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Abstract

We consider the stochastic linear contextual ban-
dit problem with high-dimensional features. We
analyze the Thompson sampling algorithm using
special classes of sparsity-inducing priors (e.g.,
spike-and-slab) to model the unknown parame-
ter and provide a nearly optimal upper bound
on the expected cumulative regret. To the best
of our knowledge, this is the first work that pro-
vides theoretical guarantees of Thompson sam-
pling in high-dimensional and sparse contextual
bandits. For faster computation, we use varia-
tional inference instead of Markov Chain Monte
Carlo (MCMC) to approximate the posterior dis-
tribution. Extensive simulations demonstrate the
improved performance of our proposed algorithm
over existing ones.

1. Introduction

Sequential decision-making, including bandits problems
and reinforcement learning, has been one of the most active
areas of research in machine learning. It formalizes the idea
of selecting actions based on current knowledge to optimize
some long term reward over sequentially collected data. On
the other hand, the abundance of personalized information
allows the learner to make decisions while incorporating
this contextual information, a setup that is mathematically
formalized as contextual bandits. Moreover, in the big data
era, the personal information used as contexts often has a
much larger size, which can be modeled by viewing the
contexts as high-dimensional vectors. Examples of such
models cover internet marketing and treatment assignment
in personalized medicine, among many others.

A particularly interesting special case of the contextual ban-
dit problem is the linear contextual bandit problem, where
the expected reward is a linear function of the features (Abe
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et al., 2003; Auer, 2002). Under this setting, (Dani et al.,
2008), (Chu et al., 2011) and (Abbasi-Yadkori et al., 2011)
showed polynomial dependence of the cumulative regret
on ambient dimension d and time horizon 7" in low dimen-
sional case. Specifically, (Dani et al., 2008) and (Abbasi-
Yadkori et al., 2011) proved a regret upper bound scaling
as O(dv/T), while (Chu et al., 2011) showed a regret upper
bound of the order O(v/dT). It is worthwhile to mention
that all of the aforementioned algorithms fall under a cer-
tain class of algorithms known as upper confidence bound
(UCB) type algorithms that rely on the construction of a spe-
cific confidence set for the unknown parameter. In contrast,
Thompson Sampling (TS) maintains uncertainty about the
unknown parameter in the form of a posterior distribution.
The first TS algorithm under this setting was proposed by
(Agrawal & Goyal, 2013) where they established a regret
bound of the order O(d?§~1VT1+9) for any 6 € (0, 1).

There is also a large body of work present in high-
dimensional sparse linear contextual bandit setup, where
the reward only depends on a small subset of features of the
observed contexts. This area has recently attracted consider-
able attention due to its abundance in modern reinforcement
learning applications (e.g, clinical trials, personalized rec-
ommendation systems, etc.) and has quite naturally spawned
theoretical research in this direction. Some of the important
references include (Bastani & Bayati, 2020; Wang et al.,
2018; Hao et al., 2020; Chen et al., 2022; Ariu et al., 2022;
Kim & Paik, 2019; Li et al., 2022; Oh et al., 2021; Li et al.,
2021) among others. A more detailed discussion on existing
literature in the high dimensional bandit field is provided
in Section 3.3. However, there has been very limited work
dedicated to analyzing TS algorithms in high-dimensional
sparse bandit setups. (Hao et al., 2021) proposed a sparse
information-directed sampling (IDS) algorithm which under
a special case reduces to a TS algorithm based on a spike-
and-slab Gaussian-Laplace prior. However, the regret bound
of IDS scales polynomially in d, which is sub-optimal in
the high-dimensional regime. In related work, (Gilton &
Willett, 2017) proposed a linear TS algorithm based on a
relevance vector machine (RVM) which again suffers from
sub-optimal dependence on d.

In this paper, we specifically focus on the high-dimensional
sparse linear contextual bandit (SLCB) setup and propose
a TS algorithm based on a sparsity-inducing prior that en-
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joys almost dimension-independent regret bound. While
TS algorithms have been known to empirically perform bet-
ter than optimism-based algorithms (Chapelle & Li, 2011;
Kaufmann et al., 2012), theoretical understanding of these is
challenging due to the complex dependence structure of the
bandit environment. Moreover, posterior sampling in high-
dimensional regression (which is the crucial step for TS in
high-dimensional SLCB), using MCMC, generally suffers
from computational bottleneck. Our work overcomes all
these challenges and makes the following contributions:

1. We use the sparsity inducing prior proposed in (Castillo
et al., 2015) for posterior sampling and establish poste-
rior contraction result for non-i.i.d. observations com-
ing from bandit environment and for a wide class of
noise distributions.

2. Using the posterior contraction result, we establish an
almost dimension free regret bound for our proposed
TS algorithm under different arm-separation regimes
parameterized by w. The algorithm enjoys minimax
optimal performance for w € [0,1). To the best of
our knowledge, this is the first work that proposes a
novel TS algorithm with desirable regret guarantees in
high-dimensional and sparse SLCB setup.

3. Our algorithm does not need the knowledge of model
sparsity level, unlike other algorithms such as LASSO-
bandit, MCP-bandit, ESTC, etc.

4. Finally, the prior allows us to design a computationally
efficient TS algorithm based on Variational Bayes.

The rest of the paper is organized as follows. In Section
2, we introduce the problem formally and discuss the as-
sumptions and prior distribution. In Section 3, we present
the crucial posterior contraction result and the main regret
bound for our proposed algorithm. In Section 4, we discuss
the challenges of drawing samples from the posterior in such
problems and present a faster alternative relying on varia-
tional inference. In Section 5, we present simulation studies
under different setups comparing our proposed method with
existing algorithms. Detailed proofs of results and technical
lemmas are deferred to the appendix.

Notation: Let R and R denote the set of real numbers and
the set of non-negative real numbers respectively. Denote
by RP the p-dimensional Euclidean space and SP~! :=
{r € R? | |lz||, = 1} the (p — 1)-dimensional unit
sphere. For a positive integer K, denote by [K] the set
{1,2,..., K}. Regarding vectors and matrices, for a vec-
tor v € RP, we denote by [[v|,,[[vl;,]lv]y,||v], the
4o, U1, €2, L norms of v respectively. We use I, to denote
the p-dimensional identity matrix. For a p X ¢ matrix M we

define the || M || := max;c[q /(M T M); ;.

Regarding distributions, N(u, o) denotes the Gaussian dis-
tribution with mean u and standard deviation o, Lap(\)

denotes the Laplace distribution with density f(z) =
(\/2) exp(—A|x|), and Beta(a, b) denotes the beta distri-
bution with parameters a, b. Regarding random variables,
[Z],,, denotes the Orlicz norm of the reandom variable Z,
ie., HZsz = inf{\ > 0 : Eexp(Z2?/)\?) < 2}. Fora
random vector X € RP, the corresponding Orlicz norm is
defined as || X|[,,, = sup,cgr-1 HUTXHW.

Throughout the paper, let O(-) denote the standard big-O
notation, i.e., we say a, = O(b,,) if there exists a univer-
sal constant C' > 0, such that a,, < Cb,, for all n € N.
Sometimes for notational convenience, we write a,, < b,, in
place of a,, = O(b,,). We write a,, < b, or a,, = O(b,,) if
an = O(by) and b, = O(ay,).

2. Problem Formulation

We consider a linear stochastic contextual bandit with K
arms. At time ¢t € [T, context vectors {x;(t)};c[x] are
revealed for every arm i. We assume z;(t) € R for all
i € [K],t € [T] and for every i, {x;(t)}+c[7) are i.i.d.
from some distribution P;. At every time step ¢, an action
a; € [K] is chosen by the learner and a reward r(t) is
generated according to the following linear model:

r(t) = 24,(t) " B* + €(t) (1

where 8* € R? is the unknown true signal and {e(t)};e[7)
are independent sub-Gaussian random noise, also indepen-
dent of all the other processes. We assume that the true
parameter 3* is s*—sparse, i.e., || 3*||, = s*. We denote by
S* the true support of 5%, i.e., S* = {j : B # 0}.

The goal is to design a sequential decision-making policy
7 that maximizes the expected cumulative reward over the
time horizon. To formalize the notion, we define the history
‘H: up to time ¢ as follows:

Hy = {(aT7T(T)’ {x’L(T)}lE[K]) ‘T E [t]}’

and an admissible policy 7 generates a sequence of random
variables a1, as, ... taking values in [K] such that a; is
measurable with respect to the o-algebra generated by the
previous feature vectors from each arm, observed rewards
of the chosen arms till the previous round and the current
feature vectors, i.e., measurable with respect to the filtration
Fi =0 (T, (7),r(7),z:(t); 7 € [t — 1],i € [K]).

Thus, an algorithm for contextual bandits is a policy ,
which at every round ¢, chooses an action (arm) a; based
on history H;_1 and current contexts. We note that al-
though contexts of the previous round corresponding to
arms that were not chosen are in F;, however, they do
not provide useful information on the parameter, since
we do not observe rewards corresponding to them un-
der the bandit feedback, and hence are not included in
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the history H;. To measure the quality of performance,
we compare it with the oracle policy 7* which uses the
knowledge of the true 5* to choose the optimal action
aj := argmax,c x)i(t) " f*. Define A;(t) to be the dif-
ference between the mean rewards of the optimal arm and
itharm attime ¢, i.e., A;(t) = xq: (£) T 8* —;(t) " B*. Note
that under the random-design assumption, a; is also random.
Then the regret at time ¢ is defined as regret(t) = A, (¢)
and the objective of the learner is to minimize the total regret
till time 7', defined as R(T") = ;¢ (7 regret(t). We also
define the matrix X; := (24, (1),...,24,(t))". The time
horizon 7' is finite but possibly unknown, but much smaller
compared to the ambient dimension of the parameter, i.e.
d > T. (Hao et al., 2021) refers to this regime as “data-
poor” regime; such a regime adds an extra layer of hardness
on top of the difficulty incurred by the sparse structure of f3.
We also assume that K is fixed and much smaller compared
to both d and T'.

2.1. Assumptions

In this section, we discuss the assumptions of our model.

Definition 2.1 (Sparse Riesz Condition (SRC)). Let M be
a d x d positive semi-definite matrix. The maximum and
minimum sparse eigenvalues of M with parameter s € [d]
are defined as follows:

STMS§

i TR

8:6#0,[I8llo<s ||J]]5

STMS

sup 2 -
5:520,[151l,<s [16]|5

¢min(3; M) =
(Z)max(s; M) =

We say M satisfies the SRC if 0 < min(s, M) <
Dmax(8; M) < 0.

Now we are ready to state the assumptions on the context
distributions, which are as follows:

Assumption 2.2 (Assumptions on Context Distributions).
We assume that

(a) For some constant ma.x € RT, we have that for all
i € [K], Pi([|z]lo < Tmax) = 1.
(b) For all arms ¢ € [K], the distribution P; is sub-

Gaussian, i.e., there exists a constant 19 > 0 such that
maxe g [|2i(t)]], <V forallt € [T].

