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—— Abstract

In this paper, we study the problem of runtime verification of distributed applications that

do not share a global clock with respect to specifications in the linear temporal logics (LTL). Our
proposed method distinguishes from the existing work in three novel ways. First, we make a practical
assumption that the distributed system under scrutiny is augmented with a clock synchronization
algorithm that guarantees bounded clock skew among all processes. Second, we do not make any
assumption about the structure of predicates that form LTL formulas. This relaxation allows us
to monitor a wide range of applications that was not possible before. Subsequently, we propose
a distributed monitoring algorithm by employing SMT solving techniques. Third, given the fact
that distributed applications nowadays run on massive cloud services, we extend our solution to
a parallel monitoring algorithm to utilize the available computing infrastructure. We report on
rigorous synthetic as well as real-world case studies and demonstrate that scalable online monitoring
of distributed applications is within our reach.
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1 Introduction

A distributed system consists of a collection of (possibly) geographically separated processes
that attempt to solve a problem by means of communication and local computation. Applic-
ations of distributed systems range over small-scale networks of deeply embedded systems
to monitoring a collection of sensors in smart buildings to large-scale cluster of servers
in cloud services. However, design and analysis of such systems has always been a grand
challenge due to their inherent complex structure, amplified by nondeterminism and the
occurrence of faults. Reasoning about the correctness of distributed systems is particularly
a tedious task, as nondeterministic choice of actions results in combinatorial explosion of
possible executions. This makes exhaustive model checking techniques not scalable and
under-approximate techniques such as testing not so effective.

In this paper, we advocate for a runtime verification (RV) approach, where a monitor
observes the behavior of a distributed system at run time and verifies its correctness with
respect to a temporal logic formula. Distributed RV has to overcome a significant challenge.
Although RV deals with finite executions, due to lack of a global clock, there may potentially
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exist events whose order of occurrence cannot be determined by a runtime monitor. Addition-
ally, different orders of events may result in different verification verdicts. Enumerating all
possible orders at run time often incurs an exponential blow up, making it impractical. This
is of course, on top of the usual monitor overhead to evaluate an execution. For example,
consider the distributed computation in Fig. 1, where processes P; and P, host discrete
variables 1 and x5 , respectively. Let us also consider LTL formula ¢ = O(z1 +z2 < 1). Since
events 1 = 1 and xo = 2 are concurrent (i.e., it is not possible to determine which happened
before or after which in the absence of a global clock), the formula can be evaluated to
both true and false, depending upon different order of occurrences of these events. Handling
concurrent events generally results in combinatorial enumeration of all possibilities and,
hence, intractability of distributed RV. Existing distributed RV techniques operate in two
extremes: they either assume a global clock [1], which is unrealistic for large-scale distributed
settings or assume complete asynchrony [20, 19], which do not scale well.

We propose a sound and complete solution to the p, 150 z=1
problem of distributed RV with respect to LTL formu- !
las by incorporating a middle-ground approach. Our LT
solution uses a fault-proof central monitor, and may P, ' .

be summarized as follows. In order to remedy the ex-
plosion of different interleavings, we make a practical
assumption, that is, a bounded skew € between local
clocks of every pair of processes, guaranteed by a fault-proof clock synchronization algorithm
(e.g., NTP [17]). This means time instants from different clocks within e are considered con-
current, i.e., it is not possible to determine their order of occurrence. This setting constitutes
partial synchrony, which does not assume a global clock but limits the impact of asynchrony
within clock drifts. Following the work in [14], we augment the classic happened-before

Figure 1 Distributed computation.

relation [16] with the bounded skew assumption. This way, concurrent events are limited
to those that happen within the € time window, and those cannot be ordered according to
communication. We transform our monitoring decision problem into an SMT solving problem.
The SMT instance includes constraints that encode (1) our monitoring algorithm based on
the 3-valued semantics of LTL [2], (2) behavior of communicating processes and their local
state changes in terms of a distributed computation, and (3) the happened-before relation
subject to the e clock skew assumption. Then, it attempts to concretize an uninterpreted
function whose evaluation provides the possible verdicts of the monitor with respect to the
given computation. Furthermore, given the fact that distributed applications nowadays run
on massive cloud services, we extend our solution to a parallel monitoring algorithm to utilize
the available computing infrastructure and achieve better scalability.

We have fully implemented our techniques and report results of rigorous experiments
on monitoring synthetic data, as well as monitoring consistency conditions in data centers
that run Cassandra [15] as their distributed database management system. We make the
following observations. First, although our approach is based on SMT solving, it can be
employed for offline monitoring (e.g., log analysis) as well as online monitoring for less
intensive applications such as consistency checking in Google Drive. Secondly, we show how
the structure of global predicates (e.g., conjunctive vs. disjunctive) and LTL formulas affect
the performance of monitoring. Third, we illustrate how monitoring overhead is independent
of the clock skews when practical clock synchronization protocols are applied, making the
drift sufficiently small. Finally, we demonstrate how our parallel monitoring algorithm
achieves scalability, especially for predicate detection.

Organization. Section 2 presents the background concepts. Our SMT-based solution is
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described in Section 3, while experimental results are analyzed in Section 4. Related work is
discussed in Section 5. Finally, we make concluding remarks in Section 6.

