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Abstract

We propose a novel parameterized skill-learning
algorithm that aims to learn transferable param-
eterized skills and synthesize them into a new
action space that supports efficient learning in
long-horizon tasks. We propose to leverage
off-policy Meta-RL combined with a trajectory-
centric smoothness term to learn a set of param-
eterized skills. Our agent can use these learned
skills to construct a three-level hierarchical frame-
work that models a Temporally-extended Param-
eterized Action Markov Decision Process. We
empirically demonstrate that the proposed algo-
rithms enable an agent to solve a set of difficult
long-horizon (obstacle-course and robot manipu-
lation) tasks.

1. Introduction

To improve Reinforcement Learning (RL)’s generalization
to novel tasks, meta-Reinforcement Learning (meta-RL)
learns a meta-policy from a large number of tasks that aims
to quickly adapt to a new task within the same distribu-
tion. Off-policy meta-RL methods [51; 36; 19; 12] normally
train a context-encoder that takes in a few collected trajec-
tories/transitions on a new task as input and output latent
parameters that function as a descriptor of the current task.
That descriptor is fed into the policy as an additional input
to generate actions. Compared to On-policy meta-RL meth-
ods [16; 61; 68], off-policy methods generally have much
higher sample efficiency and better or comparable over-
all performance [45; 68; 51] on tasks whose differences
vary smoothly and can be described by a single vector
(e.g., tasks change between different goal velocity for a
half-cheetah)—a setting also known as Hidden-parameter
MDPs (HiP-MDPs) [13; 32; 21]. However, for tasks with
more diverse variations (e.g., tasks change between pull the
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mug, press the button, open the door, etc., see Figure 1), oft-
policy methods fail to generalize well compared to on-policy
methods and methods based on fine-tuning [63; 65], even
given a much larger number of adaptation steps. This makes
off-policy methods hard to to apply to realistic problems
despite their superiority on HiP-MDP environments.

However, fast adaptation of an entire policy to a new task
is not the only possible form of generalization that we may
want RL agents to display. Another approach is learning
reusable high-level skills [59], which enable an agent to
explore efficiently and solve hard long-horizon tasks using
hierachical methods. In realistic tasks, we want skills that
are flexible—able to be efficiently adapted to many different
situations. For example, a skill that opens a door should
be adjustable to many different types of doors and handles,
from office doors to microwave doors. The most flexible
skills are parametrized: discrete skills augmented with con-
tinuous parameters that adjust their behavior, thereby mak-
ing them more likely to be reusable in new tasks because
they are flexible enough to be applied in diverse situations.
Finding the appropriate parametrization of a skill abtracted
from the primitive action space in such settings is still an
open question.

We propose that the problem of learning parameterized skills
is very similar to the HiP-MDP setting, in which off-policy
meta-RL methods successfully generalize. Specifically, by
leveraging Off-policy Meta-RL, we propose to learn parame-
terized skills [10]—both the skills themselves and the param-
eter space—as well as a high-level control policy that will
use the learned parameterized skills as the new action space
and perform on new tasks. Our contributions are: 1. We
propose a novel three-level hierarchical RL framework com-
bining off-policy Meta-RL and Parameterized Action MDP
algorithms (MLPS + HPS) to model Temporally-extend
PAMDP problems, which can be used to solve long-horizon
tasks. 2. For low-level policy learning, we propose a novel
trajectory-centric smoothness training objective for learning
parameterized skills capable of expressing diverse behav-
iors with a smooth parameter space. 3. For high-level and
mid-level policy learning, we propose a novel hierarchical
actor-critic algorithm that, given the learned parameterized
action space, exhibits better performance compared to pre-
vious PAMDP algorithms. 4. Using the proposed algo-
rithm, we are able to solve a set of difficult long-horizon
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Figure 1. Left: Off-policy Meta-RL. The meta-policy 7 takes in the state as well as a latent vector z as input. On a new task, the context
encoder ¢ will try to find the latent vector corresponding to the current task from a few trajectories 7. Mid: Off-policy Meta-RL in two
different scenarios. Right: Leveraging off-policy Meta-RL to learn parameterized skills.

ant obstacle course tasks, as well as long-horizon robotic
manipulation tasks. 5. We demonstrate the importance of
smoothness for a learned parameterized action space and the
effectiveness of the different components of our algorithm
independently.!

2. Background

A Parameterized Action Markov Decision Process
(PAMDP) [38] is defined by the tuple {S,H,T, R,~},
where the parameterized action space H can be defined
as: H = {(k, zx)|2x € Zy forall k € {1,--- , K}}, where
zi, 1s the corresponding continuous parameter set for each
discrete action k. Here, zy, is the continuous parameter corre-
sponding to k, and K is the total number of discrete actions.
At each step, the agent must select both a discrete action &
and a continuous parameter z;. Thus, we have the dynamic
transition function T'(s'|s, k, ;) and the reward function
R(r|s, k, z). A practical example is a football game, where
the player needs to choose between kick the ball or move to
some position (discrete), as well as the direction the player
wants to kick the ball to or the specific position the player
wants to move to (continuous). Most previous work assumes
the primitive action space is parameterized, or a set of pre-
defined parameterized skills are given. Our work makes an
attempt to learn/synthesize the parameterized action space
from scratch.

HiP-MDPs model the variations in the transition dynam-
ics and reward functions by assigning each task a hidden
parameter 6, drawn from the distribution Py. The agent
neither observes 6 nor has access to the distribution P, that
generates the task family. For a given task, parameterized
by 6 € O, the stochastic dynamics are given by T'(s'|s, a; 6)
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and the deterministic reward function by R(s,a;0). A
commonly-used meta-RL benchmark creates a set of tasks
by changing the environmental parameters (e.g. mass, damp-
ing) [36; 50; 20] or reward functions (e.g. target position,
target velocity) [51; 68] of Mujoco-simulated robots.

Off-policy Meta-RL (OPML), shown in Figure 1, learns a
meta-policy 7(als, z) that is shared across all the tasks from
the same distribution, as well as a context encoder ¢(z|)
that maps collected transitions 7 = {s1,a1,71, 82, , Sn}
to a task encoding z. The learned task encoding should
indicate how the underlying hidden parameter 6 changes the
optimal policy in the HiP-MDP. When facing a new task,
the agent interacts with the environment for a few episodes
and inputs the resulting trajectories into the context encoder,
from which it can infer the corresponding latent parameter to
the policy. To train the context encoder, previous work uses
the critic loss [51], or some auxiliary loss like the dynamics
prediction [36; 12; 58] or contrastive loss [19].

3. Meta-Learning Parameterized Skills

In general, we want the agent to learn a set of parameter-
ized skills suitable to be used as the parameterized action
space in a PAMDP, for which the agent will in turn learn a
high-level control policy to solve new tasks. We show the
overall three-level hierarchical framework of our proposed
algorithm in Figure 2. We use this hierarchical framework
to model a Temporally-extended PAMDP (TPAMDP). At
the beginning of one episode, the agent receives a state from
the environment. The state will be passed to the high-level
policy 7, first, which will output the discrete skill label
k. Then the skill label and the state will be fed into the
mid-level policy 7,,, which will output the skill parame-
ter z corresponding to skill k. The agent will then choose
the low-level policy 7 corresponding to the skill label k
as the current executing policy, which will take the state
and skill parameter z as input and output primitive actions.
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The low-level policy 7, will interact with the environment
for T steps, after which the high-level policy will receive a
new state and carry out the same process to choose the skill
label and the corresponding parameters again. Overall, for a
TPAMDP, we have a high-level policy and a mid-level policy
that solve a new task by mapping the states to parameter-
ized skill pairs (k, z)—learning in the high-level temporally
extended parameterized action space. Each discrete skill
label k corresponds to a low-level skill-conditioned policy
network 7 (als, z), which takes the continuous skill param-
eter z as an additional input. As the low-level policies are
fixed, they can be treated as part of the environment during
the training of high and mid-level policies. In Sec. 3.1, we
introduce how our agent learn the low-level policy (MLPS).
In Sec. 3.2, we explain how our agent learns the high-level
and mid-level policies (HPS).
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Figure 2. Meta-learning parameterized skills: a three-level hierar-
chical framework modeling a TPAMDP. The learned parameterized
skills are treated as a parameterized action space for the high- and
mid-level policies, while each of the skills is actually a temporally
abstraction of the low-level policy on the primitive action space.

3.1. Off-policy Meta-RL for Parameterized Skills

We first address how to learn the continuous parameters
associated with each discrete action (skill category) to cover
policies with similar and smoothly changing behaviors. To
this end, we model a parameterized skill as a HiP-MDP,
meaning the agent is given a set of tasks that share similar
reward/dynamics structure. By modeling the parameterized
skill as a HiP-MDP, the task set that we train our agent on
has an underlying and potentially smoothly-varying hidden
parameter that controls the distinct features of each task.

