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Abstract—Deep neural networks have been increasingly in-
tegrated in healthcare applications to enable accurate predica-
tive analyses. Sharing trained deep models not only facilitates
knowledge integration in collaborative research efforts but also
enables equitable access to computational intelligence. However,
recent studies have shown that an adversary may leverage a
shared model to learn the participation of a target individual in
the training set. In this work, we investigate privacy-protecting
model sharing for survival studies. Specifically, we pose three
research questions. (1) Do deep survival models leak membership
information? (2) How effective is differential privacy in defending
against membership inference in deep survival analyses? (3) Are
there other effects of differential privacy on deep survival anal-
yses? Our study assesses the membership leakage in emerging
deep survival models and develops differentially private training
procedures to provide rigorous privacy protection. The experi-
mental results show that deep survival models leak membership
information and our approach effectively reduces membership
inference risks. The results also show that differential privacy
introduces a limited performance loss, and may improve the
model robustness in the presence of noisy data, compared to
non-private models.

Index Terms—Deep Learning, Survival Analysis, Membership
Inference, Data Privacy

I. INTRODUCTION

Deep learning has been increasingly applied in healthcare
research and applications [1]. Deep models are shown to learn
representations of health data effectively using multiple levels
of abstraction, thus enabling accurate predicative analyses.
Training these models often requires large datasets and sophis-
ticated computational infrastructure. Therefore, researchers
who do not have access to adequate data and computational re-
sources would rely on pre-trained models shared by others. In
addition, model sharing also benefits collaborative research ef-
forts [2], facilitating knowledge transfer and integration among
multiple institutions. However, explicit privacy concerns may
rise regarding what information these models may reveal about
individual data contributors (i.e., patients in the training set).
In fact, recent studies have shown that by accessing a shared
model, an adversary may be able to learn the participation of
a target individual in the training set and even infer sensitive
attribute values [3], [4].

To facilitate the application of deep learning techniques
in healthcare, it is imperative to develop privacy-protecting
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solutions to safeguard the data used for training deep models.
Differential privacy [5], a rigorous and provable privacy no-
tion, has become the state-of-the-art paradigm for protecting
sensitive data. In a nutshell, differential privacy ensures that
an adversary would not be able infer whether an individual
is in the data, by observing computational results. Recently,
differential privacy has been extended to training deep models,
protecting the underlying training samples [6]. The framework
allows a data curator to train deep learning models using the
classic stochastic gradient descent method while satisfying dif-
ferential privacy. In this work, we investigate the applicability
of differentially private deep learning in healthcare, its efficacy
in defending against privacy attacks on deep models, and its
usability in clinical predictive tasks.

We focus on survival analysis, where a number of deep
learning approaches [7]-[10] have been recently proposed to
improve upon traditional methods (such as the Cox propor-
tional hazards model [11]) with neural networks. In contrast
to prior research, which has studied the privacy risks and
solutions associated with Kaplan—-Meier time-to-event analy-
ses [12], [13], this work investigates new privacy challenges
in incorporating patient covariates and deep neural network
models. The contribution of our work is three-fold. For deep
survival models, we develop a quantifiable measure of mem-
bership leakage via membership inference attacks, which takes
into account the input covariates and the predicted survival
functions. Empirically, we show that deep survival models
leak membership information, potentially disclosing individual
participation in the training set. Furthermore, we develop
differentially private training procedures for those survival
models based on the private framework [6], and evaluate the
efficacy in defending against membership inference. Moreover,
we empirically study the impact of differential privacy on deep
survival models, in terms of convergence, performance, and
robustness. Our analyses show that rigorous privacy can be
achieved for deep survival analysis models and membership
inference can be mitigated. While privacy may impact the
predictive accuracy, the accuracy loss is moderate; private
models may be more resilient to noise in the data compared
to non-private models.

The rest of the paper is organized as follows. Section II
introduces recently proposed deep learning approaches to



survival analyses; Section III describes the proposed mem-
bership inference attacks on deep survival models; Section IV
introduces the background on differential privacy and the train-
ing procedure for differentially private deep survival models;
Section V presents the empirical evaluation methodology and
discusses the results; Section VI concludes the paper and states
future work opportunities.

