time t and
observe yt, then for all x 2 X , we have

Var(bR',t(x))  k'(x)k2S'(⇡'(A),�/T)�1  �',T .

The full OP algorithm is presented below. Note that due
to the concavity of log det(·), the optimization problem
used by OP and the optimal design can be solved efficiently,
for example, by using the interior-point method in Vanden-
berghe et al. (1998).

Algorithm 1: OP: Optimization Problem

Input: ', b� = {b�(x)}x2X , ↵, �, T
1 Find a minimizer P ? 2 PX of (1).
2 Find A {x 2 X : b�(x)  2↵�',T /�}.

Return: The mixed strategy Q = 1
2P

? + 1
2⇡'(A)

The parameter � controls the balance between exploration
and exploitation. As stated in Lemma 4.4, the greater the �,
the smaller the expected empirical regret

P
x2X

Q(x)b�(x)
and the greater the variance bound. See Appendix D.3 for

Kihyuk Hong, Yuhang Li, Ambuj Tewari

the proof. Note that OP mixes the minimizer P ? with the
optimal design on the set A computed in Line 2. This step
is required to get the bound (4), which is the key to bound
the bias of the reward estimator for the regret analysis.
Lemma 4.4. The distribution Q returned by the algorithm
OP(', b�,↵,�, T) satisfies

X

x2X

Q(x)b�(x)  (1 + ↵)�',T
�

, (2)

k'(x)k2
S'(Q,�/T)�1  � b�(x) + 2�',T , 8x 2 X , (3)

k'(x)k2
S'(Q,�/T)�1 

�2 b�(x)2

2↵�',T
+ 2�',T , 8x 2 X . (4)

Now, we present the OPKB algorithm (Algorithm 2). OPKB
takes a feature mapping ' as an input. Assuming the
knowledge of the kernel k corresponding to the RKHS in
which the reward function lies, we use any feature mapping
' : X ! RN equivalent to the feature mapping : X ! `2

corresponding the kernel. The choice of ' among the fea-
ture mappings equivalent to does not affect the algorithm
and the analysis. See Appendix I for details. OPKB runs
in blocks of doubling sizes. In the first block, it follows
the optimal design for E time steps. Before starting a new
block j, it computes the empirical suboptimality gaps using
all past history, then runs OP to find the strategy Q(j) and
mixes it with the optimal design. The mixed strategy P (j) is
run in block j. Every block, OPKB increases the parameter
� by a factor of

p
2 when calling OP to increase the degree

of exploitation.

Algorithm 2: OPKB
Input: feature map ', horizon T , confidence � 2 (0, 1).
Definition: µj = c12�j/2, E = dc3�',T log(C0N/�)e,

�j = c2�',T 2j/2, ↵ = c4�/ log(C0N/�)
Initialize: t 1, P (0) ⇡'(X)

1 for j = 0, 1, . . . do
2 Set block B(j) [t, t+ 2jE � 1] and cumulative

block C(j) [j
k=0B(k).

3 if j � 1 then
4 Compute empirical gap b� {b�',C(j�1)(x)}x2X .
5 Find strategy Q(j) OP(', b�,↵,�j , T).
6 Set P (j) (1� µj)Q(j) + µj⇡'(X).

7 while t 2 B(j) do
8 Play xt ⇠ P (j); receive yt; increment t t+ 1.

4.2 Analysis of OPKB

For the analysis of OPKB, we use the following concen-
tration bounds for the reward estimate bR',C(m)(x) and the
gap estimate b�',C(m) shown under a more general setting
of non-stationary kernel bandits. The proof is based on a

Freedman-style inequality on the martingale difference se-
quence { bR',t(x)�Et[bR',t(x)]}t2C(j). See Appendix D.5
for the full proof.
Lemma 4.5. With probability at least 1� �, when running
the OPKB algorithm, we have for all block indices j =
0, 1, . . . and actions x 2 X that

| bR',C(j)(x)�RC(j)(x)| 
1

2
�C(j)(x) + VC(j) +

c0µj

4
(5)

�C(j)(x)  2b�',C(j)(x) + 4VC(j) + c0µj (6)
b�',C(j)(x)  2�C(j)(x) + 4VC(j) + c0µj (7)

where C(j) is the interval from time 1 to the end of block
j, c0 is a universal constant, RI(x) :=

1
|I|

P
t2I

rt(x) is
the average reward in I and�I(x) := maxx02X RI(x0)�
RI(x).
Remark 1. Concentration bounds for regression-based re-
ward estimates for the non-stationary LB and KB given by
Lemma 2 in Zhao et al. (2021) and Lemma 1 in Zhou et al.
(2021) are analogous to (5). However, their bounds have
an additional factor of

p
d and p�',T respectively for the

term VC(j), leading to suboptimal regret bounds. Their con-
centration bounds were believed to have a constant factor
for the term VC(j), but they had to be corrected due to an
error found by Zhao et al. (2021). The error is specific to
regression-based reward estimates. See Zhao et al. (2021)
for details. Our algorithm sidesteps the error by using IPS
reward estimates instead of regression-based reward esti-
mates. The main motivation for using randomized strategies
in our algorithm is to use IPS reward estimates, which can
only be constructed when randomized strategies are used.
Remark 2. Consider the stationary setting where VC(j) = 0.
The expected one step regret when following P (j) is
X

x2X

P (j)(x)�C(j�1)(x)


X

x2X

Q(j)(x)�C(j�1)(x) + 2µj

X

x2X

⇡'(x)

 2
X

x2X

Q(j)(x)b�',C(j�1)(x) +O(µj)  O(µj)

where ⇡' is the optimal design on X , the first inequality
uses �C(j�1)  2 and the last inequality uses Lemma 4.4.

By the remark above, we can show the following theorem.
Theorem 4.6. Under Assumption A with stationary reward
functions rt(·) = r(·) for all t 2 [T], the dynamic regret
bound of OPKB using a feature mapping induced by the
kernel k is bounded with high probability by

REGT  eO
⇣p

�TT logN
⌘
.

Proof sketch. By Remark 2, the expected regret of the block
B(j) is O(|B(j)|

p
2�j) = O(E

p
2j). Summing over all

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

blocks gives the bound O(
p
�TT logN) on the expected

total regret. See Appendix D for a full proof. ⌅

Our regret bound for OPKB is order-optimal (Salgia et al.
2021) and matches work by Salgia et al. (2021), Camilleri
et al. (2021), Li et al. (2022), and Valko et al. (2013). It is
an improvement over Srinivas et al. (2010) and Chowdhury
et al. (2017).

4.3 ADA-OPKB: Adapting OPKB to Non-Stationarity

In this section, we propose an algorithm called ADA-OPKB
for the non-stationary kernel bandit setting that does not
require the knowledge of the non-stationarity budgets.

Remark 3. Before our paper, the most natural attempt for
designing an algorithm for non-stationary KB is to use the
MASTER reduction (Wei et al. 2021) on GPUCB (Chowd-
hury et al. 2017), a UCB-based algorithm for stationary
kernel bandits. This is because the MASTER reduction
most naturally works for a UCB-based base algorithm. Also,
the required analysis of GPUCB under non-stationary en-
vironment is available in the literature (Zhou et al. 2021).
However, as shown in Appendix E, the reduction of GPUCB
gives worse dynamic regret bound compared to ADA-OPKB
due to the suboptimal concentration bound of regression
based reward estimates.

ADA-OPKB adapts OPKB to non-stationarity by restarting
upon detecting a significant change in reward functions. The
key is to use past strategies as change detectors. Lemma 4.5
suggests that the strategy P (j) can detect changes in subop-
timality gaps greater than ⇠

p
2�j after running for ⇠ 2j

time steps. ADA-OPKB replays older strategies with small
indices to detect large changes fast and more recent strate-
gies to detect small changes after running for longer time
intervals. Algorithm 3 shows the full algorithm. Highlighted
lines indicate the difference from OPKB.

Before starting a new block j, ADA-OPKB calls
SCHEDULE (Algorithm 4), similar to the scheduler in Wei
et al. (2021)), for determining when to use which of the
strategies P (0), . . . , P (j). The procedure generates a set
of replay intervals denoted by (m, I) where m indicates
the strategy index and I indicates the time interval sched-
uled for playing the strategy P (m). A replay schedule of
index m has length 2mE and there are 2j�m slots in block
j available to be scheduled. For each slot, the algorithm
randomly schedule a replay of index m with probabilityp
2m�j . When multiple replay intervals are scheduled at a

given time t, the algorithm selects the one with the smallest
index. The strategy used at time t is denoted by mt. Upon
completion of a replay interval I, the change detection test
(8) is run. A restart is triggered if the test detects a signif-
icant change in reward functions. The test is based on the
comparison of the empirical gap b�',I and b�',C(k) where
C(k) is any cumulative block prior to I.

Algorithm 3: ADA-OPKB: ADAptive Optimization Prob-
lem based Kernel Bandit Algorithm
Input: feature map ', horizon T , confidence � 2 (0, 1).
Definition: µj = c12�j/2, �j = c2�',T 2j/2,

E = dc3�',T log(N/�)e, ↵ = c4�/ log(N/�)
Initialize: t 1, epoch index i 1, Q(0) ⇡'(X)

1 for j = 0, 1, . . . do
2 Set B(j) [t, t+ 2jE � 1] and C(j) [j

k=0B(k).
3 if j � 1 then
4 Compute b� {b�',C(j�1)(x)}x2X .
5 Find strategy Q(j) OP(', b�,↵,�j , T).
6 Set P (j) (1� µj)Q(mt) + µj⇡'(X).

7 Generate replay schedule S SCHEDULE(t, j).
8 while t 2 B(j) do
9 mt min{m : (m, I) 2 S with t 2 I} ;

// smallest index of scheduled
intervals

10 Play xt ⇠ P (mt); receive yt; increment t t+ 1.
11 If Test triggers a restart, increment i; go to Line 1.

Test: Trigger a restart if for any (m, I) 2 S with I ending
at t and k < j, the following holds

b�',I(x)� 4b�',C(k)(x) > 4c0µm^k or
b�',C(k)(x)� 4b�',I(x) > 4c0µm^k.

(8)

4.4 Analysis of ADA-OPKB

With the key lemmas proved for analyzing OPKB, we use
ideas from Chen et al. (2019) and Wei et al. (2021) to ana-
lyze ADA-OPKB. We provide a sketch of the proof below.
We suppress the dependency of the regret bound on �T and
logN for simplicity. See Appendix F for the full proof.

Step 1: Interval Regret Using a martingale concentration,
we can bound the regret of an interval J inside a block j as
REGJ  O(

P
t2J

µmt + |J |VJ + |J |⇣J) where ⇣J :=

maxx2X (�J (x)� 8b�C(j�1)(x)) measures the change in
average reward in J compared to the previous block j � 1.

Algorithm 4: SCHEDULE

Input: starting time t, block index j, base block size E
Initialize: S {(j, [t, t+ 2jE � 1])}

1 for ⌧ = 0, . . . , 2jE � 1 do
2 for m = 0, . . . , j � 1 do
3 if ⌧ is a multiple of 2mE then
4 With probability

p
2m

p

2j
, add

(m, [t+ ⌧, t+ ⌧ + 2mE � 1]) to S .

Return: S

Kihyuk Hong, Yuhang Li, Ambuj Tewari

See Appendix F.3 for the proof. Note that the interval regret
is a sum of the expected one step regret assuming stationarity
(Remark 2), the degree of non-stationarity within J , and
the magnitude of the change in reward function compared
to the last block.

Step 2: Block Regret To bound the regret of a block
j, we partition the block into nearly stationary intervals
J1, . . . ,J` so that VJi  µJi where µI := c|I|�1/2. Sum-
ming over the interval regret of Jk in Step 1 and applying
Cauchy-Schwarz, we get REGB(j)  O(

P
t2B(j) µmt +

p
`|B(j)|µj +

P
`

k=1 |Jk|⇣JkI{⇣Jk > c0µJk}). The first
term

P
t2B(j) µmt can be shown to be eO(|B(j)|µj), which

suggests the replays of past strategies are not overdone
(Lemma F.6). To bound the third term, we use the prop-
erty of change detection test that when ⇣Jk is above c0µJk

then replaying a suitable strategy within Jk triggers a restart
(Lemma F.5). We can show that the replays of past strategies
are done frequently enough to terminate the block before the
third term gets too large, leading to a bound eO(

p
`|B(j)|µj)

(proof of Lemma F.11). Finally, we can greedily con-
struct a partition with ` = eO(min{LB(j), V

2/3
B(j)|B(j)|

1/3})
(Lemma F.10), which gives a block regret bound of
eO(min{

p
2jLB(j), V

1/3
B(j)(2

j)2/3}) (Lemma F.11).

Step 3: Epoch Regret Since the block size is doubling,
there can be at most O(log2 T) blocks in an epoch. Sum-
ming up regret bounds of the blocks and applying Cauchy-
Schwarz and Hölder’s inequalities, we can bound the epoch
regret by eO(min{

p
LEi |Ei|, V

1/3
Ei

|Ei|2/3}) (Lemma F.13).

Step 4: Total Regret By the property of the change de-
tection test, restarts can be triggered only when the de-
gree of non-stationarity is large enough (Lemma F.3). Us-
ing this property, we can bound the number of epochs
by eO(min{LT , V

2/3
T

T 1/3} (Lemma F.12). The epoch
regret bound in Step 3 gives total regret bound of
eO(min{

p
LTT , V

1/3
T

T 2/3}) (Theorem 3.1).

5 DYNAMIC FEATURE MAPPING USING
A NEURAL NETWORK

Recall that OPKB and ADA-OPKB use a fixed feature map-
ping induced by a kernel. In this section, we present exten-
sions of OPKB and ADA-OPKB called OPNN and ADA-
OPNN respectively that use dynamic feature mappings in-
duced by a neural network trained using past history.

5.1 Preliminaries and Notations

Neural Network Following Zhou et al. (2020), we use a
fully connected neural network with width m and depth L:
f(x;W) =

p
mWL�(WL�1�(· · ·�(W1x) · · ·)) where

�(x) = max{x, 0} is the ReLU activation function, W1 2

Rm⇥d, Wi 2 Rm⇥m for i = 2, . . . , L � 1, WL 2 Rm⇥1

and W = [vec(W1)T , . . . , vec(WL)T]T 2 Rp with
p = m + md + m2(L � 1). We denote by g(x;W) =
rW f(x;W) 2 Rp the gradient of the neural network func-
tion. We call g(·;W) the feature mapping induced by the
neural network f with parameter W . Each entry of the ini-
tial weights W (0) of the network is sampled independently
from N (0, 2/m).

Neural Tangent Kernel By Jacot et al. (2018),
hg(x;W (0)), g(x0;W (0))i converges in probability to
H(x, x0) for all x, x0 2 X where the deterministic kernel
H(·, ·) is called the neural tangent kernel. We denote by
H = {H(x, x0)}x,x02X the neural tangent kernel matrix.

Algorithm 5: OPNN: Optimization Problem based algo-
rithm using Neural Network
Input: network width m, network depth L, time horizon T ,

confidence level � 2 (0, 1).
Initialize: t 1, initialize network weights W (0),

compute feature mapping '(0) equivalent to
g(·;W (0)), find optimal design
P (0) ⇡'(0)(X)

Definition: µj = c12�j/2, �j = c2�'(0),T 2
j/2,

E = c3�'(0),T log(C0N/�),
↵ = c4�/ log(C0N/�)

1 for j = 0, 1, . . . do
2 Set B(j) [t, t+ 2jE � 1] and C(j) [j

k=0B(k).
3 if j � 1 then
4 W

(j) TRAINNN({(x⌧ , y⌧)}⌧2C(j�1),W
(0)).

5 Find a mapping '(j) equivalent to g(·;W (j))/
p
m.

6 Compute b� {b�'(j),C(j�1)(x)}x2X .
7 Find strategy Q(j) OP('(j), b�,↵,�j , T).
8 Set P (j) (1� µj)Q(j) + µj⇡'(j)(X).

9 while t 2 B(j) do
10 Play xt ⇠ P (j). Receive yt. Increment t t+ 1.

For the analysis of OPNN and ADA-OPNN, we make the
following assumptions. The first assumption is on the in-
vertibility of the neural tangent kernel matrix H .
Assumption B. For some �0 > 0, we have H < �0I .