Ideally, we want the agent to learn a policy that is able
to solve the HiP-MDP—a robust skill-conditioned policy,
and also learn a continuous representation z that smoothly
approximates how the hidden parameters 6 affect the agent’s

optimal policy on each task. Using off-policy Meta-RL, it is
straightforward way to let the agent learn a skill-conditioned
policy that additionally takes the continuous representation
zasainput: m: S X Z — A. Then, given different values
of z, the policy will output actions that can solve different
tasks. By leveraging the high sample efficiencyof Off-policy
Meta-RL, we can get a high-performing skill-conditioned
policy quickly. We let the agent learn K different skill-
conditioned policies, which will be fixed as the low-level
policies during the following higher-level policies’ training.

For practical implementation, we adopt the framework of
a recent off-policy Meta-RL algorithm, PEARL [51], and
train a context encoder that aims to put the collected trajec-
tories into a latent representation, along with an actor and a
critic network that both take in the latent representation as
an additional input. In particular, we train a context encoder
network ¢ : 7 — z that generates latent representation z
using historical transitions. Then, the generated z can be
viewed as part of the state and can help the decision-making
process as input to the actor network 7(als, z) and critic
network Q(s, a, z) as in PEARL. We provide more detailed
algorithm and implementation information in Appendix A.1.

Trajectory-Centric Smoothness In the parameterized skill-
learning setting, besides the goal of learning a policy that
performs well in all tasks, we also want that the contin-
uous representation z which the policy is conditioned on
is able to smoothly varying the agent’s behaviors so that
we can get a new smooth action space for this skill type
and is reusable in other contexts. To achieve this goal, we
propose the trajectory-centric smoothness training objec-
tives for training the context encoder network. Note that
instead of focusing on the difference between single tran-
sitions [14], we propose that parameterized skill learning
should focus more on the overall difference between dif-
ferent trajectories. The learned representation of the skill
should be able to encode the distinguishable features of the
trajectories into its continuous parameters. Previous work
shows the importance of smoothness in state representa-
tion learning [23; 64; 1]. Our case can be seen as policy
representation learning, as we will use the learned repre-
sentation space as the new action space, better smoothness
intuitively will help the agent learn to identify the values
of the continuous parameters for a new task more quickly.
In Section 4.4, we empirically show how the smoothness
of the learned skill parameter space will affect the overall
performance of the algorithm. We propose that the agent’s
behavior under the skill-conditioned policy should change
proportionally to the change of the continuous parameters’
value. We hope to implicitly encode the semantic meanings
of the underlying hidden parameters into our latent skill
representation, thus improve the smoothness of the latent
skill embedding space. Therefore we add another learning
objective that aims to embed intermediate features of the
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state trajectories into the latent representation. Our main
intuition is that the distance of different skills in the latent
space should be proportional to the distance between
their trajectories. Specifically, suppose we sample two
batches of trajectories 71 and 7, from two different tasks.
Then, we write the smoothness term as:

LSmoothness = MSEH |¢(7—1)*¢(7—2) ‘ |2*’€DTW(7—17 7—2)}7

ey
where DTW stands for Dynamic Time Warping [4; 40],
and & controls the scale of the DTW distance. Instead of di-
rectly computing the Euclidean distance between two state
trajectories, we use Dynamic Time Warping to align the
trajectories before measuring the distance. The idea is illus-
trated in Figure 3. Even from the exact same state and using
the same policy, the pointwise Euclidean distance between
two trajectories can be large as there exists uncertainty in
both the environmental dynamics and the output actions
from the policy. Thus, we use a more reasonable metric that
compares the overall “shape” of the two trajectories, which
is more consistent with our goal of extracting the overall
features of the trajectory instead of focusing on specific tran-
sitions. By minimizing the smoothness term, we obtain skill
embeddings that correspond to the dynamic time warping
distance of trajectories.
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Figure 3. Trajectories’ Dynamic Time Warping distance compared
with Pointwise Euclidean distance. Trajectory 7; and 7 are sam-
pled from the task. Using Dynamic Time Warping to compute the
distance (right) reveals they are quite close. However, unwarped
pointwise Euclidean distance (left) ends up with the erroneous
conclusion that the trajectories are very different.

3.2. Hierarchical actor-critic with Parameterized Skills

Then, given a set of low-level parameterized skills, the re-
maining question is how to efficiently learn high-level and
mid-level control policies of our three-level hierarchical
model in this temporally-extended PAMDP. As the low-level
policies are fixed, the interaction between these higher-level
policies and the environment is very close to a standard
PAMDP. Thus a straightforward way is to directly apply
PAMDP algorithms. HyAR [37] is a recently proposed al-
gorithm that constructs a latent embedding space to model
the dependency between discrete actions and continuous
parameters. The discrete action along with the continuous

parameters are mapped into a single latent action space, for
which a policy is learned. However, learning directly in
this latent embedding space means that the quality of ex-
ploration highly depends on whether the embedding space
is learned properly. This problem becomes more severe
as our parameterized action space are learned from data
and can be quite noisy. That is, given the same state and
the same parameterized skills, the distribution of the next
state might have large uncertainty because executing each
skill involves a large number of steps’ interaction with the
environment, of which the resulting trajectories could be
quite noisy. Thus, learning to embed this generated action
space further into some latent space may magnify the uncer-
tainty of transitions. Another straightforward but effective
approach is P-DQN [5; 62]. The P-DQN agent maintains
a separate policy network for each discrete action k to out-
put the corresponding continuous parameters, and then feed
all these parameters from different discrete actions into the
critic network. This makes computation highly expensive as
it always has to compute all the continuous parameters for
each discrete action, and is magnified when the number of
discrete actions are large. In our case, to enable structured
exploration at both discrete action and continuous parameter
level, we propose to directly model the dependency of the
discrete and continuous part of the parameterized action
with two consecutive policy networks: for each decision-
making step, we first choose the discrete action, then choose
the continuous parameters conditioned on both the state and
discrete action, which is in consistent with human’s decision
making process [47].

Concretely, as shown in Figure 2, we decompose the policy
of parameterized actions as:

m(k, 2kls) = 7o, (2k]s, k)7, (K]s),

where the policy network for discrete part of the action takes
in state s and is parameterized by 6, the policy network for
the continuous parameter zj, takes in state and the discrete
action k output from g, and is parameterized by .. Com-
pared with P-DQN, we only need to compute the continuous
parameters for the discrete action we chose and thus avoid
the redundancy problem.

We update the policy using actor-critic framework with
the maximum entropy learning objective for reinforcement
learning [67; 25]. Maximum entropy RL greatly improve
the exploration especially in the face of estimation error. It
functions by maximizing the entropy of the policy as well as
the expected return. This particularly fits our framework as
the parameterized action space is learned and can be quite
noisy. Further, exploration with different rates at different
time periods of training is important in the long-horizon
tasks as we explained in introduction. Concretely, we update
the critic network Qy (s, k, z,) according to:

Lcritic = E(s,k,zk,r,s’)wB[Qw(sv ka Zk) - (T + ’}/V(S))]27
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where B denotes the replay buffer, V' (s) denotes the value
network. We update the policy (actor) networks according
to:

Lactor =

eXP(Qw(Sa k? Zk))

Esn B knGS[ro, ()] [DKL (Wac(zk\S,k)H Wo(s)

where Wy, (s) is the partition function that normalizes the
distribution, G'S denotes the gumbel-softmax distribu-
tion [30]. That is, to enable structured exploration at differ-
ent levels of the action execution phase, we use the max-
imum entropy training objective to augment exploration
for the policy of continuous parameters 7y, while we use
gumbel-softmax technique to sample the discrete action
to further augment the exploration for the policy of dis-
crete action my,. Compared to e-greedy exploration strategy,
gumbel-softmax further augments structured exploration
by sampling from the categorical distribution. It enables
computing gradients for parameters of my,, of which the
outputs are discrete, by leveraging the reparameterization
trick [33]. We use gumbel-softmax to sample from the dis-
crete policy network when interacting with the environment
during training and also when updating the network. The
latter one uses a smaller value of temperature 7 (controls
the exploration rate) to make the updating process smoother
following the intuition in [22].

Note that HHQN [18] which focuses on multi-agent prob-
lem domain also uses a similar consecutive policy networks
structure. However, they use two different Q networks to
approximate the value of discrete and continuous policy
which may cause high-level non-stationary problem [37],
i.e. when sampling a transition from the replay buffer, the
same discrete action may not lead to the same reward and
next state as the continuous parameter can be different from
the moment it was chosen. Thus, computing the Q-value
of a discrete action without considering the continuous pa-
rameter can be quite noisy. We avoid this problem as HPS
has only one critic network that measures the value of the
hybrid action pair as a whole.

New action space constraint For practical implementation,
as we are using the learned skills as a new action space
for the higher-level policies, we also need to find and add
constraints to the values of the action space that the mid-
level policy can choose from. For each category of skills,
we first run the standard meta-test process across across all
the available training tasks for multiple times and collect
the value of skill parameters z. As shown in Figure 4, most
of the learned representations are close to each other in the
latent space, but there are always outliers that are far away
from the main cluster. If we set the bounds of the value of
the action space to contain all these data points, the blank
area between the outliers and the main cluster, also called

)

New action space

Figure 4. Visualization of the learned representation space of one
skill. All the data points are from the same skill label £ but with
different values of skill parameter z.