II. DEEP LEARNING FOR SURVIVAL ANALYSIS

In a survival study, a dataset D = {(z%,t!, )}V, is
often given which contains N observed instances/patients.
For patient 1, x' is the covariate vector; t* is the time when
the event or censoring occurred; e’ is the event or censoring
that occurred at ¢*. Note that ¢ is either the time when the
event (e.g., death) occurred or the time when the patient was
censored (e.g., not following up); in either case, the patient was
known to be alive prior to time ¢*. Survival models are trained
with the labeled dataset D to optimize specific objectives, e.g.,
Cox partial likelihood in the Cox proportional hazards model.

Recent works have shown that deep neural network models
can outperform traditional survival methods (e.g., the Cox
proportional hazards model), by modeling both linear and
nonlinear effects from covariates. In this work, we consider
four emerging deep learning approaches to survival analyses,
namely: DeepSurv [7], DeepHit [8], Nnet [9], and Cox-
Time [10]. DeepSurv adapted the Cox proportional hazards
model to neural networks and showed that novel networks
were able to outperform classic Cox models. Given larger
datasets and higher computational power, recent studies pro-
posed to study non-proportional hazards by adopting a time-
dependent risk function (i.e., CoxTime) or discrete-time mod-
els (i.e., DeepHit and Nnet).

At inference time, a deep survival model takes as input pa-
tient j’s covariates and predicts the survival function denoted
as S(t|x7), which is the probability that patient j survived
beyond time ¢, for any t in the time span of the study. The
survival function S(t|z7) is used to assess the performance of
a deep survival model, e.g., in time-dependent concordance. It
is also used in our proposed membership inference attacks to
quantify the privacy leakage.

Although different deep learning approaches may vary in
the model’s output, it is not difficult to derive the survival
function from the output of any deep survival model studied
in this work. For example, DeepHit directly estimates the
conditional probability for the event distribution and Nnet
directly estimates the conditional probability of surviving each
interval; both DeepSurv and CoxTime estimate the log-risk
function as in the Cox model, and adopt the Breslow estimator
to compute the baseline hazard. We refer the readers to original
manuscripts [7]-[10] for additional model details.

III. MEMBERSHIP INFERENCE ON DEEP SURVIVAL
MODELS
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Fig. 1: DeepSurv Predicted Survival Functions for Sample Indi-
viduals in METABRIC (best viewed in color): survival functions
may differ for the same individuals depending on whether they are
included in the training set; legend indicates ground truth time-to-
event.

Recent research has shown that deep models are prone
to overfitting and thus may leak sensitive information about
training data [3], [4]. In this work, we investigate the leakage
of membership information, which discloses an individual’s
participation in the training set.

A. Membership Leakage of Deep Survival Models

In a well-known study [3], researchers quantified the mem-
bership leakage of deep models in the black-box setting, where
an adversary’s access to the target model is limited to the
model’s output on a given input (i.e., query). The target model
in the study [3] is assumed to be a classifier, which outputs
a vector where each element indicates the probability for the
corresponding class. While adopting the same adversarial as-
sumptions, this work focuses on deep survival models as target
models, for which the privacy risks are not well understood.

Our hypothesis is that the predictions of deep survival
models, specifically survival functions, may leak member-
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Fig. 2: DeepHit Predicted Survival Functions for Sample Individuals
in METABRIC (best viewed in color): survival functions may differ
for the same individuals depending on whether they are included in
the training set; legend indicates ground truth time-to-event; note that
DeepHit is a discrete-time model and survival functions are estimated
over 20 time intervals.

ship information. As an illustration, two qualitative studies
with continuous-time (e.g., DeepSurv) and discrete-time (e.g.,
DeepHit) models are presented in Figure 1 and Figure 2.
Specifically, in each study, we trained two models with the
METABRIC dataset (see Section V for dataset information):
model (a) trained with 80% of the dataset and model (b) with
the same training set but excluding three random individuals'.
In each figure, we plot the predicted survival functions by
model (a) and model (b) for those three individuals. It can
be observed that the presence/absence of those individuals in
the training set has a noticeable impact on the predictions. As
can be seen in Figure 1, the survival probabilities predicted
by model (a) drop significantly for all individuals around their
true time-to-events; on the other hand, model (b) predicts only