2 Preliminaries

2.1 Linear Temporal Logic (LTL) for RV

Let AP be a set of atomic propositions and ¥ = 2AP be the set of all possible states. A trace
is a sequence sg$7 - - -, where s; € 3 for every ¢ > 0. We denote by X* (resp., X*) the set
of all finite (resp., infinite) traces. For a finite trace a = s¢s1 - - - Sp, || denotes its length,
k+ 1. Also, for a = sgsy - - - g, by @', we mean trace s;8;41 - - - s of a.

The syntax and semantics of the linear temporal logic (LTL) [21] are defined for infinite

traces. The syntax is defined by the following grammar:

pu=p |0 | eV |Op | olUep

where p € AP, and where O and U/ are the ‘next’ and ‘until’ temporal operators respectively.
We view other propositional and temporal operators as abbreviations, that is, true = p Vv —p,
false = —true, p > ¥ = VY, p Ay = =(-p V), O = true U ¢ (eventually ),
and Jp = = (always ¢).

The infinite-trace semantics of LTL is defined as follows. Let 0 = sgs182--- € X¢, 7 > 0,
and let = denote the satisfaction relation:

o,iEp iff pE S;

0,1 = —p iff o, @
0,1 E @1 Vg iff o,i =1 or o,i = p
o, i EQp iff oi+1lEe

ol =1 U oy iff dk >i.0,k =@y and Vj € [i,k) 0,7 E @1

Also, o |= ¢ holds if and only if ¢,0 }= ¢ holds.

In the context of RV, the 3-valued LTL (LTLs for short) [2] evaluates LTL formulas for
finite traces, but with an eye on possible future extensions. In LTL3, the set of truth values is
By ={T,L,?}, where T (resp., L) denotes that the formula is permanently satisfied (resp.,
violated), no matter how the current finite trace extends, and ‘?’ denotes an unknown verdict,
i.e., there exists an extension that can violate the formula, and another extension that can
satisfy the formula. Let a € ¥* be a non-empty finite trace. The truth value of an LTL3
formula ¢ with respect to «, denoted by [a =3 ¢, is defined as follows:

T if VYoeX®:ackyp ta)
[a s ] =q L if Vo € 3% :ao [ ¢ °

?  otherwise. {a,b}, {b}

{
For example, consider formula ¢ = [Op, and a finite trace
= 5081 Sp. I p & s; for some i € [0,n], then [a =3 ¢] = L,
that is, the formula is permanently violated. Now, consider formula

o =Cp. I p¢ds; forall i € [0,n], then [ =5 ¢] =7. This
is because there exist infinite extensions to « that can satisfy or

true true

Figure 2 LTL3; mon-
. . . . . itor for p =a U b.
violate ¢ in the infinite semantics of LTL.
» Definition 1. The LTLz monitor for a formula ¢ is the unique deterministic finite state
machine My = (2, Q, qo, 0, \), where Q is the set of states, qo is the initial state, § : Q@ x ¥ —
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Q is the transition function, and X : Q — By is a function such that A(8(qo, ) = [ =3 ¢,
for every finite trace . € ¥*. R

For example, Fig. 2, shows the monitor automaton for formula ¢ = a U .

2.2 Distributed Computations

We assume a loosely coupled asynchronous message passing system, consisting of n reliable
processes (that do not fail), denoted by P = {Py, Pa, ..., P,}, without any shared memory or
global clock. Channels are assumed to be FIFO, and lossless. In our model, each local state
change is considered an event, and every message activity (send or receive) is also represented
by a new event. Message transmission does not change the local state of processes and the
content of a message is immaterial to our purposes. We will need to refer to some global
clock which acts as a ‘real’ timekeeper. It is to be understood, however, that this global clock
is a theoretical object used in definitions, and is not available to the processes.

We make a practical assumption, known as partial synchrony. The local clock (or time) of
a process P;, where ¢ € [1,n], can be represented as an increasing function ¢; : R>o — R,
where ¢;(x) is the value of the local clock at global time x. Then, for any two processes P;
and P;, we have:

Vx € Rxo.fei(x) —ci(x)] < e

with € > 0 being the maximum clock skew. The value € is assumed to be fixed and known by
the monitor in the rest of this paper. In the sequel, we make it explicit when we refer to
‘local’ or ‘global’ time. This assumption is met by using a clock synchronization algorithm,
like NTP [17], to ensure bounded clock skew among all processes.

1
T,0

and 7 is the local time at global time Y, that is, 7 = ¢;(x). We assume that for every two
events el , and €%, ,,, we have (1 < 7') & (0 < o).

An event in process P; is of the form e’ _, where o is logical time (i.e., a natural number)

» Definition 2. A distributed computation on N processes is a tuple (€,~), where £ is a
set of events partially ordered by Lamport’s happened-before (~) relation [16], subject to the
partial synchrony assumption:

In every process P;, 1 < i < N, all events are totally ordered, that is,

V1,7 € Ry Vo0’ € Zso.(0 < 0') — (€l

~
T,0 er’,(r’ .

If e is a message send event in a process, and f is the corresponding receive event by

another process, then we have e ~ f.