“unreliable areas”, may deteriorate the higher-level policies,
as shown in [66; 46; 37]. Thus, in practice, we rescale each
dimension of the learned action space to a new bounded
area by calculating the t% central range over the values of
the collected data points, where ¢ € [90, 100).

4. Experiments

As shown in Figure 5 first row, we evaluate our algorithm on
a Ant obstacle course domain built on OpenAl gym [6] and
a robotic manipulation domain from MetaWorld [63]. Long-
horizon tasks at the level of primitive actions are highly
difficult (see Appendix A.8) and can be reduced to very
short-horizon tasks with the help of skills.

Ant-mix (obstacle course) have 10/15 consecutive barri-
ers (denoted as 10-3c and 15-4c respectively in the plots)
sampled from 4 categories of tasks: Ant-Goal, Ant-Bridge,
Ant-Gather and Ant-box. Ant-Goal requires the agent to
walk past a doorway at a position unknown and unseen to
the agent, and reach the goal on the other side. Ant-Bridge
requires the agent to walk across a bridge with cross wind.
The speed of the wind is unknown to the agent. Ant-Gather
requires the agent to gather two coins along its way to the
goal position. The positions of the two coins are unknown
to the agent. The agent succeeds after it reaches the goal
position, which is fixed across all the tasks. The input states
consist of the ant’s position and other proprioceptive state,
i.e., the angle/velocity of different joints. In these three
tasks, the positions of the coins, the position of the doorway,
and the wind speed are the corresponding hidden parame-
ters in their MDPs, and the values of them are all sampled
independently from a uniform distribution.

The Make Coffee task requires the robot arm to push the
mug under the coffee machine, press the button, return to
the original position, reach the mug and pull the mug to the
target position. We train the agent to learn three parame-
terized skills: Coffee-push, Coffee-pull and Coffee-button
as well as two discrete skill: reach and return. The input
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Figure 5. First row: The environments we used for Parameterized skill learning experiments. Second row: Comparison results of our
method MLPS + HPS against other baselines in four scenarios . The horizontal axis denotes the number of “env” steps the high-level agent
takes instead of the original environment steps. Dashed lines correspond to the maximum average return achieved by MLPS+PDQN and
MLPS+HyAR after 1e6 “env” steps, as well as the maximum average return achieved by SAC learning from scratch using dense reward.

states are the proprioceptive state of the robot arm, as well
as the position of the mug. For the high-level and mid-level
policies, we also include the label of the current subtask we
want to agent to do (e.g, push, pull, etc.). Otherwise, the
environment would be non-stationary (i.e., same state-action
pair but different reward.) For training the three parame-
terized skills, the target position we want to push/pull the
mug to, and the position of the button are the corresponding
hidden parameters in their MDPs, and the values of them
are all sampled independently from a uniform distribution.

We run MLPS as well as standard Off-Policy Meta-RL
(OPML) on each of the HiP-MDPs and get the skills
{Goal(z1,x2), Bridge(z1, x2), Gather(z1, x2), Box()}
for Ant-mix and { Push(x1, 2, x3,x4), Reach(), Return()
Button(z1, x2, x3,x4), Pull(z1, 22, 23,24)} for Make-
coffee. For each random seed of training, we sampled
the order of the subtasks (Make-coffee) as well as the
hidden parameters of each subtask at the beginning of
the experiment and fixed them for the rest of training and
evaluation. We then used the parameterized skills learned
in previous section as the new parameterized action space,
and let HPS learn a solution policy for it. We give the agent
sparse staged reward: a positive reward is received only
when the ant has completed a subtask or it reaches the final
goal, otherwise, the reward is 0. More environmental details
and experiments can be found in Appendix A.3~A.6.

4.1. Overall Performance Comparison

As shown in Figure 5, we compared to OPML+HPS, which
means that we run OPML without the smoothness term to
learn the parameterized skills and use our proposed higher-
level algorithm HPS to learn the policy. As mentioned be-
fore, we use PEARL as the OPML baseline, and we further
augment it with contrastive loss as suggested by [19]. We

also compared to MLPS+HyAR and MLPS+PDQN, which
means that we use the same parameterized skills learned by
MLPS but use different PAMDP learning algorithms to do
high level policy learning.

As shown in the attached video, the agent trained by our
MLPS+HPS algorithm is able to successfully complete the
long-horizon tasks in both cases. From Figure 5 second
row, we can see that the performance drops if we replace the
parameterized skills learned by MLPS with that of OFML.
The performance gap is much larger than each single skill’s
performance gap as we will show later (Figure 7), indicat-
ing that the proposed trajectory-centric smoothness learning
objective help construct a better parameterized action space
(Figure 6) which leads to better performance of high-level
control policy. With the same pretrained parameterized
skills, HPS learns the high-level control policy more ef-
ficiently than the other two PAMDP algorithms. In Ant
obstacle course tasks, PDQN reaches similar performance
in the end but took twice as many environment steps com-
pared to HPS due to the redundancy problem we explained
in Section 3.2. HyAR fails to learn a good policy possibly
because our parameterized action space is learned and syn-
thesized so the noise of high level dynamics is magnified
when planning in the further generated latent action space.

4.2. Quality of the Learned Skill Parameters Space

We show the visualization of the learned skill parameters’
embeddings in Figure 6. For each domain, We run the
learned policies on 40 test tasks multiple times to collect
enough successful trajectories covering the whole hidden-
parameter space. The test tasks are linearly sampled from
the given task distribution. Then we encode the trajectories
into latent embeddings using the trained context encoder.
The original dimension of the latent skill is set to be 2 in
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Figure 6. Visualization of learned skill embedding (best among three random seeds) of MLPS (first row) and OPML (second row), from
left to right: Ant-Goal, Ant-Gather-one-coin (only one coin’s position is changing), Ant-Gather-two-coins. We draw the ground-truth
distribution of how the tasks are generated for ant-gather-two-coins at the bottom right corner of the last figure.

the ant domains so we just directly plot the latent embed-
dings in a 2-D space. As shown in Figure 6, the embed-
dings generated from the trajectories of the same tasks are
close together in the latent space. Moreover, we can see
a strong monotonic relationship between the components
of the learned latent representation and the real position of
the open space in Ant-goal, as well as the coin’s horizontal
position in Ant-gather. A similar conclusion can also be
made in the Ant-gather-two-coins domain, where there are
actually two variables for different tasks unlike the other
three tasks, which only have one. We can see that the two
dimensions of the latent skill approximate these two vari-
ables separately, showing a linear correlation between each
coin’s position and the value of the latent representation.
We also compared it with a visualization of the latent em-
bedding encoded using PEARL’s context encoder. Without
the proposed trajectory-centric smoothness objective, the
learned skill embeddings have large areas of overlap and
ignore important patterns in the trajectories influenced by
the changing positions of the goals.

4.3. Quality of the Learned Skill-conditioned Policies

We also compare the performance of MLPS and OPML
using standard meta-test in meta-RL to see how the pro-
posed trajectory-centric smoothness objectives in MLPS
will influence the low-level skill-conditioned policies’ per-
formance. For meta-testing, the test tasks are sampled from
the same distribution as the training tasks. The results of
meta-testing performance are shown in Figure 7. We find
that the smoothness loss does not make the meta-policy’s
performance worse in any of the tested domains, and actu-
ally helps improve the meta-RL performance in the tasks

00000200000 300000
Number of env steps

—— MLPS ——— OPML

100000200000 300000
Number of env steps

Figure 7. The meta-learning performance comparison on tasks in
Ant and Coffee domains.

in Ant domain. Unlike the benchmark mujoco tasks in
previous meta-RL papers, the difference between optimal
policies in these Ant tasks are mainly from the trajectories
as a whole, instead of the terminal states/goals. In such
settings, which are also common in practice, our proposed
trajectory-centric smoothness objectives can help the agent
encode the difference in trajectories into the latent embed-
dings, thus enabling the agent to quickly identify the correct
embedding when adapting to a new task.

4.4. The Importance of Smoothness of the Action Space

In this subsection, we show how the smoothness of the
learned action space (skill parameter space) will affect the
performance of the policy that will use this action space.
We create another coffee long-horizon task where the agent
needs to constantly to push and pull the mug to different lo-
cations, such that the quality of any one of the two skills will
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Smoothness loss = 0.1696

Smoothness loss = 0.2116
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Figure 8. Smoothness of the learned action space and its influence. The left three figures are visualizations of the learned skill embeddings
for the pull skill with different smoothness loss. Among them, the first two are generated by MLPS and the last one is generated by OPML.
The right two figures show the overall performance comparisons of how the smoothness of one skill (pull, push) will affect the agent’s
overall performance on the long-horizon task. We keep the other skill policy fixed while testing each one of them.

affect the agent’s final performance greatly as it has to cal-
culate the skill parameter multiple times within one episode.
We use MLPS and OPML to generate a set of coffee-push
policies and coffee-pull policies. We choose those policies
with close meta-test success rate to do the further compar-
ison. Then we calculate the normalized smoothness loss
for each of them following Equation (1). And we run HPS
for each of them and compare their overall performance.
We first visualize the influence of smoothness loss to the
skill parameter embeddings. For push and pull skill, we set
the dimension of the latent parameters as 4, so we first run
Multidimensional Scaling (MDS) and then draw the scatter
plot. As shown in Figure 8, the embedding with the lowest
smoothness loss shows the strongest correlation with respect
to the change of the real pull target position with few out-
liers (Color changes from yellow to blue means the target
position changes from —4 to 4). And as the smoothness
loss increases, more datapoints are dispersed and the cor-
relation becomes weaker. As shown in the right two plots,
bad smoothness can greatly increase the difficulty of find-
ing the optimal policy. We find that for both skills we test,
the performance of the overall algorithm drops fast as the
smoothness loss of the learned skill embeddings increases,
which indicates that smoothness is a very important factor
to consider if we are trying to synthesize a new action space
composed of skills learned on the primitive action space.

