
Learning Mixtures of Markov Chains and MDPs

Chinmaya Kausik 1 Kevin Tan 2 Ambuj Tewari 2

Abstract
We present an algorithm for learning mixtures
of Markov chains and Markov decision pro-
cesses (MDPs) from short unlabeled trajecto-
ries. Specifically, our method handles mixtures of
Markov chains with optional control input by go-
ing through a multi-step process, involving (1) a
subspace estimation step, (2) spectral clustering of
trajectories using "pairwise distance estimators,"
along with refinement using the EM algorithm,
(3) a model estimation step, and (4) a classifica-
tion step for predicting labels of new trajectories.
We provide end-to-end performance guarantees,
where we only explicitly require the length of tra-
jectories to be linear in the number of states and
the number of trajectories to be linear in a mix-
ing time parameter. Experimental results support
these guarantees, where we attain 96.6% average
accuracy on a mixture of two MDPs in gridworld,
outperforming the EM algorithm with random
initialization (73.2% average accuracy). We also
significantly outperform the EM algorithm on real
data from the LastFM song dataset.

1. Introduction
Efficiently clustering a mixture of time series data, espe-
cially with access to only short trajectories, is a problem
that pervades sequential decision making and prediction
(Liao (2005), Huang et al. (2021), Maharaj (2000)). This is
motivated by various real-world problems, ranging through
psychology (Bulteel et al. (2016)), economics (McCulloch
& Tsay (1994)), automobile sensing (Hallac et al. (2017)),
biology (Wong & Li (2000)), neuroscience (Albert (1991)),
to name a few. One natural and important time series model
is that of a mixture of K MDPs, which includes the case of
a mixture of K Markov chains. We want to cluster from a
set of short trajectories where (1) one does not know which
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MDP or Markov chain any trajectory comes from and (2)
one does not know the transition structures of any of the K
MDPs or Markov chains. Previous literature like Kwon et al.
(2021) and Gupta et al. (2016) has stated and underlined
the importance of this problem, but so far, the literature on
methods to solve it with theoretical guarantees and empirical
results has been sparse.

Broadly, there are three threads of literature on problems re-
lated to ours. Within reinforcement learning literature, there
has been a sustained interest in frameworks very similar
to mixtures of MDPs – latent MDPs (Kwon et al. (2021)),
multi-task RL (Brunskill & Li (2013)), hidden model MDPs
(Chades et al. (2021)), to name a few. However, most effort
in this thread has been towards regret minimization in the
online setting, where the agent interacts with an MDP from
a set of unknown MDPs. The framework of latent MDPs
in Kwon et al. (2021) is equivalent to adding reward infor-
mation to ours. They have shown that one can only learn
latent MDPs online with number of episodes required poly-
nomial in states and actions to the power of trajectory length
(under a reachability assumption similar to our mixing time
assumption). On the other hand, our method learns latent
MDPs offline with number of episodes needed only linear
in the number of states (in no small part due to the subspace
estimation step we make).

The other thread of literature deals with using a "subspace
estimation" idea to efficiently cluster mixture models, from
which we gain inspiration for our algorithm. Vempala &
Wang (2004) first introduce the idea of using subspace es-
timation and clustering steps, with application to learning
mixtures of Gaussians. Kong et al. (2020) adapt these ideas
to the setting of meta-learning for mixed linear regression,
adding a classification step. Chen & Poor (2022) bring
these ideas to the time-series setting to learn mixtures of
linear dynamical systems. They leave open the problems
of (1) adapting the method to handle control inputs (men-
tioning mixtures of MDPs as an important example) and
(2) handling other time series models (like autoregressive
models and Markov chains), and state that the former is of
great importance. There are many technical and algorithmic
subtleties in adapting the ideas developed so far to MDPs
and Markov Chains. The most obvious one comes from
the following observation: in linear dynamical systems, the
deviation from the predicted next-state value under the lin-
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ear model occurs with additive i.i.d. noise. In MDPs and
Markov chains, we are sampling from the next-state proba-
bility simplex at each timestep, and this cannot be cast as a
deterministic function of the current state with additive i.i.d.
noise.

Gupta et al. (2016) also provide a method for learning a
mixture of Markov chains using only 3-trails, and compare
its performance to the EM algorithm. While the requirement
on trajectory length is as lax as can be, their method needs to
estimate the distribution of 3-trails using all available data,
incurring an estimation error in estimating S3A3 parameters,
while providing no finite-sample theoretical guarantees. If
the method can be shown to enjoy finite sample guarantees,
the need to estimate S3A3 parameters indicates that the
guarantees will scale poorly with S and A.

The problem that we aim to solve is the following.

Is there a method with finite-sample guarantees that can
learn both mixtures of Markov chains and MDPs offline,
with only data on trajectories and the number of elements
in the mixture K?

1.1. Summary of Contributions
We provide such a method, with trajectory length require-
ments free from an S,A dependence. The method performs
(1) subspace estimation, (2) spectral clustering, an optional
step of using clusters to initialize the EM algorithm, (3)
estimating models, and finally (4) classifying future trajec-
tories.

Theorem (Informal). Ignoring logarithmic terms, we can
recover all labels exactly with K2S trajectories of length
K3/2tmix, up to logarithmic terms and instance-dependent
constants characterizing the models but not explicitly de-
pendent on S,A, tmix or K.

Other contributions include:

• This is the first method, to our knowledge, that can
cluster MDPs with finite-sample guarantees where the
length of trajectories does not depend explicitly on
S,A. The length only explicitly depends linearly on
the mixing time tmix, and the number of trajectories
only explicitly depends linearly on S.

• We are able to provide theoretical guarantees while
making no explicit demands on the policies and re-
wards used to collect the data, only relying on a differ-
ence in the transition structures at frequently occurring
(s, a) pairs.

• Chen & Poor (2022) work under deterministic transi-
tions with i.i.d. additive Gaussian noise, and we need
to bring in non-trivial tools to analyse systems like
ours, determined by transitions with non-i.i.d. additive

noise. Our use of the blocking technique of Yu (1994)
opens the door for the analysis of such systems.

• Empirical results in our experiments show that our
method outperforms, outperforming the EM algorithm
by a significant margin (73.2% for soft EM and 96.6%
for us on gridworld).

2. Background and Problem Setup
We work in the scenario where we have K unknown models,
either K Markov chains or K MDPs, and data of Ntraj tra-
jectories collected offline. Throughout the rest of the paper,
we work with the case of MDPs, as we can think of Markov
chains as an MDP where there is only one action (A = {⇤})
and rewards are ignored by our algorithm anyway.

We have a tuple (S,A, {Pk}Kk=1, {fk}Kk=1, pk) describing
our mixture. Here, S,A are the state and action sets re-
spectively. Pk(s0 | s, a) describes the probability of an
s, a, s0 transition under label k. At the start of each tra-
jectory, we draw k ⇠ Categorical(f1, ..., fK), and starting
state according to pk, and generate the rest of the trajectory
under policies ⇡k(a | s). We have stationary distributions
on the state-action pairs dk(s, a) for ⇡k interacting with Pk.
We do not know (1) the parameters Pk, fk, pk,⇡k(· | s) of
each model or the policies, and (2) k, i.e., which model each
trajectory comes from.

This coincides with the setup in Gupta et al. (2016) in the
case of Markov chains (|A| = 1). It also overlaps with the
setup of learning latent MDPs offline, in the case of MDPs.
However, one difference is that we make no assumptions
about the reward structure – once trajectories are clustered,
we can learn the models, including the rewards. It is also
possible to learn the rewards with a term in the distance
measure that is alike to the model separation term. However,
this would require extra assumptions on reward separation
that are not necessary for clustering.

Assumption 1 (Mixing). The K Markov chains on S ⇥A
induced by the behaviour policies ⇡k, each achieve mixing
to a stationary distribution dk(s, a) with mixing time tmix,k.
Define the overall mixing time of the mixture of MDPs to
be tmix := maxk tmix,k.

Assumption 2 (Model Separation). There exist ↵,� so
that for each pair k1, k2 of hidden labels, there exists a
state action pair (s, a) (possibly depending on k1, k2) so
that dk1(s, a), dk2(s, a) � ↵ and kPk1(· | s, a) � Pk2(· |
s, a)k2 � �.

Assumption 2 is merely saying that for any pair of labels,
at least one visible state action pair witnesses a model dif-
ference �. Call this the separating state-action pair. If no
visible pair witnesses a model difference between the labels,
then one certainly cannot hope to distinguish them using
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trajectories.

Remark 1. Why is there no assumption about policies?
Notice that we make no explicit assumptions about policies.
The nature of our algorithm allows us to work with the
transition structure directly, and so we only demand that
we observe a state action pair that witnesses a difference in
transition structures. The policy is implicitly involved in this
assumption through the stationary distribution dk(s, a) it
induces, but our results demonstrate that this is the minimal
demand we need to make in relation to the policies.

It is important to note that in Assumption 2, we assume a
separation of the MDP models themselves, not the induced
Markov chain models. To directly apply a method designed
only for clustering mixtures of Markov chains to mixtures of
MDPs, one would need to assume that the induced Markov
chain models are separated. While our method handles
Markov chains as described earlier, it does not need to use
the induced Markov chain models for MDPs, and instead
relies directly on the MDP models for clustering. This
allows us to make a more natural assumption on separation.

Additionally, Assumption 1, which establishes the existence
of a mixing time, is not a strong assumption (outside of
the implicit hope that tmix is small). This is because any
irreducible aperiodic finite state space Markov chain mixes
to a unique stationary distribution. If the Markov chain is
not irreducible, it mixes to a unique distribution determined
by the irreducible component of the starting distribution.

The only requirement is thus aperiodicity, which is also tech-
nically superficial, as we now clarify. If the induced Markov
chains were periodic with period L, we would have a finite
set of stationary distributions du,l(s, a) that the chain would
cycle through over a single period, indexed by l = 1! L.
One can follow the proofs to verify that the guarantees con-
tinue to hold if we modify ↵ in Assumption 2 to be a lower
bound for mini,l dui,l(s, a) instead of just mini dui(s, a).

3. Algorithm
3.1. Setup and Notation
We have short trajectories of length Tn, divided into 4 seg-
ments of equal length. We call the second and fourth seg-
ment ⌦1 and ⌦2 respectively.1 We further sub-divide ⌦i

into G blocks, and focus only on the first state-action ob-
servation in each sub-block and its transition (discard all
other observations). We often refer to these observations
as "single-step sub-blocks." See Figure 1 for an illustration
of this. Divide the set of trajectory indices into two sets
and call them Nsub and Nclust, for subspace estimation

1As the proofs demonstrate, we do not technically need all
segments to be equal. If the order of tmix is known a priori, then
we only need the first and third segment to be ⌦̃(tmix) to allow
for sufficient mixing before and after ⌦1.

and clustering. Denote their sizes by Nsub and Nclust re-
spectively. Let Ntraj(s, a) be the set of trajectory indices
in either Nsub or Nclust (to be inferred from the context)
where (s, a) is observed in both ⌦1 and ⌦2. Let Ntraj(s, a)
be the size of this set. Denote by N(n, i, s, a) the number of
times (s, a) is recorded in segment i of trajectory n, and let
N(n, i, s, a, ·) be the vector of next-state counts. We denote
by Pk(· | s, a) the vector of next state transition probabil-
ities. We denote by Freq� the set of all state action pairs
whose occurrence frequency in our observations is higher
than �.

We will call the predicted clusters returned by the clustering
algorithm Ck. For model estimation and classification, we
do not use segments, and merely split the entire trajectory
into G blocks, discarding all but the last observation in
each block. We call this observation the corresponding
single-step sub-block. We denote the total count of s, a
observations in trajectory n by N(n, s, a) and that of s0, s, a
triples by N(n, s, a, s0).

In practice, we choose to not be wasteful and observations
are not discarded while computing the transition proba-
bility estimates. To clarify, in that case N(n, i, s, a) is
just the count of (s, a) in segment i and similarly for
N(n, i, s, a, ·), N(n, s, a) and N(n, s, a, ·). Estimators in
both cases, that is both with and without discarding obser-
vations, are MLE estimates of the transition probabilities.
One of them maximizes the likelihood of just the single-step
sub-blocks and the other maximizes the likelihood of the
entire segment. We need the latter for good finite-sample
guarantees (using mixing). However, the former satisfies
asymptotic normality, which is not enough for finite-sample
guarantees, but it often makes it a good and less wasteful
estimator in practice.

0 T 2T 3T 4T

T T + T
G T + 2T

G T + 3T
G T + 4T

G = 2T

Figure 1. Breaking up a trajectory into 4 segments and G blocks
per segment (G = 4) for the single-step estimator. Observations
are only recorded at the orange points.

3.2. Overview
The algorithm amounts to (1) a PCA-like subspace estima-
tion step, (2) spectral clustering of trajectories using "thresh-
olded pairwise distance estimates," along with an optional
step of using clusters to initialize the EM algorithm, (3)
estimating models (MDP transition probailities) and finally
(4) classifying any trajectories not in Nclust (for example,
Nsub). We provide performance guarantees for each step of
the algorithm in section 4.
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3.3. Subspace Estimation
The aim of this algorithm is to estimate for each
(s, a) pair a matrix Vs,a satisfying rowspanVT

s,a ⇡
span(Pk(·|s, a))k=1,..,K . That is, we want to obtain an or-
thogonal projector to the subspace spanned by the next-state
distributions Pk(·|s, a) for 1  k  K.

Summarizing the algorithm in natural language, we perform
subspace estimation via 3 steps. We first estimate the next
state distribution given state and action for each trajectory.
We then obtain the outer product of the next state distri-
butions thus estimated. These outer product matrices are
averaged over trajectories, and the average is used to find
the orthogonal projectors V T

s,a to the top K eigenvectors.

Algorithm 1 Subspace Estimation

1: Compute Ntraj(s, a) for all s, a. Initialize the S ⇥ S

matrix M̂s,a  0 and the SA⇥ SA matrix D̂ 0.
2: d̂n,1, d̂n,2  0 2 RSA for all n 2 Nsub

3: for (i, s, a) 2 {1, 2}⇥ S ⇥A do
4: Compute N(n, i, s, a, ·), N(n, i, s, a), 8n 2 Nsub

5: P̂n,i(·|s, a) N(n,i,s,a,·)
N(n,i,s,a) 1N(n,i,s,a) 6=0, 8n

6: [d̂n,i]s,a  N(n,i,s,a)
G , 8n

7: M̂s,a  M̂s,a+
P

n2Ntraj(s,a)
P̂n,1(·|s,a)P̂n,2(·|s,a)T

Ntraj(s,a)

8: end for
9: D̂ D̂ +

P
n2Nsub

1
Nsub

d̂n,1d̂T
n,2

10: Using SVD, return the orthogonal projectors
(VT

s,a)K⇥S to the top K eigenspaces of M̂s,a + M̂T
s,a

for each (s, a) where Ntraj(s, a) 6= 0 (set the others to
0), along with the orthogonal projector (UT )K⇥SA to
the top K eigenspace of D̂ + D̂T .

Remark 2. Why do we split the trajectories? We use two
approximately independent segments ⌦1 and ⌦2 time sepa-
rated by a multiple of the mixing time tmix to estimate the
next state distributions. The reduced correlation between the
two estimates obtained allows us to give theoretical guaran-
tees for concentration, despite using dependent data within
each trajectory n in the estimation of the rank 1 matrices
(Pkn(·|s, a))(Pkn(·|s, a))T . The key point is that the dou-
ble estimator P̂n,1(· | s, a)P̂n,2(· | s, a) is in expectation
very close to this matrix.

Notice that our estimator M̂s,a is in expectation then given
approximately by

PK
k=1 fk(Pk(·|s, a))(Pk(·|s, a))T . The

eigenspace of this matrix is clearly span(Pk(·|s, a))k=1,..,K .
The deviation from the expectation is controlled by the total
number of trajectories, while the "approximation error" sep-
arating the expectation from the desired matrix is controlled
by the separation between ⌦1 and ⌦2.

Remark 3. Why is this not PCA? This procedure has
many linear-algebraic similarities to uncentered PCA on the

dataset of (trajectories, next state frequencies), but statisti-
cally has a very different target. Crucially, (centered) PCA
is concerned with the variance E[XTX], while we are inter-
ested in a decent estimate of the target E[XT ]E[X] above
and thus use a double estimator. Our theoretical analysis
also has nothing to do with analyses of PCA due to this
difference in the statistical target.

3.4. Clustering
Using the subspace estimation algorithm’s output, we can
embed estimates from trajectories in a low dimensional
subspace. For the clustering algorithm, we aim to compute
the pairwise distances of these estimates from trajectories
in this embedding. A double estimator is used yet again, to
reduce the covariance between the two terms in the inner
product used to compute such a distance.

This embedding is crucial because it reduces the variance
of the pairwise distance estimators from a dependence on
SA to a dependence on K. This is the intuition for how
we can shift the onus of good clustering from being heavily
dependent on the length of trajectories to being more depen-
dent on the subspace estimate and thus on the number of
trajectories.