This is a mild assumption commonly made when analyzing
neural networks (Du et al. 2019a; Arora et al. 2019) and for
analyzing neural bandit algorithms (Salgia et al. 2022; Zhou
et al. 2020; Zhang et al. 2020; Gu et al. 2021; Kassraie et al.
2021). It is satisfied, for example, as long as no two actions
in X are parallel (see Theorem 3.1 in Du et al. (2019b)).
The second assumption is on the regularity of the reward
functions commonly made in the neural bandits literature
(Zhou et al. 2020; Zhang et al. 2020; Gu et al. 2021).
Assumption C. We have

p
r
T
t
H�1rt  B for all t =

1, . . . , T where rt = (rt(a1), . . . , rt(aN)).

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

5.2 OPNN and ADA-OPNN

Unlike OPKB that uses a fixed feature mapping determined
by a prespecified kernel, OPNN (Algorithm 5) uses the
feature mapping induced by a neural network trained using
past history. For the initial block, OPNN uses the feature
mapping induced by the initial weight W (0). Before starting
a new block, OPNN trains the neural network with all past
history using the procedure TRAINNN (Algorithm 6) and
recomputes the feature mapping using the newly trained
weight. The TRAINNN algorithm takes in training history
and perform J steps of gradient descent on the squared error
loss regularized by L2 distance of the weight W from the
initial weight W (0). Rest of the algorithm is the same as
OPKB.

To adapt to non-stationarity, ADA-OPNN equips OPNN
with change detection just as ADA-OPKB does with OPKB.
See Appendix B for the full algorithm of ADA-OPNN.

Algorithm 6: TRAINNN: train neural network
Input: training history {(xt, yt)}t2I , regularization

parameter �, step size ⌘, number of gradient descent
steps J , network width m, initial parameter W (0)

1 Define L(W) =P
t2I

(f(xt;W)� yt)2/2 +m�kW �W
(0)k22/2.

2 for j = 0, . . . , J � 1 do
3 W

(j+1) W
(j) � ⌘rL(W (j)).

Return: W (J).

5.3 Analysis of OPNN and ADA-OPNN

Jacot et al. (2018) show that the neural tangent kernel stays
constant during training in the infinite network width limit.
Hence, in the infinite width limit, OPNN and ADA-OPNN
are equivalent to OPKB and ADA-OPKB respectively that
use the feature mapping corresponding to the kernel H . We
can expect that in the finite width regime, the regret bound
for OPNN and ADA-OPNN are the same as that for OPKB
and ADA-OPKB respectively as long as the network width
is large enough. Theorem 5.1 and Theorem G.1 confirm
this. See Appendix G for the full proof.

Remark 4. The current NTK theory limits us to work in
the infinite width regime where the feature mapping re-
mains fixed. However, we empirically show in Appendix J
that using the dynamic feature mapping induced by a finite
width neural network is beneficial. This finding is consistent
with numerous empirical results demonstrated by Fort et al.
(2020) and Lee et al. (2020) in the supervised learning set-
ting. We leave the analysis beyond the infinite width regime
as future work.

Theorem 5.1 (Informal). Under Assumption B and Assump-
tion C, the ADA-OPNN algorithm using a neural network of

sufficiently large width achieves a dynamic regret bound of

eO(min{
p
�TLTT logN,

(�TVT logN)1/3T 2/3 +
p
�TT logN})

with high probability, where �T is the maximum information
gain corresponding to the neural tangent kernel H of the
neural network used in the algorithm.

Relation to Previous Work Our regret bound of ADA-
OPNN becomes eO(

p
�TT logN) when adapted to the sta-

tionary setting, which is an improvement over previous work
(Zhou et al. 2020; Gu et al. 2021; Jia et al. 2022) by a factor
ofp�T and is comparable to work by Kassraie et al. (2021).

6 EXPERIMENTS

The most notable feature of our algorithms is that they can
adapt to non-stationarity without prior knowledge of the
degree of non-stationarity. In this section, we illustrate this
feature by comparing to previous work SW-GPUCB (Zhou
et al. 2021) and WGPUCB (Deng et al. 2022), both of which
require the knowledge of the degree of non-stationarity to
tune parameters. For the parameter tuning and the exper-
iments, we used an internal cluster of nodes with 20-core
2.40 GHz CPU and Tesla V100 GPU. The total amount of
computing time was around 300 hours.

Experiment Design We run all algorithms in two environ-
ments: an environment with a single switch and the other
with two switches. We first tune the algorithms for the first
environment. Then, we run the tuned algorithms on the
second environment to see how the algorithms adapt to the
new non-stationarity.

Environments We run all simulations for T = 10000
rounds. For each simulation, we randomly sample an ac-
tion set of size N = 100 from the unit sphere in Rd. We
follow Chowdhury et al. (2017) and sample the reward vec-
tor {r(x)}x2X from the multivariate normal distribution
N (0,K) where K = {k(x, x0)}x,x02X and k is the radial
basis function kernel with length scale 0.2. We scale the
reward vector so that the maximum absolute reward is 0.8,
We sample the noises ⌘t from N (0, 0.12). We run exper-
iments on two environments: the first environment has a
single switch at time 3000 and the second environment has
switches at time 1500 and 5000.

Algorithm Tuning We tune SW-GPUCB, WGPUCB,
ADA-OPKB, ADA-OPNN on the first environment with
a single switch. For SW-GPUCB, we do a grid search
for � over the range {0.01, 0.02, 0.05, 0.1, . . . , 100}, the
UCB scale parameter v over [0.001, 1], and the win-
dow size over {100, 200, 500, 1000, . . . , 10000}. See

Kihyuk Hong, Yuhang Li, Ambuj Tewari

Algorithm 8 for the definition of �. For WG-
PUCB, we do a grid search for � over the range
{0.01, 0.02, 0.05, 0.1, . . . , 100}, the UCB scale parame-
ter over {0.001, 0.002, 0.005, 0.01, . . . , 1}, and the dis-
counting factor over {0.99, 0.995, 0.999, 0.9995, 0.9999}.
See Algorithm 8 for the definition of �. For
ADA-OPKB and ADA-OPNN, we do a grid search
for � over {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000} and
c0, c1, c2, c3, c4 over {0.001, 0.002, 0.005, 0.01, . . . , 100}.
For ADA-OPNN, we do a grid search for the learning
rate ⌘ over {10�9, 10�8, 10�7}, training steps J over
{100, 1000, 10000} and regularization parameter � over
{1, 10, 100, 1000}. We use a neural network of depth L = 3
and width m = 2048.

Remark 5. Compared to SW-GPUCB and WGPUCB,
ADA-OPKB and ADA-OPNN have many parameters to
tune. We leave designing a simpler algorithm with less
parameters that does not require the knowledge of non-
stationarity as future work.

Results The cumulative regrets of SW-GPUCB, WG-
PUCB, ADA-OPKB and ADA-OPNN averaged over 25
random seeds are shown in Figure 1. Error bars indicate
standard errors of the means. Plot (a) shows the perfor-
mances of the algorithms tuned under the first environment
(a single switch). We remark that SW-GPUCB outperforms
ADA-OPKB and ADA-OPNN in the initial stationary inter-
val because ADA-OPKB and ADA-OPNN have overhead of
running change detections. We conjecture that ADA-OPNN
performs worse than ADA-OPKB due to kernel mismatch:
ADA-OPKB uses the kernel used by the nature for drawing
reward functions while ADA-OPNN does not.

Plot (b) shows the performances of the algorithms on the
second environment (switches at time 1500 and 5000). SW-
GPUCB optimally tuned for the single switch environment
(window size 3000), performs worse than ADA-OPKB and
ADA-OPNN in the new environment. WGPUCB optimally
tuned for the single switch environment (discounting factor
of 0.9995) performs similarly to ADA-OPNN but is out-
performed by ADA-OPKB. This experiment highlights the
fact that ADA-OPKB and ADA-OPNN can adapt to new
non-stationarity better than SW-GPUCB and WGPUCB.

For an experiment that demonstrates the benefit of dynami-
cally updating feature mapping for OPNN, and an experi-
ment under a slowly varying environment, see Appendix J.

7 CONCLUSION

In this paper, we propose an algorithm for non-stationary
kernel bandits that does not require the knowledge of non-
stationary budgets, and show a simultaneous dynamic regret
bound in terms of the budgets on the total variation and the
number of changes in reward functions. The dynamic regret
bound is tighter than previous work on the non-stationary

(a) Environment 1: single switch

(b) Environment 2: two switches

Figure 1: Cumulative regret comparison of algorithms in
non-stationary environments

kernel bandit setting. Also, our algorithm is nearly minimax
optimal in the non-stationary linear bandit setting when
run with a linear kernel. We provide an extension of our
algorithm using a neural network. An interesting future
work would be to adapt to a new non-stationary measure
that tracks the number of times the identity of the best arm
changes, which is a smaller measure than the number of
changes in the reward functions. We believe the reward
estimate based change detection algorithm and its analysis
in this paper is suitable for this extension.

8 Acknowledgements

We acknowledge the support of NSF via grant IIS-2007055.

References

Abbasi-yadkori, Yasin, Dávid Pál, and Csaba Szepesvári
(2011). “Improved Algorithms for Linear Stochastic Ban-
dits”. In: Advances in Neural Information Processing
Systems. Vol. 24.

Agarwal, Alekh, Daniel Hsu, Satyen Kale, John Langford,
Lihong Li, and Robert Schapire (2014). “Taming the
monster: a fast and simple algorithm for contextual ban-
dits”. In: International Conference on Machine Learning,
pp. 1638–1646.

Allen-Zhu, Zeyuan, Yuanzhi Li, and Zhao Song (2019).
“A convergence theory for deep learning via over-
parameterization”. In: International Conference on Ma-
chine Learning, pp. 242–252.

Arora, Sanjeev, Simon S. Du, Wei Hu, Zhiyuan Li, Russ
R. Salakhutdinov, and Ruosong Wang (2019). “On ex-

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

act computation with an infinitely wide neural net”. In:
Advances in Neural Information Processing Systems 32.

Auer, P. and R. Ortner (2018). “Adaptively tracking the best
arm with an unknown number of distribution changes”.
In: European Workshop on Reinforcement Learning.

Auer, Peter, Pratik Gajane, and Ronald Ortner (2019).
“Adaptively tracking the best bandit arm with an un-
known number of distribution changes”. In: Conference
on Learning Theory, pp. 138–158.

Besbes, Omar, Yonatan Gur, and Assaf Zeevi (2014).
“Stochastic multi-armed-bandit problem with non-
stationary rewards”. In: Proceedings of the 27th Inter-
national Conference on Neural Information Processing
Systems - Volume 1, pp. 199–207.

Beygelzimer, Alina, John Langford, Lihong Li, Lev Reyzin,
and Robert Schapire (2011). “Contextual bandit algo-
rithms with supervised learning guarantees”. In: Proceed-
ings of the Fourteenth International Conference on Artifi-
cial Intelligence and Statistics, pp. 19–26.

Camilleri, Romain, Kevin Jamieson, and Julian Katz-
Samuels (2021). “High-dimensional experimental design
and kernel bandits”. In: International Conference on Ma-
chine Learning, pp. 1227–1237.

Chaloner, Kathryn and Isabella Verdinelli (1995). “Bayesian
experimental design: a review”. In: Statistical Science
10.3, pp. 273–304.

Chen, Yifang, Chung-Wei Lee, Haipeng Luo, and Chen-Yu
Wei (2019). “A new algorithm for non-stationary contex-
tual bandits: efficient, optimal and parameter-free”. In:
Conference on Learning Theory, pp. 696–726.

Cheung, Wang Chi, David Simchi-Levi, and Ruihao Zhu
(2019). “Learning to optimize under non-stationarity”. In:
The 22nd International Conference on Artificial Intelli-
gence and Statistics, pp. 1079–1087.

Cheung, Wang Chi, David Simchi-Levi, and Ruihao Zhu
(2022). “Hedging the Drift: Learning to Optimize Un-
der Nonstationarity”. In: Management Science 68.3,
pp. 1696–1713.

Chowdhury, Sayak Ray and Aditya Gopalan (2017). “On
kernelized multi-armed bandits”. In: International Con-
ference on Machine Learning, pp. 844–853.

Dani, Varsha, Thomas Hayes, and Sham Kakade (2008).
“Stochastic linear optimization under bandit feedback”.
In: 21st Annual Conference on Learning Theory, pp. 355–
366.

Deng, Yuntian, Xingyu Zhou, Baekjin Kim, Ambuj Tewari,
Abhishek Gupta, and Ness Shroff (2022). “Weighted
gaussian process bandits for non-stationary environ-
ments”. In: The 25nd International Conference on Ar-
tificial Intelligence and Statistics.

Du, Simon, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu
Zhai (2019a). “Gradient descent finds global minima of
deep neural networks”. In: Proceedings of the 36th In-
ternational Conference on Machine Learning, pp. 1675–
1685.

Du, Simon, Xiyu Zhai, Barnabas Poczos, and Aarti Singh
(2019b). “Gradient Descent Provably Optimizes Over-
parameterized Neural Networks”. In.

Dudik, Miroslav, Daniel Hsu, Satyen Kale, Nikos Karam-
patziakis, John Langford, Lev Reyzin, and Tong Zhang
(2011). “Efficient optimal learning for contextual ban-
dits”. In: Proceedings of the Twenty-Seventh Conference
on Uncertainty in Artificial Intelligence, pp. 169–178.

Fort, Stanislav, Gintare Karolina Dziugaite, Mansheej Paul,
Sepideh Kharaghani, Daniel M Roy, and Surya Ganguli
(2020). “Deep learning versus kernel learning: an empiri-
cal study of loss landscape geometry and the time evolu-
tion of the neural tangent kernel”. In: Advances in Neural
Information Processing Systems. Vol. 33, pp. 5850–5861.

Garivier, Aurélien and Eric Moulines (2011). “On upper-
confidence bound policies for switching bandit prob-
lems”. In: Proceedings of the 22nd international con-
ference on Algorithmic learning theory, pp. 174–188.

Gu, Quanquan, Amin Karbasi, Khashayar Khosravi, Vahab
Mirrokni, and Dongruo Zhou (2021). “Batched neural
bandits”. In: arXiv:2102.13028 [cs, stat].

Hao, Botao, Tor Lattimore, and Csaba Szepesvari (2020).
“Adaptive exploration in linear contextual bandit”. In:
Proceedings of the Twenty Third International Confer-
ence on Artificial Intelligence and Statistics, pp. 3536–
3545.

Hazan, Elad, Amit Agarwal, and Satyen Kale (2007). “Loga-
rithmic regret algorithms for online convex optimization”.
In: Machine Learning 69.2-3, pp. 169–192.

Jacot, Arthur, Franck Gabriel, and Clement Hongler (2018).
“Neural tangent kernel: convergence and generalization
in neural networks”. In: Advances in Neural Information
Processing Systems. Vol. 31.

Jia, Yiling, Weitong Zhang, Dongruo Zhou, Quanquan Gu,
and Hongning Wang (2022). “Learning Neural Contex-
tual Bandits through Perturbed Rewards”. In.

Kassraie, Parnian and Andreas Krause (2021). “Neural con-
textual bandits without regret”. In: arXiv:2107.03144 [cs,
stat].

Kim, Baekjin and Ambuj Tewari (2020). “Randomized ex-
ploration for non-stationary stochastic linear bandits”.
In: Conference on Uncertainty in Artificial Intelligence,
pp. 71–80.

Lattimore, Tor and Csaba Szepesvari (2017). “The end of
optimism? An asymptotic analysis of finite-armed linear
bandits”. In: Proceedings of the 20th International Con-

Kihyuk Hong, Yuhang Li, Ambuj Tewari

ference on Artificial Intelligence and Statistics, pp. 728–
737.

Lattimore, Tor and Csaba Szepesvári (2020). Bandit Algo-
rithms.

Lee, Chung-Wei, Haipeng Luo, Chen-Yu Wei, Mengx-
iao Zhang, and Xiaojin Zhang (2021). “Achieving near
instance-optimality and minimax-optimality in stochastic
and adversarial linear bandits simultaneously”. In: Inter-
national Conference on Machine Learning, pp. 6142–
6151.

Lee, Jaehoon, Samuel Schoenholz, Jeffrey Pennington, Ben
Adlam, Lechao Xiao, Roman Novak, and Jascha Sohl-
Dickstein (2020). “Finite versus infinite neural networks:
an empirical study”. In: Advances in Neural Information
Processing Systems. Vol. 33, pp. 15156–15172.

Li, Zihan and Jonathan Scarlett (2022). “Gaussian Process
Bandit Optimization with Few Batches”. In: Proceed-
ings of The 25th International Conference on Artificial
Intelligence and Statistics, pp. 92–107.

Luo, Haipeng, Chen-Yu Wei, Alekh Agarwal, and John
Langford (2018). “Efficient contextual bandits in non-
stationary worlds”. In: Conference On Learning Theory,
pp. 1739–1776.