5. Related Work

Learning skills in a multi-task setting is common in prior
work [29; 53; 28]. da Silva et al. [10] first proposed to
construct parameterized skills by analyzing the structure of
policy manifold, but required labeled parameters of tasks
for training. With the meta-RL setting, MLSH [17] learns
fixed low-level policies during training and further finetune
the high level policy on new tasks. Nam et al. [42] focus
on using skilled pretrained from offline data to do better
meta-RL. Harrison et al. [26] propose an interesting way to
do online changepoint detection in continual learning. Our
method, in comparison, assumes we know exactly when
the new task arrives during the test phase and we focus

on the reinforcement learning setting. Some approaches
also introduce multiple levels of hierarchies for skill learn-
ing [9] or planning [41]. Barreto et al. [3] and Qureshi
et al. [48] propose a method to compose new task-relevant
skills with pretrained simple skills. Goyal et al. [24] learn a
high-level controller with decentralized low-level policies.
However, these low-level skills are not parameterized so
the generalization ability is limited. Rao et al. [52] intro-
duce a similar three-level hierarchy of policies that also
have discrete and continuous parts. However, they focus
on learning skills from offline dataset and the learned skills
do not involve temporal abstraction of the actions. Another
category of skill learning method is unsupervised skill dis-
covery [34; 14; 7; 2]. In particular, DADS [55] successfully
encode trajectories into a smooth latent skill pace in simple
navigation tasks. However, the pure unsupervised learning
setting does not allow the agent to master one complete
category of high-level skill, e.g., find the coffee machine in
a house, because of lack of task-specific exploration as no
environmental reward is given. Thus it’s hard to directly use
these skills to solve long-horizon tasks.

A large body of recent work focuses on Deep RL problems
with parameterized action spaces [38]. We have discussed
PDQN [5; 62] and HyAR [37] in previous sections. PAD-
DPG [27] and HPPO [15] let the actor output an concatena-
tion of the discrete action and the continuous parameters for
each discrete action label together. This category of methods
tends to ignore the dependency between discrete action and
continuous parameter, which is crucial for finding the opti-
mal parameterized action. Neunert et al. [44] also considers
discrete-continuous control but the settings are not standard
parameterized action space, i.e., the discrete part and the
continuous part of action are independent of each other. Pa-
rameterized actions have also been studied in the task and
motion planning (TAMP) literature [31; 11; 8; 57; 56; 43].
These approaches typically assume the parameterzed skills
already exist. By contrast, our three-level hierarchy policies
are all learned from scratch using RL.
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6. Conclusion

We propose a three-level hierarchy framework that mod-
els a temporally-extended PAMDP. We leverage off-policy
Meta-RL framework to learn the skills while further aug-
ment it with a trajectory-centric smoothness loss to train the
trajectory encoder — aiming to improve the smoothness of
the latent parameter space. We empirically show that our
meta-learning parameterized skills framework enables an
agent to solve two sets of complex long-horizon continuous
control tasks. We also demonstrate the importance of the
different components of our algorithm independently.

Acknowledgement

The authors would like to thank Akhil Bagaria, Sam Lo-
bel, Anita de Mello Koch, Paul Zhiyuan Zhou and other
members of Brown bigAl, as well as Tom Silver, Rohan
Chitnis, Riley Simmons-Edler, Anurag Ajay for discussions
and helpful feedback, and the anonymous reviewers for valu-
able feedback that improved the paper substantially. This
work was supported in part by an NSF Graduate Research
Fellowship under grant #2040433, NSF grants #1717569
#1955361 and CAREER award #1844960, DARPA grant
WO11NF1820268, ONR contracts N0O0014-17-1-2699 and
N00014-22-1-2592, and the DARPA Lifelong Learning Ma-
chines program under grant #FA8750-18-2-0117. This work
was conducted using computational resources and services
at the Center for Computation and Visualization, Brown
University.

References

[1] Allen, C., Parikh, N., Gottesman, O., and Konidaris,
G. Learning markov state abstractions for deep rein-
forcement learning. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y. N., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Pro-
cessing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pp. 8229-8241, 2021.

[2

—_—

Bagaria, A., Senthil, J. K., and Konidaris, G. Skill dis-
covery for exploration and planning using deep skill
graphs. In Meila, M. and Zhang, T. (eds.), Proceed-
ings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Re-
search, pp. 521-531. PMLR, 2021.

[3] Barreto, A., Borsa, D., Hou, S., Comanici, G., Aygiin,
E., Hamel, P., Toyama, D., Hunt, J. J., Mourad, S.,
Silver, D., and Precup, D. The option keyboard: Com-
bining skills in reinforcement learning. In NeurIPS,
2019.

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Bellman, R. and Kalaba, R. E. On adaptive control
processes. Ire Transactions on Automatic Control, 4:
1-9, 1959.

Bester, C. J., James, S., and Konidaris, G. D. Multi-
pass g-networks for deep reinforcement learning with
parameterised action spaces. ArXiv, abs/1905.04388,
2019.

Brockman, G., Cheung, V., Pettersson, L., Schneider,
J., Schulman, J., Tang, J., and Zaremba, W. Openai
gym, 2016.

Campos, V., Trott, A., Xiong, C., Socher, R., i Nieto,
X. G., and Torres, J. Explore, discover and learn:
Unsupervised discovery of state-covering skills. In
ICML, 2020.

Chitnis, R., Tulsiani, S., Gupta, S., and Gupta, A.
Efficient bimanual manipulation using learned task
schemas. In 2020 IEEE International Conference on
Robotics and Automation, ICRA 2020, Paris, France,
May 31 - August 31, 2020, pp. 1149-1155. 1IEEE,
2020.

Co-Reyes, J. D., Liu, Y., Gupta, A., Eysenbach, B.,
Abbeel, P., and Levine, S. Self-consistent trajectory
autoencoder: Hierarchical reinforcement learning with
trajectory embeddings. In ICML, 2018.

da Silva, B. C., Konidaris, G. D., and Barto, A. G.
Learning parameterized skills. In Proceedings of the
29th International Conference on Machine Learning,
ICML 2012, Edinburgh, Scotland, UK, June 26 - July
1, 2012. icml.cc / Omnipress, 2012.

Dalal, M., Pathak, D., and Salakhutdinov, R. Acceler-
ating robotic reinforcement learning via parameterized
action primitives. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y. N., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Pro-
cessing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pp. 21847-21859, 2021.

Dorfman, R., Shenfeld, I., and Tamar, A. Offline
meta reinforcement learning - identifiability challenges
and effective data collection strategies. In Ranzato,
M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and
Vaughan, J. W. (eds.), Advances in Neural Information
Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 4607-4618, 2021.

Doshi-Velez, F. and Konidaris, G. D. Hidden pa-
rameter markov decision processes: A semiparamet-
ric regression approach for discovering latent task



Meta-Learning Parameterized Skills

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

parametrizations. IJCAI : proceedings of the confer-
ence, 2016:1432-1440, 2016.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S.
Diversity is all you need: Learning skills without a
reward function. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019, 2019.

Fan, Z., Su, R., Zhang, W., and Yu, Y. Hybrid actor-
critic reinforcement learning in parameterized action
space. In IJCAI, 2019.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic
meta-learning for fast adaptation of deep networks. In
ICML, 2017.

Frans, K., Ho, J., Chen, X., Abbeel, P., and Schul-
man, J. Meta learning shared hierarchies. ArXiv,
abs/1710.09767, 2018.

Fu, H., Tang, H., Hao, J., Lei, Z., Chen, Y., and Fan, C.
Deep multi-agent reinforcement learning with discrete-
continuous hybrid action spaces. In IJCAI, 2019.

Fu, H., Tang, H., Hao, J., Chen, C., Feng, X., Li,
D., and Liu, W. Towards effective context for meta-
reinforcement learning: an approach based on con-
trastive learning. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, 2021, pp. 7457-
7465. AAAI Press, 2021.

Fu, H., Yu, S., Littman, M. L., and Konidaris, G.
Model-based lifelong reinforcement learning with
bayesian exploration. In NeurIPS, 2022.

Fu, H., Yao, J., Gottesman, O., Doshi-Velez, F., and
Konidaris, G. Performance bounds for model and
policy transfer in hidden-parameter mdps. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing
function approximation error in actor-critic methods.
ArXiv, abs/1802.09477, 2018.