There are many ways to use such "pairwise distance esti-
mates" for clustering trajectories. In one successful example,
we use a test: if the squared distances are below some thresh-
old (details provided later), then we can conclude that they
come from the same element of the mixture, and different
ones otherwise. This allows us to construct (the adjacency
matrix of) a graph with vertices as trajectories, and we can
feed the results into a clustering algorithm like spectral clus-
tering. Alternatively, one can use other graph partitioning
methods or agglomerative methods on the distance estimates
themselves.

We present the algorithm formally in Algorithm 2. Choosing
hyperparameters �, � and the threshold ⌧ involve heuristic
choices, much like how choosing the threshold in Chen
& Poor (2022) needs heuristics. However, our methods
are very different, and we describe them in more detail in
Section 5.

3.4.1. REFINEMENT USING EM
Our guarantees in section 4 will show that we can recover ex-
act clusters with high probability at the end of Algorithm 2.
However, in practice, it makes sense to refine the clusters
if trajectories are not long enough for exact clustering. Re-
member that an instance of the EM algorithm for any model
is specified by choosing the observations Y , the hidden
variables Z and the parameters ✓.

If we consider observations to be next-state transitions from
(s, a) 2 Freq� , hidden variables to be the hidden labels
and the parameters ✓ to include both next-state transition
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Algorithm 2 Clustering

1: Compute the set Freq� by picking (s, a) pairs with
occurrence more than �.

2: dn,1, dn,2  0 2 RSA

3: for (i, s, a) 2 {1, 2}⇥ S ⇥A do
4: Compute N(n, i, s, a, ·), N(n, i, s, a), 8n 2 Nclust

5: P̂n,i(·|s, a) N(n,i,s,a,·)
N(n,i,s,a) 1N(n,i,s,a) 6=0, 8n

6: [d̂n,i]s,a  N(n,i,s,a)
G , 8n

7: end for
8: for (n,m) 2 Nclust ⇥Nclust do
9: for (i, s, a) 2 {1, 2}⇥ S ⇥A do

10: �̂i,s,a := VT
s,a(P̂n,i(· | s, a)� P̂m,i(·|s, a))

11: end for
12: dist1(n,m) := max(s,a)2Freq�

�̂T
1,s,a�̂2,s,a

13: dist2(n,m) := (d̂n,1 � d̂m,1)T UUT (d̂n,2 � d̂m,2)
14: dist(n,m) := � dist1(n,m) + (1� �) dist2(n,m)
15: end for
16: Plot a histogram of dist to determine threshold ⌧ and

cluster trajectories sim(n,m) := 1dist(n,m)⌧

probabilities for (s, a) 2 Freq� and cluster weights f̂k,
then one can now refine the clusters using the EM algo-
rithm on this setup, which enjoys monotonicity guarantees
in log-likelihood if one uses soft EM. The details of the
EM algorithm are quite straightforward, described in Ap-
pendix C.

We hope that this is a step towards unifying the discussion
on spectral and EM methods for learning mixture models,
highlighting that we need not choose between one or the
other – spectral methods can initialize the EM algorithm, in
one reinterpretation of the refinement step.

Note that refinement using EM is not unique to our algo-
rithm. The model estimation and classification steps in Kong
et al. (2020) (under the special case of Gaussian noise) and
Chen & Poor (2022) (who already assume Gaussian noise)
are exactly the E-step and M-step of the hard EM algorithm
as well.

3.5. Model Estimation and Classification
Given clusters from the clustering and refinement step, 2
tasks remain, namely those of estimating the models from
them and correctly classifying any future trajectories. We
can estimate the models exactly as in the M-step of hard
EM.

P̂k(s
0|s, a) 

P
n2Ck

N(n, s, a, s0)
P

n2Ck
N(n, s, a)

f̂k  
|Ck|

Nclust

For classification, given a set Nclass of trajectories with
size Nclass generated independently of Nclust, we can run a
process very similar to Algorithm 2 to identify which cluster
to assign each new trajectory to. It is worth noting that we
can run the classification step on the subspace estimation
dataset itself and recover true labels for those trajectories,
since trajectories in Nsub and Nclust are independent.

We describe the algorithm in natural language here. The al-
gorithm is presented formally as Algorithm 3 in Appendix D.
We first compute an orthogonal projector Ṽs,a to the sub-
space spanned by the now known approximate models
P̂k(· | s, a). For any new trajectory n and label k, we esti-
mate a distance dist(n, k) between the model P̂n,i(· | s, a)
estimated from n and the model P̂k(· | s, a) for k, after em-
bedding both in the subspace mentioned above using Ṽs,a.
Again, we use a double estimator as hinted at by the use of
the subscript i, similar to Algorithm 2. In practice dist(n, k)
could also include occupancy measure differences. Each
trajectory n gets the label kn that minimizes dist(n, k).

Previous work like Chen & Poor (2022) and Kong et al.
(2020) uses the word refinement for its model estimation
and classification algorithms themselves. However, we posit
that the monotonic improvement in log-likelihood offered
by EM makes it well-suited for repeated application and
refinement, while in our case, the clear theoretical guaran-
tees for the model estimation and classification algorithms
make them well-suited for single-step classification. Note
that we can also apply repeated refinement using EM to the
labels obtained by single-step classification, which should
combine the best of both worlds.

4. Analysis
We have the following end-to-end guarantee for correctly
classifying all data.

Theorem 1 (End-to-End Guarantee). Let both Nsub

and Nclust be ⌦
⇣
K2S log(1/�)

f2
min↵

3�8

⌘
and let Tn =

⌦
⇣
K3/2tmix

log4((Nclust+Nsub)/�) log
3(1/�) log4(1/↵)

�6↵3

⌘
. If

we execute algorithms 1, 2 and model estimation, and
then apply algorithm 3 to Nsub with � = 1, ↵/3  � < ↵
and �2/4  ⌧  �2/2 for clustering and classification,
then we can recover the true labels for the entire dataset
(Nclust [Nsub) with probability at least 1� �.

Proof. This follows directly from Theorems 2, 3, 4 and 5
upon combining the conditions on Nsub, Nclust, and Tn in
both theorems. We also use the brief discussion after the
statement of Theorem 5.

The dependence on model-specific parameters like ↵,� and
fmin is conservative and can be easily improved upon by

5



Learning Mixtures of Markov Chains and MDPs

following the proofs carefully. We chose the form of the
guarantees in this section to present a clearer message. In
one example, there are versions of these theorems that de-
pend on both G and Tn. We choose G = (Tn/tmix)2/3 to
present crisper guarantees. For understanding how the guar-
antees would behave depending on both G and Tn, or how
to improve the dependence on model-specific parameters,
the reader can follow the proofs in the appendix.

4.1. Techniques and Proofs
We make a few remarks on the technical novelty of our
proofs. As mentioned in Section 1, we are dealing with two
kinds of non-independence. While we borrow some ideas in
our analysis from Chen & Poor (2022) to deal with the tem-
poral dependence, we crucially need new technical inputs to
deal with the fact that we cannot cast the temporal evolution
as a deterministic function with additive i.i.d. noise, unlike
in linear dynamical systems.

We identify the blocking technique in Yu (1994) as a general
method to leverage the "near-independence" in observations
made in a mixing process when they are separated by a multi-
ple of the mixing time. Our proofs involve first showing that
estimates made from a single trajectory would concentrate
if the observations were independent, and then we bound
the "mixing error" to account for the non-independence of
the observations. We first choose a distribution (often la-
belled as a variant of Q or ⌅) with desirable properties, and
then bound the difference between probabilities of undesir-
able events under Q and under the true joint distribution
of observations �, using the blocking technique due to Yu
(1994).

There are many other technical subtleties here. In one ex-
ample, the number of (s, a) observations made in a single
trajectory is itself a random variable and so our estimator
takes a ratio of two random variables. To resolve this, we
have to condition on the random set of (s, a) observations
recorded in a trajectory and use a conditional version of Ho-
effding’s inequality (different from the Azuma-Hoeffding
inequality), followed by a careful argument to get uncondi-
tional concentration bounds, all under Q.

4.2. Subspace Estimation
For subspace estimation, we have the following guarantee.

Theorem 2 (Subspace Estimation Guarantee). Consider 2
models with labels k1, k2 and a state-action pair s, a with
dmin(s, a) � ↵/3. Consider the output VT

s,a of Algorithm 1.
Let fmin = min(fk1 , fk2) be the lower of the label preva-
lences. Remember that each trajectory has length Tn.

Then given that Nsub = ⌦
⇣

log(1/�)
↵2

⌘
, Tn =

⌦(tmix log
4(1/↵)), with probability at least 1 � �, for

k = k1, k2

kPk(· | s, a)� Vs,aVT
s,aPk(· | s, a)k2  ✏sub(�)

where

• For Tn = ⌦
⇣
tmix log

3
⇣

fminNsub↵
KS log(1/�)

⌘⌘

✏sub(�) = O

0

B@

vuut K

fmin

 s
S

Nsub · ↵3
log

✓
1

�

◆!
1

CA

• While for Tn = O
⇣
tmix log

3
⇣

fminNsub↵
KS log(1/�)

⌘⌘

✏sub(�) = O

0

@
✓
1

2

◆ 1
16

⇣
Tn

tmix

⌘1/31

A

Alternatively, we only need Nsub = ⌦
⇣

K2S log(1/�)
f2
min↵

3✏4

⌘
and

Tn = ⌦
�
tmix log

3(1/✏) log4(1/↵)
�

trajectories for ✏ accu-
racy in subspace estimation with probability at least 1� �.

Remark 4. Why are short trajectories enough? Notice
that the length of trajectories only affects the bound as a
multiple of tmix with some logarithmic terms. This is be-
cause intuitively, the onus of estimating the correct subspace
lies on aggregating information across trajectories. So, as
long as there are enough trajectories, each trajectory does
not have to be long.

4.3. Clustering
Remember that � is the model separation and ↵ is the
corresponding "stationary occupancy measure" from As-
sumption 2. We give guarantees for choosing � = 1, which
corresponds to using only model difference information in-
stead of also using occupancy measure information. This is
unavoidable since we have no guarantees on the separation
of occupancy measures. See Section 5.2 for a discussion.
Here, we provide a high-probability guarantee for exact
clustering.

Theorem 3 (Exact Clustering Guarantee). Pick any pair of
trajectories n,m. Then for Freq� so that it contains (s, a)
with dmin(s, a) � ⌦(↵), Tn = ⌦(tmix log

4(1/�)/↵3),
with probability at least 1� �,

���dist1(m,n)� k�m,nk22
���

is

O

 r
K log(1/�)

↵

✓
tmix

Tn

◆ 1
3

!
+ 4✏sub(�/2)
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This means that if we choose � = 1, then if ✏sub(�) 
�2/32 and Tn = ⌦

⇣
K3/2tmix

log4(Nclust/(↵�))
�6↵3

⌘
, no dis-

tance estimate attains a value between �2/4 and �2/2. So,
Algorithm 2 attains exact clustering using a threshold of say
�2/3 with probability at least 1� �.

Since we already have high probability guarantees for ex-
act clustering before refinement of the clusters, guarantees
for the EM step analogous to the single-step guarantees for
refinement in Chen & Poor (2022) are not useful here. How-
ever, we do still present single-step guarantees for the EM
algorithm in our case using a combination of Theorem 4 for
the M-step and Theorem 6 in Appendix G.

4.4. Model Estimation and Classification
We also have guarantees for correctly estimating the rele-
vant parts of the models and classifying sets of trajectories
different from Nclust.

Theorem 4 (Model Estimation Guarantee). For any state ac-
tion pair (s, a) with dmin(s, a) � ↵/3, and for GNclust �
⌦
⇣

log(1/�)
f2
min↵

2

⌘
and Tn � ⌦(Gtmix log(G/�)), with proba-

bility greater than 1� �,

kP̂k(· | s, a)� Pk(· | s, a)k1

is bounded above by

O

 ✓
tmix

Tn

◆1/3r 1

Nclustfmin↵
(S + log(

1

�
))

!

Note that since the 1-norm is greater than the 2-norm, the
same bound holds in the 2-norm as well. Also notice that
since our assumptions do not say anything about observing
all (s, a) pairs often enough, we can only given guarantees
in terms of the occurrence frequency of (s, a) pairs.

Theorem 5 (Classification Guarantee). Let ✏mod(�) be
a high probability bound on the model estimation error
kP̂k(· | s, a) � Pk(· | s, a)k2. Then there is a univer-
sal constant C3 so that Algorithm 3 can identify the true
labels for trajectories in Nclass with probability at least
1 � � for Tn = ⌦

⇣
K3/2tmix

log4(Nclass/(↵�))
�6↵3

⌘
, whenever

✏mod(�/2)  C3�
4fmin↵
K and Nclust � ⌦

⇣
log(1/�)
f2
min↵

2

⌘
.

Note that by Theorem 4, a sufficient condition
for ✏mod(�/2)  C3�

4fmin↵
K is NclustT

2/3
n �

⌦
⇣
K2t2/3mixS

log(1/�)
�8f3

min↵
3

⌘
. Under the conditions on Tn in

Theorem 5, a suboptimal but sufficient condition on Nclust

is Nclust = ⌦
⇣
K2S log(1/�)

f2
min↵

3�8

⌘
, which matches that for

Nsub.

5. Practical Considerations
5.1. Subspace Estimation
Heuristics for choosing K: One often does not know K
beforehand and often wants temporal features to guide the
process of determining K, for example in identifying the
number of groups of similar people represented in a medical
study. We suggest a heuristic for this. One can examine how
many large eigenvalues there are in the decomposition, via
(1) ordering the eigenvalues of M̂sa 8s, a by magnitude, (2)
taking the square of each to obtain the eigenvalue energy,
(3) taking the mean or average over states and actions, and
(4) plotting a histogram. See Figure 6 in the appendix.

One can also consider running the whole process with differ-
ent values of K and choose the value of K that maximises
the likelihood or the AIC of the data (if one wishes the mix-
ture to be sparse). However, Fitzpatrick & Stewart (2022)
points out that such likelihood-based methods can lead to
incorrect predictions for K even with infinite data.

5.2. Clustering
Picking �: Choosing � involves heuristically picking state-
action pairs that have high frequency and "witness" enough
model separation. We propose one method for this. For
each (s, a) pair, one first executes subspace estimation and
then averages the value of dist1(m,n) across all pairs of
trajectories. Call this estimate �s,a, since it is a measure
of how much model separation (s, a) can "witness". We
then compute the occupancy measure value d(s, a) of (s, a)
in the entire set of observations. Making a scatter-plot of
�s,a against d(s, a), we want a value of � so that there are
enough pairs from Freq� in the top right.

Picking thresholds ⌧ : The histogram of dist plotted will
have many modes. The one at 0 reflects distance estimates
between trajectories belonging to the same hidden label,
while all the other modes reflect distance between trajecto-
ries coming from various pairs of hidden labels. The thresh-
old should thus be chosen between the first two modes. See
Figure 8 in the appendix.

Picking �: In general, occupancy measures are different
for generic policies interacting with MDPs and should be
included in the implementation by choosing � < 1. The his-
togram for dist2 should indicate whether or not occupancy
measures allow for better clustering (if they have the right
number of well-separated modes).

Versions of the EM algorithm: In our description of the
EM algorithm, we only use next-state transitions as obser-
vations instead of the whole trajectory. So, we do not learn
other parameters like the policy and the starting state’s distri-
bution for the EM algorithm. This makes sense in principle,
because our minimal assumptions only talk about separation
in next-state transition probabilities, and there is no guaran-
tee that other information will help with classification. In
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practice, one should make a domain-specific decision on
whether or not to include them.

Initializing soft EM with cluster labels: We also recom-
mend that when one initializes the soft EM algorithm with
results from the clustering step, one introduces some de-
gree of uncertainty instead of directly feeding in the 1-0
clustering labels. That is, for trajectory m, instead of as-
signing (i = km) to be the responsibilities, make them
say 0.8 · (i 2 Ck) + 0.2/K instead. We find that this can
aid convergence to the global maximum, and do so in our
experiments.

6. Experiments
We perform two sets of experiments, one considering a
mixture of MDPs, and another considering a mixture of
Markov chains.2 In all experiments, the error is determined
by matching clusters to labels in a way that minimizes the
proportion of misclassified trajectories, and then reporting
this proportion.

6.1. Gridworld MDPs, K = 2
We perform our experiments for MDPs on an 8x8 gridworld
with K = 2 elements in the mixture (from (Bruns-Smith,
2021)). Unlike Bruns-Smith (2021), the behavior policy
here is the same across both elements of the mixture to elim-
inate any favorable effects that a different behavior policy
might have on clustering, so that we evaluate the algorithm
on fair grounds. The mixing time of this system is roughly
tmix ⇡ 25. We only use dist1 for the clustering, omitting
the occupancy measures to parallel the theoretical guaran-
tees. Including them would likely improve performance.
We chose to perform the experiments with 1000 trajectories,
given the difficulty of obtaining large numbers of trajecto-
ries in important real-life scenarios that often arise in areas
like healthcare.