IFor visualization, we randomly selected three individuals with similar
time-to-events.
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Fig. 3: Membership Inference Attacks on Deep Survival Models.

moderate decreases for two individuals and near zero survival
probability much earlier for the third individual (i.e., with
true time-to-event at 262.13). Similarly in Figure 2, model (b)
predicts moderate survival probability decreases for the blue
and green individuals around their true time-to-events and an
under-estimated survival probability for the orange individual,
before the actual time-to-event. Those results illustrate that
for individuals in the training set, a model is more likely to
predict survival probabilities that resemble their true time-
to-events. In the next subsection, we will devise an attack
model based on our observation to quantify such membership
leakage. In Section V, we will present empirical evidence that
deep survival models leak membership information.

B. Membership Inference Attacks on Deep Survival Models

To quantify the membership leakage in deep survival mod-
els, we adapted the membership inference attack proposed
in [3] to our setting. A basic assumption is the adversary has
prior knowledge of the covariates of a patient and has black-
box access to the target model. The goal of the adversary is
to infer whether the patient participated in the training set. It
is also assumed that the adversary can sample records from
the training distribution (although non-overlapping with the
secrete training set) and can train shadow models to simulate
the behaviors of the target model.

The attack framework is depicted in Figure 3. First the
adversary queries the target survival model with the covariate
vector of an individual and obtains the predicted survival
function. Then, the adversary feeds the covariates and the
survival function to an attack model, which predicts whether
the individual was used to train the target model. As can be
seen, the attack model is a binary classifier, predicting “in”
or “out” labels for each individual. In principle, any binary
classifier could be used by the adversary; in our work we
adopted a fully connected neural network with one hidden
layer of 64 nodes with ReLU activations and a softmax layer,
as suggested in [3]. To train the attack classifier, we used 20
shadow models to simulate the behaviors of the target model.
Note that our shadow models are also deep survival models
with the same architecture as the target model. Following
the suggestion in [3], we trained shadow models using data
sampled from the same populations but disjoint from the target
model’s training set.

To consistently evaluate the outputs of all deep survival
models, we provide the attack classifier with survival functions
predicted over 20 discrete intervals (as defined for discrete-
time models DeepHit and Nnet); for continuous-time survival



models (i.e., DeepSurv and CoxTime), we post-process their
output survival functions to estimate the survival probabilities
over those intervals accordingly.

IV. LEARNING DEEP SURVIVAL MODELS WITH
DIFFERENTIAL PRIVACY

The privacy model adopted in our work is differential pri-
vacy (DP) [5]. In recent years, differential privacy has become
the state-of-the-art privacy paradigm for protecting statistical
databases, as it provides provable privacy protection. Relevant
to our work, recent research has shown that DP provides
potential defense against membership inference attacks in
machine learning applications [3].

A. Differential Privacy Background

Intuitively, an algorithm A satisfying DP ensures that an
adversary, who observes the output of A, cannot determine
whether any particular individual record was included in the
input. The DP notion aims at achieving indistinguishably
for any pair of neighboring databases D, D’, which differ
in at most a single record (i.e., data of an individual), thus
protecting the presence of the record. Specifically, a random-
ized algorithm A is (e, §)-differentially private if for any two
neighboring databases D, D’ and any subset S € Range(A):

Pr[A(D) € 5] < exp(e) Pr[A(D’) € §] + 6. (1)

The privacy parameter € > 0 bounds the difference between
output probabilities of neighboring databases. € is often re-
ferred to as the privacy budget. The parameter 6 € [0, 1]
accounts for the probability of a privacy breach. In practice,
€, 0 parameters help data curators control the information
leakage. Typically, smaller ¢ and § values indicate stronger
privacy protection and possibly lower accuracy, and vice versa.