Robbins, Herbert (1952). “Some aspects of the sequential de-
sign of experiments”. In: Bulletin of the American Math-
ematical Society 58.5, pp. 527–535.

Russac, Yoan, Claire Vernade, and Olivier Cappé (2019).
“Weighted linear bandits for non-stationary environ-
ments”. In: Advances in Neural Information Processing
Systems. Vol. 32.

Salgia, Sudeep, Sattar Vakili, and Qing Zhao (2021). “A
Domain-Shrinking based Bayesian Optimization Al-
gorithm with Order-Optimal Regret Performance”. In:
Advances in Neural Information Processing Systems.
Vol. 34, pp. 28836–28847.

Salgia, Sudeep, Sattar Vakili, and Qing Zhao (2022). Prov-
ably and Practically Efficient Neural Contextual Bandits.

Srinivas, Niranjan, Andreas Krause, Sham Kakade, and
Matthias Seeger (2010). “Gaussian process optimiza-
tion in the bandit setting: no regret and experimental
design”. In: Proceedings of the 27th International Confer-
ence on International Conference on Machine Learning,
pp. 1015–1022.

Vakili, Sattar, Michael Bromberg, Jezabel Garcia, Da-shan
Shiu, and Alberto Bernacchia (2021a). “Uniform gener-
alization bounds for overparameterized neural networks”.
In: arXiv:2109.06099 [cs, stat].

Vakili, Sattar, Kia Khezeli, and Victor Picheny (2021b). “On
information gain and regret bounds in gaussian process
bandits”. In: Proceedings of The 24th International Con-

ference on Artificial Intelligence and Statistics, pp. 82–
90.

Valko, Michal, Nathan Korda, Rémi Munos, Ilias Flaounas,
and Nello Cristianini (2013). “Finite-time analysis of
kernelised contextual bandits”. In: Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial
Intelligence, pp. 654–663.

Vandenberghe, Lieven, Stephen Boyd, and Shao-Po Wu
(1998). “Determinant maximization with linear matrix
inequality constraints”. In: SIAM Journal on Matrix Anal-
ysis and Applications 19.2, pp. 499–533.

Wei, Chen-Yu and Haipeng Luo (2021). “Non-stationary
reinforcement learning without prior knowledge: an op-
timal black-box approach”. In: Conference on Learning
Theory.

Zhang, Weitong, Dongruo Zhou, Lihong Li, and Quanquan
Gu (2020). “Neural thompson sampling”. In.

Zhao, Peng and Lijun Zhang (2021). “Non-stationary linear
bandits revisited”. In: arXiv:2103.05324 [cs].

Zhao, Peng, Lijun Zhang, Yuan Jiang, and Zhi-Hua Zhou
(2020). “A simple approach for non-stationary linear ban-
dits”. In: International Conference on Artificial Intelli-
gence and Statistics, pp. 746–755.

Zhou, Dongruo, Lihong Li, and Quanquan Gu (2020). “Neu-
ral contextual bandits with ucb-based exploration”. In: In-
ternational Conference on Machine Learning, pp. 11492–
11502.

Zhou, Xingyu and Ness Shroff (2021). “No-regret algo-
rithms for time-varying bayesian optimization”. In: 2021
55th Annual Conference on Information Sciences and
Systems (CISS), pp. 1–6.

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

Supplementary Materials

A Notation Table

Notation Definition Explanation

S'(Q,�)
P

x2X
Q(x)'(x)'(x)T + �I

�',T maxP2PX log detS'(TP/�, 1) Information gain with respect to '
V[s,t]

P
t�1
⌧=s
kr⌧+1 � r⌧k1 Total variation in interval [s, t]

L[s,t]

P
t�1
⌧=s

I{r⌧+1 6= r⌧} Number of arm switches in [s, t]
⇡'(A) argmax

P2PA log detS'(P,�/T) Optimal design on A with respect to '
RI(x)

1
|I|

P
t2I

rt(x) Average reward of arm x over interval I
�t(x) maxx02X rt(x0)� rt(x) Optimality gap of x at time t
�I(x) maxx02X RI(x0)�RI(x) Average optimality gap over the interval I
bR',t(x) '(x)TS'(Pt,�/T)�1'(xt)yt IPS estimator for rt(x) with respect to '
bR',I(x)

1
|I|

P
t2I

bR',t(x) IPS estimator for average reward of x over the interval I
b�',I(x) maxx02X

bR',I(x0)� bR',I(x) Estimated optimality gap of arm x over the interval I

B Omitted algorithms

The ADA-OPNN algorithm adapts the OPNN algorithm to the non-stationary environment by equipping change detection.

Algorithm 7: ADA-OPNN: ADAptive Optimization Problem based algorithm using Neural Network
Input: network width m, network depth L, time horizon T , confidence level � 2 (0, 1).
Definition: µj = c12�j/2, �j = c2�',T 2j/2, E = dc3�',T log(C1N/�)e, ↵ = c4�/ log(C1N/�)
Initialize: time step t 1, epoch index i 1, initial strategy Q(0) ⇡'(X)

1 for j = 0, 1, . . . do
2 Set block B(j) [t, t+ 2jE � 1] and cumulative block C(j) [j

k=0B(k).
3 if j � 1 then
4 W

(j) TRAINNN({(x⌧ , y⌧)}⌧2C(j�1),W
(0))

5 Find a feature mapping '(j) equivalent to g(·;W (j))/
p
m

6 Compute the empirical gap b� {b�'(j),C(j�1)(x)}x2X using all past history in epoch i.
7 Find strategy Q(j) OP('(j), b�,↵,�j , T); Set P (j) (1� µj)Q(mt) + µj⇡'(j)(X).

8 Generate replay schedule S SCHEDULE(t, j).
9 while t 2 B(j) do

10 mt min{m : (m, I) 2 S with t 2 I} ; // smallest index of scheduled intervals

11 Record Pt P (mt). Play xt ⇠ Pt and receive reward yt; Increment t t+ 1.
12 If Test with ' = '(j) triggers a restart then increment i and go to Line 1.

Test: Trigger a restart if for any (m, I) 2 S with I ending at t and k < j, the following holds

b�',I(x)� 4b�',C(k)(x) > 4c0µm^k or b�',C(k)(x)� 4b�',I(x) > 4c0µm^k.

Kihyuk Hong, Yuhang Li, Ambuj Tewari

C Maximum information gain

In this section, we summarize the properties of the maximum information gain used in this paper. The original definition of
the maximum information gain by Srinivas et al. (2010) is

�̄T = max
x1,...,xT2X

1

2
log det(��1KT + IT)

where KT = [k(xi, xj)]i,j2[T] and IT 2 RT⇥T is the identity matrix. For ease of exposition, we drop the factor 1
2 that

appears in the original definition of �̄T . In this paper, we define the continuous version of the maximum information gain
�T as follows

�',T = max
P2PX

log detS'(�
�1TP, IN)

where ' : X ! RN is a feature mapping corresponding to the kernel k such that k(x, x0) = h'(x),'(x0)i. To see the
connection of �',T to the original definition �̄T , note that KT = HKHT where K = [k(ai, aj)]i,j2[N] and H 2 {0, 1}T⇥N

with Hti = I{xt = ai} is the history matrix that indicates whether the action ai is played at time t for t 2 [T] and i 2 [N].
Using the notation � = ['(a1) · · ·'(aN)]T 2 RN⇥N such that K = ��T , we have by the Sylvester’s determinant identity
det(I +AB) = det(I +BA) that

log det(��1KT + IT) = log det(��1H��THT + IT)

= log det(��1�THTH�+ IN)

= log det(��1�TDN�+ IN)

= log detS'(�
�1TPN , IN)

where DN = HTH = diag(n1, . . . , nN) with ni denoting how many times ai appears in the sequence x1, . . . , xT and
PN = DN/T is the relative frequency of the actions. Hence,

�̄T = max
P2PT,X

1

2
log detS'(�

�1TP, IN)

where the maximization is over PT,X := {P 2 PX : P (ai) = ni/T for all i 2 [N] with ni 2 Z}. It follows that our
definition �',T is a continuous version of the maximum information gain in the sense that it maximizes over PX instead of
the discretized probability space PT,X .

A direct consequence is that �',T � �̄T . To get an upper bound on �',T we can use Theorem 3 in Vakili et al. (2021b) that
shows an upper bound of �̄T in terms of the eigendecay of the kernel k(·, ·). It can be seen that their proof can be easily
adapted to the continuous version, which leads to upper bounds for common kernels in the following lemma.

Lemma C.1 (Theorem 3 in Vakili et al. (2021b)). For the Matérn-⌫ kernel and the SE kernel, the maximum information
gain is upper bounded by

�',T = O
⇣
T

d
2⌫+d log

2⌫
2⌫+d (T)

⌘
, for Matérn-⌫ kernel

�',T = O
⇣
logd+1(T)

⌘
, for SE kernel.

Similarly, adapting the proof of Theorem 2 in Vakili et al. (2021a), we get an upper bound on the maximum information
gain for the neural tangent kernel of a ReLU network as follows.

Lemma C.2. For the neural tangent kernel of a ReLU network, the maximum information gain is upper bounded by

�',T = O
⇣
T

d�1
d log

1
d (T)

⌘
.

For the linear kernel, we get the following upper bound on the maximum information gain.

Lemma C.3. For the identity feature mapping '(x) = x for all x 2 X ⇢ Rd corresponding to the linear kernel
k(x, x0) = hx, x0i, we have �',T  O(d log T).

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

Proof. Using the identity det(A)  (Tr(A)/d)d for a positive semi-definite matrix A 2 Rd⇥d, which can be seen by the
AM-GM inequality on the eigenvalues of A, we have

log detS'(�
�1TP, 1)  d log(Tr(S'(�

�1TP, 1))/d)

= d log

1

d
Tr

T

�

X

x2X

P (x)xxT + Id

!!

= d log

1

d

T

�

X

x2X

P (x)kxk22 + d

!!

 d log

✓
T

�d
+ 1

◆
= O(d log T)

where the second inequality follows by the assumption that kxk2  1. Taking the maximum over P 2 PX completes the
proof. ⌅

Lemma C.4. For any feature mapping ' and any P 2 PX , we have
X

x2X

P (x)k'(x)k2
S'(P,�/T)�1  �',T .

Proof. We can rewrite the left hand side as

X

x2X

P (x)k'(x)k2
S'(P,�/T)�1 = Tr

X

x2X

S'(P,�/T)
�1P (x)'(x)'(x)T

!

= Tr
�
S'(P,�/T)

�1(S'(P,�/T)� (�/T)IN)
�

 log detS'(P,�/T)� log det(�/T)IN

= log detS'((T/�)P, 1)  �',T

where the first inequality uses the identity Tr(A�1(A�B))  log detA� log detB for A < B < 0 (Lemma 12 in Hazan
et al. (2007)). ⌅

D Analysis of OPKB

In this section, we prove the high probability dynamic regret bound of the OPKB algorithm under the stationary kernel
bandit setting stated below.

D.1 Constants and notations

We use the following parameters in this section (and in Section F) for ease of exposition of the proof: c0 = 40+16
p
↵, c1 =

1
2 , c2 = 1

10+4
p
↵

, c3 = 4, c4 = 1
4 so that µj = 2�(j+2)/2, �j =

�',T

10+4
p
↵
2j/2, C0 = 8T log2 T , E = d4�',T log(C0N/�)e,

↵ = �/(4 log(C0N/�)). We define ⇠j =
µj

4�',T
. We frequently use the identities

c0�jµj = 2�',T , ⇠j�',T =
µj

4
, µj�j =

2�',T
c0

 �',T
20

, ⇠j�j =
1

2c0
 1

80
.

We denote by RI(x) = 1
|I|

P
t2I

rt(x) the average reward of action x in interval I. We define �I(x) =

maxx02X RI(x0)�RI(x).

D.2 Proof of Lemma 4.3

Proof of Lemma 4.3. For ease of exposition, we write ⇡? = ⇡'(A). Recall that the optimal design ⇡? is a maximizer of
log detS'(P,�/T) subject to P (x) � 0 for all x 2 A and

P
x2A

P (x) = 1. Introducing Lagrange multipliers �x for the

Kihyuk Hong, Yuhang Li, Ambuj Tewari

conditions P (x) � 0 for all x 2 X and � for
P

x2A
P (x) = 1, the KKT optimality conditions give

k'(x)k2
S'(⇡?,�/T)�1 + �x � � = 0, for all x 2 A (Stationarity)

�x � 0, for all x 2 A (Dual feasibility)
⇡?(x)�x = 0, for all x 2 A (Complementary slackness)

where we use the fact that @

@P (x) log detS'(P,�/T) = k'(x)k
2
S'(P,�/T)�1 . Multiplying ⇡?(x) to the stationarity condition

and summing over x 2 A, we get

0 =
X

x2A

⇡?(x)k'(x)k2
S'(⇡?,�/T)�1 +

X

x2A

⇡?(x)�x � �
X

x2A

⇡?(x)

=
X

x2A

⇡?(x)k'(x)k2
S'(⇡?,�/T)�1 � �

where the second equality uses the complementary slackness conditions. Hence,

� =
X

x2A

⇡?(x)k'(x)k2
S'(⇡?,�/T)�1  max

P2PX

X

x2X

P (x)k'(x)k2
S'(P,�/T)�1 = �',T .

Using this result �  �',T to the stationarity conditions and using the dual feasibility conditions �x � 0, we
get k'(x)k2

S'(⇡?,�/T)�1 = � � �x  �  �',T for all x 2 X as desired. For the proof of Var(bR',t(x)) 
k'(x)k2

S'(⇡'(A),�/T)�1 , refer to the proof of Lemma D.3. ⌅

D.3 Proof of Lemma 4.4

Proof of Lemma 4.4. Recall that the strategy returned by the algorithm OP (', b�,↵,�, T) is Q = 1
2P

? + 1
2⇡

? where
P ? is the minimizer of J(P) =

P
x2X

P (x)b�(x)� 2
�
log detS'(P,�/T) among PX and we write ⇡? = ⇡'(A) where

A = {x 2 X : b�(x)  2↵�',T /�}. Since the empirical gap estimates satisfy b�(x) � 0 for all x 2 X and there exists
x̂ 2 X with b�(x̂) = 0, we can check that P ? is also a minimizer among the set of sub-distributions ePX = {P 2 RX :
P (x) � 0 for all x 2 X ,

P
x2X

P (x)  1}. This can be seen by noting that for any sub-distribution eP , the proper
distribution P obtained by increasing the weight of the empirically best action x̂ satisfies J(eP) � J(P). Introducing
Lagrange multipliers �x for the conditions P (x) � 0 for all x 2 X and � for

P
x2X

P (x)  1, the KKT optimality
conditions give

b�(x)� 2

�
k'(x)k2

S'(P?,�/T)�1 � �x + � = 0, for all x 2 X (Stationarity)

�x � 0, for all x 2 X (Dual feasibility)
� � 0 (Dual feasibility)

P ?(x)�x = 0, for all x 2 X . (Complementary slackness)

Multiplying P ?(x) to the stationarity conditions and summing over x 2 X , we get

0 =
X

x2X

P ?(x)b�(x)� 2

�

X

x2X

P ?(x)k'(x)k2
S'(P?,�/T)�1 �

X

x2X

P ?(x)�x + �
X

x2X

P ?(x)

=
X

x2X

P ?(x)b�(x)� 2

�

X

x2X

P ?(x)k'(x)k2
S'(P?,�/T)�1 + � (9)

where the second equality uses the complementary slackness conditions. Rearranging and using the dual feasibility condition
� � 0, we get

X

x2X

P ?(x)b�(x) =
2

�

X

x2X

P ?(x)k'(x)k2
S'(P?,�/T)�1 � � 

2�',T
�

.

It follows that Q = 1
2P

? + 1
2⇡

? satisfies
X

x2X

Q(x)b�(x) =
1

2

X

x2X

P ?(x)b�(x) +
1

2

X

x2A

⇡?(x)b�(x)

 1

2

2�',T
�

+
1

2

2↵�',T
�

=
(1 + ↵)�',T

�

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

where the inequality uses the fact that b�(x)  2↵�',T /� for x 2 A by the definition of A. This proves the first inequality
of the lemma. Also, since the empirical gaps satisfy b�(x) � 0 for all x 2 X , rearranging (9) gives

� =
2

�

X

x2X

P ?(x)k'(x)k2
S'(P?,�/T)�1 �

X

x2X

P ?(x)b�(x)  2�',T
�

.