For any two processes P; and Pj, and any two events € ,, e]T,)g, e, ift+e<T, then

el 5~ €, ., where € is the maximum clock skew.
:

If e~ f and f ~ g, thene~ g. R

» Definition 3. Given a distributed computation (€,~), a subset of events C C £ is said
to form a consistent cut iff when C' contains an event e, then it contains all events that
happened-before e. Formally, Ve € E(e € C) N (f ~e)— feC. 1

The frontier of a consistent cut C, denoted front(C') is the set of events that happen last in
the cut. front(C) is a set of e;,,, for each i € [1,|P|] and ¢€},,, € C. We denote ], as the
last event in P; such that Ve, , € £.(€} , # €],5) = (€., ~ €lasr)-
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2.3 Problem Statement

Given a distributed computation (€, ~+), a valid sequence of consistent cuts is of the form
CoC1Cy - -+, where for all ¢ > 0, we have (1) C; C Cy11, and (2) |C;| + 1 = |Cy11]. Let C
denote the set of all valid sequences of consistent cuts. We define the set of all traces of
(€,~) as follows:

TH(E, =) = {front(Co)front(Cl) | Oy Cy - € c}.

Now, the evaluation of an LTL formula ¢ with respect to (£,~-) in the 3-valued semantics is
the following;:

[(€~) s 0l = {(@~) s | a € TH(E )}

This means evaluating a distributed computation with respect to a formula results in a set
of verdicts, as a computation may involve several traces.

2.4 Hybrid Logical Clocks

X X
A hybrid logical clock (HLC) [14] is a tuple » \mﬁi\ [20200] [21210] [31310]
(1,0,w) for detecting one-way causality, where e
7 is the local time, o ensures the order of send p_J010T]1102] [2105] [20200]
and receive events between two processes, and ’
w indicates causality between events. Thus, in r [000] [1103]2104] [20200]
the sequel, we denote an event by e , ,. More Co (XA

specifically, for a set £ of events:
Figure 3 HLC example.
ﬁ',a,w7

7 is the local clock value of events, where for any process P; and two events e
€ &, we have T < 7/ iff € ~ e

)
T,0,W 7ol w'

o stipulates the logical time, where:

e

)
7o w!

i
T,0,w

For any process P; and any event e € &, T never exceeds o, and their difference is

bounded by € (i.e, 0 — 7 <€).
For any two processes P; and P;, and any two events e

i
T,0,w?

J
€ o1 € €, where event

g
T,0,w

e receiving a message sent by event ei, o o+ 0 is updated to max{o,¢’,7}. The
maximum of the three values are chosen to ensure that ¢ remains updated with
the largest 7 observed so far. Observe that o has similar behavior as 7, except the

communication between processes has no impact on the value of 7 for an event.

w: & = Z>¢ is a function that maps each event in £ to the causality updates, where:

i
T,0,W

For any process P; and a send or local event e € &, if 7 < o, then w is incremented.
Otherwise, w is reset to 0.

For any two processes P; and P; and any two events e
J

i
T,0,w?

J
€ o1 € €, where

event e , , receiving a message sent by event e, , ., w(e ) is updated based on
max{c,o’,T}.
apa P . L J o
For any two processes P; and Pj, and any two events € , €7, ./ . € &, (r=m A w<
/ i J
w ) - Crow ™7 eT’,U’,w"

In our implementation of HL.C, we assume that it is fault-proof. Fig. 3 shows an HLC
incorporated partially synchronous concurrent timelines of three processes with ¢ = 10.
Observe that the local times of all events in front(C) are bounded by e. Therefore, C is a
consistent cut, but Cy and Cy are not.
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3 SMT-based Solution
3.1 Overall Idea

Recall from Section 1 (Fig. 1) that monitoring a distributed computation may result in
multiple verdicts depending upon different ordering of events. In other words, given a
distributed computation (£,~+) and an LTL formula ¢, different ordering of events may reach
different states in the monitor automaton M, = (3, @, go, 9, \) (as defined in Definition 1).
In order to ensure that all possible verdicts are explored, we generate an SMT instance
for (1) the distributed computation (€, ~~), and (2) each possible path in the LTL3; monitor.
Thus, the corresponding decision problem is the following: given (€, ~+) and a monitor path
G041 - * ¢m In an LTL3 monitor, can (&, ~) reach ¢,,,? If the SMT instance is satisfiable, then
A(gm) is a possible verdict. For example, for the monitor in Fig. 2, we consider two paths
qqL and ¢5qt (and, hence, two SMT instances). Thus, if both instances turn out to be
unsatisfiable, then the resulting monitor state is g, where A(gp) =7.

We note that since LTL3 monitors may contain cycles, we first transform the monitor
into an acyclic monitor. To this end, we collapse each cycle into one state with a self-loop
labeled by the sequence of events on the cycle (see Fig. 4 for an example). In the next two
subsections, we present the SMT entities and constraints with respect to one monitor path
and a distributed computation.

3.2 SMT Entities

We now introduce the entities that represent a path in an LTL3 monitor
M, = (2,0, qo,9,A) for LTL formula ¢ and distributed computation
(€,~).

Monitor automaton. Let gy ~% q; 2% -+ (g; 2y q;) - 2
be a path of monitor M, which may or may not include a self-loop.
We include a non-negative integer variable k; for each transition
¢ 25 giy1, where i € [0, — 1] and s; € . Observe that we include
only one non-negative integer variable k; for the self-loop g¢; 2, q;-

Distributed computation. In our SMT encoding, we represent the
set £ by a bit-vector for efficiency. However, for simplicity, we keep
referring to the events in a distributed computation by the set £. In

order to express the happened-before relation in our SMT encoding,
we conduct a pre-processing phase, where we create an |€| x |€| matrix
E, such that E[i,j] = 1, if E[i] ~ E[j], else E[i,j] = 0. This

pre-processing phase incorporates the HLC algorithm, described in .
Section 2.4, to construct the matrix. In the sequel, for simplicity, we
keep using the ~~ relation between events when needed.
In order to establish the connection between events and atomic @ @
ay aa as
O
U U

propositions in AP based on which the LTL formula ¢ is constructed,
we introduce a Boolean function p : € x ¥ — {true,false}. We
note that if processes have non-Boolean variables and more complex
relational predicates (e.g., 1 +x2 > 2), then function p can be defined il s
20301 30102
accordingly. Finally, in order to identify the sequence of consistent
cuts whose run on the monitor starts from gy and ends in ¢,,, we Figure 4 LTL;
introduce an uninterpreted function p : Zsq — 2¢. That is, if the SMT Monitor cycle.
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instance is satisfiable, then the interpretation of p is the sequence of consistent cuts that
ends in monitor state ¢,,. Otherwise, no ordering of concurrent events results in the verdict
given by state ¢,.