B. Training Deep Survival Models

In this work, we aim at applying DP to training deep sur-
vival models, in order to share those models while protecting
the sensitive training data. DP guarantees in deep learning
applications can be achieved by clipping and perturbing the
gradient during training [6], which ultimately limits the overall
influence of any individual training example on the model.
To account for differential privacy across training epochs, the
moments accountant approach has been proposed [6], which
provides stronger estimates of privacy loss compared to other
composition theorems [5].

We modify the training procedures for deep survival models
to satisfy (e,0)-DP. Specifically, we clip the f5 norm of
each per-sample gradient with a threshold C' and perturb the
average gradient in a batch with a Gaussian noise draw from
N(0,02C?) to protect each training sample. We adopt the
Rényi Differential Privacy (RDP) Accountant [14] to track
the differential privacy budget ¢ spent in training. In fact, ¢
can be effected by a number of factors, including the input
data size, batchsize, o, and the number of training epochs. We
include below a snippet of the Python code that illustrates the

modified training procedure implemented with PyTorch and
Opacus libraries.

## initialize RDP accountant,

## DP optimizer, and survival model
accountant = RDPAccountant ()
DPOptimizer (
optimizer=optimizer,

dp_optimizer =

noise_multiplier=sigma,
max_grad_norm=C,
expected_batch_size=batch_size)

dp_optimizer.attach_step_hook (
accountant.get_optimizer_hook_fn(
sample_rate=batch_size/len(x_train)))

model =

DeepSurv (net, dp_optimizer)

..model fitting...

## get total privacy loss

epsilon, alpha =
accountant.get_privacy_spent (
delta=1/len(x_train))

It is important to choose the privacy parameters to strike
a balance between privacy and model utility. In private deep
learning, higher € values are often considered, e.g., e = 8 as
in [6]. In our study, we consider ¢ < 16 to provide privacy
protection in deep survival analyses without incurring high
utility loss. We set § = ‘%‘ as recommended in [5], where
|D| represents the size of the training set, in order to protect
every individual in the dataset.

V. EMPIRICAL RESULTS
A. Evaluation Methodology

Data Description. We adopt four real-world survival datasets
in the evaluation. Three datasets were used in DeepSurv [7]:
the Molecular Taxonomy of Breast Cancer International Con-
sortium (METABRIC), the Rotterdam tumor bank and Ger-
man Breast Cancer Study Group (GBSG), and the Study
to Understand Prognoses Preferences Outcomes and Risks
of Treatment (SUPPORT). In addition, we include NWTCO
from the National Wilm’s Tumor Study [15] obtained through
RDatasets?. Table I provides a summary of the datasets.

TABLE I: Summary of Data

Name Size | Covariates Time-to-Events Perc. Censored
METABRIC | 1904 9 0 to 355.2 months 2%
GBSG 2232 7 0.3 to 87.4 months 43%
SUPPORT 8873 14 3 to 2029 days 32%
NWTCO 4028 6 4 to 6209 days 86%

Data Processing. For all datasets, we standardize the nu-
merical covariates and encode the categorical covariates with
entity embedding as in [10]. Time-to-events are discretized

Zhttps://vincentarelbundock.github.io/Rdatasets/
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Fig. 4: Membership Inference for Non-Private and Private Models with METABRIC (best viewed in color): models were trained over the
specified number of epochs; in addition, private models were trained to meet the target € values.

into 20 equidistant intervals for DeepHit and Nnet. As time-
to-event is regarded as a regular covariate by CoxTime, it is
also standardized for training CoxTime models.

Utility Measures. In survival analysis, the concordance index
(C-Index) [16] is commonly applied to evaluate the discrim-
ination performance of survival models. We adopt the time-
dependent concordance (C*?) definition [17] which utilizes the
whole predicted survival function: a subject who developed
the event should have a less predicted probability of surviving
beyond his/her survival time than any subject who survived
longer. Formally, the C-index is computed by

Ot =Pr[S(t'|z") < S(t|2) | t' <t/ e =1].  (2)

To evaluate model calibration performance, we adopt the
integrated Brier score (IBS), which is based on the Brier score
for censored data [18]. Specifically, we compute the following

N N2 [46 ol —
BS(t) = %Z [S(t|x ) 11{5(;) t, 1} 3)
) (1 — S(t|xzh))21{t! > t}
G(t) }
1 b2
[BS:t?_ﬁ1 /t1 BS(s)ds )

where G(t) is the Kaplan-Meier estimate of the censoring
survival function. In our experiments, we adopt the numerical
integration for IBS and break down the time span for each
dataset to 20 intervals, in order to be consistent with the
discretization of time-to-events for DeepHit and Nnet.