Hence, by the stationarity condition, we have for each x 2 X that

k'(x)k2
S'(P?,�/T)�1 =

� b�(x)

2
� ��x

2
+
��

2
 � b�(x)

2
+ �',T

where we use the dual feasibility condition �x � 0. Using the fact that S'(Q,�/T) < 1
2S'(P

?,�/T) gives the second
inequality of the lemma. Finally, for the third inequality of the lemma, we argue for the cases x 2 A and x /2 A separately.
If x 2 A, then using S'(Q,�/T) < 1

2S'(⇡
?,�/T), we get k'(x)k2

S'(Q,�/T)�1  2k'(x)k2
S'(⇡?,�/T)�1  2�',T 

�
2 b�2(x)
2↵�',T

+ 2�',T . If x /2 A, then we have b�(x) > 2↵�',T /� by the definition of A. Hence, 1 < � b�(x)
2↵�',T

and the second

inequality of the lemma gives k'(x)k2
S'(Q,�/T)�1  � b�(x) + 2�',T  �

2 b�2(x)
2↵�',T

+ 2�',T , as desired. ⌅

D.4 Concentration bound for reward estimates

In this subsection, we prove the following concentration bound for reward estimates.

Lemma D.1. Let I ✓ [1, T] be a time interval. Let mt be the strategy index used by OPKB at time t. Let j be the maximum
strategy index used in I such that mt  j for all t 2 I. Then, with probability at least 1� 2�

C
, we have

| bR',I(x)�RI(x)| 
⇠j
|I|
X

t2I

k'(x)k2
S'(Pt,�/T)�1 +

log(CN/�)

⇠j |I|
+

p
�/T

|I|
X

t2I

k'(x)kS'(Pt,�/T)�1

for all x 2 X where ⇠j = µj/(4�',T).

The proof relies on the following Freedman-style martingale inequality. See Theorem 1 in Beygelzimer et al. 2011 for the
proof of this inequality.

Lemma D.2 (Freedman). Let X1, . . . , Xn 2 R be a martingale difference sequence with respect to a filtration F0,F1,
Assume Xi  R a.s. for all i. Then for any � 2 (0, 1) and ⇠ 2 [0, 1/R], we have with probability at least 1� � that

nX

i=1

Xi  ⇠V +
log(1/�)

⇠
,

where V =
P

n

i=1 E[X2
i
| Fi�1].

To apply the Freedman inequality, we analyze the distribution of the IPS estimator bR',t(x) in the following lemma.

Lemma D.3. Suppose the reward function rt(·) lies in a RKHS with a feature mapping : X ! `2. Let ' : X ! RN be a
feature mapping equivalent to . Let mt be the strategy index used at time t and Pt = P (mt) be the strategy used at time t.
Then, the IPS estimator bR',t(x) = '(x)TS'(Pt,�/T)�1'(xt)T yt satisfies

| bR',t(x)| 
�',T
µmt

|Et[bR',t(x)]� rt(x)| 
p
�/Tk'(x)kS'(Pt,�/T)�1

Vart[bR',t(x)]  k'(x)k2S'(Pt,�/T)�1

where Et and Vart are the conditional expectation and the conditional variance given the history before time t respectively.

Proof. The first claim follows by

| bR',t(x)| =
��'(x)TS(Pt,�/T)

�1'(xt)yt
��  k'(x)kS(Pt,�/T)�1k'(xt)kS(Pt,�/T)�1  �',T

µmt

Kihyuk Hong, Yuhang Li, Ambuj Tewari

where the first inequality uses the assumption |yt|  1 and the Cauchy-Schwarz inequality, and the second inequality uses
S'(Pt,�/T) = (1� µmt)S(Q

(mt),�/T) + µmtS'(⇡'(X),�/T) < µmtS(⇡'(X),�/T) and Lemma 4.3.

To show the second claim, let ✓t 2 `2 be the parameter such that rt(x) = h (x), ✓ti for all x 2 X . Since Pt is completely
determined given history up to t� 1, we have

Et[bR',t(x)] = Et[(x)
TS (Pt,�/T)

�1 (xt)((xt)
T ✓t + ⌘t)]

= (x)TS (Pt,�/T)
�1Et[(xt) (xt)

T]✓t

= (x)TS (Pt,�/T)
�1(S (Pt,�/T)� (�/T)I)✓t

= rt(x)� (�/T) (x)TS (Pt,�/T)
�1✓t

where the first equality is by Lemma I.1 and the third equality uses the fact that the strategy Pt is deterministic given the
history up to time t. The second claim follows by the bound

(�/T)
�� (x)TS (Pt,�/T)

�1✓t
��  (�/T) k (x)k

S (Pt,�/T)�1 k✓tkS (Pt,�/T)�1


p
�/T k'(x)k

S'(Pt,�/T)�1

where the first inequality is by the Cauchy-Schwarz inequality and the last inequality uses S (Pt,�/T)�1 4 (T/�)I , the
assumption that k✓tk2  1 and Lemma I.1.

Finally, the third claim follows by

Vart[bR',t(x)]  Et[{'(x)TS'(Pt,�/T)
�1'(xt)}2y2t]

 '(x)TS'(Pt,�/T)
�1Et['(xt)'(xt)

T]S'(Pt,�/T)
�1'(x)

= '(x)TS'(Pt,�/T)
�1S'(Pt, 0)S'(Pt,�/T)

�1'(x)

 k'(x)k2
S'(Pt,�/T)�1 .

where the second inequality uses the assumption |yt|  1 and the last inequality uses S'(Pt, 0) 4 S'(Pt,�/T). ⌅

We are now ready to prove Lemma D.1.
Proof of Lemma D.1. Fix an action x 2 X and consider a martingale difference sequence {zt,x}t2I where zt,x =
bR',t(x)� Et[bR',t(x)]. We can bound zt,x for all t 2 I by

zt,x  | bR',t(x)|+ |Et[bR',t(x)]|  | bR',t(x)|+ Et[| bR',t(x)|] 
2�',T
µj

where the last inequality uses Lemma D.3 and mt  j. Also, by Lemma D.3, we have

Vart[zt,x] = Vart[bR',t(x)]  k'(x)k2S'(Pt,�/T)�1 .

Using the Freedman inequality (Lemma D.2) on {zt,x}t2I with ⇠ = µj

4�',T
= ⇠j , we get with probability at least 1� �

CN

that
bR',I(x)�RI(x) =

1

|I|
X

t2I

(zt,x + Et[bR',t(x)]�RI(x))

 ⇠j
|I|
X

t2I

k'(x)k2
S'(Pt,�/T)�1 +

log(CN/�)

⇠j |I|
+

p
�/T

|I|
X

t2I

k'(x)kS'(Pt,�/T)�1

where we use Lemma D.3 to bound the bias term Et[bR',t(x)]�RI(x). A union bound over all x 2 X and the reverse case
RI(x)� bR',I(x) completes the proof. ⌅

Choosing C = C0 = 8T log2 T , we get by a union bound that for all intervals of sizes E, 2E, 22E, . . . and (22�1)E, (23�
1)E, . . . , the concentration bound in Lemma D.1 holds with probability at least 1� �. For ease of exposition, we define the
following event.

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

Definition D.4 (EVENT1). Denote by EVENT1 the event that

| bR',I(x)�RI(x)| 
⇠j
|I|
X

t2I

k'(x)k2
S'(Pt,�/T)�1 +

log(C0N/�)

⇠j |I|
+

p
�/T

|I|
X

t2I

k'(x)kS'(Pt,�/T)�1

holds for all intervals I ⇢ [T] of sizes 2jE for all j = 0, 1, . . . and (2j � 1)E for all j = 1, 2,

By the previous argument, EVENT1 holds with probability at least 1� �.

D.5 Proof of Lemma 4.5

The following lemma bounds the optimality gaps of an action in two intervals by the total variation of the reward function
throughout an interval that spans the two intervals. The proof is adapted from Lemma 13 by Luo et al. (2018) and Lemma 8
by Chen et al. (2019).

Lemma D.5. For any interval I, any of its sub-intervals I1, I2 ✓ I and any x 2 X , we have

|�I1(x)��I2(x)|  2VI .

Proof. For all x 2 X , we have

|RI1(x)�RI2(x)| =

�����
1

|I1|
X

s2I1

rs(x)�
1

|I2|
X

t2I2

rt(x)

�����

=
1

|I1||I2|

�����
X

s2I1

X

t2I2

(rs(x)� rt(x))

�����

 1

|I1||I2|
X

s2I1

X

t2I2

|rs(x)� rt(x)|  VI

where the last inequality follows since |rs(x)� rt(x)| 
P

t�1
⌧=s

|r⌧+1(x)� r⌧ (x)|  VI . Hence,

�VI  RI1(x)�RI2(x),RI1(x
?

I1
)�RI2(x

?

I1
),RI1(x

?

I2
)�RI2(x

?

I2
)  VI

where we use the notation x?
I
= argmax

x02X
RI(x0). It follows that

�VI  RI1(x
?

I2
)�RI2(x

?

I2
)  RI1(x

?

I1
)�RI2(x

?

I2
)  RI1(x

?

I1
)�RI2(x

?

I1
)  VI

where we use the optimality of x?
I1

and x?
I2

. Hence, for all x 2 X ,

|�I1(x)��I2(x)| = |RI1(x
?

I1
)�RI1(x)�RI2(x

?

I2
) +RI2(x)|

 |RI1(x
?

I1
)�RI2(x

?

I2
)|+ |RI1(x)�RI2(x)|  2VI .

⌅

Now, we are ready to prove Lemma 4.5.
Proof of Lemma 4.5. Assume that the event EVENT1 holds. We prove by induction on the block index j. For the base case j =
0, note that the strategy used in block B(0) is ⇡'(X). Under the event EVENT1, using the result k'(x)k2

S'(⇡'(X),�/T)�1 
�',T from Lemma 4.3 gives

| bR',B(0)(x)�RB(0)(x)|  ⇠0�',T +
log(C0N/�)

⇠0|B(0)|
+

r
��',T
T

 c0
4
µ0

where the last inequality follows by ⇠0 = 1
8�',T

, |B(0)| = E � 4�',T log(C0N/�) and
p
��',T /T  2

p
↵µ0. This proves

the base case for the bound (5).

Kihyuk Hong, Yuhang Li, Ambuj Tewari

Now, suppose the bound (5) holds for the block indices 0, 1, . . . , j. Then, for any m = 0, . . . , j, using the notations
x? = argmax

x2X
RC(m)(x) and x̂ = argmax

x2X
bR',C(m)(x), we have

�C(m)(x)� b�',C(m)(x) = RC(m)(x
?)�RC(m)(x)� bR',C(m)(x̂) + bR',C(m)(x)

 RC(m)(x
?)�RC(m)(x)� bR',C(m)(x

?) + bR',C(m)(x)

 1

2
�C(m)(x) + 2VC(m) +

c0
2
µm

where the first inequality uses the optimality of x̂, and the second inequality uses the induction hypothesis and the fact that
�C(m)(x

?) = 0. Rearranging gives the bound (6) for the blocks 0, . . . , j. Similarly, for m = 0, . . . , j, we have

b�',C(m)(x)��C(m)(x)  bR',C(m)(x̂)� bR',C(m)(x)�RC(m)(x̂) +RC(m)(x)

 1

2
�C(m)(x̂) +

1

2
�C(m)(x) + 2VC(m) +

c0
2
µm

 1

2
�C(m)(x) + 4VC(m) + c0µm

where the first inequality uses the optimality of x?, the second inequality uses the induction hypothesis and the last inequality
uses the bound (6) we showed and the optimality of x̂ to bound�C(m)(x̂)  2b�',C(j)(x)+4VC(j)+ c0µj = 4VC(j)+ c0µj .
Rearranging gives the bound (7) for the blocks 0, . . . , j.

Now, for the block index j + 1, EVENT1 gives

| bR',C(j+1)(x)�RC(j+1)(x)| 
⇠j+1

|C(j + 1)|
X

t2C(j+1)

k'(x)k2
S'(Pt,�/T)�1 +

log(CN/�)

⇠j+1|C(j + 1)|

+

p
�/T

|C(j + 1)|
X

t2C(j+1)

k'(x)kS'(Pt,�/T)�1 . (10)

To bound the first term, we use Lemma 4.4 and the bound (7) we showed for blocks 0, . . . , j to get

⇠j+1k'(x)k2S'(Pt,�/T)�1  2⇠j+1k'(x)k2S'(Q(mt),�/T)�1

 2⇠j+1(�mt
b�',C(mt�1)(x) + 2�',T)

 2⇠j+1(�mt(2�C(mt�1)(x) + 4VC(mt�1) + c0µmt�1) + 2�',T)

 1

20
�C(mt�1)(x) +

1

10
VC(mt�1) +

3

2
µj+1 (11)

 1

20
�C(j+1)(x) +

1

5
VC(j+1) + 2µj+1

where the second to last inequality follows by a simple calculation using identities in Section D.1 and the fact that mt  j+1
for t 2 C(j + 1) and the last inequality follows by Lemma D.5.

The second term can be bounded by

log(CN/�)

⇠j+1|C(j + 1)| =
4�',T log(CN/�)

µj+1E · 2j+1
 1

µj+12j+1
= 4µj+1. (12)

The third term can be bounded using Lemma 4.4 and the bound (7):
p
�/Tk'(x)kS'(Pt,�/T)�1 

p
2�/Tk'(x)k

S'(Q(mt),�/T)�1


p
�

p
↵�',TT

�mt
b�',C(mt�1)(x) +

2
p
��',Tp
T

 2µj+1

�',T
�mt(2�C(mt�1)(x) + 4VC(mt�1) + c0µmt�1) + 4

p
↵µj+1

 1

5
�C(mt�1)(x) +

2

5
VC(mt�1) + (4 + 4

p
↵)µj+1 (13)

 1

5
�C(j+1)(x) +

4

5
VC(j+1) + (4 + 4

p
↵)µj+1

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

where the second inequality uses
p
a+ b 

p
a+
p
b and the third inequality uses

p
��',T /T  2

p
↵µj for any block

index j and the second to last inequality follows by a simple calculation and the last inequality follows by Lemma D.5.

Using these three bounds, we can further bound (10) by | bR',C(j+1)(x)�RC(j+1)(x)|  1
2�C(j+1)(x)+VC(j+1)+

c0
4 µj+1,

which proves the bound (5) for the block j + 1. By induction, the proof is complete.

⌅

D.6 Proof of Theorem 4.6

Proof of Theorem 4.6. We bound the regret of each block B(j) separately. Using the Azuma-Hoeffding inequality on a
martingale difference sequence {Et[r(xt)]� r(xt)}t2B(j), we get

REGB(j) =
X

t2B(j)

(r(x?)� r(xt)) 
X

t2B(j)

(r(x?)� Et[r(xt)]) + eO(
p
2jE)

where we use r(·) to denote the stationary reward function and x? = argmax
x2X

r(x). Since Pt = (1�µj)Q(j)+µj⇡'(X)
for t 2 B(j), using Lemma 4.5 with VC(j) = 0, we get with high probability that

r(x?)� Et[r(xt)] =
X

x2X

Pt(x)�C(j�1)(x)  2
X

x2X

Q(j)(x)b�',C(j�1)(x) +O(µj)  O(µj)

where the last inequality uses Lemma 4.4 and 1/�j = O(µj). Summing over t 2 B(j), we get REGB(j)  eO(E
p
2j).

Summing over j and applying Cauchy-Schwarz, we get REGT = eO(E
p
T/E) = eO(

p
�TT logN). ⌅

D.7 Subgaussian case

For the analysis with subgaussian noises, we can use the following modified Freedman-style inequality.

Lemma D.6. Let X1, . . . , Xn 2 R be a martingale difference sequence with respect to a filtration F0,F1, Assume Xi

are �-subguassian. Then for any � 2 (0, 1) and ⇠ 2 [0, 1/
p
2�2 log(n/�)], we have with probability at least 1� 2� that

nX

i=1

Xi  ⇠V +
log(1/�)

⇠
,

where V =
P

n

i=1 E[X2
i
| Fi�1].

Proof. The proof closely follows the proof of the original Freedman-style inequality by Beygelzimer et al. (2011). Since
X1, . . . , Xn are �-subguassian, we have Xt  B =

p
2�2 log(n/�) for all t = 1, . . . , n with probability at least 1 � �.