Figure 2 plots the error at the end of Algorithm 2 (before
refinement) while either using the projectors VT

s,a deter-
mined in Algorithm 1 ("With Subspaces"), replacing them
with a random projector ("Random Subspaces") or with the
identity matrix ("Without Subspaces"). The difference in
performance demonstrates the importance of our structured
subspace estimation step. Also note that past a certain point,
between Tn = 60 and Tn = 70 ⇠ 3tmix, the performance
of our method drastically improves, showing that the depen-
dence of our theoretical guarantees on the mixing time is
reflected in practice as well. We briefly discuss the poor
performance of choosing a random subspace in Appendix B.

In Figure 3, we benchmark our method’s end-to-end perfor-
mance against the most natural benchmark, the randomly

2Code is available at https://github.com/hetankevin/mdpmix.

Figure 2. Clustering error v.s. trajectory length on 1000 trajectories
in gridworld, with a comparison between using VT

s,a in Algorithm
2 and using IS⇥S . The same threshold was used for each trajectory
length. Results averaged over 30 trials. The mixing time of this
system is roughly tmix ⇡ 25.

initialized EM algorithm. We use the version of the soft EM
algorithm that considers the entire trajectory to be our ob-
servation, and thus also includes policies and starting state
distributions. So, we are comparing our method against the
full power of the EM algorithm. We have three different
plots, corresponding to (1) soft EM with random initializa-
tion, (2) refining models obtained from the model estima-
tion step applied to Nclust using soft EM on Nclust [Nsub,
and (3) refining labels for Nclust and Nsub using soft EM
(the latter obtained from applying Algorithm 3 to Nsub).
We report the final label accuracies over the entire dataset,
Nclust [ Nsub. Remember that we can view refinement
using soft EM as initializing soft EM with the outputs of
our algorithms. Note that the plot for (3), which reflects the
true end-to-end version of our algorithm, almost always out-
performs randomly initialized soft EM. Also, for Tn > 60,
both variants of our method outperform randomly initialized
soft EM. We present a variant of Figure 3 with hard EM
included as Figure 10 in the appendix.

6.2. Last.fm Markov chains, K = 10
For our experiments with real-life data, we work with the
Last.fm 1K dataset (Celma, 2010b; Lamere, 2008; Celma,
2010a). Like Gupta et al. (2016), we consider the listening
history of individual users, modeled as a Markov chain with
states given by the top 100 genres (S = 100). For each of
the top 10 users, we chop up their listening history into 75
trajectories (Nsub+Nclust = 75) each, of varying horizons.
The user generating a trajectory is then the hidden label to be
inferred. We try to infer both the user corresponding to each
trajectory and a Markovian model of each user’s listening
dynamics, using the Hungarian algorithm to compute the

8
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Figure 3. End-to-end error v.s. trajectory length on 1000 trajecto-
ries in gridworld, comparing initializations of the soft EM algo-
rithm using (1) random initializations, (2) models from Nclust,
and (3) classification and clustering labels from Nclust and Nsub.
Results averaged over 30 trials, with 30 random initializations for
randomly-initialized EM within each trial.

clustering error. The results are qualitatively similar to
the results in the gridworld experiment above. Figure 4
demonstrates the importance of the subspace estimation
step, and Figure 5 demonstrates that our method’s end-to-
end performance improves upon that of randomly initialized
EM algorithm.

Figure 4. Clustering error v.s. trajectory length on 750 trajectories
obtained from the Last.fm 1K dataset, comparing an implemen-
tation of Algorithm 2 using VT

s,a with one using IS⇥S . Results
averaged over 30 trials.

7. Discussion
We have shown that we can recover the true trajectory labels
with (1) the number of trajectories having only a linear
dependence in the size of the state space, and (2) the length

Figure 5. End-to-end error v.s. trajectory length on 750 trajectories
obtained from the Last.fm 1K dataset, comparing initializations
of the soft EM algorithm using (1) random initializations and (2)
models from Nclust. Results averaged over 30 trials, with 30
random initializations for randomly-initialized EM within each
trial.

of the trajectories depending only linearly in the mixing
time – even before initializing the EM algorithm with these
clusters (which would further improve the log-likelihood,
and potentially cluster accuracy). End-to-end performance
guarantees are provided in Theorem 1, and experimental
results are both promising and in line with the theory.

7.1. Future Work
Matrix sketching: The computation of dist1(m,n) is com-
putationally intensive, amounting to computing about S⇥A
distance matrices. We could alternatively approximate the
thresholded version of the matrix dist(m,n) (which in the
ideal case is a rank-K binary matrix) with ideas from Musco
& Musco (2016).

Function approximation: The question of the right exten-
sion of our ideas to Markov chains and MDPs with large,
infinite, or uncountable state spaces is very much open (at
least, those whose transition kernel is not described by a
linear dynamical systems). This is important, as many ap-
plications often rely on continuous state spaces.

Other controlled processes: Chen & Poor (2022) learn a
mixture of linear dynamical systems without control input.
An extension to the case with control input will be very
valuable. We believe that the techniques used in our work
may prove useful in this, as well as for extensions to other
controlled processes that may neither be linear nor Gaussian.
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A. Additional Figures
All figures here pertain to the gridworld experiment in Section 6.1.

A.1. Determining K
See Figure 6 below, following the discussion in section 5.1.

Figure 6. Histogram of the average ordered eigenvalue energy (the square of the eigenvalue) where the mean is taken over states and
actions. There are two large eigenvalues, corresponding to K = 2.

A.2. Block Matrix of Raw Distance Estimates
See Figure 7 below, which presents the raw distance matrix before thresholding, to provide a sense of the quality of the
pairwise distance estimates themselves. These could also be used for agglomerative clustering, for example.

Figure 7. Block structure of the matrix of squared pairwise distance estimates (after sorting).

A.3. Determining The Threshold ⌧
See Figure 8 below, following the discussion in section 5.2.
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Figure 8. Histogram (and KDE) of pairwise squared distance estimates in projected subspace above, and accuracy against thresholds
below. Note how there is a spurious mode around the 0.00015 mark, and picking any threshold past it yields a significant drop in accuracy.

A.4. Local Extrema in EM
See Figure 9 below, illustrating how EM often gets stuck in suboptimal local extrema, given by the low final log-likelihood
values recorded in the scatterplot.

Figure 9. Scatter-plot of likelihoods v.s. clustering accuracy achieved by the randomly-initialized soft EM algorithm over 30 trials on
gridworld. Randomly-initialized soft EM does not achieve the global maximum all of the time.

A.5. Comparing End-To-End Performance Using Soft and Hard EM
We compare various initializations of EM – (1) random initializations, (2) models from Nclust, and (3) classification and
clustering labels from Nclust and Nsub – this time using both soft and hard EM.
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Figure 10. End-to-end error v.s. trajectory length on (left) 1000 MDP trajectories from the gridworld dataset and (right) 750 Markov chain
trajectories from the Last.fm dataset, comparing various initializations of the soft and the hard EM algorithm. Results averaged over 30
trials, with 30 random initializations for randomly-initialized EM within each trial.
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B. Discussion on Using Random Projections
We note that those familiar with the intuition behind the Johnson-Lindenstrauss lemma would guess that a projection to a
random n-dimensional subspace for low n would preserve distances with good accuracy. However, note that the bound
on the dimension n needed to preserve distances between our Nclust estimators up to a multiplicative distortion of 1± ✏
is log(Nclust)

✏2 . This bound is known to be tight, see for example Larsen & Nelson (2017). Upon thought, this shows that
to get good distortion bounds (which will contribute to the deviation between distance estimates and the thresholds), we
need a large dimension, interpreted as being affected by the 1/✏2. In fact, as soon as log(Nclust) exceeds 1, we will need a
dimension of order 1/�2, while K can be arbitrarily small compared to this.

In the gridworld case, K = 2, and we see that we don’t get good performance using a random subspace until we hit
dimension 50, where the maximum dimension is S = 64. Clearly, the 1/✏2 term in the Johnson-Lindenstrauss lemma
drastically affects the performance of using random subspaces. Using a random subspace of dimension 50 for S = 64 is
much closer to not projecting at all than to using a subspace of dimension 2.

Figure 11. Clustering error using random projections of varying dimension for a trajectory length of 100, benchmarked against the
performance of the "with subspace" and "without subspace" versions. The gridworld MDP dataset is on the left, while the Last.fm Markov
chain dataset is on the right.
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C. Details of the EM Algorithm
We describe the E and M steps for hard EM below first, for simplicity.

M-step: Given the cluster labels, we can estimate each model with the MLE as:

P̂k(s
0|s, a) 

P
n2Nclust

1n2CkN(n, s, a, s0)
P

n2Nclust
1n2CkN(n, s, a)

f̂k  
P

n2Nclust
1n2Ck

Nclust
=

|Ck|
Nclust

Readers can convince themselves that this is truly the MLE estimate by making the following observation. We can
write the log-likelihood of the predicted clusters Ck and estimated models as

PK
k=1

P
n2Nclust

1n2Ck`(P̂k, f̂k, n), where

`(P̂k, f̂k, n) = log
⇣
fk
Q

s,s0,a(P̂k(s0 | s, a))N(n,s,a,s0)
⌘

. The rest of the derivation mimics the well-known and straightfor-
ward computation for Markov chains, using Lagrange multipliers to constrain the estimates to probability distributions.

E-step: On new or unseen data, assign cluster membership according to the following rule:

km  argmaxk `(P̂k, f̂k,m) + log(f̂i) (1)

where `(P̂k,m) is as above.

Note that for soft EM, we can replace every occurrence of 1n2Ck in the M-step with pn(k), where pn(·) is the posterior for
trajectory n having label k, which is constantly updated during soft EM. For the E-step, we replace the argmax computation
by a computation of pn(k) = P(kn = k | P̂k, f̂k, 1  k  K). Intuitively described, in hard EM, we recompute the values
of 1n2Ck using the argmax during the E-step, while in soft EM, we recompute the values of pn(k).
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D. The Classification Algorithm
Note that we define a new quantity, f̂k,s,a, which is the proportion of trajectories with label k among all trajectories in Nclust

where s, a is observed. Quantities N(n, s, a),N(n, i, s, a, ·) and N(n, i, s, a) carry their usual meanings with respect to
either Nclust until step 5 and with respect to Nclass after that.

Algorithm 3 Classification

1: Input: Clusters Ck ⇢ Nclust, models P̂k(· | s, a) estimated from Ck, and a set Nclass of trajectories to classify.
2: Compute f̂k,s,a for all k, s, a.
3: Compute M̃s,a =

PK
k=1 f̂k,s,aP̂k(·|s, a)P̂k(·|s, a)T and store the orthogonal projector ṼT

s,a to its top-K eigenspace, for
each (s, a).

4: Compute d̂k = 1
|Ck|

P
n2Ck

N(n,s,a)
G for all k.

5: Compute D̃ =
PK

k=1 d̂kd̂T
k and store the orthogonal projector ŨT to its top-K eigenspace.

6: Compute the set SA� by picking (s, a) pairs with occurrence more than �
7: dn,1, dn,2  0 2 RSA

8: for (i, s, a) 2 {1, 2}⇥ S ⇥A do
9: Compute N(n, i, s, a, ·), N(n, i, s, a), 8n

10: P̂n,i(·|s, a) N(n,i,s,a,·)
N(n,i,s,a) 1N(n,i,s,a) 6=0, 8n

11: [d̂n,i]s,a  N(n,i,s,a)
G , 8n

12: end for
13: for (n, k) 2 Nclust ⇥ {1, 2, . . .K} do
14: for (i, s, a) 2 {1, 2}⇥ S ⇥A do
15: �̂i,s,a := (P̂n,i(· | s, a)� P̂k(·|s, a))ṼT

s,a

16: end for
17: dist1(n, k) := maxs,a �̂T

1,s,a�̂2,s,a

18: dist2(n, k) := (d̂n,1 � d̂k)T UUT (d̂n,2 � d̂k)
19: dist(n, k) := � dist1(n, k) + (1� �) dist2(n, k)
20: end for
21: Assign kn  argmink dist(n, k) for each n.
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E. Proof of Theorem 2
E.1. Proof of the theorem
We recall the theorem here.

Theorem 2 (Subspace Estimation Guarantee). Consider 2 models with labels k1, k2 and a state-action pair s, a with
dmin(s, a) � ↵/3. Consider the output VT

s,a of Algorithm 1. Let fmin = min(fk1 , fk2) be the lower of the label
prevalences. Remember that each trajectory has length Tn.

Then given that Nsub = ⌦
⇣

log(1/�)
↵2

⌘
, Tn = ⌦(tmix log

4(1/↵)), with probability at least 1� �, for k = k1, k2

kPk(· | s, a)� Vs,aVT
s,aPk(· | s, a)k2  ✏sub(�)

where

• For Tn = ⌦
⇣
tmix log

3
⇣

fminNsub↵
KS log(1/�)

⌘⌘

✏sub(�) = O

0

B@

vuut K

fmin

 s
S

Nsub · ↵3
log

✓
1

�

◆!
1

CA

• While for Tn = O
⇣
tmix log

3
⇣

fminNsub↵
KS log(1/�)

⌘⌘

✏sub(�) = O

0

@
✓
1

2

◆ 1
16

⇣
Tn

tmix

⌘1/31

A

Alternatively, we only need Nsub = ⌦
⇣

K2S log(1/�)
f2
min↵

3✏4

⌘
and Tn = ⌦

�
tmix log

3(1/✏) log4(1/↵)
�

trajectories for ✏ accuracy
in subspace estimation with probability at least 1� �.

Remark 5. We can convert the ↵3 in the denominator to an ↵ at the cost of making Tn more heavily dependent on ↵ (more
than just log(1/↵)). Intuitively, ↵ accounts for the probability of not observing s, a, so this is just saying that we can shift
the onus for that from the number of trajectories to their length. We chose not to do that since we are trying to minimize the
length of trajectories needed, and assume that we have access to many trajectories.

Proof. The main input is the proposition below, proved in the next section.

Proposition 1. Consider L < K models with labels jl, 1  l  L, with dmin(s, a) := minl djl(s, a). Consider the output
VT
s,a of Algorithm 1. Let fmin = minl fjl be the minimum frequency across these models in the mixture. Remember that

each trajectory has length Tn. Then we have the guarantee that with probability at least 1� �

kPj(· | s, a)� Vs,aVT
s,aPj(· | s, a)k2

is bounded above by
vuut 4K

fmindmin(s, a)

 s
128

Nsub · dmin(s, a)
(2S log(12) + log(4/�)) +

✓
1

2

◆ Tn
8Gtmix

!

for all j 2 {jl | 1  l  L}, when Nsub � 32
dmin(s,a)2

log
�
1
�

�
and Tn

8tmix
> G log(48G/dmin(s,a))

log 2 .

For a state-action pair with dmin(s, a) � ↵/3, the conditions simplify to Nsub � ⌦
⇣

log(1/�)
↵2

⌘
and Tn �

⌦(Gtmix log(G/↵)). We set G =
⇣

Tn
tmix

⌘ 2
3

to get bounds that only depend on Tn. Note that this means a sufficient
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condition on Tn is Tn � ⌦(tmix log
4(1/↵)) (one can show this with an elementary computation). Also note that

s
S + log(1/�)

Nsub · ↵


s
S log(1/�)

Nsub · ↵

Then with probability at least 1� �, the following bound holds for any label j = jl for some l.

kPj(· | s, a)� Vs,aVT
s,aPj(· | s, a)k2  O

0

B@

vuuut K

fmin↵

0

@
s

S log(1/�)

Nsub · ↵
+

✓
1

2

◆ 1
8

⇣
Tn

tmix

⌘1/31

A

1

CA

So, there is a universal constant C2 so that for Tn > C2tmix log
3
⇣

fminNsub↵
KS log(1/�)

⌘
,

✓
1

2

◆ 1
8

⇣
Tn

tmix

⌘1/3

 C 0 K

fmin

 s
S

Nsub · ↵3
log

✓
1

�

◆!

While for Tn = O
⇣
tmix log

3
⇣

fminNsub↵
KS log(1/�)

⌘⌘
,

K

fmin

 s
S

Nsub · ↵3
log

✓
1

�

◆!
 O

0

@
✓
1

2

◆ 1
8

⇣
Tn

tmix

⌘1/31

A

So, combining all these, for Nsub = ⌦
⇣

log(1/�)
↵2

⌘
, Tn = ⌦(tmix log

4(1/↵))

• For Tn = ⌦
⇣
tmix log

3
⇣

fminNsub↵
KS log(1/�)

⌘⌘

✏sub(�) = O

0

B@

vuut K

fmin

 s
S

Nsub · ↵3
log

✓
1

�

◆!
1

CA

• While for Tn = O
⇣
tmix log

3
⇣

fminNsub↵
KS log(1/�)

⌘⌘

✏sub(�) = O

0

@
✓
1

2

◆ 1
16

⇣
Tn

tmix

⌘1/31

A

E.2. Proof of the Proposition 1
We recall the proposition here.