Model Implementation and Hyperparameters. We imple-
ment deep survival models in PyTorch and differentially
private training with Opacus®. The networks are standard
multi-layer perceptrons with 2 layers and 32 nodes in each
layer, ReLU activation, and dropout=0.1. Batchsize is set to
256 and the number of training epochs is varied from 10
to 100. We adopt the Adam optimizer with 0.01 learning
rate. For DeepHit, parameter « specifies the weight of the
ranking loss term in the total loss. We set a« = 4 to achieve
a balance between discrimination performance and calibration

3https://github.com/pytorch/opacus

performance. For training private models, the parameter o is
set to meet the specified e value and the clip norm C'is set to
32 (for DeepHit and CoxTime) and 4 (for DeepHit and Nnet)
for better convergence.

B. Efficacy against Membership Inference

First, we examine the amount of membership leakage in
deep survival models and whether differential privacy can help
mitigate such privacy risks. Specifically, we are interested in
the effects of the number of training epochs. Intuitively, with
a higher number of epochs, the model may “memorize” more
of each training sample, hence higher membership leakage.

In Figure 4, we plot the accuracy of membership inference
attacks against deep survival models trained in a number
of privacy settings, i.e., non-private and ¢ € [1,4,8]. Each
experiment was run 50 times, and we reported the mean testing
accuracy and 95% confidence interval. As a binary classi-
fication problem, an accuracy above 50% indicates positive
leakage of membership information. When trained over 10
epochs, both private and non-private models do not inflict
significant membership leakage. Private models at different
€ values yield around 50% membership inference accuracy,
while the accuracy of non-private models is slightly higher
than 50%. As the number of training epochs increases from
10 to 100, we observe a steady increase of accuracy among
all non-private models, rising above 60% for DeepHit and
Nnet. However, for private models, the membership inference
accuracy remains around 50%, indicating effective defense
against such attacks. Note that deep survival models may be
trained over a very large number of epochs in non-private
settings, e.g., 1000 epochs as in Nnet [9]. Our results show
that we must be mindful of additional membership leakage
that may be inflicted by training the model over more epochs.

While in theory higher e values provide weaker differential
privacy guarantees, we observe only a marginal increase of
membership inference accuracy for setting ¢ = 8, compared
to models that satisfy e = 1 and 4. It is likely that the clipping
and perturbation operations required by differential privacy
introduce uncertainty to the training process, even at higher ¢
settings. In the following, we will further examine the impacts
of differential privacy on training deep survival models, in
terms of training stability and model utility.
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Fig. 5: Training Loss of Deep Survival Models with METABRIC
(best viewed in color): private models were trained to meet the target
€ values.

C. Convergence

To understand the impact of differential privacy on model
training, we examine the model convergence for private and
non-private survival models. As deep survival models have
custom objectives, below we focus on the comparative analysis
between private and non-private models within the same
approach. In Figure 5, we plot the model training loss recorded
over 100 epochs. For each model, we report the mean and 95%
confidence interval among 100 runs. As can be seen, all non-
private models converge nicely, i.e., exhibiting reduced loss
as training proceeds. Furthermore, their convergence does not
deviate significantly among 100 independent runs. We notice
that Nnet converges faster than other models, thanks to its
discrete-time loss function which allows for rapid training with
mini-batches.