Define eXt = min{Xt, B} for i = 1, . . . , n. Then,

Et[exp(⇠ eXt)]  Et[1 + ⇠ eXt + ⇠2 eX2
t
]  1 + ⇠2Et[eX2

t
]  exp(⇠2Et[eX2

t
])  exp(⇠2Et[X

2
t
]) (14)

where the first inequality uses the fact that ⇠  1/B and the identity ez  1 + z + z2 for z  1. Define Z0 = 1 and
Zt = Zt�1 exp(⇠ eXt � ⇠2Et[X2

t
]). Then,

Et[Zt] = Zt�1 exp(�⇠2Et[X
2
t
])Et[exp(⇠ eXt)]  1

where the last inequality holds by (14). Hence, we have E[Zn]  1 and by Markov inequality, P (Zn � 1/�)  �. Note that
by recursive definition, we have Zn = exp(⇠

P
n

t=1
eXt�⇠2

P
n

t=1 EtX2
t
). Hence,

P
n

t=1
eXt  ⇠

P
n

t=1 EtX2
t
+log(1/�)/⇠

with probability at least 1� �.

By the previous argument that Xt  B for all t = 1, . . . , n with probability at least 1� �, we have
P

X2
t
=
P eX2

t
with

probability at least 1� �. By a union bound, we have
P

X2
t
=
P eX2

t
 ⇠V + log(1/�)/⇠ with probability at least 1� 2�

as desired. ⌅

Kihyuk Hong, Yuhang Li, Ambuj Tewari

E MASTER reduction of GPUCB

Wei et al. (2021) introduce the MASTER reduction that converts a base algorithm into an algorithm that adapts to non-
stationarity. They prove that if a base algorithm satisfies Condition E.1 for a constant !, then the converted algorithm
satisfies the dynamic regret bound displayed in Theorem E.2 without prior knowledge of the non-stationarity budgets.
Condition E.1 (Adapted from Assumption 1’ in Wei et al. (2021)). For any t = 1, . . . , T , as long as !V[1,t]  ⇢(t), the
base algorithm can produce f̃t using history up to t� 1 that satisfies

f̃t � min
⌧2[1,t]

max
x2X

rt(x)� !V[1,t] and
1

t

tX

⌧=1

(f̃⌧ � y⌧)  c⇢(t) + c!V[1,t]

with probability at least 1� �

T
where ⇢(t) � 1

p
t
, t⇢(t) is non-decreasing in t, ! is some function of the parameters, and c is

a universal constant.
Theorem E.2 (Adapted from Theorem 2 in Wei et al. (2021)). If a base algorithm satisfies Condition E.1 with t⇢(t) =
g1
p
t+ g2, then the algorithm obtained by the MASTER reduction guarantees with high probability that

REGT = eO
⇣
min

n
(g1 + g�1

1 g2)
p
LTT , (g

2/3
1 + g2g

�4/3
1)!1/3V 1/3

T
T 2/3 + (g1 + g�1

1 g2)
p
T
o⌘

.

Now, we show that the GPUCB algorithm (Chowdhury et al. 2017) satisfies Condition E.1, and provide the resulting
dynamic regret bounds.

The GPUCB algorithm (Algorithm 8) is a UCB-based algorithm for stationary kernel bandits introduced by Chowdhury
et al. (2017). They use a surrogate prior model GP (0, k(·, ·)) on f and use the posterior distribution GP (µt(·), kt(·, ·))
given observed rewards up to time t for designing the upper confidence bounds of reward estimates. It can be shown that

µt(x) = '(x)T�T (��T + �I)�1y1:t, kt(x, x
0) = k(x, x0)� '(x)T�T (��T + �I)�1�'(x0)

where ' is a feature mapping induced by the kernel k, � = ['(x1) · · ·'(xt)]T and y1:t = (y1, . . . , yt).

Algorithm 8: GPUCB Chowdhury et al. 2017
Input: kernel k, confidence level � 2 (0, 1), regularization parameter �

1 for t = 1, . . . , T do
2 Set �t 1 +

p
2(�t�1 + 1 + log(1/�)) and �2

t
 kt(x, x)

3 Play xt = argmax
x2X

µt�1(x) + �t�t�1(x) and receive reward yt.

The following lemma shows that GPUCB satisfies Condition E.1.
Lemma E.3. The GPUCB algorithm satisfies Condition E.1 with f̃t = maxx2X (µt�1(x) + �t�t�1(x), ⇢(t) =
�t
p
�t�1 log(T/�)/t and ! = �T

p
log(T/�).

Proof. Let Wt :=
P

t

s=1 '(xs)'(xs)T + �I . It can be shown that �t(x) =
p
kt(x, x) =

p
�k'(x)k

W
�1
t

. Following the
proof of Lemma 1 in Zhou et al. (2021), we get

|rt(x)� µt�1(x)| 

�����'(x)
TW�1

t�1

t�1X

s=1

'(xs)'(xs)
T (✓t � ✓s)

�����+ �tk'(x)kW�1
t�1

Following the corrected version of the analysis for the reduction of OFUL in Wei et al. (2021), we get
�����'(x)

TW�1
t�1

t�1X

s=1

'(xs)'(xs)
T (✓t � ✓s)

����� 
t�1X

s=1

|'(x)TW�1
t�1'(xs)||'(xs)

T (✓t � ✓s)|

 V[1,t]k'(x)kW�1
t�1

t�1X

s=1

k'(xs)kW�1
t�1

 V[1,t]k'(x)kW�1
t�1

vuut(t� 1)
t�1X

s=1

k'(xs)k2
W

�1
t�1

 V[1,t]k'(x)kW�1
t�1

p
t�t�1

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

where the second inequality is by Cauchy-Schwarz, |✓t� ✓s|  V[1,t] and the assumption k'(xs)k  1. The third inequality
is by Cauchy-Schwarz. The last inequality is by

t�1X

s=1

k'(xs)k2
W

�1
t�1

=
t�1X

s=1

U(xs)k'(xs)k2S'(U,�/(t�1))�1  �t�1 (15)

where U is the uniform distribution on {x1, . . . , xt�1} and the inequality is by Lemma C.4. Hence,

|rt(x)� µt�1(x)|  (V[1,t]

p
t�t�1 + �t)k'(x)kW�1

t�1
 2�tk'(x)kW�1

t�1
= 2�t�t�1(x)/

p
�

where the last inequality uses V[1,t]  ⇢(t)/!  �t/
p
t�T . Thus,

tX

⌧=1

(f̃⌧ � y⌧) =
tX

⌧=1

(f̃⌧ � r⌧ (x⌧)) +
tX

⌧=1

(r⌧ (x⌧)� y⌧)

=
tX

⌧=1

(µ⌧�1(x⌧)� r⌧ (x⌧)) +
tX

⌧=1

�⌧�⌧�1(x⌧) +O(
p

t log(T/�))

= O(
tX

⌧=1

�⌧�⌧�1(x⌧) +
p
t log(T/�))

= O(�t
p
t�T log(T/�))

where the second equality uses the fact that f̃⌧ = µ⌧�1(x⌧) + �⌧�⌧�1(x⌧) due to the optimism principle of the algorithm.
The last equality uses

tX

⌧=1

�⌧�⌧�1(x⌧)  �t
tX

⌧=1

�⌧�1(x⌧)  O(�t
p
t�t)

where the last inequality uses Lemma 4 in Chowdhury et al. (2017). This verifies the second condition in Condition E.1.
Also,

f̃t = max
x2X

(µt�1(x) + �t�t�1(x)) � max
x2X

rt(x) � min
⌧2[1,t]

max
x2X

r⌧ (x)

where the first inequality uses Theorem 2 in Chowdhury et al. (2017). This shows the first condition, completing the
proof. ⌅

The previous lemma allows invoking the MASTER reduction for GPUCB, which gives a dynamic regret bound of

REGT  eO(min{�T
p
LTT , �TV

1/3T 2/3 + �T
p
T}).

F Analysis of ADA-OPKB

For ease of exposition, we use the same set of parameters listed in Section D.1.

F.1 Change detection

In this subsection, we prove properties of the change detection rules used in ADA-OPKB.

Lemma F.1. Assume the event EVENT1 holds. Then, we have for any x 2 X and replay interval (m, I) that

�I(x)  2b�',I(x) + c0µm + 4V[⌧i,t]

b�',I(x)  2�I(x) + c0µm + 4V[⌧i,t]

where ⌧i is the starting time of the epoch i in which I is scheduled and t is the end of the interval I.

Kihyuk Hong, Yuhang Li, Ambuj Tewari

Proof. Consider a replay interval (m, I) scheduled in a block B(j) in epoch i and let ⌧i be the starting time of the epoch i
and t be the end time of I. Following the calculation in (11) in the proof of Lemma 4.5, we get

⇠mk'(x)k2S'(Pt,�/T)�1 
1

20
�C(mt�1)(x) +

1

10
VC(mt�1) +

3

2
µm

 1

20
�I(x) +

1

5
V[⌧i,t] + 2µm

where the second inequality uses Lemma D.5 and the fact that both C(mt � 1) and I lie in [⌧i, t]. Likewise, following the
calculation in (13) in the proof of Lemma 4.5 and using Lemma D.5, we get

p
�/Tk'(x)kS'(Pt,�/T)�1  1

5
�C(mt�1)(x) +

2

5
VC(mt�1) + (4 + 4

p
↵)µm

 1

5
�I(x) +

4

5
V[⌧i,t] + (4 + 4

p
↵)µm.

Note that m is the maximum strategy index used in I due to the index selection logic in Line 9 in Algorithm 3. Hence,
under the event EVENT1, the two bounds above and the bound (12) give

| bR',I(x)�RI(x)|

 ⇠m
|I|
X

t2I

k'(x)k2
S'(Pt,�/T)�1 +

log(CN/�)

⇠m|I| +

p
�/T

|I|
X

t2I

k'(x)kS'(Pt,�/T)�1

 1

2
�I(x) + V[⌧i,t] +

c0
4
µm. (16)

Denoting x̂ = argmax
x02X

bR',I(x0) and x? = argmax
x02X

RI(x), we have

�I(x)� b�',I(x) = RI(x
?)�RI(x)� bR',I(x̂) + bR',I(x)

 RI(x
?)�RI(x)� bR',I(x

?) + bR',I(x)

 1

2
�I(x) + 2V[⌧i,t] +

c0
2
µm

where the first inequality uses the optimality of x̂ and the second inequality uses the bound (16) and �I(x?) = 0.
Rearranging proves the first inequality of the lemma. The second inequality can be shown by

b�',I(x)��I(x)  bR',I(x̂)� bR',I(x)�RI(x̂) +RI(x)

 1

2
�I(x̂) +

1

2
�I(x) + 2V[⌧i,t] +

c0
2
µm

 1

2
�I(x) + 4V[⌧i,t] + c0µm

where the first inequality uses the optimality of x?, the second inequality uses the bound (16) and the last inequality uses the
first inequality of the lemma. Rearranging proves the second inequality of the lemma.

⌅

Lemma F.2. Let (m, I) be a replay interval scheduled in S for block j in some epoch i. If no restart is triggered by this
replay interval when performing the change detection test at the end of I, we have with probability at least 1� � for all
x 2 X that

b�',I(x)  2�I(x) + 4c0µm

�I(x)  2b�',I(x) + 4c0µm

Proof. Suppose no restart is triggered by the test (8) for (m, I). Then, b�',I(x) � 4b�',C(k)(x)  4c0µm^k and

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

b�',C(k)(x)� 4b�',I(x)  4c0µm^k for all k = 0, . . . , j � 1. Hence, for t 2 I, we have

⇠mk'(x)k2S'(Pt,�/T)�1  2⇠mk'(x)k2S'(Q(mt),�/T)�1

 2⇠m(�mt
b�',C(mt�1)(x) + 2�',T)

 2⇠m(�mt(4b�',I(x) + 4c0µ(mt�1)^m) + 2�',T)

 8⇠m�m b�',I(x) + 8
p
2c0⇠m�mtµmt + 4⇠m�',T

 1

10
b�',I(x) + 10µm

where the first inequality uses 1
2S'(Q

(mt),�/T) 4 S'(Pt,�/T), the second inequality uses Lemma 4.4, the fourth
inequality uses mt  m and µmt�1 =

p
2µmt . The last inequality holds by simple calculation. Similarly,

p
�/Tk'(x)kS'(Pt,�/T)�1 

p
2�/Tk'(x)k

S'(Q(mt),�/T)�1


p
�p

↵�',TT
�mt

b�',C(mt�1)(x) +
2
p
��',Tp
T

 2µm

�',T
�mt(4b�',I(x) + 4c0µ(mt�1)^m) + 4

p
↵µm

 8µm�m
�',T

b�',I(x) +
8
p
2c0µm�mtµmt

�',T
+ 4
p
↵µm

 2

5
b�',I(x) + 24µm + 4

p
↵µm.

where the second inequality uses Lemma 4.4 and
p
a+ b 

p
a+
p
b, the third inequality uses

p
��',T /T  2

p
↵µj

Under the event EVENT1, the two bounds above and the bound (12) give

| bR',I(x)�RI(x)|

 ⇠m
|I|
X

t2I

k'(x)k2
S'(Pt,�/T)�1 +

log(CN/�)

⇠m|I| +

p
�/T

|I|
X

t2I

k'(x)kS'(Pt,�/T)�1

 1

2
b�',I(x) + 38µm + 4

p
↵µm 

1

2
b�',I(x) + c0µm (17)

Denoting x̂ = argmax
x02X

bR',I(x0) and x? = argmax
x02X

RI(x), we have

b�',I(x)��I(x)  bR',I(x̂)� bR',I(x)�RI(x̂) +RI(x) 
1

2
b�',I(x) + 2c0µm

where the first inequality uses the optimality of x? and the second inequality uses b�',I(x̂) = 0. Rearranging gives the first
inequality of the lemma. Using this result, we get

�I(x)� b�',I(x) = RI(x
?)�RI(x)� bR',I(x̂) + bR',I(x)

 RI(x
?)�RI(x)� bR',I(x

?) + bR',I(x)

 1

2
b�',I(x?) +

1

2
b�',I(x) + 2c0µm

 1

2
(2�I(x

?) + 4c0µm) +
1

2
b�',I(x) + 2c0µm

=
1

2
b�',I(x) + 4c0µm

where the first inequality uses the optimality of x̂ and the second inequality uses the bound (17) and the last equality uses
�I(x?) = 0. Rearranging gives the second inequality of the lemma.

⌅

For the rest of the analysis, we define µI := c1(|I|/E)�1/2 so that µj = µB(j).

Kihyuk Hong, Yuhang Li, Ambuj Tewari

Lemma F.3. Assume the event EVENT1 holds. Consider an epoch i that starts at time ⌧i. If V[⌧i,t]  µ[⌧i,t] holds for some
time t � ⌧i, then no restart is triggered in [⌧i, t].

Proof. It is enough to show that none of the end of replay intervals that lie within [⌧i, t] trigger a restart when running the
change detection test (8). Suppose S is the replay schedule in a block j. Suppose s is the end of a replay interval (m, I) 2 S
with I ✓ [⌧i, t]. Then, by Lemma 4.5 and Lemma F.1 (which hold under EVENT1), we have for any k < j that

b�',I(x)  2�I(x) + c0µm + 4V[⌧i,s]

 2�C(k)(x) + c0µm + 8V[⌧i,s]

 4b�',C(k)(x) + 8VC(k) + 2c0µk + c0µm + 8V[⌧i,s]

 4b�',C(k)(x) + 3c0µm^k + 16V[⌧i,t]

 4b�',C(k)(x) + 4c0µm^k

where the second inequality uses Lemma D.5 and the last inequality uses V[⌧i,t]  µ[⌧i,t]  µm  µm^k. Similarly, we
have

b�',C(k)(x)  2�C(k)(x) + c0µk + 4VC(k)

 2�I(x) + c0µk + 8V[⌧i,t]

 4b�',I(x) + 8V[⌧i,s] + 2c0µm + c0µk + 8V[⌧i,t]

 4b�',I(x) + 3c0µm^k + 16V[⌧i,t]

 4b�',I(x) + 4c0µm^k.

Hence, no restart is triggered by the replay interval (m, I). Since this holds for any (m, I) 2 S , proof is complete. ⌅
Definition F.4 (Excess regret). Let J be an interval, not necessarily a replay interval, that lies in a block B(j) with j � 1
in an epoch i. We define the excess regret of J with respect to a feature mapping ' as

⇣',J = max
x2X

⇣
�J (x)� 8b�',C(j�1)(x)

⌘
.

Lemma F.5. Assume EVENT1 holds. Let J be an interval that lies within a block B(j) with VJ  µJ and ⇣',J > D1µJ

where D1 = 25c0. Then, there exists an index m? 2 {0, . . . , j} such that D1µm?+1 < ⇣',J  D1µm? and 2m
?

E < |J |.
Moreover, any replay interval I of index m? with I ✓ J triggers a restart.