Proposition 1. Consider L < K models with labels jl, 1  l  L, with dmin(s, a) := minl djl(s, a). Consider the output
VT
s,a of Algorithm 1. Let fmin = minl fjl be the minimum frequency across these models in the mixture. Remember that

each trajectory has length Tn. Then we have the guarantee that with probability at least 1� �

kPj(· | s, a)� Vs,aVT
s,aPj(· | s, a)k2
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is bounded above by
vuut 4K

fmindmin(s, a)

 s
128

Nsub · dmin(s, a)
(2S log(12) + log(4/�)) +

✓
1

2

◆ Tn
8Gtmix

!

for all j 2 {jl | 1  l  L}, when Nsub � 32
dmin(s,a)2

log
�
1
�

�
and Tn

8tmix
> G log(48G/dmin(s,a))

log 2 .

Remark 6. We should point out that we will only need L = 2 for subsequent theorems. Also, remember that only s, a with
dmin(s, a) > ↵ will be relevant in subsequent theorems, with ↵ as in our assumption.

Proof. For brevity of notation, we will denote cn,i := N(n, i, s, a), wn,i := N(n, i, s, a, ·) and suppress the (s, a)
dependence. We will first need the following lemma which guarantees that we can get past mixing and concentration hurdles
with our estimator, modulo actually observing s, a in both segments.

Lemma 1. Let Bn be the event given by n 2 Ntraj(s, a), which is the same as cn,1cn,2 6= 0 and let

Ms,a =
KX

j=1

P(kn = j | Bn)Pj(· | s, a)Pj(· | s, a)T

.

Call our estimator M̂s,a. Then we know that

M̂s,a =
1

Ntraj(s, a)

X

n

P̂n,1(· | s, a)P̂n,2(· | s, a)T

and we have

kM̂s,a �Ms,ak <

s
32

Ntraj(s, a)
(2S log(12) + log(

2

�
)) +

48G

dmin(s, a)

✓
1

4

◆ Tn
8Gtmix

Remark 7. Note that since all trajectories are generated independently of each other and the process that generates them is
identical, P(kn = j \Bn) is the same for all n. A similar observation holds for many conditional/unconditional probabilities
and conditional/unconditional expectations in this proof, and will not be stated again.

Assume the lemma for now. The proof is delayed to after the proof of the theorem. We will combine this lemma with
Lemma 3 from Chen & Poor (2022). In the context of their lemma, p(j) = P(kn = j | Bn), y(j) = Pj(· | s, a). Now, we
can use the first term on the right-hand side of the bound in Lemma 3 of Chen & Poor (2022) to get that for any 1  l  L

kPjl(· | s, a)� Vs,aVT
s,aPjl(· | s, a)k2 

s
2K

minl(P(kn = jl | Bn))
kM̂s,a �Ms,ak (2)

E.2.1. LOWER BOUNDING P(kn = jl | Bn)
Note that

P(kn = jl | Bn) =
P(kn = jl)P(Bn | kn = jl)

P(Bn)
� fjlP(Bn | kn = jl)

So, we need only lower bound P(Bn | kn = jl), for which we will need a lemma. We will use the following crucial lemma
several times in our proofs. This is where we use (Yu, 1994)’s blocking technique.
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Lemma 2. Consider a function h on segments of a Markov chain with mixing time tmix = tmix(
1
4 ) with C = suph.

Consider the joint distribution � over the product of the �-algebras of n such segments, with marginals �i. Let the product
distribution of the marginals �i be called ⌅. Then for � = ( 14 )

1
tmix and for the minimum distance between consecutive

segments being an, we have
|E�h� E⌅h|  4C(n� 1)�an

Proof. Remember that each of our Markov processes is mixing, so there exists tmix,j = tmix,j(
1
4 ) and a stationary

distribution dj so that TV (Pn
j (x, ·), dj) < 1

4 for n � tmix,j . Let tmix = maxj tmix,j . Since the decay in total variation
distance is multiplicative, TV (Pn

j (x, ·), dj) < ( 14 )
c for all j and n � ctmix. This implies that

max
j

TV (Pn
j (x, ·), dj) <

✓
1

4

◆ Tn
4tmix

�1

= 4�n

where � = ( 14 )
1

tmix

This means that we satisfy the definition of V -geometric ergodicity from Vidyasagar (2010), with V being the constant
function with value 1, µ = 4 and � as above. That means that any of our processes is beta-mixing by (the proof of) Theorem
3.10 from the text and

�n  µ�n = 4�n

we employ an argument analogous to the setup and argument used to prove Lemma 4.1 of Yu (1994), merely with Hi’s
replaced by the segments of arbitrary length instead of an-sized blocks while Ti’s stay at an sized blocks. Then, Q from
Corollary 2.7 is the probability distribution of the segments here, ⌦i from Corollary 2.7 is the real vector space of the same
dimension as the length of the ith segment, ⌃i is the product Borel field on this vector space and m in the theorem is the
number of segments n here (note that n is called µn in Lemma 4.1). Q̃ is the product distribution over the marginals of Q,
as in the theorem. Note that �(Q) from Corollary 2.7 used in the proof remains less than �an . Now we can directly quote
Corollary 2.7 to conclude that

|E�h� E⌅h|  C(n� 1)�an  4C(n� 1)�an

Define
h = 1(cn,1cn,2=0)

We are now ready to bound P (Bn | kn = j) = P (cn,1cn,2 = 0 | kn = j). Consider the joint distribution over the segments
⌦1 and ⌦2 of a trajectory sampled from hidden label j. Call this � and let its marginals on ⌦i be �i. Let the product
distribution of its marginals be ⌅ := �1 ⇥ �2. Notice that then

E⌅h = P (cn,1 = 0 | kn = j)P (cn,2 = 0 | kn = j)

by definition of ⌅. Also, clearly we have

E�h = P (cn,1cn,2 = 0 | kn = j)

Now, using Lemma 2, we get that for C = suph = 1 and n = 2, we have the following inequality.

|P (cn,1cn,2 = 0 | kn = j)� P (cn,1 = 0 | kn = j)P (cn,2 = 0 | kn = j)| = |E�h� E⌅h|  4�
Tn
4 (3)

Additionally, for i = 1, 2, if dt,j(s, a) is the distribution at time t, the following is obtained by the definition of mixing
times.

P(cn,i = 0 | kn = j)  (1� d(2i�1)T,j(s, a))

 (1� dj(s, a) + TV (d(2i�1)T,j ,⇡))
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 (1� dmin(s, a) + 4�
Tn
4 )


✓
1� dmin(s, a)

2

◆
(4)

where the last inequality holds for Tn > 4tmix
log(8/dmin(s,a))

log 4 . This allows us to use inequality 3 and

P (cn,1cn,2 = 0 | kn = j)  4�
Tn
4 + P (cn,1 = 0 | kn = j)P (cn,2 = 0 | kn = j)

 4�
Tn
4 +

✓
1� dmin(s, a)

2

◆2

 1� dmin(s, a) +
dmin(s, a)2

4
+ 4�

Tn
4

 1� dmin(s, a) +
dmin(s, a)

4
+ 4�

Tn
4

 1� dmin(s, a)

2
(5)

where the last inequality holds for Tn > 4tmix
log(16/dmin(s,a))

log 4 . We conclude that for Tn > 4tmix
log(16/dmin(s,a))

log 4 , and
j = jl for some l,

P (Bn | kn = j) � dmin(s, a)

2

And so,

min
l

fjl(P(kn = jl | Bn)) � min
l

fjl(P(kn = jl \ Bn))

� min
l

fjl(P(Bn | kn = j)P(kn = j))

� fmindmin(s, a)

2

We can thus conclude that for Tn > 4tmix
log(16/dmin(s,a))

log 4 ,

kPjl(· | s, a)� Vs,aVT
s,aPjl(· | s, a)k2 

s
4K

fmindmin(s, a)
kM̂s,a �Ms,ak (6)

E.2.2. ABSORBING THE EXTRA TERMS INTO THE EXPONENT OF 1/4
Now remember from Lemma 1 that

kM̂s,a �Ms,ak <

s
32

Ntraj(s, a)
(2S log(12) + log(

2

�
)) +

48G

dmin(s, a)

✓
1

4

◆ Tn
8Gtmix

Notice that for Tn
8tmix

> G log(48G/dmin(s,a))
log 2 > log(16/dmin(s,a))

2 log 4 , we have that

48G

dmin(s, a)

✓
1

4

◆ Tn
8Gtmix

=
48G

dmin(s, a)

✓
1

4

◆ Tn
16Gtmix

✓
1

4

◆ Tn
16Gtmix

=
48G

dmin(s, a)

✓
1

2

◆ Tn
8Gtmix

✓
1

2

◆ Tn
8Gtmix


✓
1

2

◆ Tn
8Gtmix
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E.2.3. BOUNDING THE CONCENTRATION TERM
We finally need to bound Ntraj(s, a) from below to bound the first term in this sum. Note that E[Ntraj(s, a)] � Nsub(1�
P (cn,1cn,2 = 0)) � Nsub

dmin(s,a)
2 from equation 5 above. Now, by Hoeffding’s inequality, we have

P
✓
Ntraj(s, a) < Nsub

dmin(s, a)

4

◆
= P

✓
Ntraj(s, a) < Nsub

dmin(s, a)

2
�Nsub

dmin(s, a)

4

◆

 P
✓
Ntraj(s, a) < E[Ntraj(s, a)]�Nsub

dmin(s, a)

4

◆

= P

 
X

n2Nsub

1cn,1cn,2 6=0 < NsubE[1cn,1cn,2 6=0]�Nsub
dmin(s, a)

4

!

 exp

✓
�dmin(s, a)2Nsub

8

◆

This is less than � for Nsub � 8
dmin(s,a)2

log
�
1
�

�
.

Combining this with equation 6 and splitting the two �, we have our result that

kPj(· | s, a)� Vs,aVT
s,aPj(· | s, a)k2

is bounded above by
vuut 4K

fmindmin(s, a)

 s
128

Nsub · dmin(s, a)
(2S log(12) + log(4/�)) +

✓
1

2

◆ Tn
8Gtmix

!

for Nsub � 8
dmin(s,a)2

log
�
1
�

�
and Tn

8tmix
> G log(48G/dmin(s,a))

log 2 .

E.3. Proof of Lemma 1
We recall Lemma 1.

Lemma 1. Let Bn be the event given by n 2 Ntraj(s, a), which is the same as cn,1cn,2 6= 0 and let

Ms,a =
KX

j=1

P(kn = j | Bn)Pj(· | s, a)Pj(· | s, a)T

.

Call our estimator M̂s,a. Then we know that

M̂s,a =
1

Ntraj(s, a)

X

n

P̂n,1(· | s, a)P̂n,2(· | s, a)T

and we have

kM̂s,a �Ms,ak <

s
32

Ntraj(s, a)
(2S log(12) + log(

2

�
)) +

48G

dmin(s, a)
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1

4

◆ Tn
8Gtmix

Proof. We divide the proof into subsections. We first remind ourselves that the estimator M̂s,a is given by the matrix

M̂s,a =
1

Ntraj(s, a)

X

n2Ntraj(s,a)

⇣
P̂n,1(·|s, a)P̂n,2(·|s, a)T

⌘
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E.3.1. ESTIMATING E[M̂s,a]
We will split the expectation into the desired term and the error coming from correlation between the two segments ⌦1 and
⌦2. Remember that for brevity of notation, let cn,i := N(n, i, s, a), wn,i := N(n, i, s, a, ·). Call the estimate from each
trajectory a random variable M̂n,s,a, that is

M̂n,s,a =
wn,1wT

n,2

cn,1cn,2

Now
M̂s,a =

X

n2Ntraj(s,a)

1

Ntraj(s, a)
M̂n,s,a

Remember that
P̂n,i(· | s, a) :=

wn,i

cn,i
1cn,i 6=0

Let kn be the hidden label for trajectory n, as usual. Define the event Bn to be n 2 Ntraj(s, a), which is the same as
cn,1cn,2 6= 0. We establish the following equality, essentially just defining the quantity Mix(j).

E[M̂n,s,a | Bn] = E

"
wn,1wT

n,2

cn,1cn,2

�����Bn

#

=
KX

j=1

P(kn = j | Bn)E

"
wn,1wT

n,2

cn,1cn,2

�����kn = j,Bn

#

=
KX

j=1

P(kn = j | Bn)Pj(· | s, a)Pj(· | s, a)T +
KX

j=1

P(kn = j | Bn)Mix(j) (7)

where Mix(j) = E


wn,1wT
n,2

cn,1cn,2

����kn = j,Bn

�
�Pj(· | s, a)Pj(· | s, a)T . Notice that this has connotations of covariance. Now

note the following chain of equations.

E[M̂s,a | Ntraj(s, a)] = E

2

4
X

n2Ntraj(s,a)

1

Ntraj(s, a)
M̂n,s,a

������
Ntraj(s, a)

3

5

=
X

n2Ntraj(s,a)

1

Ntraj(s, a)
E
h
M̂n,s,a

���Ntraj(s, a)
i

=
X

n2Ntraj(s,a)

1

Ntraj(s, a)
E
h
M̂n,s,a

���1B1 ,1B2 , . . .1BNsub

i

=
X

n2Ntraj(s,a)

1

Ntraj(s, a)
E
h
M̂n,s,a

���Bn

i

= E
h
M̂n,s,a

���Bn

i

=
KX

j=1

P(kn = j | Bn)Pj(· | s, a)Pj(· | s, a)T +
KX

j=1

P(kn = j | Bn)Mix(j)

= Ms,a +
KX

j=1

P(kn = j | Bn)Mix(j) (8)

Here, the third equality is because the set Ntraj(s, a) is exactly described by the indicators listed, and they generate the
same �-algebra, The fourth equality holds since all trajectories are independent and so conditioning on events in other
trajectories doesn’t affect the expectation of M̂n,s,a. The fifth equality is because E[M̂n,s,a | Bn] is the same for all n as
determined above (in fact, we have shown that it is a constant random variable).
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E.3.2. SETUP FOR THE MAIN BOUND
We have that

Ms,a =
KX

j=1

P(kn = j | Bn)Pj(· | s, a)Pj(· | s, a)T

By equation 8,

kM̂s,a �Ms,ak  kM̂s,a � E[M̂s,a | Ntraj(s, a)]k+
KX

j=1

P(kn = j | Bn) kMix(j)k

 kM̂s,a � E[M̂s,a | Ntraj(s, a)]k+

0

@
KX

j=1

P(kn = j | Bn)

1

Amax
j
kMix(j)k

= kM̂s,a � E[M̂s,a | Ntraj(s, a)]k+max
j
kMix(j)k

The first term represents the error in concentration across trajectories and the second term represents the correlation between
the two segments ⌦1 and ⌦2 in the same trajectory. We bound the first using a covering argument and use Bin Yu’s work to
bound the other.

E.3.3. COVERING ARGUMENT TO BOUND M̂s,a � E[M̂s,a]
We will need this conditional version of Hoeffding’s inequality for this section. Note that this is not quite the Azuma-
Hoeffding inequality with a constant filtration due to the conditional probability involved, as well as due to the conditional
independence needed.

Lemma 3. Consider a �-algebra F and let Ai  Bi be random variables measurable over it. If random variables Xi are
almost surely bounded in [Ai, Bi] and are conditionally independent over some �-algebra F , then the following inequalities
hold for Sn =

Pn
i=1 Xi

P (Sn � E[Sn | F ] > ✏|F)  exp

✓
� 2✏P

i(Bi �Ai)2

◆

P (Sn � E[Sn | F ] < �✏|F)  exp

✓
� 2✏2P

i(Bi �Ai)2

◆

Proof. The proof is essentially a repeat of one of the standard proofs of Hoeffding’s inequality. Note that we have the
conditional Markov inequality P(X � a | F)  1

aE[X � a | F ], shown exactly the way Markov’s inequality is shown.
Now, we have the following chain of inequalities.

P((Sn � E[Sn | F ] > ✏|F) = e�s✏E[eSn�E[Sn|F ] | F ]

= e�s✏
nY

i=1

E[eXi�E[Xi|F ] | F ]

We now show a conditional expectation version of Hoeffding’s lemma by repeating the steps for a standard proof to show
that E[eX�E[X|F ] | F ]  �2(B�A)2

8 for random variables A  B measurable over F and X 2 [A,B] almost surely. Note
that by convexity of e�x, we have the following for x 2 [A,B] at any value of A and B.

e�x  B � x

B �A
e�A +

x�A

B �A
e�B

WLOG, we can replace X by X � E[X | F ] and assume E[X | F ] = 0. In that case, we note the following inequality,
where we define for any fixed value of A and B the function L(y) := yA

B�A + log
⇣
1 + A�eyB

B�A

⌘
.

E[e�X | F ]  B � E[X | F ]

B �A
e�A +

E[X | F ]�A

B �A
e�B
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=
B

B �A
e�A +

�A
B �A

e�B

= eL(�(B�A))

Basic computations involving Taylor’s theorem from a standard proof of Hoeffding’s inequality show that L(y)  y2

8 for
any value of A,B. This gives us the condition version of Hoeffding’s lemma, E[eX�E[X|F ] | F ]  �2(B�A)2

8 . This allows
us to establish the following chain of inequalities.