(c) There exists a constant ¢ € R* such that for each
weSTIn{veR: v, < Cs*}and h € RT
Pi((z,u)®> < h) < Eh, forall i € [K], ,where C' €
(2, 00).

(d) The matrix 3; := E,.p,[zz "] has bounded maximum
sparse eigenvalue, i.e., Pmax (Cs™, X;) < ¢y, < 00, for
all i € [K], where C is the same constant as in part

©).

Assumption 2.2(a) basically tells that the contexts are
bounded; such assumptions are standard in the bandit litera-
ture to obtain results on regret bound that are independent
of the scaling of the contexts (or parameter). Assumption
2.2(b) says that all the arm-contexts are generated from sub-
Gaussian distributions with a common bound of the order
O(¥?) on the proxy-variance, for all time point ¢. This is
indeed a very mild assumption on the context distribution
and a broad class of distributions enjoys such property. For
example, truncated multivariate normal distribution with
covariance matrix [;, where the truncation is over the set
{u e R?: |ju|, < 1}is a valid distribution for the con-
texts. In comparison, most of the previous literature such as
(Kim & Paik, 2019; Oh et al., 2021; Li et al., 2022) assume
that ||z;(t)||, < L, for some constant L > 0. This condition
automatically implies that Assumption 2.2(b) holds with
9 = (L/log2)'/2. As aresult, the theory in (Kim & Paik,
2019; Oh et al., 2021; Li et al., 2022) can not accommodate
the aforementioned truncated multivariate normal distribu-
tion as in this case ||z;(t)||, = ©(v/d) and their analysis
yields O(+/d) dependence in the regret bound. Assumption
2.2(c) talks about anti-concentration condition that plays
a critical role in controlling the estimation accuracy of 3*.
This condition is also assumed by (Li et al., 2021) and a
variant (diverse covariates) of this condition is assumed in
(Ren & Zhou, 2020). Intuitively, this condition prohibits the
context features to fall along a singular direction. When u
is not constrained to be sparse, this condition implies that
the distribution of the contexts is not supported on a lower
dimensional sub-space, allowing diversity and in the con-
texts and leading to inherent exploration. Assumption 2.2(c)
captures this notion using the weaker condition where u is
only sparse. Existing works like (Oh et al., 2021; Kim &
Paik, 2019) try to capture this notion via compatibility/RE
condition which is a somewhat stronger assumption and can-
not be easily checked in practice. Assumption 2.2(c) is more
interpretable - under the mere existence of bounded density
for u " x;(t) (for all sparse u ), the condition holds. More-
over, The entire Assumption 2.2 does not need any existence
of pdf, whereas (Oh et al., 2021; Ariu et al., 2022) need the
relaxed symmetry assumption which requires the existence
of pdf. Lastly, from the discussion in Section 2.3 of (Ren
& Zhou, 2020), it follows that minimum sparse eigenvalue
assumption and relaxed symmetry assumption (both used
in (Ariu et al., 2022)) implies diverse covariate property
when K = 2. This suggests that Assumption 2.2(b) is very
mild. Lastly, Assumption 2.2(d) imposes an upper bound on
the maximum sparse eigenvalue of 3; which is a common
assumption in high-dimensional literature (Zhang & Huang,
2008; Zhang, 2010).

Next, we come to the assumptions on the true parameter 3*

Assumption 2.3 (Assumptions on the true parameter). We
assume the followings:
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(a) Sparsity and Soft-sparsity: There exist positive con-
stants s* € N and bmax € R such that ||5*]|, = s*
and |57l < bmax-

(b) Margin condition: There exists positive constants
A,,;A and w € [0,00], such that for h €

[A\/log(d)/T, A*} and for all ¢ € [T7,

P (a0 e ) < (5]

The first part of the assumption requires boundedness of
the true parameter 5* to make the final regret bound scale
free. Such an assumption is also standard in bandit literature
(Bastani & Bayati, 2020; Abbasi-Yadkori et al., 2011).

The second part of the assumption imposes a margin condi-
tion on the arm distributions. Essentially, this assumption
controls the probability of the optimal arm falling into h-
neighborhood of the sub-optimal arms. As w increases, the
margin condition becomes stronger as the sub-optimal arms
are less likely to fall close to the optimal arms. As a result,
it becomes easier for any bandit policy to distinguish the
optimal arm. As an illustration, consider the two extreme
cases w = oo and w = 0. The w = oo case tells that there
is a deterministic gap between rewards corresponding to the
optimal arm and sub-optimal arms. This is the same as the
“gap assumption” in (Abbasi-Yadkori et al., 2011). Thus,
quite evidently it is easy for any bandit policy to recognize
the optimal arm. This phenomenon is reflected in the re-
gret bound of Theorem 5 in (Abbasi-Yadkori et al., 2011),
where the regret depends on the time horizon 7" only though
poly-logarithmic terms. In contrast, w = 0 corresponds
to the case when there is no apriori information about the
separation between the arms, and as a consequence, we pay
the price in regret bound by a v/T term (Hao et al., 2021;
Agrawal & Goyal, 2013; Chu et al., 2011).

The margin condition with w = 1 has been assumed in
(Goldenshluger & Zeevi, 2013; Bastani & Bayati, 2020;
Wang et al., 2018) and will be satisfied when the density of
x;(t) T B* is uniformly bounded for all i € [K]. (Li et al.,
2021) also discusses an example where the margin condition
holds for different values of w.

The final assumption is on the noise variables:

Assumption 2.4 (Assumption on Noise). We assume that
the random variables {¢(t) }+<|7] are independent and also
independent of the other processes and each one is o —Sub-
Gaussian, i.e., E[e*®)] < ¢7"*/2 forall t € [T] and a €
R.

Various families of distribution satisfy such a requirement,
including normal distribution and bounded distributions,
which are commonly chosen noise distributions. Note that
such a requirement automatically implies that for every
t € [T], E[e(t)] = 0 and Var[e(t)] < o2.

2.2. Thompson Sampling and Prior

We discuss the basics of Thompson sampling and introduce
the specific structure of the prior that we use and analyze.
Typically, we place a prior IT on the unknown parameter (3
in our case) along with a specified likelihood model on the
data, and do the following: while taking action, we draw
a sample from the posterior distribution of the parameter
given the data and use that as the proxy for the unknown
parameter value, hence in our case at time ¢, we draw a sam-
ple B¢ ~ II(3|#;_1) and choose a; = arg max; x;(t)T f;
as the action. While simple enough to describe, Thompson
sampling has been difficult to analyze theoretically, par-
ticularly because of the complex dependence between the
observations due to the bandit structure. The choice of prior
plays a crucial role, as we shall see, in providing the correct
exploration-exploitation trade-off. In the high-dimensional
sparse case that we are dealing with, this choice is specifi-
cally important since we do not wish to have a linear depen-
dence on the dimension d in our regret bound - which would
be incurred if we use the normal prior-likelihood setup of
(Agrawal & Goyal, 2013), which analyzes Thompson sam-
pling in contextual bandits.

While there is a rich literature on Bayesian priors for high
dimensional regression, including horseshoe priors and slab-
and-spike priors among others, we shall be using the com-
plexity prior introduced in (Castillo et al., 2015). Specifi-
cally, we consider a prior IT on /3 that first selects a dimen-
sion s from a prior 74 on the set [d], next a random subset
S C [d] of size |S| = s and finally, given S, a set of nonzero
values (s := {f3; : i € S} from a prior density g5 on R®.
Formally, the prior on (S, 3) can be written as

(5.5) = ma(IS]) g5 (Bs)o(Bse)s (@)

(51)

where the term &g(8gsc) refers to coordinates [g- be-
ing set to 0. Moreover, we choose gg as a product of
Laplace densities on R with parameter \/o, ie., 8; —
(20)~*Xexp (—\|B;| /o) for all i € S. Note that, here we
assume that the noise level o is known. In practice, one can
add another level of hierarchy by setting a prior on ¢ but in
this paper we do not pursue that direction.

The prior 74 plays the role of expressing the sparsity of the
parameter. This is in contrast to other priors like product
of independent Laplace densities over the coordinates (typ-
ically known as Bayesian LASSO), where the Laplace pa-
rameter plays the role of shrinking the coefficients towards 0.
However, in our case, the scale parameter \ of the Laplace
does not have this role and we assume that during the ¢th
round we use A € [(5/3)\, 2)\;], where \; < \/tlogd,
which is the usual order of the regularization parameter used
in the LASSO.

The choice of the prior 74 is very critical; it should down
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weight big models but at the same time give enough mass
to the true model. Following (Castillo et al., 2015), we
assume that there are constants A, Ao, A3, A4 > 0 such
that Vs € [d]

Ayd M ma(s — 1) < mq(s) < Agd™Mmg(s — 1), (3)

Complexity priors of the form 74(s) o ¢~ *d~%* for con-
stants a, c satisfy the above requirement. Moreover, slab
and spike priors of the form (1 — 7)dg + rLap(A/co) inde-
pendently over the coordinates satisfy the requirement with
hyperprior on r being Beta(1, d“).

Finally, we specify the data likelihood that is crucial for the
TS algorithm. At each time point ¢ € [T'], given the obser-
vations coming from model (1), we model the {e(7)},<; as
ii.d. N(0,0?). We emphasize that this Gaussian assumption
is only required for likelihood modeling and our main results
hold under any true error distribution satisfying Assumption
2.4. The same strategy is also used in (Agrawal & Goyal,
2013) for the LinTS algorithm in low-dimensional setting.

3. Main Results

3.1. Posterior contraction

Now, we present an informal version of the main posterior
contraction result for the estimation of 5. A more detailed
version of the result with exact rates, along with the measure
theoretic details, is in Appendix C.

Theorem 3.1 (Informal). Write vy = (r(1),...,7(t))",
and let the Assumption 2.2-2.4 hold with C =
O(¢p,*¢K1logK), and K > 2,d > T. With A =<
Tmax(tlogd)'/? and e, 4. = s*{(log d+logt)/t}}/?, the
following holds as t — co:

Ert]-_-[ <ﬁ — 5*H1 z U€t7d75 I‘t,Xt> a—a 0

The above result is similar to Theorem 3 in (Castillo et al.,
2015) under classical linear regression setup with i.i.d. ob-
servations and Gaussian noise. However, we generalize their
result under bandit setup and sub-Gaussian noise by care-
fully controlling the correlation between noise and observed
contexts, which is crucial for our regret analysis.

3.2. Algorithm and regret bound

In this section we introduce the Thomson sampling algo-
rithm for high-dimensional contextual bandit, a pseudo-code
for which is provided below in Algorithm 1. Similar to the
Thompson sampling algorithm in (Agrawal & Goyal, 2013),
in the tth round Algorithm 1 sets the a specific prior on 3
and updates it sequentially based on the observed rewards
and contexts. In particular, it chooses the prior described in

(2) with an appropriate choice of round-specific prior scal-
ing A; and updates the posterior using the observed rewards
and contexts until (¢ — 1)th round. Then a sample is gen-
erated from the posterior and an arm a; is chosen greedily
based on the generated sample.