Proof. We show that there exists m? such that D1µm?+1 < ⇣',J  D1µm? . By the definition of the excess regret,
we have ⇣',J  maxx2X �J (x)  2  D1µ0. Also, by the assumption that ⇣',J > D1µJ � D1µj where the last
inequality follows since J ✓ B(j), we have D1µj < ⇣',J  D1µ0. It follows that there exists m? 2 {0, . . . , j} such
that D1µm?+1 < ⇣',J  D1µm? . Also, such m? satisfies D1µJ < ⇣',J  D1µm? and it follows that |J | > 2m

?

E as
desired.

Now, we show that any replay interval I ✓ J of index m? determined above triggers a restart. We argue by contradiction.
Suppose that no restart is triggered after running a replay interval I ✓ J of index m?. By the definition of the excess regret,
there exists x0 2 X such that ⇣',J = �J (x0)� 8b�',C(j�1)(x

0). Hence, by Lemma D.5, we have

�I(x
0) � �J (x0)� 2VJ

� 8b�',C(j�1)(x
0) + ⇣',J � 2µJ

> 8b�',C(j�1)(x
0) +D1µm?+1 � 2µI .

Moreover, by Lemma F.2, we have �I(x0)  2b�',I(x0) + 4c0µm? under EVENT1. Rearranging the lower bound and the
upper bound of �I(x0) we just found, we get

b�',I(x0) > 4b�',C(j�1)(x
0) +

D1

2
µm?+1 � 2c0µm? � µI � 4b�',C(j�1)(x

0) + 4c0µm?

which must have triggered a restart by the test (8). This contradicts the assumption that no restart is triggered, completing
the proof. ⌅

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

F.2 Replay schedule

In this subsection, we analyze the behavior of the replay schedule. Consider a replay schedule S for a block B(j) in an
epoch i. The following lemma shows that the sum of the errors µmt over the block B(j) when following the schedule S is
similar to the sum of the errors when using the latest strategy over the entire block.

Lemma F.6. With probability at least 1� �, for any block B(j) in any epoch i defined by ADA-OPKB, we have
X

t2B(j)

µmt = eO(|B(j)|µj) = eO(
p
2j�T logN).

Proof. Consider a block B(j) in an epoch i and its replay schedule S . Then,

X

t2B(j)

µmt = O

0

@
X

t2B(j)

2�mt/2

1

A = O

0

@
jX

m=0

2�m/2
X

t2B(j)

I{mt = m}

1

A . (18)

Note that the sum
P

t2B(j) I{mt = m} counts the number of times the replay index m is chosen when following the
schedule S. This sum is bounded by the sum of lengths of all replay intervals of index m in S. Since a replay interval of
index m has length 2mE, the maximum possible number of replay intervals of index m is |B(j)|/(2mE) = 2j�m. Denote
by Z(m)

k
, k = 1, . . . , 2j�m a Bernoulli random variable that indicates whether the k-th candidate replay interval of index

m is scheduled in S . By the replay scheduling algorithm (Algorithm 4) used by ADA-OPKB, Z(m)
k

are independent with
success probability p =

p
2m�j . Hence, with probability at least 1� �

4T (log2 T)2 , we have

X

t2B(j)

I{mt = m}  (2mE)
2j�mX

k=1

Z(m)
k
 eO(E

p
2j+m)

where we use the Hoeffding’s inequality to bound

2j�mX

k=1

Z(m)
k
 2j�mp+

r
2j�m log(T (log2 T)

2/�)

2
= eO(

p
2j�m)

with probability at least 1� �

T (log2 T)2 . Applying a union bound over the possible choices of replay index m, we can further
bound (18) with probability at least 1� �

T log2 T
by

X

t2B(j)

µmt = O

0

@
jX

m=0

2�m/2
X

t2B(j)

I{mt = m}

1

A  eO
⇣
jE
p
2j
⌘
 eO

⇣p
2j�T logN

⌘

where we use the fact that the block index j is bounded by log2(T/E). Applying a union bound over all possible choices of
the starting time of B(j) and the block index j completes the proof. ⌅

F.3 Regret of an interval

Lemma F.7. With probability at least 1� �, for all intervals J ✓ [T], we have
X

t2J

(rt(x
?

t
)� rt(xt)) 

X

t2J

(rt(x
?

t
)� Et[rt(xt)]) +

p
8|J | log(T 2/�) (19)

where x?
t
= argmax

x2X
rt(x).

Proof. The result follows by applying the Azuma-Hoeffding inequality on the martingale difference sequence {Et[rt(xt)]�
rt(xt)}t2J , using the fact that |Et[rt(xt)]� rt(xt)|  2. ⌅

Definition F.8 (EVENT2). Define EVENT2 as the event that the bound (19) holds for all intervals J ✓ [T].

Kihyuk Hong, Yuhang Li, Ambuj Tewari

Lemma F.9. With probability at least 1� �, for any interval J that lies in any block B(j) with j � 1 in any epoch i, the
regret in any sub-interval J 0 ✓ J is bounded by

REGJ 0  O

X

t2J 0

µmt + |J 0|µJ 0 + |J 0|VJ + |J 0|⇣',J I{⇣',J > D1µJ }
!

where D1 = 25c0.

Proof. Fix epoch i and consider an interval J that lies within a block j. Under EVENT2, we have
X

t2J 0

(rt(x
?

t
)� rt(xt)) 

X

t2J 0

(rt(x
?

t
)� Et[rt(xt)]) +

p
8|J 0| log(4T 2/�)

=
X

t2J 0

X

x2X

Pt(x)�t(x) +
p
8|J 0| log(4T 2/�)

 O

X

t2J 0

X

x2X

Q(mt)(x)�t(x) +
X

t2J 0

µmt + |J 0|µJ 0

!

where the last inequality uses µJ 0 = O(1/
p
|J 0|/E) = O(1/

p
|J 0|/ log(T/�)), Pt = (1 � µmt)Q

(mt) + µmt⇡X and
|�t(x)|  2. The first term in the bound above can be bounded by

X

x2X

Q(mt)(x)�t(x) 
X

x2X

Q(mt)(x)�J (x) + 2VJ


X

x2X

Q(mt)(x)
⇣
8b�',C(j�1)(x) + ⇣',J

⌘
+ 2VJ

 8
X

x2X

Q(mt)(x)
⇣
4b�',C(mt�1)(x) + 4cµmt�1

⌘
+ ⇣',J + 2VJ

 O
✓
(1 + ↵)�',T
�mt�1

+ µmt�1 + ⇣',J + VJ

◆
 O (µmt + ⇣',J + VJ)

where the first inequality uses Lemma D.5, the second inequality uses the definition of ⇣',J and the third inequality uses the
fact that no restart is triggered by the block B(j � 1). The second to last inequality uses Lemma 4.4. We can further bound
the regret as

X

t2J 0

(rt(x
?

t
)� rt(xt))  eO

X

t2J 0

µmt + |J 0|⇣',J + |J 0|VJ + |J 0|µJ 0

!
.

Noting that |J 0|⇣',J  |J 0|⇣',J I{⇣',J > D1µJ }+D1µJ |J 0| completes the proof. ⌅

F.4 Regret of a block

In this section, we fix a block J in an epoch i and bound its regret. The strategy is to partition the block into nearly-stationary
intervals to use the interval regret bound we found in Lemma F.9, and argue that the change detection test does not allow the
non-stationarity to accumulate without being detected. First, we show that given an arbitrary interval J , we can partition it
into nearly-stationary intervals J1, . . . ,J` while controlling the size of the partition `. For ease of exposition, we write
�T = �',T .

Lemma F.10. Given an interval J , we can partition it into a set of intervals {J1, . . . ,J`} such that VJk  µJk for all
k = 1, . . . , ` and

`  min

(
LJ ,

✓
1

2
�T log(C1N/�)

◆�1/3

V 2/3
J

|J |1/3 + 1

)
.

Proof. Following the same procedures described in the proof of Lemma 5 by Chen et al. (2019) and the proof of Lemma
19 by Wei et al. (2021), we partition J by taking intervals consecutively from the beginning of J in a greedy manner.
Specifically, given that the first k � 1 intervals we took are J1 = [s1, e1], . . . ,Jk�1 = [sk�1, ek�1], we take the next
interval Jk = [sk, ek] with sk = ek�1 + 1 (or set sk to the beginning of J if k = 1) that satisfies V[sk,ek]  µ[sk,ek]

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

and V[sk,ek] > µ[sk,ek+1]. In other words, Jk is the maximal interval that immediately follows Jk�1 and satisfies
V[sk,ek]  µ[sk,ek]. We repeat this greedy procedure until the end of J is reached.

We first show that the number of intervals ` in the partition obtained by the procedure must satisfy `  LJ . To see this,
consider the partition {I1, . . . , ILJ } of J where each Ik, k = 1, . . . , LJ are stationary, that is VIk = 0. Then, each
interval Jk must contain at least one end point of a stationary interval. Otherwise, Jk must end within some stationary
interval Ik0 and does not contain the end point of the stationary interval. This contradicts with the greedy procedure because
when the procedure constructs Jk, it must have taken time steps at least until the end point of the stationary interval Ik0

since doing so does not affect VJk . Also, each end point of the stationary interval is contained in exactly one of J1, . . . ,J`.
Hence, there is a surjection from {I1, . . . , ILJ } to {J1, . . . ,J`} and it follows that `  LJ .

Now, we show that `  (12�T log(C1N/�))�1/3V 2/3
J

|J |1/3 + 1. Recall that for any interval I, µI is defined as µI =
1
2

p
E|I|�1/2 where E = d4�T log(C1N/�)e. Hence,

VJ �
`�1X

k=1

V[sk,ek] >
`�1X

k=1

µ[sk,ek+1] =

p
E

2

`�1X

k=1

(|Jk|+ 1)�1/2 �
r

1

2
�T log(C1N/�)

`�1X

k=1

|Jk|�1/2

where the second inequality follows by the greedy procedure and the last inequality follows since (x+1)�1/2 � (2x)�1/2 =
1
p
2
x�1/2 for all x � 1. By the Hölder’s inequality, we have

`� 1 

`�1X

k=1

|Jk|�1/2

!2/3
`�1X

k=1

|Jk|
!1/3


✓
1

2
�T log(C1N/�)

◆�1/3

V 2/3
J

|J |1/3

and the desired bound for ` follows. This completes the proof. ⌅

Note that the block B(j) defined by ADA-OPKB spans exactly 2j · E time steps whether the block runs past the time
horizon or a restart is triggered before the block ends. Denote by B0(j) the actual block run as part of epoch i before a
restart is triggered or the time horizon is reached.

Lemma F.11. Consider a block B(j) in an epoch i defined by ADA-OPKB. Let B0(j) be the actual block run as part of
epoch i before a restart is triggered or the time horizon is reached. With probability at least 1� 2�, we have

REGB0(j) = eO
⇣
min

n
(�T logN)

q
2jLB0(j), (�T logN)V 1/3

B0(j)(2
j)2/3 + (�T logN)

p
2j
o⌘

.

Proof. For ease of exposition, we suppress the subscript ' and write �T and ⇣J instead of �',T and ⇣',J . Assume EVENT1

holds. Using the procedure described in Lemma F.10, we partition B(j) into J1, . . . ,J` such that VJk  µJk for all
k = 1, . . . , `. Let J 0

1, . . . ,J 0

`0 be the non-empty intervals J 0

k
= Jk \ B0(j) that partition B0(j). Using the interval regret

bound in Lemma F.9 with the fact that J 0

k
✓ Jk and using VJk  µJk  µJ

0
k
, we get

REGB0(j) =
`
0X

k=1

REGJ
0
k
 O

0

@
X

t2B0(j)

µmt +
`
0X

k=1

|J 0

k
|µJ

0
k
+

`
0X

k=1

|J 0

k
|⇣JkI{⇣Jk > D1µJk}

1

A . (20)

The first term can be bounded using Lemma F.6 by
P

t2B0(j) µmt  eO(
p
2j�T logN) with probability at least 1� �.

The second term can be bounded using µI = O(
p
E/|I|) as

`
0X

k=1

|J 0

k
|µJ

0
k
 O

0

@
`
0X

k=1

q
|J 0

k
|E

1

A  O
⇣p

`0|B0(j)|E
⌘
 O

⇣
E
p
`02j

⌘

where the second inequality uses Cauchy-Schwarz and the last inequality uses |B0(j)|  |B(j)|.

The third term is bounded using Lemma F.5 which shows that there exists m?

k
2 {0, . . . , j} with

2m
?
k < |Jk|/E and D1µm

?
k+1 < ⇣Jk  D1µm

?
k

(21)

Kihyuk Hong, Yuhang Li, Ambuj Tewari

such that running a replay interval of index m?

k
inside Jk triggers a restart. Denote by n(m)

k
the number of replay intervals

of index m that can be scheduled completely inside J 0

k
. Then,

n(m)
k
� (|J 0

k
|� 3 · 2mE)+/(2

mE) (22)

for all m = 0, . . . , j where (·)+ = max{0, ·}. Hence,

|J 0

k
|⇣JkI{⇣Jk > D1µJk}  3 · 2m

?
kED1µm

?
k
+ (|J 0

k
|� 3 · 2m

?
kE)+D1µm

?
k
I{⇣Jk > D1µJk}

 O
⇣p

E|Jk|+ E
p

2m
?
kn

(m?
k)

k
I{⇣Jk > D1µJk}

⌘

where the first inequality uses ⇣Jk  D1µm
?
k

stated in (21) and the second inequality uses 2m
?
kµm

?
k
= O(

p
2m

?
k) 

O(
p
|Jk|/E) which follows by (21) and the lower bound of n(m)

k
shown in (22). Summing over k = 1, . . . , `0 and writing

the event {⇣Jk > D1µJk} as Ak for convenience, we get

`
0X

k=1

|J 0

k
|⇣JkI{Ak}  O

0

@
`
0X

k=1

p
E|Jk|+ E

`
0X

k=1

p
2m

?
kn

(m?
k)

k
I{Ak}

1

A

 O

0

@E
p
`02j + E

jX

m=0

p
2m

`
0X

k=1

n(m)
k

I{Ak,m
?

k
= m}

1

A (23)

where the second inequality uses Cauchy-Schwarz and
P
`
0

k=1 |Jk|  |B(j)| = 2jE. Denoting by Z(m)
k,l

, l = 1, . . . , n(m)
k

the Bernoulli random variable that indicates whether the l-th replay interval among the n(m)
k

candidate replay intervals
within J 0

k
is scheduled, we have

`
0X

k=1

n(m)
k

I{Ak,m
?

k
= m} =

`
0X

k=1

n(m)
k

I{Ak,m
?

k
= m,Z(m)

k,1 = 0, . . . , Z(m)

k,n
(m)
k

= 0}


`
0X

k=1

n(m)
k

I{Z(m)
k,1 = 0, . . . , Z(m)

k,n
(m)
k

= 0}  eO(
p
2j�m)

where the first equality follows under EVENT1 by Lemma F.5 since if any of Z(m)
k,l

= 1 for m = m?

k
, a restart must have

been triggered before reaching the end of J 0

k
. The last inequality follows since the second to last term is a geometric random

variable with trials Z(m)
1,1 , . . . , Z(m)

1,n(m)
1

, . . . , Z(m)

`0,n
(m)

`0
with success probability

p
2m�j , which is bounded with probability at

least 1� � by eO(
p
2j�m). We can further bound the third term (23) by

P
`
0

k=1 |J 0

k
|⇣JkI{Ak}  eO

⇣
E
p
`02j

⌘
where we

use j  log2(T/E). Summing the three bounds we found for the terms in (20), we get REGB0(j) = eO(E
p
`02j). Bounding

`0 using Lemma F.10 completes the proof. ⌅

F.5 Proof of Theorem 3.1

Lemma F.12. Assume EVENT1 holds. The number of epochs H when running ADA-OPKB is bounded by

H  min

(
LT ,

✓
1

2
�T log(C1N/�)

◆�1/3

V 2/3
T

T 1/3 + 1

)
.

Proof. Let {Jk}`k=1 with `  min
n
LT , (

1
2�T log(C0N/�))�1/3V 2/3

T
T 1/3 + 1

o
be a partition of [T] where VJk  µJk

for all k = 1, . . . , `. Such a partition exists by Lemma F.10. Let E1, . . . , EH be all the intervals spanned by the epochs in
[1, T]. Note that if an epoch i starts inside an interval Jk, then the epoch must continue at least until the end of Jk since the
total variation in Ei \ Jk is upper bounded by VEi\Jk  VJk  µJk  µEi\Jk and no restart is triggered under EVENT1 in
Ei \ Jk due to Lemma F.3. Hence, each Ei contains the end point of at least one interval Jk. Also, trivially, the end point of
each Jk is contained in exactly one epoch. Hence, there is a surjection from {J1, . . . ,J`} to {E1, . . . , EH} and it follows
that H  `. This completes the proof. ⌅

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

Lemma F.13. Given an epoch i in ADA-OPKB, let Ei be the interval spanned by the epoch. Then, with high probability, we
have

REGEi = eO
⇣
min

np
�TLEi |Ei| logN, (�TVEi logN)1/3|Ei|2/3 +

p
�T logN |Ei|

o⌘
.