P((Sn � E[Sn | F ] > ✏|F) = e�s✏
nY

i=1

E[eXi�E[Xi|F ] | F ]

 exp(�s✏)
nY

i=1

exp

✓
s2(Bi �Ai)2

8

◆

= exp

 
�s✏+

nX

i=1

s2(Bi �Ai)2

8

!

Since s is arbitrary, we can pick s = 4✏P
i(Bi�Ai)2

above to get an upper bound of exp
⇣
� 2✏2Pn

i=1(Bi�Ai)2

⌘
. The other

inequality is proved analogously.

We now show that the first term from the previous section concentrates. Pick u, v 2 SS�1, that is they lie in the unit
Euclidean norm sphere in RS . We need only bound this term when Ntraj(s, a) 6= 0, as otherwise the lemma holds vacuously.

Note that

M̂s,a � E[M̂s,a | Ntraj(s, a)] =
X

n2Ntraj(s,a)

M̂n,s,a � E[M̂n,s,a | Ntraj(s, a)]

Ntraj(s, a)

Now we set up our covering argument. Consider a covering of SS�1 by balls of radius 1
4 . We will need at most 12S such

balls and if C is the set of their centers, then for any matrix X , the following holds in regard to its norm.

kXk = sup
u,v2SS�1

|uTXv|  2 max
u,v2C

|uTXv|  2kXk (9)

For any pair u,v 2 C, note that

|uT M̂n,s,av| =
����u

T wn,1

cn,1

����

�����
wT

n,2

cn,2
v

�����1cn,1cn,2 6=0

 kuk2kvk2
����

wn,1

cn,1

����
2

����
wn,2

cn,2

����
2


����

wn,1

cn,1

����
1

����
wn,2

cn,2

����
1

 1

and so |uT E[M̂n,s,a]v|  E[|uT M̂n,s,av|]  1. A little thought shows that the estimates M̂n,s,a are independent for
n 2 Ntraj(s, a) when conditioned on the Ntraj(s, a).

P

0

@

������

X

n2Ntraj(s,a)

1

Ntraj(s, a)
uT (M̂n,s,a � E[M̂n,s,a | Ntraj(s, a)])v

������
>

✏

4

������
Ntraj(s, a)

1

A < 2e�
✏2Ntraj(s,a)

32
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Doing this for all 122S pairs u,v, we use inequality 9 to get that the conditionalprobability given by

P

0

@

������

X

n2Ntraj(s,a)

1

Ntraj(s, a)
M̂n,s,a � E[M̂n,s,a | Ntraj(s, a)]

������
>

✏

2

������
Ntraj(s, a)

1

A

is bounded above by the following expression.

P

0

@9u,v 2 C;

������

X

n2Ntraj(s,a)

1

Ntraj(s, a)
uT (M̂n,s,a � E[M̂n,s,a | Ntraj(s, a)])v

������
>

✏

4

������
Ntraj(s, a)

1

A


X

u,v2C

P

0

@

������

X

n2Ntraj(s,a)

1

Ntraj(s, a)
uT (M̂n,s,a � E[M̂n,s,a | Ntraj(s, a)])v

������
>

✏

4

������
Ntraj(s, a)

1

A

< 2 ⇤ 122S ⇤ e�
✏2Ntraj(s,a)

32

This is less than � for Ntraj(s, a) >
32
✏2 (2S log(12) + log( 2� )). Since this holds for such values of Ntraj(s, a) irrespective

of Ntraj(s, a), we can conclude that for Ntraj(s, a) >
32
✏2 (2S log(12) + log( 2� )), with probability universally greater than

1� �,

kM̂s,a �Ms,ak <
✏

2
+ max

j
kMix(j)k

Alternatively, this establishes that with probability greater than 1� �, we have the following inequality involving the random
variables M̂s,a and Ntraj(s, a).

kM̂s,a �Ms,ak <

s
32

Ntraj(s, a)
(2S log(12) + log(

2

�
)) + max

j
kMix(j)k

E.3.4. BOUNDING THE MIXING TERM
We now resolve the last remaining thread, which is that of bounding the mixing term. Let’s fix a j for this section, since
proving our upper bounds for arbitrary j is sufficient. Let the joint distribution of the observations under label j be �. Let its
marginal on the segment ⌦i be �i. Let the marginals on each of the G single-step sub-blocks be �i,g. Denote the product
distribution

Q
g �i,g by Qi.

kMix(j)k =

�����E

"
wn,1wT

n,2

cn,1cn,2

�����kn = j,Bn

#
� Pj(· | s, a)Pj(· | s, a)T

�����

=

�����
1

P(Bn)
E�

"
wn,1wT

n,2

cn,1cn,2
1Bn

#
� Pj(· | s, a)Pj(· | s, a)T

�����

 1

P(Bn)

�����E�

"
wn,1wT

n,2

cn,1cn,2
1Bn

#
� E�1


wn,1

cn,1
1cn,1 6=0

�
E�2

"
wT

n,2

cn,2
1cn,2 6=0

#�����

+
1

P(Bn)

�����E�1


wn,1

cn,1
1cn,1 6=0

�
E�2

"
wT

n,2

cn,2
1cn,2 6=0

#
� PQ1(cn,1 6= 0)PQ2(cn,2 6= 0)Pj(· | s, a)Pj(· | s, a)T

�����

+
1

P(Bn)

��(PQ1(cn,1 6= 0)PQ2(cn,2 6= 0)� P(cn,1 6= 0)P(cn,2 6= 0))Pj(· | s, a)Pj(· | s, a)T (
��

+
1

P(Bn)

��(P(cn,1 6= 0)P(cn,2 6= 0)� P(Bn))Pj(· | s, a)Pj(· | s, a)T
��

 1

P(Bn)

�����E�

"
wn,1wT

n,2

cn,1cn,2
1Bn

#
� E�1


wn,1

cn,1
1cn,1 6=0

�
E�2

"
wT

n,2

cn,2
1cn,2 6=0

#�����
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+
1

P(Bn)

�����E�1


wn,1

cn,1
1cn,1 6=0

�
E�2

"
wT

n,2

cn,2
1cn,2 6=0

#
� PQ1(cn,1 6= 0)PQ2(cn,2 6= 0)Pj(· | s, a)Pj(· | s, a)T

�����

+
1

P(Bn)
|PQ1(cn,1 6= 0)PQ2(cn,2 6= 0)� P�1(cn,1 6= 0)P�2(cn,2 6= 0)|

+
1

P(Bn)
|P�1(cn,1 6= 0)P�2(cn,2 6= 0)� P(Bn)| (10)

Here, in the last inequality, we used the fact that kPj(· | s, a)k2  kPj(· | s, a)k1 = 1 and kaaT k  kak2kak2. Also note
that P�i(cn,i 6= 0) = P�(cn,i 6= 0) = P(cn,i 6= 0).

Intuitively, the first term represents mixing of the expectation across the two segments, the second term represents mixing
of the expectations across the single-step sub-blocks inside segments, the third term represents mixing of the observation
probabilities across the single-step sub-blocks inside segments, and the fourth term represents mixing of the observation
probabilities across the two segments. In short, the first and fourth represent segment-level mixing while the second and
third represent sub-block-level mixing.

Bounding the first term (segment-level mixing)

We will use (Yu, 1994)’s blocking technique again, invoking Lemma 2. Pick an arbitrary u,v 2 SS�1. Recall that

P̂n,i(· | s, a) :=
N(n, i, s, a, ·)
N(n, i, s, a)

1N(n,i,s,a) 6=0 =
wn,i

cn,i
1cn,i 6=0

Consider the real-valued random variable

hu,v := uT

 
wn,1wT

n,2

cn,1cn,2
1Bn

!
v

We have the following basic computations for expectations. Remember that 1Bn = 1cn,1cn,2 6=0 = 1cn,1 6=01cn,2 6=0.

E�hu,v = uT

 
E�

"
wn,1wT

n,2

cn,1cn,2
1Bn

#!
v

and

E�1⇥�2hu,v = uT

 
E�1


wn,1

cn,1
1cn,1 6=0

�
E�2

"
wT

n,2

cn,2
1cn,2 6=0

#!
v

This allows us to establish the following relation.

sup
u,v2SS�1

|E�hu,v � E�1⇥�2hu,v| =

�����E�

"
wn,1wT

n,2

cn,1cn,2
1Bn

#
� E�1


wn,1

cn,1
1cn,1 6=0

�
E�2

"
wT

n,2

cn,2
1cn,2 6=0

#�����

Now, we want to use Lemma 2. Note the following upper bound.

|hu,v|  kuk2
����

wn,1

cn,1

����
2

����
wn,2

cn,2

����
2

kvk2


����

wn,1

cn,1

����
1

����
wn,2

cn,2

����
1

= 1

So, we can use Lemma 2 with C = Cu,v := suphu,v and n = 2 for any u,v 2 SS�1, giving us the following inequality.

|E�hu,v � E�1⇥�2hu,v|  4�
Tn
4 (11)
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Since inequality 11 holds for any u, v 2 SS�1, we can take the supremum over such u, v to get the desired inequality below.
We also recall that P(Bn) � dmins,a

2 from equation 5.

1

P(Bn)

�����E�

"
wn,1wT

n,2

cn,1cn,2
1Bn

#
� E�1


wn,1

cn,1
1cn,1 6=0

�
E�2

"
wT

n,2

cn,2
1cn,2 6=0

#����� 
1

P(Bn)
4�

Tn
4

 8�
Tn
4

dmin(s, a)

Bounding the second term (sub-block-level mixing)

Remember that the product distribution
Q

g �i,g is Qi. First note that, since under Qi, each observation is independent, we
have the following expectation.

EQi


wn,i

cn,i
1cn,i 6=0

�
= EQi


EQi [wn,i | cn,i]

cn,i
1cn,i 6=0

�

= EQi


Pj(· | s, a)cn,i

cn,i
1cn,i 6=0

�

= Pj(· | s, a)PQi(cn,i 6= 0) (12)

Remark 8. Note that this holds crucially because we are working with the product distribution Qi over the single-step
sub-blocks.

Also, let hu = uT wn,1

cn,1
1cn,1 and let gv =

wT
n,2

cn,2
1cn,2v. Then the second term is exactly given by the following expression.

1

P(Bn)
sup

u,v2SS�1

|E�1 [hu]E�2 [gv]� EQ1 [hu]EQ2 [gv]|

Also note that both |hu| and |gv| are bounded by 1. We then have the following chain of inequalities.

|E�1 [hu]E�2 [gv]� EQ1 [hu]EQ2 [gv]|  |E�1 [hu]� EQ1 [hu]| |E�2 [gv]|+ |E�2 [gv]� EQ2 [gv]||EQ1 [hu]|
 |E�1 [hu]� EQ1 [hu]|+ |E�2 [gv]� EQ2 [gv]|

Since the single step sub-blocks are separated by at least Tn
8G timesteps, we can apply Lemma 2 with C = 1 and n = G to

get bounds on both terms here, since Qi =
Q

g �i,g . Also remember that P(Bn) � dmin(s,a)
2 from equation 5.

1

P(Bn)
sup

u,v2SS�1

|E�1 [hu]E�2 [gv]� EQ1 [hu]EQ2 [gv]| 
1

P(Bn)

⇣
4G�

Tn
8G + 4G�

Tn
8G

⌘

 16G�
Tn
8G

dmin(s, a)

Bounding the third term (sub-block-level mixing)

Again, note that the third term is given by the following expression.

1

P(Bn)

��EQ1 [1cn,1 6=0]EQ2 [1cn,2 6=0]� E�1 [1cn,1 6=0]E�2 [1cn,2 6=0]
��
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We can bound this above using the fact that |ab� cd|  |b||a� c|+ |c||b� d|, to get the following upper bound.

EQ2 [1cn,2 6=0]
��EQ1 [1cn,1 6=0]� E�1 [1cn,1 6=0]

��+ E�1 [1cn,1 6=0]
��EQ2 [1cn,2 6=0]� E�2 [1cn,2 6=0]

��

This in turn is bounded above by the expression below.

|EQ1 [1cn,1 6=0]� E�1 [1cn,1 6=0]|+ |EQ2 [1cn,2 6=0]� E�2 [1cn,2 6=0]|

Since indicator functions are bounded above by 1, we can apply Lemma 2 as in the second term (C = 1, n = G) to bound
both the differences above. Skipping the routine details, we finally get the following inequality, analogous to the second
term.

1

P(Bn)

��EQ1 [1cn,1 6=0]EQ2 [1cn,2 6=0]� E�1 [1cn,1 6=0]E�2 [1cn,2 6=0]
��  16G�

Tn
8G

dmin(s, a)

Bounding the fourth term (segment-level mixing)

Now note that the fourth term is the same as the expression below.

1

P(Bn)
|E�1 [1cn,1 6=0]E�2 [1cn,2 6=0]� E�[1cn,1 6=01cn,2 6=0]| =

1

P(Bn)
|E�1⇥�2 [1cn,1 6=01cn,2 6=0]� E�[1cn,1 6=01cn,2 6=0]|

We can now apply Lemma 2 with C = 1 and n = 2. The segments are separated by T and P(Bn) � dmin(s,a)
2 , giving us

the following bound.
1

P(Bn)
|P�1(cn,1 6= 0)P�2(cn,2 6= 0)� P(Bn)| 

8�
Tn
4

dmin(s, a)

Combining all these, we get that

kM̂s,a �Ms,ak <

s
32G

Ntraj(s, a)
(2S log(12) + log(

2

�
)) +

16

dmin(s, a)

✓
1

4

◆ Tn
4tmix

+
32G

dmin(s, a)

✓
1

4

◆ Tn
8Gtmix



s
32

Ntraj(s, a)
(2S log(12) + log(

2

�
)) +

48G

dmin(s, a)

✓
1

4

◆ Tn
8Gtmix

(13)

as desired.
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F. Proof of Theorem 3
Theorem 3 (Exact Clustering Guarantee). Pick any pair of trajectories n,m. Then for Freq� so that it contains (s, a) with
dmin(s, a) � ⌦(↵), Tn = ⌦(tmix log

4(1/�)/↵3), with probability at least 1� �,
���dist1(m,n)� k�m,nk22

���

is

O

 r
K log(1/�)

↵

✓
tmix

Tn

◆ 1
3

!
+ 4✏sub(�/2)

This means that if we choose � = 1, then if ✏sub(�)  �2/32 and Tn = ⌦
⇣
K3/2tmix

log4(Nclust/(↵�))
�6↵3

⌘
, no distance

estimate attains a value between �2/4 and �2/2. So, Algorithm 2 attains exact clustering using a threshold of say �2/3
with probability at least 1� �.

Proof. Consider the testing of trajectories m and n. Recall that we defined

dist1(m,n) := max
(s,a)2SA↵

"✓⇣
P̂n,1(· | s, a)� P̂m,1(· | s, a)

⌘T
Vs,a

◆✓⇣
P̂n,2(· | s, a)� P̂m,2(· | s, a)

⌘T
Vs,a

◆T
#

Let km be the label of trajectory m and kn the label of trajectory n. According to our assumptions, if km 6= kn, then
we have an s, a so that dkm(s, a), dkn(s, a) � ↵ and kPkm(· | s, a) � Pkn(· | s, a)k2 � �. We will make s, a implicit
in our notation except in Pj(· | s, a). Let cn,i := N(n, i, s, a), wn,i := N(n, i, s, a, ·). Recall that we have two nested
partitions: (1) of the entire trajectory into the two ⌦i and (2) of each segment ⌦i into G blocks. Finally, define dist1,(s,a) as
below, suppressing m and n. Note that dist1(m,n) is the maximum of dist1,(s,a) over all (s, a) 2 Freq� , for the given two
trajectories m and n.

dist1,(s,a) :=

⇣
(P̂n,1(· | s, a)� P̂m,1(· | s, a))T Vs,a

⌘⇣
(P̂n,2(· | s, a)� P̂m,2(· | s, a))TVs,a

⌘T �

We want to show that this is close to k�m,n(s, a)k22 for the (s, a) pairs that we search over, where

�m,n(s, a) = Pkm(· | s, a)� Pkn(· | s, a)

Assume the lemma below for now, we prove it in the next subsection.

Lemma 4. We claim that there is a universal constant C1 so that for any (s, a) with dmin(s, a) � ↵/3, with probability at
least 1� �,

���dist1,(s,a)�k�m,n(s, a)k22
���  C1

 r
K + log(1/�)

G↵

!
+ 4✏sub(�/2)

whenever Tn � ⌦ (Gtmix log(G/�) log(1/↵)) and G � ⌦
⇣

log(1/�)
↵2

⌘
. Here, ✏sub(�) is the high probability bound on

kPj(· | s, a)� Vs,aVT
s,aPj(· | s, a)k2 with j = kn, km, from Theorem 2 (satisfied with probability > 1� �).

We now set G =
⇣

Tn
tmix

⌘ 2
3

. Then a sufficient condition on Tn to meet the conditions of the lemma is Tn =

⌦(tmix log
4(1/�)/↵3), under which, with probability at lest 1 � �, we have the following bound for (s, a) with

dmin(s, a) � ↵/3.