On the other hand, we observe several convergence char-
acteristics in private models. Firstly, private models may
converge to noisy solutions, i.e., resulting in higher training
losses than their non-private counterparts. Secondly, while
reducing the training loss initially, private models may not
converge in the long run, i.e., exhibiting an increased loss as
training proceeds. That can be observed in private DeepSurv
models as well as DeepHit and CoxTime models with € = 1.
Thirdly, the convergence behavior of private models varies
more considerably among independent runs than that of the
non-private models, as shown by wider confidence intervals.
We believe that clipping and perturbation during private
training may change the optimization process, thus leading
to varied, noisy solutions or non-convergence. With stronger
privacy guarantees, i.e., lower e values, the training process
is likely to be perturbed with larger noises, thus exacerbating
the instability in training. To learn meaningful models, we set
the number of training epochs for private models to 10 and
for non-private models to 100, unless specified otherwise.

D. Impacts on Utility

Figure 6 and Figure 7 report our utility evaluation on non-
private and private deep survival models, using the integrated
Brier score (IBS) and time-dependent concordance index (C-
Index) as measures. Mean and 95% confidence interval were
reported among 100 runs.

For IBS, lower scores indicate higher calibration perfor-
mance. The results shown in Figure 6 are not surprising.
Non-private survival models achieve the lowest IBS scores for
each dataset; among private models, those with weaker privacy
guarantees (i.e., higher € values) yield lower IBS scores. From
these results, we can observe the negative effects of privacy
on model utility. For instance, the performance gap between
private and non-private models may be significant, especially
for Nnet, DeepHit, and DeepSurv. Private models may yield
higher uncertainty (i.e., wider confidence intervals) in their
performance, e.g., in the results of DeepSurv models. For
C-Index, higher scores indicate higher discriminative perfor-
mance. The results in Figure 7 show that non-private models
often lead to highest C-Index scores. Among private models,
increasing e value yields higher C-Index, demonstrating the
trade-off between privacy and utility. We note that non-private
CoxTime models yield similar IBS scores to those of private
counterparts, e.g., for METABRIC, and DeepHit and Nnet
private models may produce higher C-Index scores than non-
private models. It is possible that using the same architecture
and hyper-parameters for all models and datasets may lead to
suboptimal performance for non-private models.

The combination of IBS and C-Index results provides a
comprehensive performance evaluation of deep survival mod-
els. It is can be seen that all survival models perform well
with the NWTCO dataset, signified by lower IBS scores
and higher C-Index scores; on the other hand, they perform
poorly with the SUPPORT dataset, i.e., leading to higher IBS
scores and lower C-Index scores. We believe that the neural
network can have a custom design for each dataset to optimize
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its performance. Furthermore, results for both measures are
highly consistent: where a model performs well in IBS, it
is likely to perform well in C-Index. However, exceptions
can be observed for private DeepHit and Nnet models with
the SUPPORT dataset, where some models yield lower IBS
scores but also lower C-Index scores, e.g., € = 8 (compared
to other private models) and non-private Nnet. We attribute
those exceptions to the low performance of the non-private
base models.

E. Qualitative: Survival Curves

Although the performance of private deep survival models
has been assessed with widely adopted IBS and C-Index
measures, we provide a qualitative evaluation in Figure 8 to
allow readers to view the predictive outcomes of the studied
models. Specifically, we report in Figure 8 the predicted
survival functions by non-private and private survival models
for sample individuals in the METABRIC dataset.

For each approach (i.e., within each row in Figure 8), we
trained both non-private and private models using the same
training partition and survival functions were predicted for the
same set of testing individuals. For discrete time models, i.e.,
DeepHit and Nnet, we plot the interpolated survival probabil-
ities within each time interval for a smoother visualization.
As can be seen, within each approach, the survival functions
predicted by private models differ from those predicted by
non-private models, for the same test individuals. By relaxing
the privacy guarantees, we may obtain more similar survival
functions from the private models to those of non-private
models. For example, the survival functions predicted by
models with € = 8 are most similar to the non-private models’
predictions.

E Case Study: Robustness

Recall that our goal is to enable model sharing such that
researchers and collaborators could apply the shared model
and perform inference on their local data. However, it may
be challenging to maintain model utility at inference time, as
local data may come from different distributions compared to
that of the training data and/or exhibit quality issues (e.g.,
containing errors). To that end, we conducted a case study to
evaluate the robustness of the shared model. We intentionally
introduced controlled noise in testing data, to simulate un-
anticipated data distributions or quality issues. The utility of
deep survival models on the noisy testing set is reported in
Figure 9 and Figure 10.