Proof. Let Ji be the index of the last block in epoch i. Then Ei = [Ji
j=0B0(j) where B0(j) = B(j) \ Ei and B(j) is the j-th

block defined by ADA-OPKB in epoch i. Since |Ei| =
P

Ji

j=0 |B0(j)| = E(1 + 2 + · · ·+ 2Ji�1) + |B0(Ji)| � (2Ji � 1)E,
we have 2Ji � 1  |Ei|/E. Hence, using the regret bound of B0(j) in terms of LB0(j) provided by Lemma F.11 and
REGEi =

P
Ji

j=0 REGB0(j), we have with high probability that

REGEi  eO

0

@E
JiX

j=0

q
2jLB0(j)

1

A  eO
⇣
E
p
2Ji � 1

p
LEi + Ji

⌘
 eO

⇣p
E|Ei|LEi

⌘

where the second inequality uses Cauchy-Schwarz and the fact that
P

Ji

j=0 LB0(j)  LEi + Ji, and the last inequality uses
Ji  log2(T/E). This shows the first bound of the lemma.

To show the second bound in terms of VEi , we use the regret bound of B0(j) in terms of VB0(j) provided by Lemma F.11 to
get with high probability that

REGEi  eO

0

@E
JiX

j=0

V 1/3
B0(j)(2

j)2/3

1

A+ eO

0

@E
JiX

j=0

p
2j

1

A

 eO
⇣
EV 1/3

Ei
(2Ji � 1)2/3

⌘
+ eO

✓
E
q

Ji(2Ji � 1)

◆
 eO

⇣
E1/3V 1/3

Ei
|Ei|2/3 +

p
E|Ei|

⌘

where the second inequality uses the Hölder’s inequality and the Cauchy-Schwarz inequality, and the third inequality uses
the bound 2Ji � 1  |Ei|/E and Ji  log2(T/E). This completes the proof. ⌅

Now, we are ready to prove Theorem 3.1. To bound the total dynamic regret, we bound the sum of the epoch regret bounds
and use the bound on the number of epochs as shown below.
Proof of Theorem 3.1. Using the epoch regret bound in Lemma F.13 and the bound on the number of epochs H in Lemma F.12,
we can bound REGT =

P
H

i=1 REGEi as follows. First, using the epoch regret bound in terms of LEi , we get with high
probability that

REGT  eO

p
E

HX

i=1

p
LEi |Ei|

!
 eO

⇣p
E
p
LT +H

p
T
⌘
 eO

⇣p
ELTT

⌘

where the second inequality uses Cauchy-Schwarz and the last inequality uses the bound H  LT .

Now, using the epoch regret bound in terms of VEi , we get

REGT  eO

E1/3

HX

i=1

V 1/3
Ei

|Ei|2/3 +
p
E

HX

i=1

p
|Ei|
!
 eO

⇣
E1/3V 1/3

T
T 2/3 +

p
EHT

⌘

where the second inequality uses the Hölder’s inequality and the Cauchy-Schwarz inequality. Further bounding by
H  O(1 + E�1/3V 2/3

T
T 1/3) completes the proof. ⌅

G Analysis of OPNN

In this section, we prove the following theorem that states a regret bound for the OPNN algorithm under the general
stationary bandit setting.
Theorem G.1 (c.f. Theorem 4.6). Consider the general stationary bandit setting described in Section 2. Assume Assump-
tion D and Assumption E hold. If we run the OPNN algorithm using a neural network with width m and depth L, the
dynamic regret is bounded by

REGT  eO
⇣p

�TT logN
⌘

with probability at least 1� � where �T is the maximum information gain with respect to the neural tangent kernel of the
neural network as long as m � poly(T, L,N,��1,��1

0 , log(1/�)).

Kihyuk Hong, Yuhang Li, Ambuj Tewari

The key insight for the analysis of OPNN is that in the infinite network width regime, OPNN is equivalent to OPKB with the
neural tangent kernel H defined as follows.

Definition G.2 (Jacot et al. (2018), Arora et al. (2019)). Consider a fully connected neural network of depth L with the
ReLU activation function �. For all ai, aj 2 X , define covariance matrices ⌃(l) and derivative covariance matrices ⌃̇(l) for
l = 0, . . . , L recursively as follows:

⌃(0)
ij

= hai, aji, A
(l)
ij

=

⌃(l�1)

ii
⌃(l�1)

ii

⌃(l�1)
ji

⌃(l�1)
jj

!

⌃(l)
ij

= 2E
(u,v)⇠N(0,A(l)

ij)
[�(u),�(v)]

⌃̇(l)
ij

= 2E
(u,v)⇠N(0,A(l)

ij)
[�̇(u), �̇(v)]

where �̇ is the derivative of the activation function. The neural tangent kernel H for the network is defined as

Hij =
LX

l=1

⌃(l�1)

ij
·

LY

l0=l

⌃̇(l0)
ij

!
.

For the analysis, we make the following technical assumptions.

Assumption D. The neural tangent kernel matrix is positive definite with H < �0I for some �0 > 0.

The assumption that the neural tangent kernel matrix is positive definite is a mild assumption commonly made when
analyzing neural networks (Du et al. 2019a; Arora et al. 2019). The assumption is satisfied, for example, as long as the
actions are normalized to kaik2 = 1 for all i 2 [N] and no two actions in X are parallel (Du et al. 2019b).

We impose regularity assumption on the reward functions as follows.

Assumption E. For all t 2 [T], we have
p
2rtH�1rt  B for some constant B where rt = (rt(a1), . . . , rt(aN)) is the

vector of reward function values at time t. We assume that the learner knows the upper bound B and scales the problem so
that
p
2rtH�1rt  1 for all t 2 [T].

This assumption is common in the neural bandits literature (Zhou et al. 2020; Zhang et al. 2020; Gu et al. 2021). As
discussed by Zhou et al. (2020), if rt lies in the RKHS H induced by the neural tangent kernel, the quantity

p
rtH

�1rt is
upper bounded by the RKHS norm krtkH. In this sense, the upper bound on

p
2rtH�1rt imposes regularity on the reward

functions.

G.1 NTK theory from previous work

We first review results related to the neural tangent kernel in previous work. The lemmas provided in this subsection are
adapted from Zhou et al. (2020) which uses results in Allen-Zhu et al. (2019) and Arora et al. (2019).

Lemma G.3 (Lemma B.5 by Zhou et al. (2020)). With high probability, we have

kg(x;W)� g(x;W (0))k2  O
⇣p

logmT 1/6m�1/6��1/6L3kg(x;W (0))k2
⌘

for all kW �W
(0)k2  2

p
T/(m�) as long as m � poly(T, L,��1).

Lemma G.4 (Lemma B.6 by Zhou et al. (2020)). With high probability, we have

kg(x;W)k2  O(
p
mL)

for all kW �W
(0)k2  2

p
T/(m�) and x 2 X as long as m � poly(T, L,��1).

Lemma G.5 (Lemma 5.2 by Zhou et al. (2020)). Let W be a parameter trained by TRAINNN (Algorithm 6). Then, with
probability at least 1� �, we have

kW �W
(0)k2  O(

p
T/(m�))

as long as m � poly(T, L,��1, log(1/�)).

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

Lemma G.6 (Lemma 5.1 by Zhou et al. (2020)). With probability at least 1� �, there exists W ?

t
2 Rp such that

rt(x) = hg(x;W (0)),W ?

t
�W

(0)i and
p
mkW ?

t
�W

(0)k2 
q
2rT

t
H�1rt 

p
2N/�0

for all t 2 [T] and x 2 X as long as m � poly(T, L,N,��1
0 , log(1/�)) where H is the neural tangent kernel matrix, �0 is

the minimum eigenvalue of H and rt = [rt(a1) · · · rt(aN)]T .

Lemma G.7 (Lemma B.1 by Zhou et al. (2020)). Let H be the neural tangent kernel matrix and let G0 =
[g(a1;W (0)) · · · g(aN ;W (0))]/

p
m 2 Rp⇥N . Then, with probability at least 1� �, we have

kGT

0 G0 �HkF  N✏

as long as m � poly(L, ✏�1, log(1/�)).

Lemma G.8 (Lemma B.2 by Zhou et al. (2020)). Let W be the parameter trained by the algorithm TRAINNN with learning
rate ⌘  O((m�+ TmL)�1) and initial weight W (0). Then, with probability at least 1� �, we have

kW �W
(0)k2  2

p
T/(m�)

as long as the network width satisfies m � poly(T, L,��1, log(1/�)).

G.2 More NTK theory

Lemma G.9. Let W be close to the initial weight W
(0) such that kW � W

(0)k2  2
p

T/(m�). Let G =
[g(a1;W) · · · g(aN ;W)]/

p
m and G0 = [g(a1;W (0)) · · · g(aN ;W (0))]/

p
m. Then, with probability at least 1 � �,

as long as m � poly(T, L,��1), we have

kGT

0 G0 �G
T
GkF  O

⇣
m�1/3(logm)T 1/3N2��1/3L8

⌘
.

Proof. For ease of exposition, we write g(·) = g(·;W) and g0(·) = g(·;W (0)). Note that

kGT

0 G0 �G
T
Gk2

F
=

1

m2

X

i,j2[N]

(hg(ai), g(aj)i � hg0(ai), g0(aj)i)2

=
1

m2

X

i,j2[N]

(hg(ai)� g0(ai), g(aj)i � hg0(ai), g0(aj)� g(aj)i)2

 2

m2

X

i,j2[N]

�
kg(ai)� g0(ai)k22kg(aj)k22 + kg0(ai)k22kg0(aj)� g(aj)k22

�

 2

m2
N2O

⇣
(logm)T 1/3m5/3��1/3L8

⌘

= O
⇣
(logm)T 1/3N2m�1/3��1/3L8

⌘

where the first inequality follows by Cauchy-Schwarz and (a � b)2  2a2 + 2b2, and the second inequality follows by
Lemma G.3 and Lemma G.4. ⌅

Lemma G.10. Consider a weight W close to the initial weight W (0) such that kW �W
(0)k2  2

p
T/(m�). Let

' and '(0) be feature mappings equivalent to g(·;W)/
p
m and g(·;W (0))/

p
m respectively. Then, as long as m �

poly(T, L,��1), we have

�',T  �'(0),T +O
⇣
m�1/3(logm)T 4/3N5/2��1/3L8

⌘
.

Proof. Let G = [g(a1;W) · · · g(aN ;W)]/
p
m and G0 = [g(a1;W (0)) · · · g(aN ;W (0))]/

p
m. For ease of exposi-

tion, write S = Sg(·;W)/
p
m and S0 = Sg(·;W (0))/

p
m. Then, S(TP/�, 1) = T

�
GDPG

T + Ip and S0(TP/�, 1) =

Kihyuk Hong, Yuhang Li, Ambuj Tewari

T

�
G0DPG

T

0 + Ip where DP = diag(P (a1), . . . , P (aN)) 2 RN⇥N . Using the Sylvester’s identity log det(I + AB) =
log det(I +BA), we have

log detS(TP/�, 1) = log det((T/�)GDPG
T + Ip) = log det((T/�)DPG

TG+ IN)

= log det((T/�)DPG
T

0 G0 + IN + (T/�)DPG
TG� (T/�)DPG

T

0 G0)

 log det((T/�)DPG
T

0 G0 + IN)

+ h((T/�)DPG
T

0 G0 + IN)�1, (T/�)DPG
TG� (T/�)DPG

T

0 G0)i
 log det((T/�)DPG

T

0 G0 + IN)

+ k((T/�)DPG
T

0 G0 + IN)�1kF k(T/�)DPG
TG� (T/�)DPG

T

0 G0)kF

where the first inequality follows by the concavity of log det(·) and the last inequality follows by Cauchy-Schwarz. To
bound the second term on the right hand side, we can bound the first factor by

k((T/�)DPG
T

0 G0 + IN)�1kF 
p
Nk((T/�)DPG

T

0 G0 + IN)�1k2 
p
N

where the first inequality uses the identity kAkF 
p
NkAk2 for A 2 RN⇥N and the second inequality uses

(T/�)DPGT

0 G0 + IN < IN . Also, we can bound the second factor by

(T/�)kDP (G
TG�GT

0 G0)kF  (T/�)kDP k2kGTG�GT

0 G0kF  (T/�)kGTG�GT

0 G0kF

where the first inequality uses the identity kABkF  kAk2kBkF and the second inequality uses kDP k2  1. Using the
bound of the two factors and using Lemma G.9 for bounding kGTG�GT

0 G0kF gives

log detS(TP/�, 1)  log detS0(TP/�, 1) +O
⇣
(logm)T 4/3N5/2m�1/3��1/3L8

⌘
.

Maximizing over P 2 PX on the left hand side and denoting the maximizer by P ?, we get

�',T  log detS0(TP
?/�, 1) +O

⇣
(logm)T 4/3N5/2m�1/3��1/3L8

⌘

 �'(0),T +O
⇣
(logm)T 4/3N5/2m�1/3��1/3L8

⌘

where the second inequality follows since �'(0),T maximizes log detS0(TP/�, 1) over P 2 PX . This completes the proof.

⌅

Lemma G.11. Let W be a parameter returned by the TRAINNN algorithm. For each t 2 [T], let W ?

t
be a parameter that

satisfies rt(x) = hg(x;W (0)),W ?

t
�W

(0)i for all x 2 X and kW ?

t
�W

(0)k2 
p
2rT

t
H�1rt/m. Such a parameter

W
?

t
exists by Lemma G.6. Then, with probability at least 1� �, we have

|rt(x)� hg(x;W),W ?

t
�W

(0)i|  ✏

for all t 2 [T] and x 2 X as long as m � poly(T, L,N,��1,��1
0 , log(1/�), ✏�1).

Proof. By Lemma G.8, we have with high probability that kW � W
(0)k2  2

p
T/(m�) as long as m �

poly(T, L,��1, log(1/�)) which allows us to use Lemma G.3 and Lemm G.4 to get

kg(x;W (0))� g(x;W)k2  O(
p
logmT 1/6m1/3��1/6L7/2)

with high probability as long as m � poly(T, L,��1, log(1/�)). Hence, we have

|rt(x)� hg(x;W),W ?

t
�W

(0)i| = |hg(x;W (0))� g(x;W),W ?

t
�W

(0)i|
 kg(x;W (0))� g(x;W)k2kW ?

t
�W

(0)k2
 O(

p
logmT 1/6m�1/6��1/6��1/2

0 N1/2L7/2)  ✏

for all t 2 [T] and x 2 X as long as m � poly(T, L,N,��1,��1
0 , ✏�1). This completes the proof. ⌅

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

Lemma G.12. Let W be close to the initial weight W (0) such that kW �W
(0)k2  2

p
T/(m�). Let ' : X ! RN be a

feature mapping equivalent to g(·;W)/
p
m. Then, we have

�',T = O(N log(TL)).

Proof. Using the identity detA  (1
N
Tr(A))N for positive semi-definite A 2 RN⇥N , we have

log detS'(�
�1TP, 1)  N log

✓
1

N
Tr(S'(�

�1TP, 1))

◆

= N log

T

�N

X

x2X

P (x)k'(x)k22 + 1

!

 N log

T

�N

X

x2X

P (x)O(L) + 1

!

= O(N log(TL))

where the second inequality uses k'(x)k22 = kg(x;W)k22/m due to equivalence and Lemma G.4. This completes the
proof. ⌅

G.3 Concentration bound on reward estimates

In this subsection, we prove the following concentration bound for the reward estimate analogous to Lemma D.1.

Lemma G.13 (c.f. Lemma D.1). Let I ✓ [T] be a time interval. Let mt be the strategy index used at time t by OPNN
and '(m) the feature mapping computed by OPNN using data in the cumulative block C(m� 1). Let ' = {'t}t2I be the
sequence of feature mappings used by OPNN where 't = '(mt). If j is such that mt  j for all t 2 I , then with probability
at least 1� 2�

C
, we have for all x 2 X that

| bR',I(x)�RI(x)| 
⇠j
|I|
X

t2I

k't(x)k2S't (Pt,�/T)�1 +
log(CN/�)

⇠j |I|

+

r
�

T
k't(x)kS't (Pt,�/T)�1 + ✏

as long as m � poly(T, L,N,��1,��1
0 , log(1/�), ✏�1) where ⇠j = µj/(4�'(0),T) and bR',I := 1

|I|

P
t2I

bR't,t.