Gelada, C., Kumar, S., Buckman, J., Nachum, O.,
and Bellemare, M. G. Deepmdp: Learning continu-
ous latent space models for representation learning.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pp. 2170-2179. PMLR,
2019.

10

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

Goyal, A., Sodhani, S., Binas, J., Peng, X. B., Levine,
S., and Bengio, Y. Reinforcement learning with com-
petitive ensembles of information-constrained primi-
tives. ArXiv, abs/1906.10667, 2020.

Haarnoja, T., Zhou, A., Abbeel, P, and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In /ICML,
2018.

Harrison, J., Sharma, A., Finn, C., and Pavone, M.
Continuous meta-learning without tasks. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and Lin,
H. (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Hausknecht, M. J. and Stone, P. Deep reinforcement
learning in parameterized action space. In Bengio, Y.
and LeCun, Y. (eds.), 4th International Conference
on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Pro-
ceedings, 2016.

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N.
M. O., and Riedmiller, M. A. Learning an embedding
space for transferable robot skills. In /CLR, 2018.

Heess, N. M. O., Wayne, G., Tassa, Y., Lillicrap,
T. P, Riedmiller, M. A., and Silver, D. Learning and
transfer of modulated locomotor controllers. ArXiv,
abs/1610.05182, 2016.

Jang, E., Gu, S. S., and Poole, B. Categorical
reparameterization with gumbel-softmax. ArXiv,
abs/1611.01144, 2017.

Kaelbling, L. P. and Lozano-Pérez, T. Hierarchical
task and motion planning in the now. In /IEEE In-
ternational Conference on Robotics and Automation,
ICRA 2011, Shanghai, China, 9-13 May 2011, pp.
1470-1477. IEEE, 2011.

Killian, T. W., Daulton, S., Konidaris, G. D., and
Doshi-Velez, F. Robust and efficient transfer learn-
ing with hidden-parameter markov decision processes.
CoRR, abs/1706.06544, 2017.

Kingma, D. P. and Welling, M. Auto-encoding varia-
tional bayes. CoRR, abs/1312.6114, 2014.

Kwon, T. Variational intrinsic control revisited. In 9th
International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.



Meta-Learning Parameterized Skills

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Laskin, M., Srinivas, A., and Abbeel, P. CURL:
contrastive unsupervised representations for reinforce-
ment learning. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Pro-
ceedings of Machine Learning Research, pp. 5639—
5650. PMLR, 2020.

Lee, K., Seo, Y., Lee, S., Lee, H., and Shin, J. Context-
aware dynamics model for generalization in model-
based reinforcement learning. In Proceedings of the
37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research, pp.
5757-5766. PMLR, 2020.

Li, B., Tang, H., Zheng, Y., Hao, J., Li, P, Wang, Z. Y.,
Meng, Z., and Wang, L. Hyar: Addressing discrete-
continuous action reinforcement learning via hybrid
action representation. ArXiv, abs/2109.05490, 2021.

Masson, W., Ranchod, P., and Konidaris, G. D. Rein-
forcement learning with parameterized actions. In
Schuurmans, D. and Wellman, M. P. (eds.), AAAI
2016, pp. 1934-1940, 2016.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel,
P. A simple neural attentive meta-learner. In 6th
International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net,
2018.

Miiller, M. Dynamic time warping. In Information
retrieval for music and motion, 2008.

Nachum, O., Gu, S. S., Lee, H., and Levine, S.
Data-efficient hierarchical reinforcement learning. In
NeurlPS, 2018.

Nam, T., Sun, S.-H., Pertsch, K., Hwang, S. J., and
Lim, J. J. Skill-based meta-reinforcement learning.
ArXiv, abs/2204.11828, 2022.

Nasiriany, S., Liu, H., and Zhu, Y. Augmenting
reinforcement learning with behavior primitives for
diverse manipulation tasks. In 2022 International
Conference on Robotics and Automation, ICRA 2022,
Philadelphia, PA, USA, May 23-27, 2022, pp. 7477-
7484. 1EEE, 2022.

Neunert, M., Abdolmaleki, A., Wulfmeier, M., Lampe,
T., Springenberg, J. T., Hafner, R., Romano, F., Buchli,
J., Heess, N. M. O., and Riedmiller, M. A. Continuous-
discrete reinforcement learning for hybrid control in
robotics. ArXiv, abs/2001.00449, 2019.

11

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Ni, T., Eysenbach, B., and Salakhutdinov, R. Re-
current model-free RL can be a strong baseline for
many pomdps. In Chaudhuri, K., Jegelka, S., Song, L.,
Szepesvari, C., Niu, G., and Sabato, S. (eds.), Interna-
tional Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume
162 of Proceedings of Machine Learning Research, pp.
16691-16723. PMLR, 2022.

Notin, P., Hernandez-Lobato, J. M., and Gal, Y. Im-
proving black-box optimization in vae latent space
using decoder uncertainty. In Neural Information Pro-
cessing Systems, 2021.

Parr, T. and Friston, K. J. The discrete and continuous
brain: From decisions to movement—and back again.
Neural Computation, 30:2319 — 2347, 2018.

Qureshi, A. H., Johnson, J. J., Qin, Y., Henderson, T.,
Boots, B., and Yip, M. C. Composing task-agnostic
policies with deep reinforcement learning. In ICLR,
2020.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernes-
tus, M., and Dormann, N. Stable-baselines3: Reliable
reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1-8, 2021.

Raileanu, R., Goldstein, M., Szlam, A., and Fergus,
R. Fast adaptation to new environments via policy-
dynamics value functions. In Proceedings of the 37th
International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pp. 7920—
7931. PMLR, 2020.

Rakelly, K., Zhou, A., Finn, C., Levine, S., and
Quillen, D. Efficient off-policy meta-reinforcement
learning via probabilistic context variables. In Proceed-
ings of the 36th International Conference on Machine
Learning, ICML 2019, volume 97 of Proceedings of
Machine Learning Research, pp. 5331-5340. PMLR,
2019.

Rao, D., Sadeghi, F., Hasenclever, L., Wulfmeier, M.,
Zambelli, M., Vezzani, G., Tirumala, D., Aytar, Y.,
Merel, J., Heess, N. M. O., and Hadsell, R. Learn-
ing transferable motor skills with hierarchical latent
mixture policies. ArXiv, abs/2112.05062, 2021.

Riedmiller, M. A., Hafner, R., Lampe, T., Neunert,
M., Degrave, J., de Wiele, T. V., Mnih, V., Heess, N.
M. O., and Springenberg, J. T. Learning by playing
- solving sparse reward tasks from scratch. ArXiv,
abs/1802.10567, 2018.



Meta-Learning Parameterized Skills

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Sharma, A., Ahn, M., Levine, S., Kumar, V., Hausman,
K., and Gu, S. Emergent real-world robotic skills
via unsupervised off-policy reinforcement learning.
In Toussaint, M., Bicchi, A., and Hermans, T. (eds.),
Robotics: Science and Systems XVI, Virtual Event /
Corvalis, Oregon, USA, July 12-16, 2020, 2020.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Haus-
man, K. Dynamics-aware unsupervised discovery of
skills. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020, 2020.

Silver, T., Chitnis, R., Tenenbaum, J. B., Kaelbling,
L. P,, and Lozano-Pérez, T. Learning symbolic op-
erators for task and motion planning. In IEEE/RSJ
International Conference on Intelligent Robots and
Systems, IROS 2021, Prague, Czech Republic, Septem-
ber 27 - Oct. 1, 2021, pp. 3182-3189. IEEE, 2021.

Silver, T., Chitnis, R., Kumar, N., McClinton, W.,
Lozano-Perez, T., Kaelbling, L. P., and Tenenbaum,
J. B. Predicate invention for bilevel planning. 2022.

Sodhani, S., Meier, F., Pineau, J., and Zhang, A. Block
contextual mdps for continual learning. In Firoozi, R.,
Mehr, N, Yel, E., Antonova, R., Bohg, J., Schwager,
M., and Kochenderfer, M. J. (eds.), Learning for Dy-
namics and Control Conference, L4DC 2022, 23-24
June 2022, Stanford University, Stanford, CA, USA,
volume 168 of Proceedings of Machine Learning Re-
search, pp. 608-623. PMLR, 2022.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction
in reinforcement learning. Artif. Intell., 112:181-211,
1999.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, IROS 2012, Vilamoura, Algarve, Portugal,
October 7-12, 2012, pp. 5026-5033. IEEE, 2012.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer,
H., Leibo, J. Z., Munos, R., Blundell, C., Kumaran,

D., and Botvinick, M. Learning to reinforcement learn.

CoRR, abs/1611.05763, 2016.

Xiong, J., Wang, Q., Yang, Z., Sun, P., Han, L., Zheng,
Y., Fu, H., Zhang, T., Liu, J., and Liu, H. Parametrized
deep g-networks learning: Reinforcement learning
with discrete-continuous hybrid action space. ArXiv,

abs/1810.06394, 2018.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K.,
Finn, C., and Levine, S. Meta-world: A benchmark

12

[64]

[65]

[66]

[67]

[68]

and evaluation for multi-task and meta reinforcement
learning. In Kaelbling, L. P., Kragic, D., and Sugiura,
K. (eds.), 3rd Annual Conference on Robot Learning,
CoRL 2019, Osaka, Japan, October 30 - November
1, 2019, Proceedings, volume 100 of Proceedings of
Machine Learning Research, pp. 1094-1100. PMLR,
2019.