3.3 SMT Constraints

Once we define the necessary SMT entities, we move onto the SMT constraints.

Consistent cut constraints over p. We first identify the constraints over uninterpreted
function p, whose interpretation is a sequence of consistent cuts that starts and ends in the
given monitor automaton path. Thus, we first require that each element in the range of p
must be a consistent cut:

Vi € [0,m].Ve, e € 5.((6’ ~e)A(e€ p(z))) — (e’ € p(z))

Next, we require the sequence of consistent cuts that p identifies to start from an empty set
of events and in each consistent cut of the sequence, there is one more event in the successor
cut:

Vi€ [0,m]. |p(i+1)| = [p(i)[ +1

Finally, the progression of consistent cuts should yield a subset relation. Otherwise, the
successor of a consistent cut is not an immediately reachable cut in (€, ~):

Vi € [0,m]. p(i) C p(i + 1)

Monitoring constraints over p. These constraints are responsible for generating a valid
sequence of consistent cuts given a distributed computation (£, ~~) that runs on monitor path
a5 q - 27l gm. We begin with interpreting p(kn) by requiring that running
(€,~) ends in monitor state g,,. The corresponding SMT constraint is:

,u(front(p(km)), Smfl)

For every monitor state g;, where ¢ € [0, m—1], if ¢; does not have a self-loop, the corresponding
SMT constraint is:

p(front(p(kivr —1)),5:) A (ki = kig1 — 1)

For every monitor state ¢;, where j € [0,m — 1], suppose ¢; has a self-loop (recall that a
cycle of r transitions in the monitor automaton is collapsed into a self-loop labeled by a
sequence of r letters). Let us imagine that this self-loop executed z number of times for some
z > 0. Furthermore, we denote the sequence of letters in the self-loop as s;, s, - - - s5,.. The
corresponding SMT constraint is:

Z\ /T\ u(front(p(kj +r(i—1)+n)), Sjn)

Again, since z is a free variable in the above constraint, the solver will identify some value
z > 0 which is exactly what we need. To ensure that the domain of p starts from the empty
consistent cut (i.e., p(0) = 0), we add:

ko = 0.

Finally, let C' denote the conjunction of all the above constraints. Recall that this
conjunction is with respect to only one monitor path from gy to ¢,,. Since there may be
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multiple paths in the monitor automaton that can reach ¢, from ¢g, we replicate the above
constraints for each such path. Suppose there are n such paths and let Cy,Cs, ..., C), be the
corresponding SMT constraints for these n paths. We include the following constraint:

CivCyvCsV---VC,

This means that if the SMT instance is satisfiable, then computation (£,~-) can reach
monitor state g, from gq.

3.4 Segmentation of Distributed Computation

Since the RV problem is known to be NP-complete even for detecting predicates [9] (i.e.,
LTL formula of the form [Jp) in the sizes of the processes, we are inherently dealing with a
computationally difficult problem. This complexity can grow to higher classes in the presence
of nested temporal operators. In order to cope with this complexity, our strategy is to chop
a computation (£, ~) into a sequence of small segments (segy,~~)(segg,~) - -+ (seg,, ~) to
create more but smaller-size SMT problems. This is likely to improve the overall performance
dramatically. More specifically, in a computation whose duration is [, for ¢ number of
segments (i.e., segment duration é + €), the set of events in segment j, where j € [1,¢], is
the following;:

u — 6}7%] Ane [17|P|]}

seg; = {eﬂ’g,w | o € [max{0,
Observe that monitoring a segment has to be conducted from e time units before the segment
actually starts. Also, when monitoring segment j is concluded, monitoring segment j + 1
should start from all possible monitor states that can be reached by segment j. In Section 4,
we show the impact of segmentation on the overall performance of monitoring.

We now show that the verification of a sequence of segments of a distributed computation
results in the same set of verdict as verification of the computation in one shot. This can be
formally proved by construction as follows. Given (&, ~) and ¢, where (€, ~>) is chopped
into two segments (seg;,~) and (segy,~~), we have: [(€,~) 3 @] = [(segysegy, ~) F3 .
Let @1 be the set of all reachable monitor states at the end of verifying (seg,,~>). This set
represents the valuation of (seg;,~») with respect to . Since in our algorithm verification of
(segy, ~) starts with states in () as initial states of the monitor, we do not lose the temporal
order of events. In other words, ()1 encodes all the important observations in (segy,~).
This implies that by construction, the set Q3 of reachable monitor states after verification of
(segy, ~) starting from @ is the set of all reachable monitor states when verifying (£, ~>).
By induction, the same can be proved for g segments.