First, we show the following distributional properties of the IPS estimator analogous to Lemma D.3.

Lemma G.14 (c.f. Lemma D.3). Let mt be the strategy index used by OPNN at time t and let 't : X ! RN be the feature
mapping equivalent to g(·;W (mt))/

p
m used by OPNN at time t. Let Pt = P (mt) be the strategy used at time t. Then,

with probability at least 1� �, the IPS estimator bR't,t(x) satisfies

| bR't,t(x)| 
�'t,T

µmt

|Et[bR't,t(x)]� rt(x)| 
r
�

T
k't(x)kS't (Pt,�/T)�1 + ✏

Vart[bR't,t(x)]  k't(x)k2S't (Pt,�/T)�1

for all x 2 X and t 2 [T] as long as m � poly(T, L,N,��1,��1
0 , log(1/�), ✏�1).

Proof. The first and the third inequalities follow by the same proof as in Lemma D.3. We focus on the second in-
equality. By Lemma G.11, with probability at least 1 � �, there exists ⇠t,x with |⇠t,x|  ✏0 such that rt(x) =
hg(x;W (mt)),W ?

t
�W

(0)i + ⇠t,x for all t 2 [T] and x 2 X as long as m � poly(T, L,N,��1,��1
0 , log(1/�), ✏�1

0).

Kihyuk Hong, Yuhang Li, Ambuj Tewari

Writing St = S
g(·;W (mt))/

p
m
(Pt,�/T) and gt(·) = g(·;W (mt))/

p
m for convenience, we have

Et[bR't,t(x)] = Et['t(x)
TS't(Pt,�/T)

�1't(xt)rt(xt)]

= Et[gt(x)
TS�1

t
gt(xt)(

p
mgt(xt)

T (W ?

t
�W

(0)) + ⇠t,x)]

=
p
mgt(x)

TS�1
t

(St � (�/T)I)(W ?

t
�W

(0)) + Et[gt(x)
TS�1

t
gt(xt)⇠t,x]

= rt(x)� ⇠t,x �
�
p
m

T
gt(x)

TS�1
t

(W ?

t
�W

(0)) + Et[gt(x)
TS�1

t
gt(xt)⇠t,x]

where the first equality uses the fact that the term with the noise ⌘t vanishes due to independence and the second equality
uses Lemma I.1. Hence, writing eSt = S't(Pt,�/T), we have

|Et[bR't,t(x)]� rt(x)|  |⇠t,x|+
�
p
m

T
|gt(x)TS�1

t
(W ?

t
�W

(0))|+ Et[|gt(x)TS�1
t

gt(xt)⇠t,x|]

 ✏0 +
�
p
m

T
kgt(x)kS�1

t
kW ?

t
�W

(0)k
S

�1
t

+ ✏0Et[kgt(x)kS�1
t
kgt(xt)kS�1

t
]

 ✏0 +
r
�m

T
k't(x)keS�1

t
kW ?

t
�W

(0)k2 + ✏0Et[k't(x)keS�1
t
k't(xt)keS�1

t
]

where the second inequality uses Cauchy-Schwarz and the last inequality uses Lemma I.1 and S�1
t

4 (T/�)I . Since
Pt = (1� µmt)P

(mt) + µmt⇡'t,X < µmt⇡'t,X , we have eSt < µmtS't(⇡'t,X ,�/T) and it follows that

k't(x)k2eS�1
t
 1

µmt

k't(x)k2S't (⇡'t,X ,�/T)�1 
�'t,T

µmt

 CT 1/2N log(TL)

for some constant C where the second inequality follows by Lemma 4.3 and the last inequality follows by µj � T�1/2

and Lemma G.12. Also, by Lemma G.6, we have
p
mkW ?

t
�W

(0)k2  1 with probability at least 1� �. Hence, we can
further bound the bias term by

|Et[bR't,t(x)]� rt(x)|  ✏0 +
r
�

T
k't(x)kS't (Pt,�/T)�1 + ✏0CT 1/2N log(TL)


r
�

T
k't(x)kS't (Pt,�/T)�1 + ✏

where we set ✏0 sufficiently small such that ✏0 + ✏0CT 1/2N log(TL)  ✏ and choose m �
poly(T, L,N,��1,��1

0 , log(1/�), ✏�1) appropriately. This completes the proof. ⌅

Using the previous lemma, we are ready to prove Lemma G.13.
Proof of Lemma G.13. Fix an action x 2 X and consider a martingale difference sequence {zt,x}t2I where zt,x =
bR't,t(x)� Et[bR't,t(x)]. We can bound zt,x for all t 2 I by

zt,x  | bR't,t(x)|+ Et[| bR't,t(x)|] 
2�'t,T

µmt


4�'(0),T

µj

where the second inequality uses Lemma G.14 to bound | bR't,t(x)| and the last inequality uses Lemma G.10 to choose
m � poly(T,N,�, L) that satisfies �'t,T  2�'(0),T . Also, we have Vart[zt,x] = Vart[bR't,t(x)]  k't(x)k2S't (Pt,�/T)�1

by Lemma G.14. Using the Freedman inequality (Lemma D.2) on {zt,x}t2I we get with probability at least 1� �

CN
that

bR',I(x)�RI(x) =
1

|I|
X

t2I

(zt,x + Et[bR't,t(x)]�RI(x))

 ⇠j
|I|
X

t2I

k't(x)k2S't (Pt,�/T)�1 +
log(CN/�)

⇠j |I|
+

r
�

T
k't(x)kS't (Pt,�/T)�1 + ✏

where ⇠j = µj/(4�'(0),T) and we use Lemma G.14 to bound the bias term Et[bR'(mt),t(x)]�RI(x). A union bound over
all x 2 X and the reverse case RI(x)� bR',I(x) completes the proof. ⌅

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

Lemma G.15 (c.f. Lemma 4.5). Let mt be the strategy index used at time t by OPNN and '(m) the feature mapping
computed by OPNN using data in the cumulative block C(m� 1). Let ' = {'t}t2I be the sequence of feature mappings
used by OPNN where 't = '(mt). With high probability, when running the OPNN algorithm, we have for all block indices
j = 0, 1, . . . and actions x 2 X that

| bR',C(j)(x)�RC(j)(x)| 
1

2
�C(j)(x) + VC(j) +

c0
4
µj (24)

�C(j)(x)  2b�',C(j)(x) + 4VC(j) + c0µj (25)
b�',C(j)(x)  2�C(j)(x) + 4VC(j) + c0µj (26)

where c0 = (40 + 16
p
↵).

Proof. Apart from dealing with the error ✏ when applying Lemma G.14 due to the finiteness of the width of the network and
bounding �'t,T  �'(0),T + ✏ using Lemma G.10, the proof is exactly the same as that for Lemma 4.5. As for dealing with
✏, we set ✏  1 by choosing m � poly(T, L,N,��1,��1

0 , log(1/�), ✏�1) appropriately when applying Lemma G.14 and
Lemma G.10. ⌅

Now, we are ready to prove Theorem G.1.
Proof of Theorem G.1. The proof is exactly the same as that of Theorem 4.6. Instead of using Lemma 4.5 as in the proof
of Theorem 4.6, we use Lemma G.15 for the reward estimate concentration bound and the suboptimality gap estimate
concentration bound. ⌅

H Analysis of ADA-OPNN

The analysis of ADA-OPNN is exactly the same as the analysis of ADA-OPKB presented in Section F with the following
adjustments. In place of Lemma D.1 and Lemma 4.5 use Lemma G.13 and Lemma G.15.

I Equivalence of feature mappings

Recall that OPKB and ADA-OPKB use a feature mapping equivalent to a feature mapping corresponding to a given kernel.
Also, OPNN and ADA-OPNN use a feature mapping equivalent to the feature mapping induced by the neural network. In this
section, we show that the choice of feature mapping does not affect the algorithm and the analysis. Note that the algorithm
and the analysis depend on the feature mapping ' only through the quantities k'(x)k2

S'(P,�)�1 and log detS'(P,�). The
following lemmas show that these quantities are not affected by the choice of the equivalent feature mapping.

Lemma I.1. Let : X ! `2 (or : X ! Rp) be a feature mapping. Let ' : X ! RN be an equivalent feature mapping.
Then, for all x, x0 2 X , we have

'(x)TS'(P,�)
�1'(x0) = (x)TS (P,�)

�1 (x0).

Proof. We prove the more general case : X ! `2. Let � = ['(a1) · · ·'(aN)]T 2 RN⇥N and =
[(a1) · · · (aN)]T 2 RN⇥1. The infinite matrix can be thought of a linear operator : `2 ! RN with
 (·) = (h (a1), ·i, . . . , h (aN), ·i). We denote by T : RN ! `2 the linear operator with T (w) =

P
N

i=1 wi'(ai). By
the definition of equivalence of feature mappings, we have ��T = T = K where K = [h (x), (x0)i]x,x02X

is the kernel matrix. Defining DP = diag(P (a1), . . . , P (aN)), we can write S'(P,�) = �TDP� + �IN and
S (P,�) = TDP + �I . Note that

S (P,�)
T = (TDP + �I) T = T (DP

T + �IN) = T (DPK + �IN).

Applying the inverses of S (P,�) and (DPK + �IN) on both sides, we get T (DPK + �IN)�1 = S (P,�)�1 T It
follows that

 (ai)
TS (P,�)

�1 (aj) = h (ai), S (P,�)�1 T eji
= h (ai), T (DPK + �IN)�1eji
= h (ai), Twi

Kihyuk Hong, Yuhang Li, Ambuj Tewari

(a) Stationary cosine bandit (b) Slowly-varying cosine bandit

Figure 2: Cumulative regret comparison of algorithms in cosine bandit environments

where ej 2 RN is the unit vector with jth entry 1 and w = (DPK + �IN)�1ej . Since h (ai), Twi =

h (ai),
P

N

j=1 wj (aj)i =
P

N

j=1 wjk(ai, aj) = eT
i
Kw, it follows by standard matrix algebra that

 (ai)
TS (P,�)

�1 (aj) = eT
i
Kw

= eT
i
��T (DP��

T + �IN)�1ej

= eT
i
�(�TDP�+ �IN)�1�T ej

= '(ai)
TS'(P,�)

�1'(aj)

for all 1  i, j  N where the second to last equality uses the fact that �T (DP��T + �IN) = (�TDP� + �IN)�T ,
which implies �T (DP��T + �IN)�1 = (�TDP�+ �IN)�1�T . This completes the proof. ⌅
Lemma I.2. Let '1 : X ! Rp1 and '2 : X ! Rp2 be equivalent feature mappings. Then, we have

log detS'1(P,�) = log detS'2(P,�).

Proof. Let �1 = ['1(a1) · · ·'1(aN)]T 2 RN⇥p1 and �2 = ['2(a1) · · ·'2(aN)]T 2 RN⇥p2 . By the definition of
equivalence of feature mappings, we have �1�T

1 = �2�T

2 = K for some kernel matrix K 2 RN⇥N . Defining DP =
diag(P (a1), . . . , P (aN)), we can write S'1(P,�) = �T

1 DP�1 + �IN and S'2(P,�) = �T

2 DP�2 + �IN . Using the
Sylvester’s determinant identity det(AB + I) = det(BA+ I), we get

log detS'1(P,�) = log det(�T

1 DP�1 + �Ip1)

= log det(�1�
T

1 DP + �IN)

= log det(�2�
T

2 DP + �IN)

= log det(�T

2 DP�2 + �Ip2)

= log detS'2(P,�)

which completes the proof. ⌅

J Additional experiments

In this section, we provide additional experimental results under a simulated environment with the reward function
rt(x) = 0.8 cos(3xT ✓ + �(t)) where the action x and the parameter ✓ are randomly sampled from the unit sphere in Rd,
and �(t) denotes the phase over time. We use the parameters tuned in Section 6 for all the experiments in this section.

J.1 Algorithm Tuning

We tune SW-GPUCB, WGPUCB, ADA-OPKB and ADA-OPNN algorithms under the single switch environment.
For SW-GPUCB, we do a grid search for � over the range {0.01, 0.02, 0.05, 0.1, . . . , 100}, the UCB scale param-
eter v over [0.001, 1], and the window size over {100, 200, 500, 1000, . . . , 10000}. See Algorithm 8 for the defini-
tion of �. For WGPUCB, we do a grid search for � over the range {0.01, 0.02, 0.05, 0.1, . . . , 100}, the UCB scale
parameter over {0.001, 0.002, 0.005, 0.01, . . . , 1}, and the discounting factor over {0.99, 0.995, 0.999, 0.9995, 0.9999}.
See Algorithm 8 for the definition of �. For ADA-OPKB and ADA-OPNN, we do a grid search for � over

An Optimization-based Algorithm for Non-stationary Kernel Bandits without Prior Knowledge

{1, 2, 5, 10, 20, 50, 100, 200, 500, 1000} and c0, c1, c2, c3, c4 over {0.001, 0.002, 0.005, 0.01, . . . , 100}. For ADA-OPNN,
we do a grid search for the learning rate ⌘ over {10�9, 10�8, 10�7}, training steps J over {100, 1000, 10000} and regular-
ization parameter � over {1, 10, 100, 1000}. We use a neural network of depth L = 3 and width m = 2048.

J.2 Stationary cosine bandits

We perform an experiment to demonstrate that OPNN benefits from dynamically adapting the feature mapping. We use the
cosine bandits described earlier with the phase fixed at �(t) = 0. For a comparison, we run the algorithm OPNN0 that does
not train the neural network for updating the feature mapping and uses the feature mapping induced by the initial weight of
the neural network for all blocks.

The cumulative regrets averaged over 50 random seeds are shown in plot (b) of Figure 2. Error bars indicates standard errors
of the means. OPNN outperforms OPNN0, suggesting that updating feature mapping by training the neural network with
observed data is beneficial. Also, note that the performance of OPNN is comparable to GPUCB and OPKB.

J.3 Slowly-varying cosine bandits

We perform an experiment on slowly-varying bandits to demonstrate that our change detection based algorithms ADA-OPKB
and ADA-OPNN adapt to slowly-varying environments. We use the cosine bandit described earlier with varying phase �(t).
We keep �(t) = 0 from time 0 to 1000, then let it grow from 0 to ⇡ linearly from time 1000 to 3000. From time 4000 to
6000, we let �(t) grow again from ⇡ to 2⇡ linearly, and then keep �(t) = 2⇡ until the end of the simulation.

The cumulative regrets averaged over 25 random seeds under the slowly-varying cosine environment are shown in plot(b) of
Figure 2. Error bars indicate standard errors of the means. Note that SW-GPUCB with window size 3000, which is the
best tuned parameter for the switching environment in Section 6, is outperformed by the change detection based algorithms
ADA-OPKB and ADA-OPNN. If we tune SW-GPUCB again and use SW-GPUCB with window size 1000, SW-GPUCB
performs the best. Similarly, the best tuned WGPUCB under the single switching environment in Section 6 is outperformed
by ADA-OPKB and ADA-OPNN in the slowly varying environment.

	INTRODUCTION
	Related Work

	PROBLEM STATEMENT
	Preliminaries and Notations

	MAIN RESULT
	ALGORITHMS AND ANALYSES
	OPKB: Optimization-based Algorithm for Stationary Kernel Bandits
	Analysis of OPKB
	ADA-OPKB: Adapting OPKB to Non-Stationarity
	Analysis of ADA-OPKB
	DYNAMIC FEATURE MAPPING USING A NEURAL NETWORK
	Preliminaries and Notations
	OPNN and ADA-OPNN
	Analysis of OPNN and ADA-OPNN

	EXPERIMENTS
	CONCLUSION
	Acknowledgements
	Notation Table
	Omitted algorithms
	Maximum information gain

	Analysis of OPKB
	Constants and notations
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Concentration bound for reward estimates
	Proof of Lemma 4.5
	Proof of Theorem 4.6
	Subgaussian case
	MASTER reduction of GPUCB
	Analysis of ADA-OPKB
	Change detection
	Replay schedule
	Regret of an interval
	Regret of a block
	Proof of Theorem 3.1

	Analysis of OPNN
	NTK theory from previous work
	More NTK theory
	Concentration bound on reward estimates

	Analysis of ADA-OPNN

	Equivalence of feature mappings
	Additional experiments
	Algorithm Tuning
	Stationary cosine bandits
	Slowly-varying cosine bandits