Zhang, A., McAllister, R. T., Calandra, R., Gal, Y.,
and Levine, S. Learning invariant representations for
reinforcement learning without reconstruction. In 9th
International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

Zhao, M., Abbeel, P., and James, S. On the effective-
ness of fine-tuning versus meta-reinforcement learning.
CoRR, abs/2206.03271, 2022. doi: 10.48550/arXiv.
2206.03271.

Zhou, W., Bajracharya, S., and Held, D. PLAS: la-
tent action space for offline reinforcement learning.
In Kober, J., Ramos, F., and Tomlin, C. J. (eds.), 4th
Conference on Robot Learning, CoRL 2020, 16-18
November 2020, Virtual Event / Cambridge, MA, USA,
volume 155 of Proceedings of Machine Learning Re-
search, pp. 1719-1735. PMLR, 2020.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey,
A. K. Maximum entropy inverse reinforcement learn-
ing. In AAAI, 2008.

Zintgraf, L. M., Shiarlis, K., Igl, M., Schulze, S.,
Gal, Y., Hofmann, K., and Whiteson, S. Varibad:
A very good method for bayes-adaptive deep rl via
meta-learning. ArXiv, abs/1910.08348, 2020.



Meta-Learning Parameterized Skills

A. Appendix
A.1. Meta-Learning Parameterized Skill (MLPS) Algorithm

Algorithm 1 Meta-Learning Parameterized Skill (MLPS) Meta-training (regular encoder network)

Input: Batch of training tasks f4;—1 ... as from p(u),
Initialize replay buffer B; for each training task
Initialize parameters 6, and 6. for the actor and critic networks separately.
Initialize parameters context encoder network ¢, context encoder target network ¢, get
while not done do
for each task p; do
Roll out policy 7, , producing transitions {(s;, a;, 7, s})}j:1...n
Add tuples to execution replay buffer B;
end for
if there’s at least one success trajectory in each task’s replay buffer then
calculating_ DTW = True
end if
for each training step do
Sample a meta batch of tasks {1,--- ,C}
for each task ¢ in meta batch do
Sample two transition batches b} = {(sg, ak, 7k, 8} ) }e=1.-.ic ~ Bi, by = {(Sk, ak, Tk, 8%) o1, ic ~ Bi
Sample latent embedding 2§ ~ ¢(b}), 2}ayger ~ Ptarget (bb)
Update actor and critic networks with {24, b}, and calculate Ly q,c

end for
Calculate contrastive loss Lyce with {21, -+, 20}, {2furgers > Zharger }
if calculating_DTW = True then
Sample one success trajectory from each task’s replay buffer: {7} ., --- 75}
Calculate Dynamic Time Warping 108s Lsmoothness With {21, -+, 2{}, {2largetr > zgrget}, {78,
end if
Update cotext encoder network with Lgrii = Ly aiue + @LncE + BLSmoothness
end for
end while

We show detailed procedures in Algorithm 1. The training procedures for the actor and critic networks are the same as in
PEARL. After collecting data, for each training step, we first sample a meta batch of tasks {1, --- , C'}. Then for each task,
we sample two transition batches b and b} from its own replay buffer. We feed the first transition batch into the context
encoder, then use the output latent embedding to calculate the RL loss Ly 41, and update actor and critic network parameters.
This procedure is the same as in PEARL. We feed the second transition batch into the target context encoder network to
get the latent embedding which will be used to calculate the auxiliary losses. After we get all the latent embeddings for
tasks in the meta batch, we first calculate the contrastive loss using the latent embedding pairs from given task set. Then, if
each task has collected at least one success trajectory (that is, the agent successfully reached the goal position), we will let
the agent also calculate Dynamic Time Warping loss with the latent embedding and success trajectories sampled for each
task in the meta batch. And we will update the context encoder network’s parameters at the end of this training step. Note
that one limitation of the implementation here is that for some tasks, it is possible that not all tasks in the training task set
can collect a success trajectory within the given number of episodes. This will lead to the problem that the DTW is not
calculated and used throughout the training process. Thus, we provide another implementation in A.1.2, which does not
have such requirement and achieves similar final performance.

For calculating contrastive loss, we adopt the same procedures in [35; 19], where we model the similarity score calculating
function as bilinear products, i.e. ZZWzk, where W is the learned parameter. Using the denotations in Algorithm 1, for z%,
we can rewrite the InfoNCE loss as:

C
1 .
LNCE = _E[f(zi> Ztlarget) - IOg N E eXp(f(Z%’ zgarget)))]'
=2
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And we calculate the loss use same procedures for other latent embedding {27, --- , 2{'}.

For calculating Dynamic Time Warping loss, given a latent embedding pair from different tasks: (27, 2f, . get)» we draw the

corresponding pair from the success trajectories set: (72,., 7% ), and calculate the DTW loss with:

Lsmoothness 1= ETSJ target

k
uerTsye

where « denotes the hyperparameter controls the scale of the DTW distance.

MSE[”Z{ - Zk H2 - KDTW(Tsjuc’ Tskuc)]v (2)

Different from standard meta-RL setting, we assume the training task set (a fixed number of tasks) is given, whereas in [16]
each time a task is randomly generated using parameters sampled from a prior distribution.

Table 1. MLPS’s hyperparameters

Environment # Meta-train tasks  « I} K Meta batch size Embedding batch size
Ant-goal 100 10 1 05 16 100

Ant-bridge 100 100 1 0.1 16 50
Ant-gather-one-coin 100 10 1 05 16 100
Ant-gather-two-coins 200 10 0.1 05 32 150

Coftee-push 60 0 0.1 05 16 100

Coffee-pull 60 0 0.1 05 16 100

Coffee-button 60 0 0.1 05 16 100

A.1.1. IMPLEMENTATION DETAILS

When computing the latent embedding z using context encoder, for coffee domain, the state component in the input
trajectory only contains the first three elements (x&y&z coordinates of the gripper). For ant domain, the state component
in the input trajectory only contains the first two elements (x&y coordinates of the ant) for ant-goal and ant-gather, for
ant-bridge the state component in the input trajectory is the original state. Both actor network and critic network in MLPS
are parameterized MLPs with 2 hidden layers of (300, 300) units. The context/trajectory encoder network is modeled as
product of independent Gaussian factors, with 3 hidden layers of (400, 400,400) units. We set the learning rate as 3e — 4.
The scale of KL divergence loss is set to be 0.1. Other hyperparameters are listed in Table 1.

A.1.2. ANOTHER APPROACH FOR IMPLEMENTING THE CONTEXT ENCODER AND ITS TRAINING PROCESS

Based on the intuition that the distance of different skills in the latent
space should be proportional to the distance between their trajectories,
we can compute DTW distance for any pair of trajectories, no matter if
they succeed or not, and match the distance to their corresponding latent
embeddings’ distance. Thus, we do not need to wait until there’s at least one
success trajectory in each task’s replay buffer to calculate the smoothness
loss.

Concretely, we provide the algorithm in Algorithm 2. Instead of modeling
the context/trajectory encoder network as a product of independent Gaus-
sian factors, we use a sequential encoder network, SNAIL [39], which uses
temporal convolution and soft attention. Then, at each training step, instead
of sampling two random batches of transitions, we sample two complete
trajectories 71, 75 and transform them to the same length. We compute the
corresponding latent embeddings 21, z2 for both of them using the context
encoder, and calculate the DTW distance as well as the smoothness loss
using the same equation (2). Thus we update the encoder network with the
smoothness loss at every training step.

—— PSL
—— PSL w/ sequential encoder

500 -

Average Return
w »
o o
o o

N
o
o

1001

00 05 10 15 20 25 30
Number of env steps 1e7

Figure 9. Comparison of different implementation
strategy for MLPS on Ant-goal.

We show the results comparison in Figure 9. Although MLPS with sequential encoder does not learn as fast as the original
version, it achieves similar final performance. Besides, the requirement for using this version of the algorithm is a little
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looser. The readers can choose to apply one of the two versions of our algorithm based on the properties of their own test
tasks.