For each deep survival model, we trained both non-private
and private models with the same training set and evaluated
their performances on the same noisy testing set. Specifically,
given a noise parameter [ € (0,1], for each attribute wz
of testing sample z', we flipped xj with probability [ if
xj is binary, and we repla_ced } by sarr_lpling from the
uniform distribution [(1—1)z%, (1+1)z}] if 2 is numerical or
categorical. We adopted various [ values in our case study and
larger [ values indicate noisier testing data. Each experiment
was run 100 times and the mean and 95% confidence interval
were reported.

From Figure 9 and Figure 10, we observed lower model
performance when increasing [ values, indicated by higher
IBS scores and lower C-Index scores. This illustrates that
both non-private and private models tend to perform poorly
if testing data does not come from the same distributions as
training data. Furthermore, we observed that private models
may outperform non-private models, especially with noisier
testing data (i.e., larger [ values), resulting in lower IBS scores
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Fig. 8: Predicted Survival Functions for Sample Individuals in METABRIC (best viewed in color): all models were trained over 10 epochs;
private models were trained to meet the target € values. Note that survival functions were predicted for the same set of individuals within

each row.

and higher C-Index scores. Because private models tend not
to overfit/memorize training data, they can be more tolerant
of testing samples that come from different distributions.
Moreover, private models with weaker privacy guarantees
often perform better with noisy testing data. As those models
were trained with smaller perturbations, they are likely to
achieve a balance between non-overfitting and learning pat-
terns accurately.

It can be seen that when testing data is noisy, non-private
discrete-time models (DeepHit and Nnet) have better calibra-
tion (i.e., slower degradation in IBS scores) than continuous-
time models (DeepSurv and CoxTime). We hypothesize that
DeepHit and Nnet may benefit from a smaller domain for time-
to-events. In addition, private Nnet models perform poorly in

IBS with noisy testing data, as seen in Figure 9c. We note that
hyper-parameter tuning for private models may help improve
calibration.

VI. DISCUSSION AND CONCLUSION

We have presented a privacy-protecting approach for shar-
ing useful deep survival models while defending against
membership inference. Our approach builds on the rigorous
notion of differential privacy, which enables privacy-protecting
model sharing without inflicting computation and commu-
nication overheads. We have demonstrated that non-private
deep survival models leak membership information, and their
differentially private counterparts effectively mitigate such
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leakage. We have also shown that differentially private survival
models achieve comparable and sometimes better performance
(e.g., when testing data is noisy), than that of the non-private
models, which may facilitate knowledge sharing in large,
diverse collaborative networks.

Our results discovered several opportunities to further im-
prove private deep learning for survival analysis. Firstly, while
we demonstrated the leakage of membership inference in deep
survival models, the adversarial model in literature can be
overly strong, e.g., knowing the training distributions and the
target patient’s covariates. It would be helpful to investigate a
variety of attack models and assumptions to fully understand
the range of privacy risks in healthcare research and applica-
tions. Future research may consider the adaptation of relaxed
privacy notions (e.g., Gaussian differential privacy [19]) to
boost the usability of the trained models via improved privacy
accountant and amplification [14], [20]. Secondly, differen-
tially private survival models provide effective defense against
membership inference, even at weaker levels of theoretical
guarantees (e.g., € = 8). That indicates that differential privacy
provides stronger privacy protection than practical risks in
the context, which may inflict unnecessary utility loss. Future
work may bridge the privacy-utility gap by exploring privacy
notions and solutions suited for practical risks in the specific
domain and application. Lastly, we note that differential pri-
vacy may introduce uncertainty in deep learning (as shown
by noisy convergence or non-convergence behaviors) and may
have different effects on models. Common practices for non-
private deep learning, such as parameter tuning, may help
mitigate uncertainty effects and deliver high quality models.
Existing methods on parameter tuning [21], architecture and

feature selection [22], and private model selection [23] may
shed light on improving private deep learning for future work.
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