���dist1,(s,a)�k�m,n(s, a)k22
���  O

 r
K log(1/�)

↵

✓
tmix

Tn

◆ 1
3

!
+ 4✏sub(�/2) (14)
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It is now easy to see that the first term on the right-hand side is less than �2/8 when Tn = ⌦
⇣
K3/2tmix

log3/2(1/�)
�6↵3/2

⌘
and

Tn = ⌦(tmix log
4(1/�)/↵3). We can combine these to have the guarantee that the first term on the right-hand side is less

�2/8 with probability at least 1� � when Tn = ⌦
⇣
K3/2tmix

log4(1/�)
�6↵3

⌘
.

Now note that if � � ↵/3, then a separating state action pair always lies in Freq� and thus, the maximum over the
k�m,n(s, a)k22 values corresponding to Freq� is in fact either 0 if km = kn or larger than �2 if km 6= kn. So, if
✏sub(�/2)  �2/32 and for each of the (s, a) pairs, the first term on the right-hand side of inequality 20 is less than �2/8,
then our distance estimate dist1(m,n) is on the right side of any threshold as long as �2/4  ⌧  �2/2. That is, the
distance estimate is then less than the threshold if km = kn, and larger than it if km 6= kn.

Note that upon choosing an occurrence threshold of order ↵, we will have at most O(1/↵) many (s, a) pairs in Freq� to max-
imize dist1,(s,a) over to get dist1(m,n). By applying a union bound over all (s, a) pairs in Freq� and using the conclusion

of the previous paragraph, we correctly determine if km = kn with probability 1� � for Tn = ⌦
⇣
K3/2tmix

log4(1/(↵�))
�6↵3

⌘
,

as long as ✏sub(�/2)  �2/32 and �2/4  ⌧  �2/2.

By applying a union bound over incorrectly deciding whether or not km = kn for any of the Nclust(Nclust � 1)/2 pairs, we
get that we can recover the true clusters with probability at least 1� � for Tn = ⌦

⇣
K3/2tmix

log4(Nclust/(↵�))
�6↵3

⌘
, whenever

✏sub  �2/32 and as long as ✏sub(�/2)  �2/32 and �2/4  ⌧  �2/2.

F.1. Proof of Lemma 4
We recall the statement of the lemma.

Lemma 4. We claim that there is a universal constant C1 so that for any (s, a) with dmin(s, a) � ↵/3, with probability at
least 1� �,

���dist1,(s,a)�k�m,n(s, a)k22
���  C1

 r
K + log(1/�)

G↵

!
+ 4✏sub(�/2)

whenever Tn � ⌦ (Gtmix log(G/�) log(1/↵)) and G � ⌦
⇣

log(1/�)
↵2

⌘
. Here, ✏sub(�) is the high probability bound on

kPj(· | s, a)� Vs,aVT
s,aPj(· | s, a)k2 with j = kn, km, from Theorem 2 (satisfied with probability > 1� �).

Notation: We say cn,i = N(n, i, s, a) as in the statement of the lemma and wn,i = N(n, i, s, a, ·). Let the joint distribution
of the observations over the pair of trajectories (m,n) be �. This means that � is the product of the joint distribution of
the observations over the trajectory m and that of the observations over the trajectory n, since trajectories are generated
independently. Let its marginals on the segments ⌦i be �i. Let the marginals on each of the G single-step sub-blocks along
with their next states be �i,g. Denote the product distribution

Q
g �i,g by Qi. Let G(s, a) denote the two sets of indices

where the state-action pair (s, a) is observed in trajectories n and m. For brevity, we will abbreviate G(s, a) to G. Note that
the sizes of these two sets are exactly cn,i and cm,i respectively.

We first prove some preliminary lemmas.

F.1.1. DECOMPOSITION OF | dist1,(s,a)�k�m,n(s, a)k22 |

Lemma 5. We claim that for each fixed value of G(s, a) (abbreviated to G), with probability at least 1� �, the following
bound holds.

���dist1,(s,a)�k�m,n(s, a)k22
��� 

2X

i=1

2 k�i � EQi [�i | G]k2 + 4✏sub(�) + 4
⇣
max

i
1cn,i=0 +max

i
1cm,i=0

⌘
(15)

Here cn,i = N(n, i, s, a), ✏sub(�) is the high probability bound on kPjl(· | s, a)� Vs,aVT
s,aPjl(· | s, a)k2 from Theorem 2

(satisfied with probability > 1� �), and

�T
i = (P̂n,i(· | s, a)� P̂m,i(· | s, a))T Vs,a

Remark 9. In the inequality,
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• The first term is a concentration-type term, which will be broken into an “independent concentration" error and a
mixing error to account for the low but non-zero dependence across blocks.

• The second term accounts for subspace estimation error.

• The third term accounts for actually observing s, a in our blocks.

Proof. We first establish a simple inequality.

| dist1,(s,a)�EQ1 [�
T
1 | G]EQ2 [�2 | G]| = |�T

1 �2 � EQ1 [�
T
1 | G]EQ2 [�2| | G]

 |(�T
1 � EQ1 [�

T
1 | G])EQ2 [�2 | G]|+ |�T

1 (�2 � EQ2 [�2 | G])|
 k�1 � EQ1 [�1 | G]k2 kEQ2 [�2 | G]k2 + k�1k2 k�2 � EQ2 [�2 | G]k2
 2 k�1 � EQ1 [�1 | G]k2 + 2 k�2 � EQ2 [�2 | G]k2 (16)

Remark 10. Notice that because of this inequality, the double estimator does not impact any theoretical guarantees for
exact clustering w.h.p, which is the form of the guarantees in both Kong et al. (2020) and Chen & Poor (2022). However, we
find that using a double estimator allows for better performance in real life. This makes sense because while exact clustering
doesn’t need a double estimator, approximate clustering w.h.p. does depend on the expectation of the distances across pairs
of trajectories. This expectation is controlled by the covariance of �1 and �2.

We define the following quantity.

diffi =
�
1cn,i 6=0Pkm(· | s, a)� 1cm,i 6=0Pkn(· | s, a)

�

Note that kdiffik2  2. Note the following expectation, which uses the dieas from equation 12.

EQi [�i | G] = EQi

h
VT

s,a(P̂n,i(· | s, a)� P̂m,i(· | s, a))
i

= VT
s,a

⇣
EQi [P̂n,i(· | s, a) | G]� EQi [P̂m,i(· | s, a) | G]

⌘

= VT
s,a

✓
EQi


wn,i

cn,i
1cn,i 6=0 | G

�
� EQi


wm,i

cm,i
1cm,i 6=0 | G

�◆

= VT
s,a

✓
EQi [wn,i | G]

cn,i
1cn,i 6=0 �

EQi [wm,i | G]
cm,i

1cm,i 6=0

◆

= VT
s,a

✓
Pkn(· | s, a)cn,i

cn,i
1cn,i 6=0 �

Pkm(· | s, a)cm,i

cm,i
1cm,i 6=0

◆

= VT
s,a

�
Pkn(· | s, a)1cn,i 6=0 � Pkm(· | s, a)1cm,i 6=0

�

= VT
s,adiffi

We recall the following definition before proceeding to show the main inequality.

�m,n(s, a) = Pkm(· | s, a)� Pkn(· | s, a)

���EQ1 [�
T
1 | G]EQ2 [�2 | G]� k�m,n(s, a)k22

��� =
���diffT1 Vs,aVT

s,adiff2 � diffT1 diff2
���+
���diffT1 diff2 � k�m,n(s, a)k22

���

 kdiff1k2
���diff2 � Vs,aVT

s,adiff2
���
2
+ kdiff1 ��m,n(s, a)k2 kdiff2k2

+ kdiff1k2 kdiff2 ��m,n(s, a)k2
 kdiff1k1

���diff2 � Vs,aVT
s,adiff2

���
2
+ kdiff1 ��m,n(s, a)k2 kdiff2k1

+ kdiff1k1 kdiff2 ��m,n(s, a)k2
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 2
���diff2 � Vs,aVT

s,adiff2
���
2
+ 2 kdiff1 ��m,n(s, a)k2

+ 2 kdiff2 ��m,n(s, a)k2
 2

���Pkm(· | s, a)� Vs,aVT
s,aPkm(· | s, a)

���
2

+ 2
���Pkn(· | s, a)� Vs,aVT

s,aPkn(· | s, a)
���
2

+ 2
��1cm,1=0Pkm(· | s, a)� 1cn,1=0Pkn(· | s, a)

��
2

+ 2
��1cm,2=0Pkm(· | s, a)� 1cn,2=0Pkn(· | s, a)

��
2

 4✏sub(�) + 2
�
1cm,1=0 kPkm(· | s, a)k2 + 1cn,1=0 kPkn(· | s, a)k2

�

+ 2
�
1cm,2=0 kPkm(· | s, a)k2 + 1cn,2=0 kPkn(· | s, a)k2

�

 4✏sub(�) + 4
⇣
max

i
1cn,i=0 +max

i
1cm,i=0

⌘

Combining this with inequality 16, we have the following final bound.

���dist1,(s,a)�k�m,n(s, a)k22
��� 

2X

i=1

2 k�i � EQi [�i | G]k2 + 4✏sub(�) + 4
⇣
max

i
1cn,i=0 +max

i
1cm,i=0

⌘
(17)

where we remind the reader that cn,i = N(n, i, s, a) and recall the definition of �i.

�T
i = (P̂n,i(· | s, a)� P̂m,i(· | s, a))T Vs,a

F.1.2. BOUNDING THE CONCENTRATION-TYPE TERM
We bound the first term in the decomposition lemma (Lemma 5) with high probability.

Lemma 6. With probability at least 1� �, when Tn � ⌦
�
Gtmix log

�
G
� log(1/↵)

��
and G � ⌦

⇣
log(1/�)

↵2

⌘
, we have the

following bound.

k�i � EQi [�i | G])k2  O

 r
K + log(1/�)

G↵

!

Proof. Recall that the joint distribution of the observations over the pair of trajectories (m,n) is �. Its marginals on the
segments ⌦i are �i. The marginals on each of the G single-step sub-blocks is �i,g . The product distribution

Q
g �i,g is Qi.

Recall that G(n, s, a) denotes the two sets of indices where (s, a) is observed in trajectory n and m respectively, and the
sets have sizes cn,i and cm,i respectively.

Let wn,i,g be the one hot vector of the next state if the (i, g) sub-block witnesses (s, a), and the zero vector otherwise. Let
cn,i,g be the indicator of (s, a) in the (i, g) sub-block. Then wn,i =

P
g wn,i,g and cn,i =

P
g cn,i,g .

1. Covering argument for the product distribution

Pick a unit vector u 2 RK and consider the following inequality. Remember that we abbreviate G(n, s, a) to G.

|uT (�i � EQi [�i | G])|  |uT Vs,a(P̂n,i(· | s, a)� EQi [P̂n,i(· | s, a) | G])|
+ |uT Vs,a(P̂m,i(· | s, a)� EQi [P̂m,i(· | s, a) | G])|

We work with the term for trajectory n, WLOG. Any bounds thus obtained will also apply to trajectory m. Notice the
following equation.

|uT VT
s,a(P̂n,i(· | s, a)� EQi [P̂n,i(· | s, a) | G])| =

������
1

cn,i

X

g2G(n,s,a)

⇣
uT VT

s,awn,i,g � EQi [uT VT
s,awn,i,g | G])

⌘
������
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Note that |uT VT
s,awn,i,g|  kuk2kVT

s,awn,i,gk2  1. Note that conditioned on the set of (s, a) observations in trajectory n,
the next states are independent under the product distribution Qi (but not under �i, of course). Now, using the conditional
version of Hoeffding’s inequality from Lemma 3, we get the following bound.

PQi

0

@

������
1

cn,i

X

g2G(n,s,a)

⇣
uT VT

s,awn,i,g � EQi [uT VT
s,awn,i,g | G])

⌘
������
>

✏

8

������
G

1

A  2e�
✏2cn,i

32

Note that if X  Y + Z, then P(X > ✏
4 )  P(Y > ✏

8 ) + P(Z > ✏
8 ) by a union bound. We apply this to the inequalities

above with X = |uT (�i � EQi [�i])| to get the following concentration inequality.

PQi

⇣
|uT (�i � EQi [�i | G])| >

✏

4
| G
⌘
 2e�

✏2cn,i
32 + 2e�

✏2cn,i
32 = 4e�

✏2cn,i
32

Consider a covering of SK�1 by balls of radius 1/4. We will need at most 12K such balls. Call the set of their centers C.
We know that for any vector v, the following holds.

sup
kuk21

uT v = kvk2  2 sup
u2C

uT v

We use this to arrive at the concentration inequality below.

PQi

⇣
k�i � EQi [�i | G])k2 >

✏

2
| G
⌘
 PQi

⇣
9u 2 C; |uT (�i � EQi [�i | G])| >

✏

4
| G
⌘


X

u2C

PQi

⇣
|uT (�i � EQi [�i | G])| >

✏

4
| G
⌘

< 4 ⇤ 12K ⇤ e�
✏2cn,i

32

2. Bounding cn,i

We bound cn,i with high probability under the distribution Qi, using the regular Hoeffding’s inequality, noting that
EQi [cn,i] =

P
g PQi(cn,i,g 6= 0) =

P
g P�i(cn,i,g 6= 0). We can show that P�i(cn,i,g 6= 0) � dmin(s,a)

2 for Tn �
⌦(Gtmix log(1/↵)) by using the same kind of computation as in equation 4.

PQi

✓
cn,i < G

dmin(s, a)

4

◆
= PQi

✓
cn,i < G

dmin(s, a)

2
�G

dmin(s, a)

4

◆

 PQi

✓
cn,i < EQi [cn,i]�G

dmin(s, a)

4

◆

= P

 
X

g

1cn,i,g 6=0 <
X

g

EQi [1cn,i,g 6=0]�G
dmin(s, a)

4

!

 exp

✓
�dmin(s, a)2G

32

◆

This is less than �/2 for G � ⌦
⇣

log(2/�)
↵2

⌘
� ⌦

⇣
log(2/�)

dmin(s,a)2

⌘
. So for such G, remembering that G was an abbreviation for

the random set G(n, s, a),

PQi

⇣
k�i � EQi [�i | G])k2 >

✏

2
| G(n, s, a)

⌘
 4 ⇤ 12K ⇤ e�

✏2Gdmin(s,a)
128 +

�

2

Since this holds for all possible G(n, s, a) values and the right hand side doesn’t depend on G(n, s, a), we can take the
expectation over the random set G(n, s, a) to get the following inequality.
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PQi

⇣
k�i � EQi [�i | G])k2 >

✏

2

⌘
 4 ⇤ 12K ⇤ e�

✏2Gdmin(s,a)
128 +

�

2

3. Accounting for non-independence (mixing error)

We know that we can bound the difference in the probability of any event E between �i and Qi by applying Lemma 2 to the
function h = 1E with n = G and C = 1 as we have before, giving us the following inequality.

P�i

⇣
k�i � EQi [�i | G])k2 >

✏

2

⌘
 PQi

⇣
k�i � EQi [�i | G])k2 >

✏

2

⌘
+

�

2
+ 4G

✓
1

4

◆ Tn
8Gtmix

 4 ⇤ 12K ⇤ e�
✏2Gdmin(s,a)

128 +
�

2
+ 4G

✓
1

4

◆ Tn
8Gtmix

We know that both terms are less than �
4 when Tn � ⌦

�
Gtmix log

�
G
�

��
and G � ⌦

⇣
K+log(1/�)

✏2↵

⌘
, since dmin(s, a) �

↵/3. We thus have the following bound with probability at least 1 � �, when Tn � ⌦
�
Gtmix log

�
G
�

�
log(1/↵)

�
and

G � ⌦
⇣

log(1/�)
↵2

⌘
.

k�i � EQi [�i | G])k2  O

 r
K + log(1/�)

G↵

!

F.1.3. BOUNDING THE PROBABILITY OF NOT OBSERVING s, a
We bound the third term in the decomposition lemma (Lemma 5) with high probability. We first need an auxiliary lemma for
this.

Lemma 7. For Tn � ⌦ (Gtmix log(1/↵)), we have the following bound.

P(cn,i = 0) 
✓
1� dmin(s, a)

2

◆G

+ 4G

✓
1

4

◆ Tn
8Gtmix

Remark 11. Again, we can think of this sum as a bound on the probability of not observing s, a in the blocks if they were
independent (the first term) versus a mixing error between blocks to account for their non-independence (the second term).

Proof. Recall that the joint distribution of the observations over the pair of trajectories (m,n) is �. Its marginals on the
segments ⌦i are �i. The marginals on each of the G single-step sub-blocks is �i,g . The product distribution

Q
g �i,g is Qi.

Recall that G(n, s, a) denotes the two sets of indices where (s, a) is observed in trajectory n and m respectively, and the
sets have sizes cn,i and cm,i respectively.

Remember that wn,i,g is the one hot vector of the next state if the (i, g) sub-block witnesses (s, a), and the zero vector
otherwise, and that cn,i,g is the indicator of (s, a) in the (i, g) sub-block. Also recall that then wn,i =

P
g wn,i,g and

cn,i =
P

g cn,i,g .