Now, we show that the Thompson sampling algorithm
achieves desirable regret upper bound.

Theorem 3.2. Let the Assumption 2.2-2.4 hold with C =
O(¢p,%*¢Klog K), and K > 2,d > T. Define the quan-
tity k(€,9, K) := min{(4c3 K&€9?)~1,1/2} where c3 is a
universal positive constant. Also, set the prior scaling \; as
follows:

At = Tmax\/2t(logd + logt).

Then there exists a universal constant Cy > 0 such that we
have the following regret bound for Algorithm 1:

(5/3)A¢ < A < 2),

E{R(T)} S Ih + Lo,

where,

. bmaxxmax¢u192£(K 10gK) *
= {min{mQ(f,ﬁ7K),1ogK} o log(Kd),

*l4w 14w 1—w
s (IOEZ)i) 2 T 2 , fOrUJ c [071>7

(bl+w

2] log T)log T
o2 (2 [Ogdz(:g | log , forw =1,

I, =
$2 s*2[log d+log T
oD s [OgA* og 7] , forw € (1,00)
*2
‘1)2 (s [logAdJrlogT]) ’ forw = 00,

and ® = oz EK (2+40A; " + CoK a2

max maxAézl) *

Discussion on the above result: The regret bound pro-
vided by Theorem 3.2 shows that the regret of the algo-
rithm grows poly-logarithmically in d, i.e., E{R(T)} =
O((log d)HTw ), when w € [0, 1); logarithmically in d, i.e.,
O(log d) when w € [1, co]. Meanwhile, the expected cumu-
lative regret depends polynomially in 7', i.e., E{R(T)} =
O(T*=") when w € [0,1); ploy-logarithmically in T
ie, E{R(T)} = O((logT)?), when w = 1. Inw €
(1, oo] regime, the expected cumulative regret depends poly-
logarithmically in both the time horizon 7" and ambient
dimension d. As T < d, the expected regret ultimately
scales as O(log d). Comparing our upper bound result with
minimax regret lower bound established in Theorem 1 of
(Lietal., 2021), it follows that our algorithm enjoys optimal
dependence on both ambient dimension d and time-horizon
T whenw € [0,1). Inw = 1 region, the regret upper bound
in the above theorem is optimal up to a O(log T') term. To
the best of our knowledge, there does not exist any result
on minimax lower bound in the regime w > 1 in the high-
dimensional linear contextual bandit literature. It is worth
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mentioning that this is an upper bound on the expected (fre-
quentist) regret, as compared to Bayesian regret which is
often considered for Thompson sampling based algorithms.

Algorithm 1 Thompson Sampling Algorithm
Ho = 0.
fort=1,---,T do
if t < 1 then
Choose action a; uniformly over [K].
end if
if ¢ > 1 then
Set At = Zmax
(5A¢/3,2M).
Generate sample 8; ~ II(- | H;—1) with prior IT in (2)-(3),
A = A\ and Gaussian likelihood. _
Play arm: a; = arg max; e g mi(t)—rﬁt.
end if
Observe reward r(t).
Update Hs « Hi—1 U {(at,7a,(t), Za, (1))}
end for

2t(logd +logt) and choose \; €

Intuitively, the initial term I} in regret upper bound in Theo-
rem 3.2 describes the regret caused by the “burn-in” period
of exploring the space of contexts and it does not contribute
to the asymptotic regret growth. Note that we consider
running Thompson sampling from the very beginning, with-
out an explicit random exploration phase, in contrast to
most of the existing algorithms; the distinction between the
burn-in phase and the subsequent phase is only a construct
of our theoretical analysis. Furthermore, the constant A,
plays the role of gap parameter which commonly appears in
a problem-dependent regret bound (Abbasi-Yadkori et al.,
2011). Note that, for w = 0, we get a problem-independent
regret bound of the order O(s*v/T log d). The appearance
of the /T, term is not surprising, as the condition w = 0
poses no prior knowledge on the arm-separability, Thus, in
the worst case, the context vectors may fall into each other,
making the bandit environment harder to learn. In contrast,
as w increases the optimal arm becomes more distinguish-
able than the sub-optimal arms and the bandit environment
becomes easier to learn. As a result, the effect of the time
horizon becomes less and less severe as w increases. In par-
ticular, when w € [1, 0o], the time horizon does not affect
the asymptotic growth of the regret bound. Finally, as we
mainly focus on the case when the number of arms is very
small, the quantity ® roughly has an inflating effect of O(1)
on the regret bound.

Sketch of the proof of Theorem 3.2: While a self-
contained and detailed proof of the above result is given
in the Appendix, here we go through the main steps and
ideas of the proof. The proof is broadly divided into 3 parts
for clarity:

(i) In Section B.1 we will first show that the estimated co-
variance matrix ¥; := X," X;/t enjoys SRC condition

with high probability for sufficiently large ¢. In our
analysis, we carefully decouple this complex depen-
dent structure and exploit the special temporal depen-
dence structure of the bandit environment to establish
SRC property of X;.

(i) Next, in Section B.2 we will Aestablish a compatibil-
ity condition for the matrix ;. We use a Transfer
Lemma (Lemma B.9) which essential/l\y translates the
uniform lower bound on ¢, (C's*, X;) to a certain
compatibility number.

(iii) Finally, in Section B.3, under the compatibility condi-
tion we use the posterior contraction result in Theorem
3.1 to give bound on the per round regret A, (t).

3.3. Comparison with existing literature

Over the past few years, the problem of high dimensional
stochastic linear contextual bandit has attracted significant
attention and has quite evidently generated a large body of
work in this field under different problem settings. How-
ever, there are mainly two types of settings that have been
considered in high-dimensional linear bandit literature: (S1)
Each arm has different parameters 3; for ¢ € [K] and only
one context vector x(t) is generated at every time point
t, (S2) K different contexts x;(t) are generated for each
arm ¢ € [K] at every time point ¢ and all of the arms have
one common parameter 5*, which is also the setting of this

paper.

There has been an ample amount of work in both of these
settings. To mention a few, (Wang et al., 2018; Bastani &
Bayati, 2015; Wang & Cheng, 2020) consider the setting in
(S1), whereas (Kim & Paik, 2019; Li et al., 2021; Oh et al.,
2021) consider the setting in (S2). It is worth mentioning
that most of these works assume very strong compatibility
or restricted eigenvalue (RE) conditions on the feature dis-
tribution, which is in general hard to check in real-world
applications. Instead, in this paper we show that TS algo-
rithm enjoys desirable regret bound under much weaker and
easily interpretable assumptions on the feature distribution.
There is also a parallel line of work that considers the set
of features or contexts to be infinite but fixed (Hao et al.,
2020; 2021; Jang et al., 2022), which is in sharp contrast
to the setting considered in this paper. Moreover, in the
setup of these works, the optimal arm remains the same
for every round. On the other hand, in our setting, due to
the randomness of the observed contexts, the optimal arm
does not necessarily remain the same in every round. Lastly,
(Hao et al., 2021) and (Hao et al., 2022) study the properties
of information-directed sampling and provide a guarantee
for Bayesian regret, which is much weaker than the result
in Theorem 3.2.

Now we compare the results and assumptions of this paper
with existing literature in SLCB setting. Table 1 shows the
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Table 1. This table compares the regret bounds and working assumptions of this paper with existing works under different SLCB settings.
We focus four most important assumptions: (1) ‘Margin’ - similar to Assumption 2.2(b) with w € {0, 1}, (2)‘Comp/RE’- Compatibility
or RE condition, (3) ‘¢2-bound’- boundedness of contexts in £2-norm, (4) ‘Pdf exst’- existence of pdf. v' symbol indicates that the
corresponding condition is assumed in the paper. v’ (x) symbol indicates that (Chen et al., 2022) assumes that the coordinates of the
contexts are i.i.d and the second moments are lower bounded, which is typically much stronger than compatibility or RE condition.

Setting Paper Regret Bound Margin  Comp/RE ~ /2-bound Pdf exst
Bastani & Bayati (2015) O(s**[logd + log T]?) v v
(S1 Wang et al. (2018) O(s**[logd + log T log T) v v
Wang & Cheng (2020) O(s*?[logd + log T)?) v v
Kim & Paik (2019) O(s*V/T log(dT)) v v
Oh et al. (2021) O(y/s*T'log(dT)) v v v
. O(s*/Tlogd)
S2 Liet al. (2021
®2) tetal ( ) { O(s**[logd + log T log T) v
Li et al. (2022) O(s*Y/31?/3, /log(dT)) v v
. O(s**logd + Vs*T) v v
A 1. (2022
riv et al. (2022) { O(s*?logd + s* log T) v v v
Chen et al. (2022) O(s*VTlog?(Td)) v (%)
. O(s*/Tlogd)
Thi
1S paper { O(s**[logd + log T log T) v

comparison of regret bound and working assumptions of
different papers under both (S1) and (S2) settings. Under
the setup of (S1), (Bastani & Bayati, 2015) and (Wang
et al., 2018) proposed the LASSO-bandit algorithm and
MCP bandit algorithm respectively, and under the margin
condition w = 1, they established a regret bound of the order
O((s*logT)?)!. However, Theorem 3.2 accommodates
a broader range of w and our method does not need the
knowledge of w, but enjoys the same regret upper bound for
w = 1. Moreover, unlike LASSO-bandit or MCP-bandit,
our method does not require forced sampling which could
be expensive in certain marketing applications.

Under the setting in (S2), (Kim & Paik, 2019) and (Ariu
et al., 2022) proposed Doubly-robust LASSO and Threshold
LASSO bandit algorithms respectively. Under strong com-
patibility or RE condition they established O(v/T) regret
bound. With margin corldition w =1, (Ariu et al., 2022) im-
proved their bound to O(log T'). (Li et al., 2022) proposed
“Explore Structure then Commit” framework and established
regret bound of the order O(T?/3). However, all of these
algorithms require the knowledge of true sparsity s*, and
as mentioned before, also need some type of compatibil-
ity/RE conditions or some other strong conditions on the
covariance structure and density functions of the contexts.
In comparison, our theory does not assume any strong com-
patibility/RE condition on the context distribution and the
TS algorithm also does not require the knowledge of true
sparsity but still enjoys better or comparable regret bound.
In some recent works, (Oh et al., 2021; Li et al., 2021) also

'O(-) hides the logarithmic dependence on d or T'.

proposed LASSO-based algorithms which do not require the
knowledge of true sparsity s*. It is worth mentioning that
under a similar set of assumptions as in this paper, (Li et al.,
2021) showed that the LASSO-L1 confidence ball algorithm
enjoys similar regret bounds as in Theorem 3.2 for differ-
ent values of w. However, the Sparsity Agnostic LASSO
algorithm proposed in (Oh et al., 2021) needs a strong RE
and balanced covariance assumptions. Lastly, (Chen et al.,
2022) recently proposed Sparse LinUCB and SupLinUCB
algorithm which relies on best subset selection and showed
that it enjoys O(ﬁ ) regret bound. However, they assume
that the contexts are sub-Gaussian with independent coor-
dinates, which is far stronger than compatibility condition
and even unrealistic in most real-world applications.