3.5 Parallelized Monitoring

Many cloud services use clusters of computers equipped with multiple processors and com-
puting cores. This allows them to deal with high data rates and implement high-performance
parallel/distributed applications. Monitoring such applications should also be able to exploit
the massive infrastructure. To this end, we now discuss parallelization of our SMT-based
monitoring technique.

Let G be a sequence of g segments G = seg;seg, - - - seg,. Our idea is to create a job
queue for each available computing core, and then distributing the segments evenly across
all the queues to be monitored by their respective cores independently. However, simply
distributing all the segments across cores is not enough for obtaining a correct result. For
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example, consider formula ¢ = alf b and two segments, seg; and seg, across two cores, Cr;
and Crs, respectively. In order for the monitor running on Crs to give the correct verdict, it
must know the result of the monitor running on Cr;. In a scenario, where Cr; observes one
or more —a in seg;, a violation must be reported even if Cry does not observe b and no —a.
Generally speaking, the temporal order of events makes independent evaluation of segments
impossible for LTL formulas. Of course, some formulas such as safety (e.g., Op) and co-safety
(e.g., & q) properties are exceptions.

We address this problem in two steps. Let M, = (£,Q, ¢o,9,A) be an LTL3 monitor.
Our first step is to create a 3-dimensional reachability matrix RM by solving the following
SMT decision problem: given a current monitor state ¢; € @) and segment seg;, can this
segment reach monitor state g, € Q, for all i € [1,¢], and j, k € [0,|Q| — 1]. If the answer
to the problem is affirmative, then we mark RM|[i][j][k] with true, otherwise with false.
This is illustrated in Fig. 5 for the monitor shown in Fig. 2, where the grey cells are filled
arbitrarily with the answer to the SMT problem. This step can be made embarrassingly
parallel, where each element of RM can be computed independently by a different computing
core. One can optimize the construction of RM by omitting redundant SMT executions. For
example, if RM[i][§][T] = true, then RM[¢][T][T] = true for all ¢’ € [4,|Q| — 1]. Likewise,
if RM[i][j][L] = true, then RM[i'][L][L] = true for all i’ € [i,|Q] — 1].

The second step is to generate a verdict reachability tree from RM. The goal of the tree
is to check if a monitor state ¢, € @ can be reached from the initial monitor state gg. This
is achieved by setting gg as the root and generating all possible paths from ¢y using RM.
That is, if RM[i][k][j] = true, then we create a tree node with label g; and add it as a child
of the node with the label g;. Once the tree is generated, if ¢, is one of the leaves, only then
we can say ¢, is reachable from ¢g. In general, all leaves of the tree are possible monitoring
verdicts. Note that creation of the tree is achieved using a sequential algorithm. For example,
Fig.6 shows the verdict reachability tree generated from the matrix in Fig. 5.

segy | segy seg seg

@ |ar |ar | a|ar Jar | g |ar [ar | @ [ ar [ o @ o
©®lr|F|F 7|T F|T T|T|T|T]|T |

q | ar | Jao | ar Jar | ar [ar || ar [ a0 ar
“IFP|F|F F|T F|F T|F|F|T|F @ o P

@ [ar | ar Jao [ ar Jar [ ar [ ar [ao | ar [ ax T~ |
“lf|F|F F|F T|F F|T|F|F|T @ g o T a

Figure 5 Reachability Matrix for al{ b Figure 6 Reachability Tree for ald b

4 Case Studies and Evaluation

In this section, we evaluate our technique using synthetic experiments and a case study
involving Cassandra, a distributed database !. We emphasize although RV involves many
dimensions such as instrumentation, data collection, data transfer to the monitor, etc., our
goal in this section is to evaluate our SMT-based technique, as in a distributed setting, the
analysis time is the dominant factor over other types of overhead.

L All experimental code and data is available at https://drive.google.com/file/d/
191F-jfUXV-18ssxuRlilsixw2vctmofA /view?usp=sharing
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4.1 Implementation and Experimental Setup

Each experiment in this section consists of two phases: (1) data collection, and (2) verification.
We developed a program that randomly generates a distributed computation (i.e., the behavior
of a set of processes in terms of their local events and communication). We use a uniform
distribution (0,2) to define the type of the event (computation, send, receive). Then another
program observes the execution of these processes and generates a trace log. Then, the
monitor attempts to verify the trace log with respect to a given LTL specification using our
monitoring algorithm.

We use the Red Hat OpenStack Platform servers to generate data. We consider the
following parameters: (1) number of processes |P|, (2) computation duration I, (3) number
of segments g, (4) event rate per process per second 7, (5) maximum clock skew ¢, (6)
number of messages sent per second m, and (7) LTL formulas under monitoring, in particular,
depth of the monitor automaton d. Our main metric to measure is the SMT solving time
for each configuration of parameters. Note that in all the plots presented in this section,
the time axis is shown in log-scale. When we analyze the effects of one parameter, all the
other parameters are held at a relevant constant value. We use a MacBook Pro with Intel
i7-7567U(3.5Ghz) processor, 16GB RAM, 512 SSD and Python 3.6.9 interface to the Z3
SMT solver [7]. To evaluate our parallel algorithm, we also use a server with 2x Intel Xeon
Platinum 8180 (2.5Ghz) processor, 768GB RAM 112 vcores and python 3.6.9 interface to
the Z3 SMT solver [7].