Algorithm 2 Parameterized Skill Learning (MLPS) Meta-training (Sequential encoder network)

Input: Batch of training tasks f4;=1,... as from p(u),
Initialize replay buffer B; for each training task
Initialize parameters 6, and 6. for the actor and critic networks separately.
Initialize parameters context encoder network ¢, context encoder target network ¢, get
while not done do
for each task y; do
Roll out policy 7, , producing transitions {(s;, a;,7;,s})}j.1...n
Add tuples to execution replay buffer B;
end for
if there’s at least one success trajectory in each task’s replay buffer then
calculating_ DTW = True
end if
for each training step do
Sample a meta batch of tasks {1,--- ,C}
for each task 7 in meta batch do
Sample two trajectories and transform them to same length K: 7i = {(sg, ax, 7%, s}) bh=1..x ~ Bi, 75 =
{(Skyak,TbS;g)}k:l---K NlBi ] ) ]
Sample latent embedding 2} ~ ¢(71), 2i4rger ~ Ptarget(T3)
Sample transition batch b* = {(sy, ag, 7%, s},) be=1..x ~ Bi
Update actor and critic networks with {24, b}, and calculate Ly e

end for
: : 1 C 1 C
Calculate contrastive loss Lxcg With {21, -+, 27}, { Zjurgets *** » Zharget )
Calculate Dynamic Time Warping distance and Smoothness 10SS Lgmoothness With {z%, cee zlc 1,
1 c 1 C 1 c
{Ztargeta T vztarget}’ {7_1 )t T }’ {TQ ) T2 }
Update context encoder network with Lgkii = Ly aiue + @LncE + BLSmoothness
end for
end while

A.2. Hierarchical actor-critic with Parameterized Skills (HPS)
A.2.1. FURTHER COMPARISON WITH OTHER EXISTING RL WITH PARAMETERIZED ACTION SPACE ALGORITHMS

We show a comparison of different algorithms’ properties in Table 3. P-DQN lacks scalability as it maintains a separate
actor network for each discrete action, and have to compute all of them during both training and execution as we explained
in the main text. HHQN has the problem of potential nonstationarity as we explained in the last paragraph of Section
4.2. PADDPG makes the actor output an concatenation of the discrete action and the continuous parameters for each of
them together, which tends to ignore the dependency between discrete action and continuous parameters. This leads to
performance drop as shown in PDQN and HyAR’s original papers. HyAR don’t have the above three problems but it needs
to further learn a latent action space and plan based on it instead of the primitive parameterized action space. In our scenario
where the parameterized action space is actually learned, the noise in the dynamics is magnified and it’s hard to learn a
proper latent action space. We assume this leads to HyAR’s performance drop in our experiments.

A.2.2. IMPLEMENTATION DETAILS

For the actor of discrete action y,, we use two hidden layers of MLPs with (300, 300) units, the output layer follows by a
gumbel-softmax layer. For both the actor of continuous parameters 7y, and critic network, we use two hidden layers of MLPs
with (300, 300) units. The learning rates are all set as 3e — 4. The output of the actor of continuous parameters are stochastic
the same as in SAC. Note that we fix the temperature for gumbel-softmax to be 1.0 across the whole training process,
without using any decaying strategy. We also tried automatic temperature tuning as in SAC but did not get satisfactory result.
We set the reward scale as 5 and the batch size as 128.
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Table 2. Comparison with other parameterized action space algorithms
Algorithm  Scalability  Stationarity Dependence Primitive

P-DQN X v v v
PADDPG v v X v
HHQN v X v v
HyAR v v v X
HPS v v v v

A.2.3. TEMPORALLY-EXTENDED PAMDP

Specifically, after we let the agent train on K different
categories of tasks using MLPS, we get K different skill-
conditioned policies and fix them. Then we can directly let
the high-level agent solve a new task by learning a policy that
maps states to parameterized skill pairs (k, zj )—learning in
the high-level temporal-extended action space. Each discrete
skill label corresponds to a low-level skill-conditioned policy
network 7k (als, i), which takes the continuous skill param-
eter zj, as an additional input. The decision making process of
this new temporal-extended PAMDP is illustrated in Figure 10.
Upon receiving a new observation, the agent must first choose
the discrete skill label k using 7, and then choose the corre-
sponding skill parameter z;, given the state s and k using 7, .

/ ”Gd_’k \

S

b s, 2p.) = Environment

Original MDP

ﬂgcézk /

Temporal — extended PAMDP

Figure 10. Decision making process in the temporally-extended
PAMDP. 7y, denotes the policy for discrete action and g,
denotes the policy for continuous parameters.

The low-level skill-conditioned policy 7y (a|s, zx), which is learned by MLPS and fixed, takes in the observation and the
skill parameter and outputs a primitive action to interact with the environment. The discrete skill label and the continuous
parameter are fixed and the low level policy 7y (a|s, zx) will constantly output actions for a given number of environmental
steps. Then, the last observation received from the environment is used as the new input state for the high-level policy,

which will select new k and z;, and so on.

A.3. Environment details and baselines

We run all experiment with the mujoco simulator [60]:

Ant-goal: The horizontal position of the doorway changes across all the tasks (uniformly sampled from [—10, 10]). The
other environmental properties are fixed, including the goal’s position. The task horizon is 400. The agent succeeds
when it reaches the goal position (z = 0,y = 25). The state input includes the position and velocity of different joints
of ant, and the ant’s horizontal position z, as well as its relative vertical position y to the midlane y = 10.

* Ant-bridge: The wind speed when the ant is on the bridge changes across all the tasks (uniformly sampled from [—3, 3]).
The other environmental properties are fixed. The task horizon is 300. The agent succeeds when it reaches the goal
position (x = 0,y = 26). The state input includes the position and velocity of different joints of ant, and the ant’s
horizontal position z, as well as its relative vertical position y to the midlane y = 10.

* Ant-gather: The position of the first coin (Ant-gather-one-coin) or both coins (Ant-gather-two-coins) change across all
the tasks (uniformly sampled from [—4.5, 4.5]). The other environmental properties are fixed. The task horizon is 400.
The agent succeeds only when it gathers both coins and reaches the goal position (z = 0,y = 16). The state input
includes the position and velocity of different joints of ant, an indicator for how many coins the ant has gathered, and
the ant’s horizontal position z, as well as its relative vertical position y to the midlane y = 8.

e Ant-box: The ant needs to push the box and walk pass a gap to reach the goal position. The position of the box is fixed.
The task horizon is 500.

2Note that in this paper, we consider the HiP-MDP setting. If we change the task order as well as the task parameters, without giving

the agent these information the problem would become partially observable and extremely hard to solve.
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* Ant-mix: The ant needs pass 10/15 different barriers consist of Ant-goal, Ant-bridge, Ant-gather-one-coin, Ant-box
and reach the goal position. The task order as well as their specific features (door position, wind speed etc.) are all
fixed. The origianl task horizon is 4000/6000. The task horizon when we do high-level learning with the skills is 10/15.
The state input includes: High-level: the ant’s horizontal position = and vertical position y, how many barrier it has
passed. Low-level: the ant’s horizontal position z and its relative vertical position y to the midlane of the current
subtask, as well as the position and velocity of different joints of ant, and how many coins the ant has gathered.

» Coffee-button: We adopt the same environment in MetaWorld[63]. The goal is press a button on the coffee machine.
The button’s position if changing across different tasks.

» Coffee-push: We adopt the same environment in MetaWorld and further modify it by letting the gripper start at a
position above the mug at the beginning of every episode. The goal is to push the mug to a target position under the
coffee machine. The target position is changing across different tasks.

e Coffee-pull: We adopt the same environment in MetaWorld and further modify it by letting the gripper start at a
position above the mug at the beginning of every episode. The goal is to pull the mug to a target position under the
coffee machine. The target position is changing across different tasks.

* Reach: The goal is to reach the mug. This is a discrete skill.

* Return: The goal is to return to the gripper’s start position. This is a discrete skill.
Reward Functions:

* Ant-goal:
R; =I{The ant has not passed the door} * Adpistance to door + 1{do0r} * 10
+ I{The ant has passed the door} * Adpjsance o goal + I{goal} * 20

* Ant-bridge:
Rt = AdDistance to goal + H{goal} * 20

* Ant-gather:

R; =I{The ant has not gathered the first coin} * Adpjstance to first coim + 1{first coin} * 10
+ I{The ant has gathered one coin, one left} * Adpisance to second coin + 1{second coin} * 10
I{The ant has gathered two coins} * Adpistance 1o goal + 1{g0al} * 20

* Ant-mix (sparse):
R, = I{The ant passed a barrier} * 5 + I{goal} * 100

* Ant-mix (dense): For the dense reward used by other baselines, we use the direct combination of the dense reward
we set for each specific subtask. The environment knows what the subtask is and it will give the corresponding dense
reward. Moreover, we also give it the sparse reward when it passes each barrier.

* Coffee-button, coffee-push, coffee-pull: same as in the original MetaWorld.

The number of environment steps needed to complete the tasks (Ant-mix) and reach the final goal is around 3500 for 10b-3c,
and around 5000 for 15b-4c.

The results shown in the main text are averaged over three random seeds. The error bar shows one standard deviation. All
experiments were run on our university’s high performance computing cluster. When comparing with PDQN & HyAR
& PEARL in ant obstacle course (ant-mix) domain (results shown in two plots of Figure 8), we fix the task order across
different random seeds to make the environment setting consistent to all baselines.
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Goal position (gather); Goal position (bridge); Goal position (goal);
Start point (next task) Start point (gather) Start point (bridge)
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Ant-gather Ant-bridge Ant-goal

Figure 11. Ant obstacle course (ant-mix) further illustration.

Baselines: 1. Parameterized skill learning: We use the original source code for PEARL?, VariBAD* and their implementation
for RL?. 2. Learning with learned parameterized skills: We use the original code for HyAR-TD3’, and their implementation
for PDQN-TD3. For SAC, we use the stable-baselines3 implementation®[49]. Additionally, for HyAR, we let the agent
pretrain the Variational Auto-encoder 2000 steps.