4. Computation

In this section, we discuss the computational challenges
and how these are overcome by using Variational Bayes
(VB). While priors as (2) have been shown to perform well,
both empirically and in theory, the discrete model selec-
tion component of the prior makes it challenging to allow
computation and inference on the posterior. For § € R¢,
inference using the slab and spike prior requires a combi-
natorial search over 2¢ possible models, which in the case
of high dimension is computationally infeasible. Fast algo-
rithms are known only in the special diagonal design case
and traditional Markov Chain Monte Carlo methods have
very slow mixing in such high dimensional cases. Thus,
following (Ray & Szabd, 2021) we use Variational Bayes
to make computations faster. Specifically, in the sampling
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step of Algorithm 1, we consider the VB approximation of
the posterior II(- | H;_1) arising from slab and spike prior
with Lap(\ /o) slab in the mean-field family

d
QiN(uj, 7) + (1= 7;)80] : (1, 05,7) ER ¢,

j=1

where R = R x RT x [0,1]. We use the sparsevb
package (Clara et al., 2021) in R to use the Coordinate
Ascent Variational Inference (CAVI) algorithm proposed in
(Ray & Szab6, 2021) to obtain the VB posterior. This makes
the Thompson sampling algorithm much faster as one can
efficiently obtain samples from the VB posterior due to its
structure. The details of the algorithm for the Variational
Bayes Thompson Sampling (VBTS)? are in the appendix
(see Section E).

5. Numerical Experiments

In both simulations and real data experiments, we present
results corresponding to A; = 1 for all ¢ € [T']. Recall that
Theorem 3.2 suggests that in ¢th round A\; < /tlogdis a
reasonable choice for the exact Thompson sampling algo-
rithm. However, in practice, we noticed that such choices
of \; lead to numerical instability. Some recent findings
in (Ray & Szabd, 2021) suggest that \; in the order of
O(v/tlog d/s*) should be an appropriate choice, which is
smaller than the predicted order of \; in our main theo-
rem. Motivated by this, we also present the simulation
results for synthetic data experiments with \; = \,+/ for
A« € {0.2,0.3,0.4,0.5} in the Appendix A.2. We found
the performance of VBTS to be robust with respect to the
choice of the tuning parameter ;.

5.1. Synthetic data

In this section, we illustrate the performance of the VBTS
algorithm on a simulated data set. As a benchmark, we
consider, DR-LASSO (Kim & Paik, 2019), LASSO-L1 con-
fidence ball algorithm (Li et al., 2021), ESTC (Li et al.,
2022), sparsity agnostic (SA) LASSO (Oh et al., 2021),
thresholded (TH) LASSO (Ariu et al., 2022), and TS algo-
rithm based on Bayesian LASSO (Park & Casella, 2008)
(BLASSO TS) to compare the performance of VBTS (Al-
gorithm 2). In this section, we only include the methods
that are designed for the high-dimensional linear contextual
bandit. Simulation results for LinUCB (Abbasi-Yadkori
et al., 2011) and LinTS (Agrawal & Goyal, 2013) can be
found in Appendix A .4.

2Codes are available online: Github 1link.

EQUICORRELATED (EC) STRUCTURE

We set the number of arms K = 10 and we generate the
context vectors {z;(¢)}X; from multivariate d-dimensional
Gaussian distribution N4(0, ¥), where %;; = pli=7I"! and
p = 0.3. We consider d = 1000 and the sparsity s* = 5.
We choose the set of active indices S* uniformly over all
the subsets of [d] of size s*. Next, for each choice of d, we
consider two types generating scheme for 5:

* Setup 1: {U;}ics- idd Uniform(0.3, 1) and set 3; =
Ui(Xpes- UP)7V21(j € S%).

e Setup 2:  {Zi}ics- i1 d N(0,1) and set 8; =

Zi(Ypese Z2)7H?1(j € 57).

We run 40 independent simulations and plot the mean cumu-
lative regret with 95% confidence band in Figure 1a-1b. In
all the setups, we see that VBTS outperforms its competitors
by a wide margin.

AUTOREGRESSIVE (AR) STRUCTURE

We consider the same setups as in the EC structure above,
with the exception of the context distribution. Here we gen-
erate the context vectors {z;(¢)}X; from N4(0, X) where
Yij = ¢!~ and ¢ = 0.3. VBTS also enjoys superior
empirical performance under this setup (see Figure 1c-1d).
Table 2 shows the mean execution time (across Setup 1
and 2) of all TS algorithms for both EC and AR structure
simulations. Among the class of TS algorithms, VBTS
outperforms its other competing algorithms.

Table 2. Time comparison among the competing algorithms.

. Mean time of execution (seconds)
Type Algorithm
Equicorrelated| Auto-regressive
LinTS 1344.39 1346.46
TS BLASSO TS| 1511.68 1455.53
VBTS 29.33 27.65

5.2. Real data - gravier Breast Carcinoma Data

We consider breast cancer data gravier (microarray
package in R) for 168 patients to predict metastasis of breast
carcinoma based on 2905 gene expressions (bacterial artifi-
cial chromosome or BAC array). The goal of the learner is
to identify the positive cases.

Similar to (Kuzborskij et al., 2019; Chen et al., 2021), in
our experimental setup, we convert the breast cancer clas-
sification problem into 2-armed contextual bandit problem.
More details about the data and reward generation process
are provided in Appendix A.3. We perform 10 independent
Monte Carlo simulations and plot the expected regret of
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Figure 1. Cumulative regret of competing algorithms.

VBTS in Figure 2 along with its competitors. In this ex-
periment, we omit LinUCB and LinTS algorithms as they
were performing far worse compared to the existing ones
in Figure 2. The figure shows that VBTS and LASSO-L1
confidence ball algorithms are by far the clear winners in
terms of cumulative regret. However, upon closer look, we
see that VBTS is slightly better than LASSO-L1 confidence
in terms of cumulative regret. In terms of accuracy, LASSO-
L1 and VBTS are in the same ball park as seen in Table
3.

Breast cancer data

—— DRLasso
70 Lasso_L1
— ESTC
601 — vBTS

5

Cumulative Regret

150 200 250 300

Time Horizon

0 50 100

Figure 2. Cumulative regret plot for breast cancer data set.

Table 3. Classification accuracy of competing algorithms.

DR-LASSO
65.63

LASSO-L1
81.20

ESTC
73.32

VBTS
81.88

Algorithm

Accuracy(%)

6. Conclusion

In this paper, we consider the stochastic linear contextual
bandit problem with high-dimensional sparse features and a
fixed number of arms. We propose a Thompson sampling
algorithm for this problem by placing a suitable sparsity-
inducing prior on the unknown parameter to induce sparsity.
We also develop a crucial posterior contraction result for
non-i.i.d. data that allows us to obtain an almost dimension
independent regret bound for our proposed algorithm. We
explicitly point out the dependences on d and T for different
arm-separation regimes parameterized by w, which is also
minimax optimal for w € [0,1). Moreover, the choice of
prior allows us to devise a Variational Bayes algorithm that
enjoys computational expediency over traditional MCMC.

We demonstrate the superior performance of our algorithm
through extensive simulation studies. We finally perform an
experiment on the gravier dataset, for which our method
performs better compared to other existing algorithms.

Now we point the readers toward some of the natural re-
search directions that we plan to cover in our future works.
The regret analysis, similar to most of the recent works in
high dimensional contextual bandits, relies on upper bound-
ing the regret through estimation of the parameter, i.e., we
rely on the estimation of 5* to be able to provide mean-
ingful regret bound. However, this should not be required
- as an example, consider the case where the first coordi-
nate of z;(t) is O for all ¢ € [K],¢ € [T]. Then the first
coordinate of 3* is not estimable, however, this does not
pose any problem to designing a sensible policy since this
coordinate does not appear in the regret. Unfortunately, As-
sumption 2.2(c) is not satisfied for such degeneracy in the
contexts and as a result, it would require a modified analysis
of the regret bound. Secondly, we underscore the fact that
in our setup we adopt the Variational Bayes framework only
to sidestep the computational hurdles of MCMC arising
from a myriad of challenges such as slow mixing times of
the chains, lack of easy implementation, etc. However, in
high-dimensional regression setup (Yang et al., 2016) has
proposed Metropolis-Hastings algorithms based on trun-
cated sparsity priors that do not meet the above roadblocks.
It could be very well possible that some other prior structure
will allow us to design more efficient MCMC algorithms
with faster mixing times in the high-dimensional SLCB
setup along with theoretical guarantees. Finally, we also
plan to analyze Thompson sampling for high-dimensional
generalized contextual bandit problems.
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A. Details of Simulations
A.1. Simulation details for AR(1) structure

We set the number of arms K = 10 and we generate the context vectors {x;(t)}/ | from multivariate d-dimensional
Gaussian distribution Ng(0, X), where ¥;; = #!"=7 and ¢ = 0.3. We consider d = 1000 and the sparsity s* = 5. We
choose the set of active indices S* uniformly over all the subsets of [d] of size s*. Next, for each choice of d, we consider
two types generating scheme for /3:

o Setup 1: {U; }ies~ e Uniform(0.3, 1) and set 3 as the following:

U; r *
ﬁj: V2 esx Uzw 1fj€S ’ .
0, otherwise.

* Setup 2: {Z; }ics b Normal(0, 1) and set /3 as the following:
L ifjes,
Bi=<V 2ees Zi

0, otherwise.

We run 40 independent simulations and plot the mean cumulative regret with 95% confidence band in Figure 1. In all the
setups, we see that VBTS outperforms its competitors by a wide margin. Similar to the previous simulation example, in
this case also Table 2 shows that VBTS is far better in terms of mean execution time than its competitors in the class of TS
algorithms.

A.2. Siumlation for different choices of \

As discussed in the first paragraph of Section 5, for each of these simulation settings, we tried a few choices for the
tuning parameter ;. In addition to the default choice of A; = 1 (for all time points t), we also explored the performance
of the algorithm under growing ), as required by our theoretical results. In particular, we tried \; = A/t for A\, €
{0.2,0.3,0.4,0.5}. For comparison, we only kept the faster optimism based methods DRLasso, Lasso-L.1 and ESTC. We
found the results to be roughly robust to the choice of this tuning parameter. The results are summarized in Figure 3 and
Figure 4 below. However, we found that larger values of A, lead to numerical issues, we conjecture that this is an artifact of
the variational Bayes approximation, rather than the prior itself. For our simulation settings, the choice v/#log d/s* ~ 0.5v/t
and hence by the findings in (Ray & Szabd, 2021), values of )\, higher than this may yield inaccurate Variational Bayes
estimation.
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Figure 3. Regret bound for equi-correlated design for different tuning parameter choices
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Figure 4. Regret bound for auto-regressive design for different tuning parameter choices

A.3. Details of real data experiment

We consider breast cancer data gravier (microarray package in R) for 168 patients to predict metastasis of breast
carcinoma based on 2905 gene expressions (bacterial artificial chromosome or BAC array). (Gravier et al., 2010) considered
small, invasive ductal carcinomas without axillary lymph node involvement (T1T2NO) to predict metastasis of small
node-negative breast carcinoma. Using comparative genomic hybridization arrays, they examined 168 patients over a
five-year period. The 111 patients with no event after diagnosis were labeled good (class 0), and the 57 patients with early
metastasis were labeled poor (class 1). The 2905 gene expression levels were normalized with a log, transformation.