Define h :=
QG

g=1(1� cn,i,g). Under any distribution Q over these sub-blocks, EQh is the probability of not observing s, a
in any of them. Let di,g,n be the distribution of state-action pairs at the first observation of sub-block (i, g). Let dkn(·, ·)
be the stationary distribution under label kn for state-action pairs. We use Lemma 2 with h as above, C = 1, n = G and
an = Tn

8G to note the following chain of inequalities.

P(cn,i = 0) = E�ih
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 EQih+ |EQih� E�ih|


 

GY

g=1

EQi(1� cn,i,g)

!
+ 4G�

Tn
8G


 

GY

g=1

(1� dkn(s, a) + TV (di,g,n, dkn)

!
+ 4G�

Tn
8G


 

GY

g=1

(1� dkn(s, a) + 4�
Tn
8G )

!
+ 4G�

Tn
8G

=
⇣
1� dkn(s, a) + 4�

Tn
8G

⌘G
+ 4G�

Tn
8G


✓
1� dkn(s, a)

2

◆G

+ 4G�
Tn
8G


✓
1� dmin(s, a)

2

◆G

+ 4G�
Tn
8G

where the inequality in the second to last line holds for Tn � ⌦ (Gtmix log(1/↵)) � ⌦ (Gtmix log(1/dmin(s, a))).

From the above lemma, the following corollary immediately follows by getting conditions to bound each term on the right
hand side by �/2, upon also noting that � log(1� x) � x, so log

⇣
1

1�↵/2

⌘
� ↵/2.

Corollary 1. For Tn � ⌦ (Gtmix log(G/�) log(1/↵)) and G � ⌦
⇣

log(1/�)
↵

⌘
, we have with probability at least 1� � that

4
⇣
max

i
1cn,i=0 +max

i
1cm,i=0

⌘
= 0

F.1.4. COMBINING THE BOUNDS
We finally combine these lemmas to prove Lemma 4 – the lemma that this section was dedicated to. The conditions of the
lemmas combine to ask that Tn � ⌦ (Gtmix log(G/�) log(1/↵)) and G � ⌦

⇣
log(1/�)

↵2

⌘
.

Proof of Lemma 4. Combining the decomposition from Lemma 5 with the bounds in Lemma 6 and Corollary 1, we conclude
using union bounds on the low probability events that we are excluding that there is a universal constant C1 so that with
probability at least 1� �,

���dist1,(s,a)�k�m,n(s, a)k22
���  C1

 r
K + log(1/�)

G↵

!
+ 4✏sub(�/2)

whenever Tn � ⌦ (Gtmix log(G/�) log(1/↵)) and G � ⌦
⇣

log(1/�)
↵2

⌘
.
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G. Guarantees for one step of the EM Algorithm for mixtures of MDPs
Remember that the M-step is just the model estimation step, so Theorem 4 provides guarantees for that. We also have the
following guarantees for the E-step of hard EM.

Theorem 6. Consider any (s, a) with dmin(s, a) � ↵/3 where model estimation accuracy is ✏ with ✏ 
min(�/4,�2gmin/64) where gmin is the least non-zero value of Pk(s0 | s, a) across k, s0. Using log-likelihood ra-
tios of transitions of all such (s, a) pairs, we can classify any set of N new trajectories with probability 1� � if it has length
Tn = ⌦(tmix log

4(N/�) log3(1/fmin)/↵3�3).

Remark 12. The dependence on gmin is unavoidable. For example, if the estimate for the models was only off at the value
of k, s0 attaining gmin and our estimate for gmin was P̂k(s0 | s, a) = 0, then no trajectory from label k witnessing s0 will
get correctly classified. This event will happen roughly with probability gmin, up to a mixing error, and gmin cannot be
made less than some arbitrary � chosen to bound the probability of all undesirable events.

Proof. We are inspired by the lower bound obtained in Lemma 1 of Wong & Shen (1995) for obtaining our sample
complexity bounds. Consider a separating state-action pair s, a. We first establish Hellinger distance lower bounds between
the distributions P̂k(· | s, a) and P̂l(· | s, a). Notice that

TV (P̂k(· | s, a),Pk(· | s, a)) =
1

2
kP̂k(· | s, a)� Pk(· | s, a)k1  ✏/2  �/4

The same holds for l as well. Combining the latter with kPk(· | s, a)� Pl(· | s, a)k1 � kPk(· | s, a)� Pl(· | s, a)k2 � �
and using the inequality H(P,Q) � TV (P,Q)/

p
2, we get the following bound.

H(Pk(· | s, a), P̂l(· | s, a)) �
1p
2
TV (P̂k(· | s, a), P̂l(· | s, a)) �

�

4
p
2

We now recall notation from the previous section. Again, we modify notation slightly, in a natural way. Let �n be the joint
distribution of observations recorded in trajectory n, with their marginals on each single-element sub-block being �n,g . Let
Qn be the product distribution Qn =

Q
n,g �n,g . Let G(n, s, a) be the set of sub-blocks (n, g) in which (s, a) is observed in

trajectory n. Let cn be the size of this set. We have the following lemma.

Lemma 8. Let the random variables for the next states following each (s, a) observation given by S1, S2, . . . Scn and let
the true label be kn = k. Then for any l 6= k, consider the likelihood ratio over next state transitions from (s, a).

LRn(s, a) =
cnY

i=1

P̂k(Si | s, a)
P̂l(Si | s, a)

We claim that LRn(s, a) > 0 with probability at least 1 � � for Tn � ⌦
�
Gtmix log

�
G
�

�
log(1/↵)

�
and G �

⌦
⇣

log(1/fmin) log(1/�)
↵2�2

⌘
.

Just like in the proof of Theorem 3, now set G =
⇣

Tn
tmix

⌘ 2
3

. Then a sufficient condition on Tn to meet the conditions of the

lemma is Tn = ⌦(tmix log
4(1/�) log3(1/fmin)/↵3�3).

Now remember that upon choosing an occurrence threshold � of order ↵, we will have at most O(1/↵) many (s, a) pairs in
Freq� . By applying a union bound over all (s, a) pairs in Freq� , we get that with probability 1� �, we get that the sum of
the log-likelihood ratios of next-state transitions starting in Freq� between the true label’s model estimate and any other
label’s model estimate is positive whenever Tn = ⌦(tmix log

4(1/�) log3(1/fmin)/↵3�3).

We now take another union bound over the N new trajectories to get that we can exactly classify all of them with probability
at least 1� � whenever Tn � ⌦(tmix log

4(N/�) log3(1/fmin)/↵3�3).
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G.1. Proof of Lemma 8
We first perform a computation analogous to Lemma 1 in Wong & Shen (1995). Let D1 = Pk(· | s, a), D2 = Pl(· | s, a),
D̂1 = P̂k(· | s, a), D̂2 = P̂l(· | s, a). Fix b > 0. We use the conditional Markov inequality and the fact that conditioned on
G(n, s, a) and under the product distribution Q̂n, the Hellinger distance between the next-state distributions at any (s, a)
observation is H(D̂1, D̂2), which satisfies H(D̂1, D̂2) � �/4

p
2. This is crucially due to the independence and the fact

that we are fixing G(n, s, a) by conditioning on it. As usual, abbreviate G(n, s, a) to G for brevity.

PQn(LRn(s, a)  ecnb/2 | G) = PQn

0

@
cnY

i=1

 
D̂2(Si)

D̂1(Si)

!1/2

� e�cnb/2

������
G
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A

 ecnb/2

0

@EQn

2

4
 
D̂2(Si)

D̂1(Si)

!1/2
������
G

3

5

1

A
cn

= ecnb/2

0

@ED1
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D̂2(Si)

D̂1(Si)

!1/2
3

5
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A
cn

= ecnb/2
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D1(Si)

D̂1(Si)

!1/2 
D̂2(Si)

D1(Si)

!1/2
3
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A
cn

 ecnb/2

0

@ED1

2

4�1 +�2/64
�1/2

 
D̂2(Si)

D1(Si)

!1/2
3

5

1

A
cn

= ecnb/2
�
1 +�2/64

�cn/2
✓
1� H(D1, D2)2

2

◆cn

 ecnb/2
�
1��2/128

�cn/2

 ecnb/2e�cn�
2/128

Setting b = �2/256, we get that PQn(LRn(s, a)  ecn�
2/256 | G)  e�cn�

2/256. Now by following a very similar
computation to that in point 2 in section F.1.2, we get that for Tn � ⌦(Gtmix log(1/↵)) and G � ⌦

⇣
log(1/�)

↵2

⌘
, cn �

Gdmin(s, a)/4 with probability at least 1� �/2. That is, for such Tn and G,

PQn(LRn(s, a)  eGdmin(s,a)�
2/512 | G)  PQn(LRn(s, a)  ecn�

2/128 | G)  e�Gdmin(s,a)�
2/512 +

�

2

Since this holds for any value of G = G(n, s, a), we can say that with probability at least 1��, for Tn � ⌦(Gtmix log(1/↵))

and G � ⌦
⇣

log(1/�)
↵2

⌘
, cn � Gdmin(s, a)/4, we have the following bound.

PQn(LRn(s, a)  eGdmin(s,a)�
2/512)  e�Gdmin(s,a)�

2/512 +
�

2

After following a computation very similar to that in point 3 of section F.1.2, we get that for Tn �
⌦
�
Gtmix log

�
G
�

�
log(1/↵)

�
and G � ⌦

⇣
log(1/�)
↵2�2

⌘
,

P�(LRn(s, a)  eGdmin(s,a)�
2/512)  �

Note that we want eGdmin(s,a)�
2/512 � fl/fk, in which case it suffices to ask eGdmin(s,a)�

2/512 � 1/fmin. Combining
this with earlier conditions, for G � ⌦

⇣
log(1/�) log(1/fmin)

↵2�2

⌘
and Tn � ⌦

�
Gtmix log

�
G
�

�
log(1/↵)

�
,
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P�

✓
fk
fl

LRn(s, a)  1

◆
 �
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H. Proof of Theorem 4
Theorem 4 (Model Estimation Guarantee). For any state action pair (s, a) with dmin(s, a) � ↵/3, and for GNclust �
⌦
⇣

log(1/�)
f2
min↵

2

⌘
and Tn � ⌦(Gtmix log(G/�)), with probability greater than 1� �,

kP̂k(· | s, a)� Pk(· | s, a)k1

is bounded above by

O

 ✓
tmix

Tn

◆1/3r 1

Nclustfmin↵
(S + log(

1

�
))

!

Proof. The proof is quite straightforward and employs the techniques used so far, especially those used in section F.1.2. Let
k be the (now known) label that we’re working with.

We modify previous notation a bit for this proof. For brevity of notation, we denote by cn,g the indicator variable
for observing (s, a) in the gth single-step sub-block of the trajectory n. Denote by wn,g one-hot vector of the next
state observed if the currect state-action pair is (s, a), and set it to the zero-vector otherwise. Note that

P
g cn,g =

N(n, s, a) and
P

g wn,g = N(n, s, a, ·). We denote the set of indices (n, g) of all s, a observations that come from
label k (across the GNclust observations recorded) by N (s, a, k). Let the size of this set be N(s, a, k). Note that
N(s, a, k) =

P
n2Ck

N(n, s, a) =
P

n,g cn,g . Also note the following alternate expression for P̂k(· | s, a).

P̂k(· | s, a) :=
P

(n,g)2N (s,a,k) wn,gP
(n,g)2N (s,a,k) cn,g

1N(s,a,k) 6=0 =

P
(n,g)2N (s,a,k) wn,g

N(s, a, k)
1N(s,a,k) 6=0 (18)

Let �n be the joint distribution of observations recorded in trajectory n, with their marginals on each single-element
sub-block being �n,g . Let � be the joint distribution of all observations recorded across all trajectories. Since the trajectories
are independent, we know that � =

Q
n �n. Let Qg be the joint distribution of the observations at the gth sub-block. Note

that this is also the marginal of the joint distribution � on the gth sub-block, and since the trajectories are independent,
Qg =

Q
n �g,n. Finally, denote by Q the product distribution

Q
g Qg =

Q
g

Q
n �g,n. This would be the distribution if all

observations recorded were independent (across sub-blocks).

1. Concentration under the product distribution

We have the following computation.

EQ[P̂k(· | s, a) | N (s, a, k)] = EQ

P
n2Nclust

wn

N(s, a, k)
1N(s,a,k) 6=0

����N(s, a, k)

�

= E

"P
n2N (s,a,k) wn

N(s, a, k)

�����N(s, a, k)

#
1N(s,a,k) 6=0

=

P
n EQ[wn | N (s, a, k)]

N(s, a, k)
1N(s,a,k) 6=0

=

P
n Pk(· | s, a)cn
N(s, a, k)

1N(s,a,k) 6=0

=
Pk(· | s, a)(

P
n cn)

N(s, a, k)
1N(s,a,k) 6=0

=
Pk(· | s, a)N(s, a, k)

N(s, a, k)
1N(s,a,k) 6=0

= Pk(· | s, a)1N(s,a,k) 6=0

Now we set up our covering argument. Remember that [�1, 1]S is the set of all vectors u 2 RS with kuk1  1. Consider a
covering of [�1, 1]S by boxes of side length 1

4 and centers lying in [�1, 1]S . We will need at most 12S such boxes and if C
is the set of their centers, then for any vector v

kvk1 = sup
u2[�1,1]S�1

|uT v|  2max
u2C

|uT v|  2kvk1
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Also, for any u 2 C, note that

|uT P̂n,i(· | s, a)|  kuk1
����

wn,1

cn,1

����
1


����

wn,1

cn,1

����
1

= 1

and so |uT EQ[P̂k(· | s, a) | N (s, a, k)]|  E[|uT P̂k(· | s, a)| | N (s, a, k)]  1. Again, note that conditioned on the set of
all (s, a) observations recorded, the next states wn,g are all independent under the product distribution Q (but not under �,
of course). Recalling the expression for P̂k(· | s, a) from equation 18, this means that we can use the conditional version of
Hoeffding’s inequality, giving us the following bound.

PQ

⇣���uT (P̂k(· | s, a)� EQ[P̂k(· | s, a) | N (s, a, k)])
��� >

✏

4

���N (s, a, k)
⌘
< 2e�

✏2N(s,a,k)
8

Doing this for all 12S vectors u 2 C, we get the following inequality.

PQ

⇣���(P̂n,i(· | s, a)� EQ[P̂n,i(· | s, a) | N (s, a, k)])
���
1
>

✏

2

���N (s, a, k)
⌘

is bounded above by

PQ

⇣
9u 2 C;

���uT (P̂k(· | s, a)� EQ[P̂k(· | s, a) | N (s, a, k)])
��� >

✏

4

���N (s, a, k)
⌘


X

u2C

PQ

⇣���uT (P̂k(· | s, a)� EQ[P̂k(· | s, a) | N (s, a, k)])
��� >

✏

4

���N (s, a, k)
⌘

< 12S ⇤ e�
✏2N(s,a,k)

8

2. Bounding N(s, a, k) under the product distribution

Now note that N(s, a, k) =
P

(n,g)2Nclust⇥[G] cn,g . So,

EQ[N(s, a, k)] =
X

(n,g)2Nclust⇥[G]

EQ[cn,g] =
X

(n,g)2Nclust⇥[G]

P�(cn,g 6= 0)

We can show the following inequality.

P�(cn,g 6= 0) = P�(cn,g 6= 0 | kn = k)P(kn = k) � dmin(s, a)

2
fmin

for Tn � ⌦(Gtmix log(1/↵)), getting the last inequality by using a computation very similar to the one in equation 4, along
with the fact that P(kn = k) = fk. So, EQ[N(s, a, k)] � GNclustfmindmin(s,a)

2 .

PQ

✓
N(s, a, k) < GNclust

fmindmin(s, a)

4

◆
= PQ

✓
N(s, a, k) < GNclust

fmindmin(s, a)

2
�GNclust

fmindmin(s, a)

4

◆

 PQ

✓
N(s, a, k) < E[N(s, a, k)]�GNclust

fmindmin(s, a)

4

◆

= PQ

0

@
X

(n,g)2Nclust⇥[G]

cn,g < E[N(s, a, k)]�GNclust
fmindmin(s, a)

4

1

A

 exp

✓
�f2

mindmin(s, a)2GNclust

8

◆
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This is less than �/2 for GNclust � ⌦
⇣

log(1/�)
f2
min↵

2

⌘
. So, with probability at least 1� �/2, for GNclust � ⌦

⇣
log(1/�)
f2
min↵

2

⌘
and

Tn � ⌦(Gtmix log(1/↵)), we have the following bound.

PQ

⇣���(P̂n,i(· | s, a)� EQ[P̂n,i(· | s, a) | N (s, a, k)])
���
1
>

✏

2

⌘
 12Se�

✏2GNclustfmindmin(s,a)
128

3. Mixing error to account for non-independence in the true joint distribution

Note that we can think of the combined dataset as a Markov chain over the tuple of n observations, with a joint distribution �
over observations. Its marginal over the gth single-step sub-blocks is Qg and Q =

Q
g Qg . We now want to apply Lemma 2,

noting that the relevant function of this Markov chain is 1E where E is the event kP̂k(· | s, a)�Pk(· | s, a)k1 < ✏
2 . Clearly,

in this case, n from the lemma is G and C from the lemma is 1. We use this to get the following bound.