A.4. More Experimental results

We compared the difference between DTW distance and pointwise euclidean distance. For each domain (ant-goal, ant-
bridge, ant-gather), we test two scenarios: same tasks, where we fix the hidden parameter (door position/wind speed/coin
position), and calculate the distance between success trajectories that are able to solve the same task. Another scenario
is neighbour tasks, where we sample 5 values from the original range of the hidden parameter with same distance from
each other. For instance, for ant-goal, we sample 5 doorway position: {—9,—4.5,0,4.5,9}. Then we calculate the distance
between success trajectories from two neighbour tasks. Ideally, the distance of different pairs of neighbour tasks (e.g.
{—9, —4.5}&{—4.5,0}) should be similar to each other, as the actual distance between the hidden parameters are the same.

We show the Coefficient of Variation of the two methods for calculating distance in different scenarios in Figure 12. In
both same tasks and neighbour tasks scenarios, we expect the coefficient of variation to be small. This is because different
metrics will result in different means, but the variation of the distance should be small as these distance are either calculated
for the same tasks (that is, actual hidden parameter distance is fixed as 0) or for tasks with the same actual hidden parameter
distance. We find that the distance calculated by DTW gets smaller variation in all scenarios which is consistent to our
hypothesis. The gap between the two methods is especially large for trajectories from the same tasks, indicating that
unwrapped pointwise Euclidean distance can end up with the erroneous conclusion that the trajectories are very different
even though they have quite similar overall shape.

We also compare the metrics for calculating the distance between z when calculating the DTW distance, shown in Figure 13
Left. We find that besides directly using Euclidean distance as in Equation (2), we can also use the similarity score function
f to calculate the distance between two latent embedding. And the result shows that these two metrics achieve similar results,
although the performance of using similarity score drops a bit at the end of training. As shown in Figure 13 Right, compared
with regular epsilon-greedy strategy, our exploration strategy based on gumbel-softmax is important for HPS to achieve good
performance on ant obstacle course tasks. Moreover, we do not need to consider the additional hyperparameters brought by
epsilon-greedy method (final epsilon, number of decay steps) and just fix the “temparture” of gumbel-softmax to be 1.0 for

*https://github.com/katerakelly/oyster

‘nttps://github.com/lmzintgraf/varibad

Shttps://github.com/TJU-DRL-LAB/AI-Optimizer/tree/le2a33a4a3a7a8235f1cl2ea7lbleab86c071094/
self-supervised-rl/RL_with_Action_Representation/HyAR

Shnttps://github.com/DLR-RM/stable-baselines3
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Figure 12. Comparison results of DTW distance against pointwise euclidean distance in Coefficient of Variation. In all scenarios, we
collect ten pairs of data (two categories of distance) and then compute the coefficient of variation for the ten values.
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Figure 13. Left: Comparison of different metrics for calculating the distance between latent embeddings on Ant-goal. Right: Comparison
of different exploration strategies for HPS on Ant obstacle course 10b-3c.
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Figure 14. Visualization of coffee-push skill with different smoothness loss (corresponding to Figure 8).

A.5. Ablation study for HPS and HHQN

We also conduct an ablation study on using two different Q networks for discrete and continuous skill respectively like
HHQN, while keeping the other components the same as our algorithm. As shown in Figure 16, in the coffee-make long
horizon task, using one joint critic network as in our algorithm HPS results in a faster learning speed than training two
Q-networks for discrete and continuous skill parameters separately. For both methods, we use the same set of low-level
skills learned by MLPS.

A.6. Comparison with Hierarchical RL and Skill discovery methods

We run two relevant hierarchical RL methods (HIRO [41] and MLSH [17]) and one skill discovery method (off-policy
DADS [55; 54]) on the two ant-mix domain: 10b-3c (10 consecutive barriers sampled from 3 different categories of tasks
introduced the previous section) and 15b-3c (15 consecutive barriers sampled from 4 different categories of tasks). We use
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Figure 15. Comparison with On-policy Meta-RL methods on the ant domain.
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Figure 16. Ablation study for HPS: one joint critic network v.s. two separate critic networks.

the official released code for all the baselines’®®. We train all these three methods with dense reward like we train SAC from

scratch (for our method we used sparse reward). The dense reward is a composition of the exact same dense reward we
used to train the low-level parameterized skills. We show the comparison of the results in the ant-mix domain. As shown in
Figure 17, the agent trained by the other algorithms can pass two barriers at most, while our MLPS+HPS algorithm is able
to pass all 10/15 barriers.

10b-3c 15b-4c

Max number of barriers passed
®

0
MLPS+HPS  SAC HIRO DADS  MLSH SAC MLPS+HPS  SAC HIRO DADS  MLSH SAC
w/ dense rew W/ sparse rew w/ dense rew w/ sparse rew

Figure 17. Comparison results of MLPS + HPS against other baselines in ant-mix domain (10b-3c and 15b-4c).

A.7. Experimental results for smoothly changing subtasks

For smoothly changing subtasks, it’s a special case of our method where the agent needs to consistently pick one discrete skill
label as the output of the high level policy, and only needs to change the continuous parameters output from the mid-level
policy. We have added experiments to illustrate our algorithm’s performance in this case. Specifically, we additionally
tested our algorithm in two scenarios. In the first scenario, the ant robot needs to navigate through 5 Ant-Goal barriers, and
we change the position of the doorway smoothly from 7.5 to 3.5 for these five Ant-Goal subtasks. In the second scenario,
the robot arm needs to push and pull the mug consecutively to 12 different locations, and we change the goal location

"https://github.com/openai/mlsh
$https://github.com/watakandai/hiro_pytorch
‘https://github.com/google-research/dads

20


https://github.com/openai/mlsh
https://github.com/watakandai/hiro_pytorch
https://github.com/google-research/dads

Meta-Learning Parameterized Skills

smoothly from [0.9,0.57, 0] to [—0.9,0.64, 0]. As shown in Figure 18, the proposed algorithm MLPS+HPS outperforms
Off-policy Meta-RL(OPML) + HPS in both scenarios, indicating that our algorithm can be applied on long-horizon tasks
with smooth variations between subtasks as well. For tasks where the differences between tasks changes smoothly, the
high-level policy as a result only needs to output the only one discrete skill label being used and the mid-level policy will
output the continuous parameters corresponding to the smoothly changing variations between subtasks.

iy -
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Figure 18. Comparison of the proposed MLPS algorithm with Off-Policy Meta-RL (OPML) on two scenarios where the underling
continuous parameters smoothly change across subtasks.

A.8. The difficulty of Long-horizon tasks for RL

The first problem that stems from this long horizon is that a single policy neural network based on the primitive actions
needs to be able to handle the distinct changes of the environment at different stages during the long execution episode (e.g.,
In our ant obstacle course, to reach the final goal, the ant has to move pass several gaps, obstacles, bridges), which is quite
difficult. The more insidious problem is exploration. Because of the long action sequence needed, uninformed exploration
methods are unlikely to be successful: In the ant obstacle course, early barriers, once mastered, should be navigated so as to
maximize success probability (requiring a low exploration rate), while grappling with later barriers should involve collecting
enough data to pass the barrier (high exploration rate). These two problems make learning to solve such long-horizon tasks
at the level of primitive actions highly difficult.

A.9. More discussion about the smoothness term for learning parameterized skills

Note that in all our experiments, we use PEARL + contrastive loss as the Off-policy Meta-RL baseline. However, the
proposed smoothness loss can be directly applied to other Off-policy Meta-RL algorithms as well, as it functions as an
auxiliary loss to train the context encoder. Moreover, we use Dynamic Time Warping to calculate the smoothness loss and it
works well for navigation tasks and robot manipulation tasks. Its effectiveness is unknown for other problems (in particular,
when the observations are all in images). However, as we shown in Section 4.4, smoothness is a import factor to consider if
we are trying to let an agent learn a new action space.And it will be one of the key parts to connect skill learning (MLPS)
and using skills to learn (HPS) no matter what the correct form of the smoothness loss is for a specific task.

A.10. Mathematical notation table
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Table 3. Mathematical Notation table

Symbol Meaning

s state

s’ next state

S state space

A primitive action space

H parameterized action space

T transition function

R reward function

¥ discount factor

k discrete action

2k continuous parameter corresponding to k

K total number of discrete actions

0 hidden parameter

Pq Underlining distribution over the hidden parameter
s policy

Th,Te,  high-level policy

Tm, T, mid-level policy

m low-level policy

Q critic

10} context encoder

Qtarget  target context encoder

T trajectory

K scale of the DTW distance

0, parameterize the actor network when running Off-policy Meta-RL
0. parameterize m,, (in the main text), parameterize the critic network (in algorithm 1)
04 parameterize 7y,

P parameterize )

Dgr, KL divergence

i task during MLPS training

b, B transition batch

C Number of tasks within one meta batch during MLPS training
f calculate the similarity score (contrastive learning)
Wy (s)  Partition function (see the SAC paper)
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