Similar to (Kuzborskij et al., 2019; Chen et al., 2021), in our experimental setup we convert the breast cancer classification
problem into 2-armed contextual bandit problem as follows: Given the gravier data set with 2 classes, we first set Class
1 as the target class. In each round, the environment randomly draws one sample from each class and composes a set of
contexts of 2 samples. The learner chooses one sample and observes the reward following a logit model. In particular, we
model the reward as

r(t) =1 {P(Selected class = 1)

T p*
= 4
P(Selected class = 0) } To 7 elt),

where a; € {1,2} is the selected arm at round ¢. Thus, small cumulative regret insinuates that the learner is able to
differentiate the positive patients eventually. Such concepts can be used for constructing online classifiers to differentiate
carcinoma metastasis from healthy patients based on gene expression data. However, in practice, we can not measure
the regret defined in (2), unless we have the knowledge of 3*. To resolve this issue, we first fit a logit model on the
whole gravier data set and consider the estimated B as the ground truth and report the expected regret with respect to
the estimated 3. As reported in (Gravier et al., 2010), 24 (out of 2905) BACs showed statistically significant difference
(comparing Cy3/Cy5 values) between the two groups, motivating the use of a sparse logit model in our case. The estimated
B* in our sparse logistic model on the dataset had a sparsity of 18 using the dataset. In addition to this, we also treat the
estimated noise variance from the fitted logit model as the true noise variance of the error induced by the environment in
each round.

A.4. More simulations

We set the number of arms K = 10 and we generate the context vectors {x;(¢)}X, from multivariate d-dimensional
Gaussian distribution N4 (0, ¥), where X;; = pli=7I"! and p = 0.3. We consider d = 1000 and the sparsity s* = 5. We
choose the set of active indices S* uniformly over all the subsets of [d] of size s*. Next, for each choice of d, we consider
two types generating scheme for /3:

« Setup 1: {U;}ics- "~ Uniform(0.3,1) and set Bi =Uj(Xeq- UB)"Y?1(j € 5%).

* Setup 2: {Zi}ics: % N(0,1) and set B = Z;(X 5. 22)7V/21(j € S¥).

13
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We run 40 independent simulations and plot the mean cumulative regret with 95% confidence band in Figure 5. In all the
setups, we see that VBTS outperforms its competitors by a wide margin. VBTS also enjoys superior empirical performance
under the autoregressive (AR) model (see Figure 6) with auto-correlation coefficient 0.3.
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Figure 5. Regret bound for equi-correlated design: (Left) Setup 1, (Right) Setup 2
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Figure 6. Regret bound for AR(1) design: (Left) Setup 1, (Right) Setup 2
B. Proof of Theorem 3.2

In this section, we present the detailed proof of Theorem 3.2. First, for clarity of presentation, we introduce some notations.
We use X to denote the matrix (24, (1), ..., 74, ()" € R Given this, we denote the covariance matrix Xy = X, X;/t.
Next, we define the set

S (s) 28T N {v : Jully < s}

We also define the following:

Definition B.1. For a index set I C [d] and @ € RT, we define the restricted cone as

Call) = {v € B : fJure], < oy, vr # 0}

In high-dimensional literature one typically assumes compatibility condition on the design matrix X, i.e.,

* X6, 5%
(bcomp(s ,X) = M

= >0, 4
seCr(s*)  tY/2]d]|, @)
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where S* = {j : B; # 0}. This is mainly to guarantee the estimation accuracy of high-dimensional estimators like LASSO
(Bickel et al., 2009) or to show the posterior consistency in Bayesian high dimensional literature (Castillo et al., 2015).

As discussed in the main paper, we prove the theorem in three parts, the subsequent sections deal with each part separately.

*Proof outline In this section we first give a brief outline of the proof and discuss technical difficulties. We have three major
components in this proof:

(1) In Section B.1 we will first show that that the gram matrix it enjoys SRC condition with high probability for sufficiently
large ¢. Based on this threshold on ¢, the burning time 7} is chosen. The main difficulty here lies in that fact that the
context sequence (24, (1),...,z,,(t)) are in general highly dependent on each other. Thus, existing high-dimensional
concentration results are not directly applicable due to the inherent bandit environment. In our analysis we carefully
decouple this complex dependent structure and exploit the special temporal independence structure of the bandit
environment to establish SRC property of >J;.

(i) Next, in Section B.2 we will establish the compatibility condition (4) for the matrix S Again, due to the temporal
dependence structure, we can not use the results from (Raskutti et al., 2010). Moreover, those results are only applicable
for independent multivariate Gaussian design matrices, which may not be true in our case. Hence, we resort to different
tools to show the compatibility condition. Essentially the main ingredient of the proof is the Transfer Lemma B.9
which essentially translates the uniform lower bound on ¢, (C's*, 3;) to qgcomp(S*), for sufficiently large C.

(iii) Finally, in Section B.3, under the compatibility condition we use the posterior contraction result from (Castillo et al.,
2015) to give bound on the per round regret A, (t). However, it is not readily trivial that the posterior contraction
result is applicable due to the same temporal dependence of the bandit environment. It turns out that the contraction
result essentially hinges on controlling the correlation between X; and the vector (¢(1),...,¢(t)) " at each time point t.
The only challenge lies in controlling this correlation as the contexts X are not independent anymore. We resolve this
issue by considering a suitable martingale difference sequence with respect to proper filtration.

In the subsequent sections we will prove the above three facts separately.

B.1. Proof of part (i)

In this section we will show that the matrix EAIt enjoys the SRC condition with high probability. As a warm up, we recall the
definition of Orlicz norms:

Definition B.2 (Orlicz norms). For random variable Z we have the followings:
(a) The sub-Gaussian norm of a random variable Z, denoted || Z|| ;. is defined as
1Z]l,y, := inf{A > 0 : E{exp(Z2*/X*)} < 2}.
(b) The sub-Exponential norm of a random variable Z, denoted [|Z]|,,, , is defined as
1Z]] 5, == inf{A > 0: E{exp(|Z| /A)} < 2}.

The details and related properties can be found in Section 2.5.2 and Section 2.7 in (Vershynin, 2018). The following is a
relationship between sub-gaussian and sub-exponential random variables.

Lemma B.3 (Sub-Exponential and sub-Gaussian squared). A random variable Z is sub-Gaussian iff Z* is sub-Exponential.

Moreover, )
127, = 121l -

Proof. The proof can be found in Lemma 2.7.4 of (Vershynin, 2018) O

Lemma B.4 (Bernstein’s inequality). Let Z1, ..., Zy be independent mean-zero sub-exponential random variable. Then
N

1

7

for every § > 0 we have
P >0] <2e —co min ﬁ i N
N T =) = e e K2’ K, ’
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Proof. The proof can be found in Corollary 2.8.3 of (Vershynin, 2018). O

Proposition B.5 (Empirical SRC). Let ¢ = min{1/4,1/(¢¢,9*¢ K log K + 3)} for some universal constant ¢ > 0 and also
define the quantity k(£,9, K) 2 min{(4c3 K€9?)~1,1/2} for some universal positive constants cs. Then the followings
are true for any constant C' > 0:

co¥? ¢, log K

P <¢max(03*; 5 > T3 ) < exp{—cstlog K + Cs*log K 4+ Cs*log(3d/¢)},

P <¢min(08 Zt) < Il(€> < 2exp{—cor?(&,0, K)t + Cs* log K + Cs* log(3d/e)}

+ exp{—cglog(K)t+ Cs* log K + Cs*log(3d/e)},

where all c;’s in the above display are universal positive constants.

Proof. We will first show the SRC condition for a fixed vector v € Sg_l (C's*). Then, the whole argument will be extended
via a e-net argument.
Analysis for a fixed vector v: Let v € Sgil (Cs*) be a fixed vector. Now note that following fact:

t
a 1
v S = n El{vaaT E mln{v zi(7)}2.
T=

We define Z;, £ min;c(s{v" z;()}? and note that for a fixed v € S3 ' (C's*), the random variables {Z, , }._, are i.i.d.
across the time points. Moreover, due to Assumption 2.2(b) and Lemma B.3, we have

2
S 63’192.
b2

Z, = || min |v"z;
1200y, =i o)

Thus, {Z; , }%_, are i.i.d sub-exponential random variables. First we will show that E(Z; , ) is uniformly lower bounded.
Due to Assumption 2.2(c) we have

Thus we have the following:

4)
h
> /0 (1 — K&u) du
= h(1 — K€h/2).

Setting h = 1/(K¢) in Equation (5) yields E(Z,,) > ﬁ Now, using Lemma B.4, we have the following for a
ne0,e/[|Z1,,) and 6 > 0:

P ! i{Z E(Z;,)} >8] <2 i ” 0 t
— o — ) exp { —Co min )
b= 1Zyoll3, " 121011y,

<2e co min o2 0 t
Xp 4 — —_—, —— .
= 2P 2 29t 302
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Now choose § = min{(4K¢)~t, c39?/2} to finally get

P(l
t

where (£, 9, K) = min{(4c3 K€9%)~1,1/2}. Now recall that E(Z, ,,) > 1/(2K¢), which shows that

t
Z{Z‘r,v - E(Z‘r,'u)}‘ > 4[1(€> < 2eXP {_02’%2(67197 K)t} ) (6)
T=1

1 ‘ 1 d—1 *
P{trz:lZ > K£}<2exp{ ok EﬁK)}, VoeSy (CsY). @)

e-net argument: We consider a e-net of the space S3~*(C's*) constructed in a specific way which will be described shortly.
We denote it by M. Let J C [d] such that |J| = C's* and consider the set E; = S~ Nspan{e; : j € J}. Here¢;
denotes the jth canonical basis of R?. Thus we have

se'cs = |J Es

J:|J|=C's*

Now we describe the procedure of constructing a net for Sg_l (C's*) which is essential for controlling the parse eigenvalues.
Greedy construction of net:

» Construct a e-net of E for each .J of size C's*. We denote this net by . ;. Note that [N ;| < (3/¢)¢*" (Vershynin,
2018, Corollary 4.2.13) for € € (0, 1) as E can be viewed as an unit ball embedded in RE*".

¢ Then the net \V; is constructed by taking union over all the N; ;, i.e.,

-/V;: = U NE,J-

J:|J|=Cs*

Thus, from from the construction we have

d\ (3\°
Nl < (o) (B) < emics ostaasen, ®)

whenever ¢ € (0,1). Now, we state an useful lemma on evaluating minimum eigenvalue on e-net.