P�

⇣���(P̂n,i(· | s, a)� EQ[P̂n,i(· | s, a) | N (s, a, k)])
���
1
>

✏

2

⌘

is bounded above by

PQ

⇣���(P̂n,i(· | s, a)� EQ[P̂n,i(· | s, a) | N (s, a, k)])
���
1
>

✏

2

⌘
+ 4G

✓
1

4

◆ Tn
8Gtmix

 12Se�
✏2GNclustfmindmin(s,a)

128 + 4G

✓
1

4

◆ Tn
8Gtmix

Each term is less than �/4 for GNclust � ⌦
⇣

1
✏2fmin↵

(S + log( 1� )
⌘

and Tn � ⌦(Gtmix log(G/�)). So for such
G,Nclust, Tn, with probability greater than 1� �,

kP̂k(· | s, a)� Pk(· | s, a)k1 < ✏

Alternatively, for GNclust � ⌦
⇣

log(1/�)
f2
min↵

2

⌘
and Tn � ⌦(Gtmix log(G/�) log(1/↵)), with probability greater than 1� �,

kP̂k(· | s, a)� Pk(· | s, a)k1  O

✓r
1

GNclustfmin↵
(S + log(

1

�
))

◆

Letting G =
⇣

Tn
tmix

⌘2/3
, for

⇣
Tn
tmix

⌘2/3
Nclust � ⌦

⇣
log(1/�)
f2
min↵

2

⌘
and Tn � ⌦(tmix log

4(1/�) log4(1/↵)), with probability
greater than 1� �,

kP̂k(· | s, a)� Pk(· | s, a)k1  O

 ✓
tmix

Tn

◆1/3r 1

Nclustfmin↵
(S + log(

1

�
))
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I. Proof of Theorem 5
We recall the theorem here.

Theorem 5 (Classification Guarantee). Let ✏mod(�) be a high probability bound on the model estimation error kP̂k(· |
s, a)� Pk(· | s, a)k2. Then there is a universal constant C3 so that Algorithm 3 can identify the true labels for trajectories
in Nclass with probability at least 1� � for Tn = ⌦

⇣
K3/2tmix

log4(Nclass/(↵�))
�6↵3

⌘
, whenever ✏mod(�/2)  C3�

4fmin↵
K and

Nclust � ⌦
⇣

log(1/�)
f2
min↵

2

⌘
.

Proof. The proof is very similar to the proof of theorem 3. Consider the testing of trajectory n. Recall that in algorithm 3,
we defined

dist1(n, k) := max
(s,a)2SA↵

"✓⇣
P̂n,1(· | s, a)� P̂k(· | s, a)

⌘T
Ṽs,a

◆✓⇣
P̂n,2(· | s, a)� P̂k(· | s, a)

⌘T
Ṽs,a

◆T
#

Let kn the label of trajectory n. According to our assumptions, if kn 6= k, then we have an s, a so that dkn(s, a) � ↵
and kPkn(· | s, a) � Pk(· | s, a)k2 � �. Again, we will make s, a implicit in our notation except in Pj(· | s, a). Let
cn,i := N(n, i, s, a), wn,i := N(n, i, s, a, ·). Recall that we have two nested partitions: (1) of the entire trajectory into
the two ⌦i and (2) of each segment ⌦i into G blocks. Finally, define dist1,(s,a) as below, suppressing n and k. Note that
dist1(n, k) is the maximum of dist1,(s,a) over all (s, a) 2 Freq� , for the given trajectory n and label k.

dist1,(s,a) :=

⇣
(P̂n,1(· | s, a)� P̂k(· | s, a))T Ṽs,a

⌘⇣
(P̂n,2(· | s, a)� P̂k(· | s, a))T Ṽs,a

⌘T �

We want to show that this is close to k�n,k(s, a)k22 for the (s, a) pairs that we search over, where

�n,k(s, a) = Pkn(· | s, a)� Pk(· | s, a)

Recall that kP̂k(· | s, a) � Pk(· | s, a)k2  ✏mod(�) for any 1  k  K. Let Mtrue
s,a =

P
1kK f̂k,s,aPk(· | s, a)Pk(· |

s, a)T . We use the fact that kaaT � bbT k  (kak2 + kbk2)ka� bk2 in the bound below.

kMtrue
s,a � M̃s,ak 

X

1kK

f̂k,s,akPk(· | s, a)Pk(· | s, a)T � P̂k(· | s, a)P̂k(· | s, a)T k


X

1kK

f̂k,s,a(kP̂k(· | s, a)k2 + kPk(· | s, a)k2)kP̂k(· | s, a)� Pk(· | s, a)k2


X

1kK

2f̂k,s,akP̂k(· | s, a)� Pk(· | s, a)k2

 2✏mod(�)

Also note that if we redefine Bn to be the event of observing (s, a) in a trajectory (instead of in both segments as in the
notation in previous proofs), then f̂k,s,a =

P
n 1kn=k1BnP

n 1Bn
�

P
n 1kn=k1Bn

Nclust
. So, E[f̂k,s,a] � P(kn = k \ Bn) = P(Bn |

kn = k)P(kn = k) � fminP(Bn | kn = k). Using a computation very similar to the one leading up to inequality 5, we note
that P(Bn | kn = k) � dmin(s, a)/2 for Tn � ⌦(tmix log(1/↵)). In that case, E[f̂k,s,a] � fmindmin(s, a)/2 � fmin↵/2.
Additionally, using a standard concentration argument, f̂k,s,a � E[f̂k,s,a]/2 � fmin↵/4 for Nclust � ⌦

⇣
log(1/�)
f2
min↵

2

⌘
�

⌦
⇣

log(1/�)

E[f̂k,s,a]2

⌘

We now apply Lemma 3 of Chen & Poor (2022), with p(k) = f̂k,s,a, y(k) = Pk(· | s, a), M = Mtrue
s,a and M⇤ = Ms,a. We

use the right-hand side of the bound in the lemma to get the bound below for all 1  k  K, which holds for a universal
constant C2 with probability at least 1� � whenever Nclust � ⌦

⇣
log(1/�)
f2
min↵

2

⌘
and Tn � ⌦(tmix log(1/↵)).

kPk(· | s, a)� Ṽs,aṼT
s,aPk(· | s, a)k2 

s
2K✏mod(�)

f̂k,s,a
 C2

s
K✏mod(�)

fmin↵
(19)
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Assume the lemma below for now, we prove it in the next subsection.

Lemma 9. We claim that there is a universal constant C1 so that for any (s, a) with dmin(s, a) � ↵/3, with probability at
least 1� �,

���dist1,(s,a)�k�n,k(s, a)k22
���  O

 r
K + log(1/�)

G↵

!
+ 8C2

s
K✏mod(�/2)

fmin↵

whenever Tn � ⌦ (Gtmix log(G/�) log(1/↵)) and G � ⌦
⇣

log(1/�)
↵2

⌘
. Here, ✏mod(�) is a high probability bound on

kPk(· | s, a)� Ṽs,aṼT
s,aPk(· | s, a)k2 for all 1  k  K (which holds with probability at least 1� �).

We now set G =
⇣

Tn
tmix

⌘ 2
3

. Then a sufficient condition on Tn to meet the conditions of the lemma is Tn =

⌦(tmix log
4(1/�)/↵3), under which, with probability at lest 1 � �, we have the following bound for (s, a) with

dmin(s, a) � ↵/3.

���dist1,(s,a)�k�n,k(s, a)k22
���  O

 r
K log(1/�)

↵

✓
tmix

Tn

◆ 1
3

!
+ 8C2

s
K✏mod(�/2)

fmin↵
(20)

It is now easy to see that the first term on the right-hand side is less than �2/8 when Tn = ⌦
⇣
K3/2tmix

log3/2(1/�)
�6↵3/2

⌘
and

Tn = ⌦(tmix log
4(1/�)/↵3). We can combine these to have the guarantee that the first term on the right-hand side is less

�2/8 with probability at least 1� � when Tn = ⌦
⇣
K3/2tmix

log4(1/�)
�6↵3

⌘
.

Now note that if � � ↵/3, then a separating state action pair always lies in Freq� and thus, the maximum over the
k�n,k(s, a)k22 values corresponding to Freq� is in fact either 0 if k = kn or larger than �2 if k 6= kn. So, if

8C2

q
K✏mod(�/2)

fmin↵
 �2/32 and for each of the (s, a) pairs, the first term on the right-hand side of inequality 20 is

less than �2/8, then our distance estimate dist1(n, k) is on the right side of �2/3. That is, the distance estimate is then less
than �2/4 if k = kn, and larger than it if k 6= kn. As a consequence, the output of the argmin in algorithm 3 is kn in this
situation.

Note that upon choosing an occurrence threshold of order ↵, we will have at most O(1/↵) many (s, a) pairs in Freq�
to maximize dist1,(s,a) over to get dist1(n, k). By applying a union bound over all (s, a) pairs in Freq� and using the
conclusion of the previous paragraph, algorithm 3 correctly predicts the label kn for trajectory n with probability 1 � �

whenever Tn = ⌦
⇣
K3/2tmix

log4(1/(↵�))
�6↵3

⌘
and 8C2

q
K✏mod(�/2)

fmin↵
 �2/32.

By applying a union bound over incorrectly predicting kn for any of the Nclass(Nclass � 1)/2 pairs, we get that algo-
rithm 3 can recover the true labels with probability at least 1 � � for Tn = ⌦

⇣
K3/2tmix

log4(Nclass/(↵�))
�6↵3

⌘
, whenever

8C2

q
K✏mod(�/2)

fmin↵
 �2/32.

Finally note that due to inequality 19, we get that algorithm 3 can recover the true labels with probability at least 1� � for
Tn = ⌦

⇣
K3/2tmix

log4(Nclass/(↵�))
�6↵3

⌘
, whenever ✏mod(�/2)  C3�

4fmin↵
K .

I.1. Proof of Lemma 9
We recall the lemma here.

Lemma 9. We claim that there is a universal constant C1 so that for any (s, a) with dmin(s, a) � ↵/3, with probability at
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least 1� �,

���dist1,(s,a)�k�n,k(s, a)k22
���  O

 r
K + log(1/�)

G↵

!
+ 8C2

s
K✏mod(�/2)

fmin↵

whenever Tn � ⌦ (Gtmix log(G/�) log(1/↵)) and G � ⌦
⇣

log(1/�)
↵2

⌘
. Here, ✏mod(�) is a high probability bound on

kPk(· | s, a)� Ṽs,aṼT
s,aPk(· | s, a)k2 for all 1  k  K (which holds with probability at least 1� �).

Proof. The proof of this lemma is very similar to the proof of Lemma 4.

Notation: We say cn,i = N(n, i, s, a) as in the statement of the lemma and wn,i = N(n, i, s, a, ·). Let the joint distribution
of the observations over trajectory n be �. Let its marginals on the segments ⌦i be �i. Let the marginals on each of the G
single-step sub-blocks along with their next states be �i,g. Denote the product distribution

Q
g �i,g by Qi. Let G(n, s, a)

denote the set of indices where the state-action pair (s, a) is observed in trajectory n. For brevity, we will abbreviate
G(n, s, a) to G. Note that the size of this set is exactly cn,i.

We first prove a preliminary lemma, similar to lemma 5.

I.1.1. DECOMPOSITION OF | dist1,(s,a)�k�n,k(s, a)k22 |

Lemma 10. We claim that for each fixed value of G(s, a) (abbreviated to G), with probability at least 1� �, the following
bound holds.

���dist1,(s,a)�k�n,k(s, a)k22
��� 

2X

i=1

2
���P̂n,i(· | s, a)� EQi [P̂n,i(· | s, a) | G]

���
2
+ 8C2

s
K✏mod(�)

fmin↵
+ 4

⇣
max

i
1cn,i=0

⌘

(21)
Here cn,i = N(n, i, s, a) and ✏mod(�) is a high probability bound on kPk(· | s, a)� Ṽs,aṼT

s,aPk(· | s, a)k2 (satisfied with
probability > 1� �).

Remark 13. In the inequality,

• The first term is a concentration-type term, which will be broken into an “independent concentration" error and a
mixing error to account for the low but non-zero dependence across blocks.

• The second term accounts for subspace estimation error.

• The third term accounts for actually observing s, a in our blocks.

Proof. Define the following quantities.

�T
i = (P̂n,i(· | s, a)� P̂k(· | s, a))T Ṽs,a

�̄T
i = (EQi [P̂n,i(· | s, a) | G]� Pk(· | s, a))T Ṽs,a

We first establish a simple inequality, using the fact that |aT b� cT d|  kbk2ka� ck2 + kck2kb� dk2

| dist1,(s,a)��̄T
1 �̄2| = |�T

1 �2 � �̄T
1 �̄2|

 k�1 � �̄1k2k�2k2 + k�̄T
1 k2k�2 � �̄2k2

 2k�1 � �̄1k2 + 2k�2 � �̄2k2


2X

i=1

2kP̂n,i(· | s, a)� EQi [P̂n,i(· | s, a) | G]k2 +
2X

i=1

2kP̂k(· | s, a)� Pk(· | s, a)k2


2X

i=1

2kP̂n,i(· | s, a)� EQi [P̂n,i(· | s, a) | G]k2 + 4✏mod(�) (22)
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Also note the following computation.

EQi [P̂n,i(· | s, a) | G] = EQi


wn,i

cn,i
1cn,i 6=0 | G

�

=
EQi [wn,i | G]

cn,i
1cn,i 6=0

=
Pkn(· | s, a)cn,i

cn,i
1cn,i 6=0

= 1cn,i 6=0Pkn(· | s, a)

We define the following quantity, overloading notation from Lemma 5.

diffi = 1cn,i 6=0Pkn(· | s, a)� Pk(· | s, a)

Note that �̄i = diffTi Ṽs,a. We recall the following definition before proceeding to show the main inequality.

�n,k(s, a) = Pkn(· | s, a)� Pk(· | s, a)
����̄T

1 �̄2 � k�n,k(s, a)k22
��� =

���diffT1 Ṽs,aṼT
s,adiff2 � diffT1 diff2

���+
���diffT1 diff2 � k�n,k(s, a)k22

���

 kdiff1k2
���diff2 � Ṽs,aṼT

s,adiff2
���
2
+ kdiff1 ��n,k(s, a)k2 kdiff2k2

+ kdiff1k2 kdiff2 ��n,k(s, a)k2
 kdiff1k1

���diff2 � Ṽs,aṼT
s,adiff2

���
2
+ kdiff1 ��n,k(s, a)k2 kdiff2k1

+ kdiff1k1 kdiff2 ��n,k(s, a)k2
 2

���diff2 � Ṽs,aṼT
s,adiff2

���
2
+ 2 kdiff1 ��n,k(s, a)k2 + 2 kdiff2 ��n,k(s, a)k2

 2
���Pkn(· | s, a)� Ṽs,aṼT

s,aPkn(· | s, a)
���
2

+ 2
���Pk(· | s, a)� Ṽs,aṼT

s,aPk(· | s, a)
���
2

+ 21cn,1=0 kPkn(· | s, a)k2 + 21cn,2=0 kPkn(· | s, a)k2

 4C2

s
K✏mod(�)

fmin↵
+ 4

⇣
max

i
1cn,i=0

⌘

Notice that 4C2

q
K✏mod(�)
fmin↵

� 4✏mod(�) since ✏mod(�)  2, C2 � 2, K � 1, fmin,↵  1. Combining this and the
computation above with inequality 16, we have the following final bound.

���dist1,(s,a)�k�n,k(s, a)k22
��� 

2X

i=1

2
���P̂n,i(· | s, a)� EQi [P̂n,i(· | s, a) | G]

���
2
+ 8C2

s
K✏mod(�)

fmin↵
+ 4

⇣
max

i
1cn,i=0

⌘

(23)
where we remind the reader that cn,i = N(n, i, s, a).

I.1.2. BOUNDING THE CONCENTRATION-TYPE TERM
We bound the first term in the decomposition lemma (Lemma 10) with high probability.

Lemma 11. With probability at least 1� �, when Tn � ⌦
�
Gtmix log

�
G
� log(1/↵)

��
and G � ⌦

⇣
log(1/�)

↵2

⌘
, we have the

following bound.
���P̂n,i(· | s, a)� EQi [P̂n,i(· | s, a) | G]

���
2
 O

 r
K + log(1/�)

G↵

!

Proof. The proof of this lemma is verbatim the proof of Lemma 6 after the first inequality.
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I.1.3. COMBINING THE BOUNDS

We reuse Corollary 1 along with Lemma 11 applied to Lemma 10 to get the following bound with probability at least 1� �,

���dist1,(s,a)�k�n,k(s, a)k22
���  O

 r
K + log(1/�)

G↵

!
+ 8C2

s
K✏mod(�)

fmin↵

whenever Tn � ⌦ (Gtmix log(G/�) log(1/↵)) and G � ⌦
⇣

log(1/�)
↵2

⌘
.
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