4.2 Analysis of Results — Synthetic Experiments

In this set of experiments we attempt to exhaust all the available parameters and metrics
discussed earlier. We aim to put all the parameters to test, and examine how they affect
the runtime of the verifier. Since the data generated in this case is synthetic and does not
depend on any external factors apart from the system configuration, we induce delay after
every event in order to uniformly distribute these events throughout the execution of each
process, and to achieve different event rates. That is, the events were generated such that
they were evenly spread out over the entire simulation. The value of each of the computation
events were selected from a uniform distribution over the set X.

Impact of assuming partial synchrony (single core)

Figure 7a shows that with increase in the value of €, the runtime increases significantly. This
is true for different number of segments. This observation demonstrates that employing HLC
and assuming bounded clock skew helps in ordering events and as € increases so does the
number of concurrent events, and in turn the complexity of verification. Figure 7a also shows
that on breaking the computation into smaller segments, the runtime keeps on decreasing for
each value of e. We will study the impact of segment duration in other experiments as well.

Impact of predicate structure (single core)

In this experiment (see Fig. 7b), we consider formula (¢, and ensure that it remains true
throughout the computation duration. This is to ensure that the monitor does not reach a
terminal state in the middle of the computation. We consider the following four different
predicate structures for ¢:

O(n) Conjunctive: In a system of n processes, ¢ is a conjunction of n atomic propositions,
each depending on the local state of only one process. Over a set of increasing total
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(a) Different values €, LTL formula (b) Different predicate structures (c) Different formula with g =
Op (d = 2), where p is a disjunctive with g = 15, d = 2 and € = 250ms 21, predicate structure: O(1) con-
predicate and |P| = 2. junctive and € = 250ms

Figure 7 Comparison of how the clock skew ¢, structure of predicates and different LTL formulas
play a role in monitoring with [ = 2s, r = 10, and m = 1/s.

number of processes, we observe a linear increase in the runtime. This is somewhat
expected, as it is known that monitoring conjunctive predicate is not computationally
complex [11].

O(n) Disjunctive: Similar to O(n) conjunctive predicates, here, we have a disjunction of n
atomic propositions. Compared to its conjunctive counterpart, disjunction of propositions
requires more time to verify. This follows the theoretical result that monitoring linear
predicates is more complex than monitoring regular predicates [9].

O(n?) Conjunctive: Here, ¢ is a conjunction of atomic propositions, where each pro-
position depends on the state of 2 processes, thereby having a total of (g) predicates.
Monitoring such predicates clearly require more time than O(n) conjunctive predicates,
but surprisingly less than O(n) disjunctive predicates.

O(n3) Conjunctive: Here, we consider a conjunction of (g) predicates chosen symbolizing
a situation where each predicate is dependent on the state of 3 processes. This case is
the most time-consuming structure to monitor.

Impact of LTL formula (single core)

Given an LTL formula, the depth of the monitor automaton d is the length of the longest path
from the initial to the accept/reject state. In Fig. 7c, we experimented with the following
LTL formulas:

N O O s W N

¢1 =0(—p)

o =T = (mpUT)

p3 =0((g A1 AOT) = (—pUT))

ea=0((gAOT) = (=pU (rV (s A=p AO(-pUT)))))

s =T = (SAO(-rUt) = O(—rU (EAOD))Ur

e =0((gAOT) = (p— (rU (s A—r AO(=rUt))))UT)

d
d
d
d
d
d

Clearly, deeper monitors incur greater overhead. The predicate structure used is O(1),
meaning that the predicates are in terms of the state of all processes. Runtime for smaller
values of d are comparable since the overall runtime is dominated by the evaluation of the
uninterpreted function p (defined in Section 3). As d increases, it starts to influence the
overall runtime of the verification algorithm.
© R. Ganguly and A. Momtaz and B. Bonakdarpour;

37 licensed under Creative Commons License CC-BY
24th International Conference on Principles of Distributed Systems (OPODIS 2020).
Editors: Quentin Bramas, Rotem Oshman, and Paolo Romano; Article No. 20; pp. 20:11-20:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

! —— Disjunctive, |P| =1
3 100,000 - Disjunctive, |P| =2 Bl
100,000 | e 50,000| |—— Digjunctive, [P| = 3 |
50,000 - L —— Disjunctive, |P| =4
2 ——Conjunctive, |P| = 1
i 10,000 - Conjunctive, [P| =2 !
10,000+ N 2 1 5,000 |- | ——Conjunctive, |P| = 3 2
— 5,000 - > ‘/f 1, Conjunctive 20 — ——Conjunctive, |P|
w N —+—d = 4, Conjunctive 3 o ,
~ e————e || d = 4, Conjunctive 1 ~— 1000] |
o 1000} e o ol |
g 500p = 2
E \ 2 1w
= 100f | g F |
£ o | g ]
10 - 10 4
5 1 51 |
- | T
1F EEme RS e e 1 1L |
§ 10 12 14 16 1S 20 22 24 26 28 30 32 05 1 15 2 35 3 35
Number of Segments ¢ Computation Duration [ sec
(a) Impact of segment count with | = 2s (b) Impact of computation duration with g = 21

Figure 8 Impact of segment count and computation duration with € = 250ms, O(1) predicates,
r =10, m = 1, and formula Op.