Lemma B.6. Let A be a m x m symmetric positive-definite matrix and ¢ € (0,1). Then, for e-net Nz of Sg'(s)
constructed in greedy way, we have

®min(s; A) > min u' Au — 3edmax(s; 4).

uENE

The proof of the lemma is deferred to Appendix D.1. Note that from Equation (7) and an union bound argument we get

P (min v S > 4}1(£> > 1 —2exp{—car?(&,9, K)t + Os* log K + Cs* log(3d/¢)}. )

uENe

If ¢rnax(C's™, f]f) is bounded with high probability, then for small €, then along with Lemma B.6 we will readily have an
uniform lower bound on ¢,in (C's*, X).
Bounding ¢,,,.,(C's*, ¥;): Here we gain start with v € A.. Similar, to previous discussion we have

t
a 1
v S = n Zl{vTacaT Z max{v z;(7)}2.
T=
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We define W, £ max;e(xi{v"2i(7)}? and note that for a fixed v € S¢=1(Cs*), the random variables {W, ,}._, are
i.i.d. across the time points. Moreover, due to Assumption 2.2(b) and Lemma B.3, we have

W, < s K92

T,.. 2
irggg{v zi(7)}

”le =
1

Thus, {W; , }L_, are i.i.d sub-exponential random variables. Recall, that ¢,ax(Cs*,%;) < ¢, for all i € [K]. The next
lemma provides an upper bound on the moment generating function (MGF) of sub-Exponential random variables.

Lemma B.7. (Vershynin, 2018, Lemma 2.8.1) Let X be a mean-zero, sub-Exponential random variable. Then there exists
positive constants cs, cg, such that for any X with |X| < ¢5/ | X ||, the following is true:

E{exp(AX)} < exp(ceA” [ X[7,)-

Equipped with the above lemma we have the following;

t t
P (1 Z WT,’U - ¢u > 6) =P (Z{WT,’U - ¢u} > 6t>
=1 =1
t
—P <exp {u Z(Wm - ¢u)} > e“5t> (10)
T=1

t
< e—uét H E{eM(WT.’U_¢'u)}.

=1

For a fixed 7 € [t] we note the following;

K
E{eu(Wm—d)u)} < Z E{e;t[(UTm(r))Z’_m]}
i=1

K
DI CAGE ST

i=1
For brevity let r; £ || {v " z;(7)}? ||¢1. If we choose 1 < ¢5/ max;e (k] k4, then by Lemma B.7 we have

E{e,u(Wr,u—¢u,)} < exp (CG,UQ m[aé{] Ii? + log K) .
1€

Using the above inequality in Equation (10), it follows that

t
1
P (t Z Wiy — Oy > 5) < exp (—uét + cotp® 112[%?] K2+ tlogK) . 1D

T=1

The right hand side of Equation (11) is minimized at & = §/(2¢ max;e (] £7) with the minimum value of

52t
6 maxle[m Ry

If § /(2¢6 max;e (k] K7) > ¢5/ max;e (] k7, then the right hand side of Equation (11) is minimized at p = ¢5/ max;e(x) K7

and we get
1< c50t
P<tTZlWT’U_¢u>5> <exp<— 2 +cﬁc§t—|—tlogK>.

max; K;
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Using the fact that 0/(2cs max; ¢k K7) > c5/ maX;e|K] x2, the right hand side of the above display can be upper bounded

by
ot
exp (—65 +tlogK> .
2max; K;
Thus we have forall 6 > 0
t
1 5%t 56t
Pl - Wew —0u >0 < —mi , tlog K ). 12
(t Z w9 ) exp( mm{4c6maxie[m k2’ 2 max; m}—'_ 8 > a2)

T=1

Next we set § = c;92¢,, log K for sufficiently large c¢; > 0. Then Equation (12) yields

1<
P <tZWT’U — Py > 6) < exp (—cgtlogK) .

T=1

Finally taking union bond over all vectors in N we get
P (Vv EMN. v S > g2y, log K) <exp{—cstlog K + Cs*log K 4+ Cs*log(3d/¢e)} . (13)

Next, to prove the same for all v € Sg ~1(Cs*) we need the following lemma.

Lemma B.8 (maximum sparse eigenvalue on net). Let A be a m X m symmetric positive-definite matrix and € € (0,1/3).
Then, for e-net N of ngl(s) constructed in greedy way, we have

< max v Av.

max v ' Av < max v Av <
veEN, ’UESg*l(Cs*) 1 — 3¢ veN.

The proof of the above lemma is deferred to Appendix D.2. Now we set some ¢ € (0, 1/3). In light of the above lemma we
immediately have that

coP2 oy log K

*, 9 >
]P <¢max(cs aEt) = 1 — 38

) < exp{—cstlog K + Cs*log K 4+ Cs*log(3d/¢e)} . (14)

Finally using Equation (9), (14) and Lemma B.6 we have

2
> I 3ecyV logK¢u
4K¢ 1—3¢

]P) <¢min (CS* 5 i\:t)

1
> 1 — 2exp{—car?(&,9, K)t + Cs* log K + Cs* log(3d/e)} (15)
—exp {—cstlog K + Cs*log K + Cs*log(3d/e)} .
Now the result follows from taking € = min{1/4, 1/(24¢,9*¢K log K + 3)}. O

B.2. Proof of part (ii)

In this section we will show that the matrix f]t enjoys the compatibility condition (4) with high probability. This is equivalent
to showing that the quantity

- 57846
T(S*:¥,) 2 inf — | s = S*: X, 2,
(57 %) 56&?(5*)( Tk )S Peome (875 X1)
is bounded away from O with high probability. First we present the Transfer lemma (Oliveira, 2013, Lemma 5) below.

Lemma B.9 (Transfer lemma). Suppose flt and ¥ are matrix with non-negative diagonal entries, and assume 1 € (0, 1),
m € [d] are such that
Yo € RY with ||v]l, < m,v S > (1 —n)v' o, (16)

Assume D is a diagonal matrix whose diagonal entries D; ; are non-negative and satisfy D; ; > (f)t)j,j —(1—=n)%,;.
Then )
| DY 2],

Ve e R 2T > (1—n)z’ Sa — | (17)

m—1
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Condition (16) basically demands that f]t enjoys SRC condition with the sparsity parameter m. Then under the proper
choice of diagonal matrix D with sufficiently large diagonal elements {D; ; }?:1, Equation (17) will yield the desired
compatibility condition for S We formally state the result in the following lemma:

Proposition B.10 (Empirical compatibility condition). Assume the conditions of Proposition B.5 hold. Also assume that
Assumption 2.2(d) holds with C = Co¢,9*EK log K for some sufficiently large universal constant Cy > 0. Then there
exists a positive constant Cy such that the following is true:

a 1
Pl O(S"; %) >
CESSEr
=1—2exp{—c2k(£,9, K)t + Cs* log K + Cs*log(3d/c)}
—2exp {—cstlog K + Cs*log K + Cs* log(3d/¢e)}
with e = min{1/4,1/(¢,9*¢K log K + 3)} for the same universal constant ¢ > 0 in Proposition B.5 and k(£,9, K) =
min{(4c3 K€9?)~1,1/2}.

Proof. As suggested before we will make use of Lemma B.9. Towards this, we set X = ﬁﬂd and D = diag(f)t). Next,
we define the following two events: '

= co¥2¢,, log K
gt,l = {¢lnax(05*;2t) S 91¢_35g}7

a 1
gt,2 = {¢min(05*;zt) Z W}’

where the constants ¢ and cg are same as in Proposition B.5. Under G, ; and G; o, the inequality in Equation (16) holds with
17 =1/2 and m = Cs*. Also, due construction of D, we trivially have

Dj; > (X)), — (1 —n)%;,;.

Lastly, note that
co¥? ¢, log K

D= S)i = TSe; < 18
s Das = S = e Siey < ST ®
under G; ;. Equipped with Lemma B.9, under G, ; and G; 5, for all x € C7(S*) N S9! we have the following:
2
S 1 ||
T 1
Y > —
TS 8Ke T s —1
2992 Py log K 2
(2T )}
> _
— 8K¢ Cs*—1
1 (%) 645"
> —
— 8K¢ Cs*—1
The last inequality follows form the fact that
l2ll, = llzslly + [lzcse)ell, < 8llws-ll, < 8Vs* [lws-]l, < 8Vs*. (19)

Thus, if C' 2> mﬁi&_% + %* then xTitx > 1/(16K¢&). Also, note that from the choice of € in Proposition B.5, we have
£ < 1/4. This further tells that if C = Cy¢,9*¢ K log K for large enough Cy > 0, then

. 578,06 1
inf — > —.
5€C7(S*) H5||2 16 K¢

Then, the result follows from Proposition B.5. Using this and Equation (19) we also have

20



Thompson Sampling for High-Dimensional Sparse Linear Contextual Bandits

- 1 5T, 1
U(S* %) > — inf —>
( 02z 64 seCq(5%) ||5||§ = Ci¢K

where C; = 1024. Finally, the result follows from conditioning over the events G, ; and G, » and using Proposition B.5.

O

B.3. Proof of part (iii)

In this section we will establish the desired regret bound in Theorem 3.2. The main tools that has been used to prove the
regret bound is the Bayesian contraction in high-dimensional linear regression problem. In particular, we will use Theorem
C.1 to control the ¢;-distance between (3, and §* at each time point ¢ € [T7].

We recall that X; = (24,(1),...,24,(t))". Also, note that the sequence {x,_(7)}._; forms an adapted sequence of
observations, i.e., .. (7) may depend on the history {z, (u),r(u)}7_]. Also, recall that {e(7)}._, are mean-zero

o-sub-Gaussian errors.
Lemma B.11 (Bernstein Concentration). Let { Dy, Fi} 22 | be a martingale difference sequence, and suppose that Dy,

is a o-sub-Gaussian in adapted sense, i.e., for all « € R, E[e*Pr | F._1] < e’ 7*/2 almost surely. Then, for all t > 0,

P (\Z}lzl Dyl > 5) < 2exp{—62/(2ta?)}.

Proof. Proof of Lemma B.11 follows from Theorem 2.19 of (Wainwright, 2019) by setting o, = 0 and v, = o for all
k. O
Lemma B.11 is the main tool that is used to control the correlation between ¢; := (¢(1),...,¢(t)) T and the chosen contexts

X which is important to control the Bayesian contraction of the posterior distribution in each round. To elaborate, let X t(j )
be the jth column for j € [d] and define D; ; := €(t)z,, ;(t). Note that for a fixed j € [d], { D, ;}._, forms a martingale
difference sequence with respect to the filtration {F, tT_:ll with 7. := o(H.,) is the o-algebra generated by H, and F; = ).

Also note that

E(e"Pt | Fiy) < B{e® ™ na0/2) <R 2],
Thus, using Lemma B.11, we have the following proposition:
Proposition B.12 (Lemma EC.2, (Bastani & Bayati, 2020)). Define the event

e;rXt(j)‘
Te(Ao(7)) := § max ———— < Ao(7) ¢,
J€[d] t

where A\o(7Y) = Tmaxo+/(v2 + 2log d) /t. Then we have P {T;(Ao(7))} > 1 — 2exp(—+2/2).

The proof of the above proposition mainly relies on the martingale difference structure and Lemma B.4. It is important to
mention that the proof does not depend on any particular algorithm.

For notational brevity we define || X,|| := max;e(q /(X' X¢);,;. Next, we will set v = v, := y/2logt. Hence by
Proposition B.12 we have P {7;(Ao(7:))} > 1 — 2¢t~1. Also recall that, under G; ; and G, 2, we have

1
ﬁ < ||Xt||/\/7§§ \/W~ 20)

Also, under Gy 2 N T¢(Ao(71)) it follows that
’62— Xt(j )‘

max ———
jeld] o

< Tmaxy/2t(logd + logt) = X 21

Now, we are ready to present the proof of the main regret bound.
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MAIN REGRET BOUND

Recall the definition of regret is R(T') = Zthl Aqg, (t), where Ay, (t) = xq: (£) T B* — 24,(t) T B*. Next, we partition the
whole time horizon [T in to two parts, namely {¢ : 1 <t < Ty} and {t : Ty <t < T}, where Ty will be chosen later. Thus,
the regret can be written as

To T
R(T) =) Aa(O)+ Y D)

t=To+1

R(To) R(T)
All notations for expectation operators and probability measures are given in Appendix C.

Now by Assumption 2.2(a) and 2.3(a) we have the following inequality:
E{R(TO)} S 2xmaxbmaxT0- (22)

Next, we focus on the term R(T) First, we define a few quantities below:

— 19|, 1S5
i(s) = inf {tl/gw 10 #[Ss] <5

|| X:6]| (23)
X,
=t { s 0 #1851 < o
Now set
_ 12&4
<< max) |S|> ,
U(S, %)
128A
(5 Zt)
Note that ¢;(s) > %( ), hence 1, (S) > 77/11‘
Recall that
5Xt/3 S )\t S 2Xtu (24)

under G; 1 and G; ». Also define the following events:

~ . o [logd+logt
& = {}ﬁm 8|, < Quozmack(D. +5 w"gtog}.

where D, = {1+ (40/A,)+128A; 22 /¥ (S*, $31)}s* and @ is large enough universal constant as specified in Theorem
C.1. Also we have
Di(S) < by | |2+ 20 + 76414 e X |S| | ,and
e A WS, 5) A ’

~ ~ 40 644122 A
Vi(S) < ¢y <<2+A4+(S72t))\> |5|>

Next, by Proposition B.10, the event

oo fo 502 o]

holds with probability of at least 1 — 2exp{—cor?(£,9,K)t + Cs*logK + Cs*log(3d/e)}  —
2exp {—cstlog K + Cs*log K + Cs*log(3d/e)}. For, notational brevity, we define
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C = C¢K.

Also, define the event

Noting that 1}?(5*) = Gumin(C15*; flt) with

4 ~
01—2+I0+128A C,

max
an argument similar to the proof of Proposition B.5 yields

P (Gia) > 1 — 2exp{—car?(£,0, K)t + C15* log K + Cy5* log(3d/e)}

~ R (25)
— exp {—c8 log(K)t + Cy8* log K + Cys* log(3d/a)} .

Finally, Using Proposition B.12 with v = =4 and the result of Theorem C.1, we have the following:

P(EF) = IExgE (1er)
= ]EXf t,re {HX gc | rt)}

= Ex, B, {16 (& | 7) 17000 (ve)ngr } + Ex Eily, {Hf( (& [ re) 117;C<Ao<m>>umgf,2} (26)

M 2
< ds + - +2exp{ cok?(€,9, K)t 4 Cs* log K + Cs* log(3d/¢)}

+ exp {—c8tlogK + Cs*log K + Cs™log(3d/¢)}

for some large universal constant M7 > 0. Next, let G; = m;;lgt,,». Under the event & N G;, we have

40 128(HI(§x
D* *< 2 ) max *,
+s_(+A4+A4 )s

and,

s*2(logd + log t) }1/2
t )

Bras = 87| < Mapowmat K {

where M, is an universal constant depending on A4. Now we set

s*2(logd + logt) }1/2

6t = MQpUxmafo{ n

It follows that under & _1 N G;_1, we have the following almost sure inequality:

Ag,(t) = 24y ()8 — 24, () 8"
= aq; (1)B" = 2q: (B0 + (24; (8) B — 24, (8)B) +0y (1) By — g, (8) 5"

< lrag (O] o 15 = Bl + lla, Bl 15 = B[

Finally define the event
M, = {x;rfﬂ* > n;a:i(xtlﬂ* + htl} .
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Under M, N &1 N G;_1, we have the following for any 7 # a;:

T (08 =2l (08 = (wa (1), = B7) + (v () = 2i(8). 87) + (w:(8), 8" = &)
—0p—1 +hy_1 — 1.

Thus, if we set h;_1 = 3d;_1 then m ( )Bt mMax;£q x;'— (t)@t > 0;—1. As aresult, in tth round the regret is 0 almost
surely as the optimal arm will be chosen with probability 1. Thus, finally using Assumption 2.3(b), we have

E(Aq, () = E{Aa, (1) Lags }
:E{Aat(t>]lMcmgt 1NGe— 1}+E{Aat lM“ﬂ(&: 1NGi_1)° }

S 261&*1]:[))( ) + meax max (SC U gt)
2M maxYmax 2 maxYmax (27)
< 2615_1P( ) 1383 b a + i adb a

4 M32maxbmax exp{—cwz(f, 9, K)t + Ds*log K + Ds* log(3d/¢e)}
+ MyZmaxbmax €xp {—cs log(K)t + Ds* log K 4+ Ds*log(3d/e)} ,

where M, M are large enough universal positive constants and D = max{C, C} } = ©(¢,9?¢K log K). Thus, if we set

1 1
k2(€,9,K) log K

To = Ms max { } (Ds*log K + Ds*log(3d/¢)), (28)

for some large universal constant M5 > 0. Thus, we have

E{R(T)} <2 Z Gt—1P(M) +MgZmaxbmax exp {—M7(Ds" log K + Ds" log(3d/¢))} + O(log T).
t=To+1

Iy
Recall that

s*2(logd + logt) }1/2

6t = MQpUxmafo{ n

For w € [0, 1] we have

T w
L,<2 Y 5t_1<3‘2‘1>

t=To+1
1+w
3M2p0’$2 XsK S*H_w 14w 714»7@'
= { maAw } /T (logd + logu) 2 du (29)
0
[3M2P”max5K]HWA*:W(log o e , forw e [0,1),
[Sszammang] ;2(log d+log T) logT, forw — 1.
For w € (1, 00) we have
T 35 w
L,<2 > 5t_1min{l, < A“) } (30)
t=Tp+1 *
Note that
30:_1 2 5*2logd
A <1l=t>T) = [3M2paacmaX§K] Az +1.
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Thus. from Equation (30) we have

4 o 36,-1)"
I,<2 ) G1+2 ) 5“( At‘l)

t=To+1 t=T1+1
Ty 2 1/2 T w
s*(logd + logu) 3011
<2 Mypoa?, EK d 2 > 6
> - 2po—xmax£ { U U+ t—1 A*

t=T1+1

2(logd + log T
< 4 [Mopoa? K {5 <°gA+ o8 )}+2Jw,

T 30— “
where J,, := Zt:TlJ,-l Ot—1 (ﬁ) :

Finally, we give bound on the term J,,;:

T w
36,
Jw § 6t—1< At*1>
t=T1+1

T 35 w
= 6 ( A“) 1{30,_1 /A, <1}

t=2

w 14w

5 Maypoad EK r o _ltw

< <31+ zm;ffmaxf ) / {s**(logd + logu)}%u*% H{u>T1} du
A$+w 1

w 14w
3T Mypox?  EK e [ 1tw
S ( 2p0'xmax§ > {S*Q(IOgd—f—lOgT)}%/ u—% du
T
w—1

Ao
*

w 14w

5 Mypoa?, EK . T

—2 (3” 207 max ) {s*(logd + log T)} ' 3° =2
AT

_ 6[M2p0x2maX§K]2 s*2logd
e ()

Finally, for w = oo it is easy to see that .J,, = 0. Hence, the result follows from combing Equation (22), (29), (30) and (31).

€29

C. Posterior contraction result

We briefly describe the probability space under which we are working. Given 3, the bandit environment (along with the
specific policy ) gives rise to the chosen contexts X; and rewards r;. Here we note that the chosen contexts depend not
only on the arm-specific distributions, but also on the sequence of actions taken under  till time ¢. Let Q; denote the joint
distribution of (3, X;,r;) under 8 ~ II (prior) and (X¢,1;) | 8 ~ SLCB¢(3, 7, P.) where the latter indicates the joint
distribution of the observed contexts and rewards (till time ¢) under the SLCB environment with policy , true parameter 3
and P, denotes the noise distribution. We work under a likelihood misspecified regime, which we now discuss.

We assume that the true parameter is 5* and the observations (X, r;) is generated from Qf := SLCB(5*, 7, P.), where
7 is the policy given by the TS and P} is an arbitrary sub-Gaussian distribution. We denote by Q;‘ﬁ the conditional
distribution of r, given X arising from the joint Q; and Et),(r,, to be the expectation under Q;‘)ri . Furthermore, we denote by
QY. the marginal distribution of X under the joint Q7 and Ey, to be the corresponding expectation.

For modelling purpose, we place prior II on 3 and model the likelihood as (X¢,r;) | 8 ~ SLCB(8, 7, P.), where P is
taken to be N(0, o2). This gives rise to a joint distribution Q;, as discussed above. Now, let I;* (- | r;) denote the posterior
distribution of /3 given all others, i.e. it is the conditional measure of 3 given X, r; arising from the joint Q;.

Thus, given a measurable set B, I1;* (B|r;) is a random measure, whose randomness is due to (X;, ;). In the following

result, we consider ]Effrt I1¥ (B|r;), which is the expectation of the above under Q;ﬁ . Thus, this quantity itself is a random
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variable, whose randomness is due to X;. The following result shows that, for B taken as the complement of an appropriate
ball around the true 8*, this random variable is small, almost surely Q}t.

Theorem C.1. Consider the bandit problem in (1) and let Assumption 2.2-2.4 hold. Also, assume that the prior on parameter
B is modeled as (2) with ~ o
(5/3)At <A< 2N, A = TmaxV/ 2t(logd + logt)

Then the following is true:

* « [logd+logt
B {Hf <|Iﬂ ~ Bl 2 QuownaKE(D. + 5)y =2

2 *
almost sure Xy, where Q4 is a universal constant and D, = D1s*+ % with Dy = 14(40/A4) and Dy = 128A;1.
comp ’

rt) ]]'gtﬁTt(Ao(’Yt))} g a—s )

Proof. Without loss of generality we assume that ¢ = 1 as the bandit reward model can be viewed as
(re/o) = Xi(B"/0) + (et/0).