Impact of segment count (single core)

As mentioned in Section 3, we anticipate that chopping a distributed computation into
smaller segments tackles the intractability of distributed RV, as it may reduce the number of
concurrent events. In Fig. 8a, we observe that the runtime keeps on decreasing with increase
in the number of segments per computation duration, until it hits a certain level, after which
it does not improve any further. This is due to the fact that the total runtime also contains
the time required to set up the SMT solver. With increase in the number of segments, the
total time required to setup the SMT solver also increases and dominates the speedup. Also,
decreasing the segment duration beyond a certain point does not have any effect on the
runtime. This is due to the clock skew e, which makes each segment start from e before.
Observe that in Fig. 8a, this result holds for different number of processes, LTL formulas,
and conjunctive/disjunctive predicates.

Impact of computation duration (single core)

The computation duration has a direct effect on the size of £, and thus, the number of events
in a segment. With a unit increase in the number of events in the SMT formulation, the
size of 2¢ doubles, increasing the SMT solver search space for p. This makes the runtime in
Fig. 8b increase significantly. Observe that in Fig. 8b, this result holds for different number
of processes, and conjunctive/disjunctive predicates.

Impact of the event rate (single core)

Until now, the event rate was fixed at 10 events/sec per process, following the latency
time obtained in a real network of replicated database (Cassandra), discussed in detail in
Section 4.3. Here, we change the event rate and study its effect on the verification runtime.
In Fig. 9a, we see increasing the event rate causes the runtime to increase significantly. This
result is valid for different number of processes, though for more processes the increase is
more dramatic.
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Figure 9 Impact of event and message rates with [ = 2s, ¢ = 250ms, and g = 21, formula Op
with O(1) predicate structure.

Impact of the message rate (single core)

i
T,0,w

Consider a send message event e and its corresponding receive event ei,’a,’w,. This
results in a ~»-relation between these two events. Such events are expected to reduce the
number of concurrent events and consequently the monitor overhead. However, Fig.9b shows
no effect on the monitor run time. This is due to the relatively short e = 250ms, which is
actually much larger than the maximum clock skew of off-the-shelf protocols such as NTP.
In other words, when e dominates the impact of event ordering that message passing can
achieve. This is another reason to believe that partial synchrony is an effective way to deal
with distributed RV. We vary messages sent for inter-process communication, from 0 to 9

with 10events/sec.

Impact of parallelization

To demonstrate the drastic increase in performance due to parallelization, we evaluate formula
Op on a distributed computation with | = 20s, » = 10, g = 20, and € = 150ms, while varying
the number of cores from 1 to 100, as shown in Fig. 10a. Observe that beyond 40 cores, there
is no significant relative change in runtime regardless of the number of processes, as the time
required to build the SMT formulation starts dominating the total run time. This graph
also shows that parallelization can result in orders of magnitude speedup.

4.3 Case Study: Cassandra

Facebook developed Cassandra [15] as an
open-source, distributed, No-SQL database
management system. It is capable of hand-

ling large amounts of data across many serv-
ers (nodes), spanning over multiple data- Figure 11 A network with two Cassandra
centers, providing high availability with no clusters, Node-12 and Node-21 are the seed nodes
single point of failure, and asynchronous mas- ©f the respective clusters
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Figure 10 Impact of parallelization.

terless replication of data. Cassandra is designed such that it has no master or slave nodes.
All the nodes are part of a ring-type architecture, distributing data equally over all the nodes
in the cluster. We simulate a system of multiple processes. Each process is responsible for
inter-process communication apart from basic database operations (read, write and update).
We deployed a system with two data centers (see Fig. 11), where Cluster 1, contains 4 nodes
(Nodes 11 — 14) and Cluster 2 contains 3 nodes (Node 21 —23). Node 12 and Node 21 are the
seed nodes of the respective clusters. Data is replicated in all the nodes in both the clusters.
Each of the nodes is art of the Red Hat OpenStack Platform with the following configuration:
4 VCPUs, 4GB RAM, Ubuntu 1804, Cassandra 3.11.6, Java 1.8.0_ 252, and Python 3.6.9.

We have tested ping time of servers on Google Cloud Platform, Microsoft Azure and
Amazon Web Service. The fastest ping was received at 41ms. In a real-life datacenter,
networks used to communicate within the nodes usually have a speed on the scale of few
Gigabytes per second. Here, we use a private broadband that offers a speed of 100 Megabytes
per second. We measure the latency time of our system to be around 100ms. We consider
this to be our standard and setup all our experiments based on this assumption.

Processes are capable of reading, writing, and updating all entries of the database. The
exact type of the event is selected by a uniform distribution (0,2). Each process selects the
available node at run time. In order to prevent deadlocks, no two processes are allowed to
connect to the same node at the same time. If there exists no free node at any point of
time, it waits for a node to be released and then it continues with the task. Once there is a
write or update, the process responsible for the change sends a message to each of the other
processes notifying about the change. We assume that a message is read by the receiving
process immediately upon receiving. All database operations (i.e. send and receive events)
are considered to be separate.

Consistency level in a database dictates the minimum number of replications that needs
to perform on an operation in order to consider the operation to be successfully executed.
Cassandra recommends that the sum of the read consistency and the write consistency be
more than the replication factor for no read or write anomaly in the database. By default,
the read and the write consistency level is set to one. For a database with replication factor
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Figure 12 Experimental results for Cassandra

3, our goal is to monitor and identify read/write anomalies in the database:

n

Orw = /\ (write(i) — Qread(i))

=0

where n is the number of read/write requests.

Since Cassandra does not allow normalization of database, the other two properties we
aim to monitor are write reference check and delete reference check. To give a sense of
database normalization, we use a database with two tables:

Student(id, name) Enrollment(id, course).

We enforce that if there is a write in the Enrollment table, it should be led by a write in
the Student table with the same id. The id and name to be written are a random string of
length 8. Likewise, in the case of deletion of some entry from Student table, it should be led
by deletion of all entries with the same id from Enrollment table. These enforce that there is
no insertion and delete anomaly, and thereby gives a sense of normalization in Cassandra:

Pwre = ﬁ(ﬁwrz’te(Student.id) u write(EnroIIment.id))

Pdre = ﬂ(ﬁdelete(Enrollment.id) U delete(Student.id))

Extreme load scenario

Figures 12a and 12b, plot runtime vs segmentation frequency and runtime vs computation
duration, respectively for the case where the processes experience full read/write load that
network latency allows. Compared to the results plotted for the synthetic experiments, we
see a bit of noise in the result. This owes to the fact that in synthetic experiments, the
events are uniformly distributed over the entire computation duration, however, in case of
Cassandra, the events are not uniform. Database operations like read, write and update take
about 100ms of time but sending and receiving of message is relatively faster taking about
20-30ms making the overall event distribution quite non-uniform.
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Moderate load scenario

In Figure 12a, with event rate r = 10, we are just about making it even for number of
processes as 2 and with a computation duration of 20s. Now, consider Google Sheets API,
which allows maximum 500 requests per 100 seconds per project and 100 requests per seconds
per user, i.e., 5 events/sec per project and a user can generate 1 event/sec [12] on an average.
To see how our algorithm performs in such a scenario, we increase the number of processes
and so as the number of monitoring cores and analyze the time taken to verify such a trace
log. We plot our findings in Figure 10b. We see that for processes 8,9 and 10, we get the
best results for event rate of both 1 and 2 event(s)/sec/process. We emphasize that the 2
event(s)/sec/process is twice more than what Google Sheets allow to happen. This makes us
confident that our algorithm can pave the path for implementation in a real-life setting.

4.4 Discussion

One may argue that our results can at best monitor a distributed system with only a few
processes in an online fashion. We note that in industrial scale data centers, clusters of
high performance servers make it possible to achieve up to one million writes per second
(e.g., for Netflix). First, online monitoring of fine-grained read/write consistency is highly
unlikely to be useful while the system is operational. Having said that, in a testing scenario,
such a cluster of servers should also be monitored with a cluster of servers (typically a
machine with 64GB RAM, 8 vCPUs, Intel Xeon processor, with a high network bandwidth is
used, which when compared to our machine outperforms when executed in a multi-threaded
environment).

Furthermore, observe that for two processes reading/writing or updating tables, with
the right segmentation frequency the monitoring overhead competes with the computation
duration. Our experiments are encouraging in the sense that by employing acceptable
computation power, and incorporating parallel monitors, monitoring highly frequent activities
of a data center such as read/write consistency is within our reach.

5 Related Work

Lattice-theoretic centralized and decentralized online predicate detection in asynchronous
distributed systems has been extensively studied in [4, 18]. Extensions of this work to include
temporal operators appear in [20, 19]. The line of work in [4, 18, 20, 19, 22] operates in a
fully asynchronous setting. On the contrary in this paper, we leverage a practical assumption
and employ an off-the-shelf clock synchronization algorithm to limit the time window of
asynchrony. Predicate detection has been shown to be a powerful tool in solving combinatorial
optimization problems [10] and our results show that our approach is pretty effective in
handling predicate detection (e.g., Fig. 10b). In [24], the authors study the predicate detection
problem using SMT solving. Also, knowledge-based monitoring of distributed processes was
first studied in [22]. Here, the authors design a method for monitoring safety properties
in distributed systems using the past-time linear temporal logic. This approach, however,
suffers from producing false negatives.

Runtime monitoring of LTL formulas for synchronous distributed systems has been studied
in [8, 6, 5, 1]. This approach has the shortcoming of assuming a global clock across all
distributed processes. Predicate detection for asynchronous system has been studied in [23]
but the assumption needed to evaluate happen-before relationship is too strong. We utilize
HLC which not only is more realistic but also decreases the level of concurrency. Finally, fault-
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tolerant monitoring, where monitors can crash, has been investigated in [3] for asynchronous
and in [13] for synchronized global clock with no clock shew across all distributed processes.
In this paper, we use a clock synchronization algorithm which guarantees bounded clock
shews. Our solution is also SMT based and to our knowledge this is the first SMT based
distributed monitoring algorithm for LTL, which results in better scalability.

6 Conclusion and Future Work

In this paper, we focused on runtime verification (RV) of distributed systems. Our SMT-based
technique takes as input an LTL formula and a distributed computation (i.e., a collection of
communicating processes along with their local events). We employed a partially synchronous
model, where a clock synchronization algorithm ensures bounded clock skew among all
processes. Such an algorithm significantly limits the impact of full asynchrony and remedies
combinatorial explosion of interleavings in a distributed setting. We conducted detailed and
rigorous synthetic experiments, as well as a case study on monitoring consistency conditions
on Cassandra, a non-SQL replicated database management system used in data centers. Our
experiments demonstrate the potential of scalability of our technique to large applications.

As for future work, there are several interesting research directions. Our first step will
be to scale up our technique to monitor cloud services with big data. This can be achieved
by studying the tradeoff between accuracy and scalability. Another important extension
of our work is distributed RV for timed temporal logics. Such expressiveness will allow
us to monitor distributed applications that are sensitive to explicit timing constraints. A
prominent example of such a setting is in blockchain and cross-chain protocols.
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