In this case \; = Tmaxy/2t(logd + logt) =: \.

Next, define the event

To := {max

Jj€ld]

e Xt(j )’ < )\} .
By Lemma B.12 and condition (21), it follows that fro any measurable set 5 C R4,

2
Et,rtHg((B ‘ I't) S []Et,l‘t {Ht)((B | rt)]].%}] 1/2 " E

Recall that the errors €, is modeled as isotropic standard Gaussian independent of the features. Thus, conditioned on the
matrix X, model likelihood ration takes the following form:

w12
Ly pp-(re) = exp {_”Xtﬂ—QXtB”Q + (re — Xtﬁ*)T(Xtﬁ - Xtﬁ*)} .

Then by Lemma 2 of (Castillo et al., 2015) it follows that

ma(s* *
/»Ct,ﬁ,ﬁ* (rt) dH(B) > ;gg* )e—AHﬂ ”16_1’

where II is given by (2). The only change that is needed in their proof to run the argument in our case is the following upper
bound:
IXBlly < 181, 1X 1] < cot?pu log K /(1 — 3¢).

The last inequality follows from the fact that we are on the event G; ; by assumption. The rest of the proof follows from the
fact that A € (5A/3,2)).

Thus by Bayes’s formula it follows that
~ Jg Ltp.p(re) dIL(B)

I} (B 1) =
e PPN N TF) .
2s™ _ * 2
< ed M L / exp _M + (r, — Xtﬂ*)T(Xtﬁ — X B%) » dII(B).
Wd(S*) B 2
Using Holder’s inequality, we see that on 7y,
(ry — Xtﬁ*)TXt(ﬁ - B = GtTXt(/B - B)
<& Xl 18— By (33)

< AB =B, -
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Therefore, on the event 7, the expected value under Eg- of the integrand on the right hand side of (32) is bounded above by

o (/D Xe(B—B7) 34318871,

Thus, we have

2s* _
X (B | r)ly, < L/ MBI =/ Xe(B=BDIE+XI8-5"1l1 g7 (g).
ma(s B

Now, by triangle inequality,

MIB Ny + X8 = 871l = AlIBs-Ily + AlIB = B*Ily
< ABGe = Bs+lly + AllBs=ll; + A1 Bs+ — B3
= MIBs-lly + MIBs-elly + (A +A) [|Bs — B3
= MBI + (A= A) [[Bsee

L+ A Bge
1
1+ A+ ) 1Bs+ — Bse

1-

Case 1:  Suppose 7||Bs+ — Bg-|; < [|Bs=e

;- Then the following holds:

A+ X [1Bs = B-lly = (A = 3x/4) || Bs+ — B5-
< (A =3X/4)[1Bs- — B5-

1+ (TA/4) || Bs= — B
L+ (A/4) | Bse

1

1-
Using the above inequality in (35) we get

A ||B*||1 +X||ﬁ - 5*”1 <A ||5||1 + (X_ 3>‘/4) ||55*C 1 + (X_ 3/\/4) ||ﬁS* - /8:5*”1
= AIBI + (A= 3\ (18~ 571l

Case 2: Now assume 7 || s+ — 8%

1 > ||Bs+c]|,- We again focus on the inequality (35), i.e.,

MBI+ X8 = Bl < MBIy + A= A 1Bs=<lly + A+ X) [1Bs+ = B5- 4
A —

= MBI+ (A=A [1Bs-<lly + (A = ) [I1Bs = B3- Iy
+2X[|Bs- — B3+l
= MBI+ A =X 18 =Bl +2XBs- = Bs-1I,

S MBIy + A =34 |8 = Bl +2A[1Bs- — Bl -

Finally, by compatibility condition and Young’s inequality we get

1 X¢(8 — 8|, 571/2 < | X (B — ﬁ*)Hi n 25 \2

2\ « — B« .
HﬂS ﬂs f1/2¢comp(5*;Xt) - 9 t(bgomp(S*;Xt)

<2A

Using the above inequality in (37) we get

- - X:(8 - B3 25*\2
MBI, + X118 = Bl < MBI, + (8- 3a/a) 16— g, + WX B =Bl 2

Thus combining (36) and (38) we can conclude

IX (8= 85 , 2573

2 tqsgomp(S*;Xt).

MBIy +MB =Bl < MBIy + (X =3A/4) |8 = 87l +

Using the above result and recalling that 5X/ 3 < X\ < 2\, we see that the right hand side of (34) is bounded by

€d23* % B e
IX(B | 1)1y, < me *Zomp(S*1X¢) /Bex\l\ﬁHl N/DIE="1 qr1(B)
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Controlling sparsity: For the set 5= {5 :|Sg| > L} and L > s*, the above integral can be bounded by

(s) (AY —(A\/4)||1Bs—B%
y ol <2> /e NDIBs =851 g
S:s=|S|>L (8)

oo

S Z 7Td(8)4s

s=L-+1

Thus, we have

Efv, I (B | r)l7 }

25*\2
tPZomp (5™ Xt)
4s* AN
th2omp(S*; Xt)

< exp {45* logd + + 5" 10g4(A4/4)(L+15*)10gd}

Sexp{5s* logd + —(A4/4)(L+1—s*)logd}

Now recall that X~ = 2tx2 . (logd + logt) < 4tx?,, logd. Using this inequality in the above display we have

16s*(A\/A)z2,, logd
2 (S*, Xf)

comp

]Et)frt {Hf((l’j’ |re)l7} S exp {53* logd + — (A4/H)(L+1-5%) logd} .

—1 2 _
Thus, setting L > 40s* /A4 + s* + %(A /) then there exists a universal constant Q1 > 0 such that
'comp ’

B, A (B r)lr} < Qud™

Control on prediction: Recall that A\/\ < 2. Using this and the result in the previous part, we can conclude that the
Doz?. s*

posterior distribution is asymptotically supported on the even By = {3 : |S3| < D, }, where D, = D;s* + FEWN D o)
'comp At

where Dy = 1+(40/A) and Dy = 1284, ". By combining (32), (33) and the inequality A || 3*||, < 2X |8 — B*||, +A 18]I,
we can conclude that any Borel set 3,
ed?s” X8 - X812  ~ i}
X v < <7 e § IR Ly e, s, | anes)
ma(s*) Js 2
By the definition in (23) we have,
. oo XGBB8 .
4-1)X[8 - B, < e ~ X8 =81,
126, (|1S5—p+1)
1 16X° |S5_ -] @
< 2 1Xe(B =85 + ==L = X||B - B, -
4 2 t6,(1Sp—p+])? '
Since |Sg_p+| < |Sp| + s* < D, + s* on the event By, it follows that
2s* _
(B v < S0 AP
ma(s”) (41)

o / e~ (/DX (B8 I3=18=5" 1, +AIBl gy ).
B
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Now we set B = By := {f € By : || X (8 —5%)|l, > L}, where L will be chosen shortly. Recall that mq(s*) >
(A1p~42)*" 71,(0). It follows that for set 3, the right hand side of (41) is upper bounded by

2s™ _ _ . _
LA™ 16X (D) [(,(5)) = (1/4) L /efxuﬁ—ﬂ*ulﬂnﬂnl dIi(B)
wa(s*)

d
< dCHAST AT IOV (Do) (S o= (/DT 37 (5790

s=0
o(1)
Hence by a calculation similar to previous discussion yields that for
2
1 16" (D, + s*) log d + log t
“L* = (34 A3)s*logd + ————" 2 < Qo2 (D, + %) —=———2 =: L2,
e D e R AT

where Q2 > 0 is sufficiently large universal constant, then we have

1
B, {1 (B2 | re)l7, } < PTEE

Control on estimation: Similar to (40) we have

XNX:(8 = By 1S5+

X % < —
18 =81, < t1/2¢,(1S5_3+|)

-2

1 2 A [Spp]
< IXB=B)o+ =— -

4 Lty (1Sp-- 1)

On the event By, we thus have
_ logd + logt
MIB =B, € Q322 (Dy +5*)—=——2—
18 = 8"l < QoD+ 5 22

Finally on the event By N G; we have A = maxy/2t(log d + logt) and 1, (S*)? > (K&)' and it follows that

N « [logd+logt
18 = B7lly < QK E@man(Ds 4 7)1 2252

D. Technical lemmas
D.1. Proof of Lemma B.6

As A is symmetric positive definite matrix, by Cholesky decomposition there exists as lower triangular matrix L such that
A= LL". Letv € S¢!(s). Then there exists a index set .J of size s, such that supp(v) C J. Hence we have v € E.
Now consider the net NV, ; and let u be the nearest point to v in N, ;. Thus we have ||[v — u|l, <e < 1and [|v —ul, < s.
Then we have the following:

v Av=(v—u)  Alv —u) +2(v —u) " Au+u' Au
> 0! Au — 3e¢max(s; A).
The second inequality follows from the following facts:
(v —u)TA(v — u)| < v — ull3 dmax(5; A) < edmax(s; A),
’(v - u)TAu| =|(v— u)TLLTu’
< \/(v —u)TLLT (v —u)VuT LLTu
= \/(v —u)TA(v —u)VuT Au

S 5¢max(5; A)
Then the result follows from taking infimum over u and v in both sides.

(42)
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D.2. Proof of Lemma B.8

The lower bound result is trivial. Hence, we focus on the upper bound part. As A is symmetric positive definite matrix, by
Cholesky decomposition there exists as lower triangular matrix L such that A = LLT. Letv € Sgil (s). Then there exists a
index set J of size s, such that supp(v) C J. Hence we have v € E;. Now consider the net /\/'E, 7 and let u be the nearest
point to v in NV, ;. Thus we have ||v — u||, < e < 1/3and ||v — ul|, < s. By a similar argument as in the proof of Lemma
B.6, we can conclude that

vl Av < 3ehmax(s; A) + mz}\}( u' Au.

ueNg

Thus by taking supremum over v on the left-hand side of the above display we get

max u ' Au.
1 — 3c ueN.

(1 = 38)Pmax(s; A) < m%( u' Au = Dmax(s; A) <
ueNg

E. Pseudo code of VBTS and other tables

Algorithm 2 Variational Bayes Thompson Sampling
Set Hg = 0.
fort=1,---,T do
if ¢ <1 then
Choose action a; uniformly over [K].
end if
if ¢ > 1 then _
Compute the VB posterior IT; _; from II(- | H;_1) using CAVI.
Generate sample Bt ~ ﬁt_l.
Play arm: a; = arg InaXiG[K]xi(t)TBt.
end if
end for
Observe reward r(t).
Update H; < Hi—1 U {(as, rq,(t), 24, (1))}

Table 4. Time comparison among the competing algorithms.

. Mean time of execution (seconds)
Type Algorithm
Equicorrelated| Auto-regressive
LinUCB 15.41 16.30
DR Lasso 3.12 3.13
Non-TS
Lasso-L1 3.57 3.59
ESTC 1.01 1.05
LinTS 1344.39 1346.46
TS BLasso TS| 1511.68 1455.53
VBTS 29.33 27.65
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