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Abstract12

In this paper, we study the problem of runtime verification of distributed applications that13

do not share a global clock with respect to specifications in the linear temporal logics (LTL). Our14

proposed method distinguishes from the existing work in three novel ways. First, we make a practical15

assumption that the distributed system under scrutiny is augmented with a clock synchronization16

algorithm that guarantees bounded clock skew among all processes. Second, we do not make any17

assumption about the structure of predicates that form LTL formulas. This relaxation allows us18

to monitor a wide range of applications that was not possible before. Subsequently, we propose19

a distributed monitoring algorithm by employing SMT solving techniques. Third, given the fact20

that distributed applications nowadays run on massive cloud services, we extend our solution to21

a parallel monitoring algorithm to utilize the available computing infrastructure. We report on22

rigorous synthetic as well as real-world case studies and demonstrate that scalable online monitoring23

of distributed applications is within our reach.24
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1 Introduction30

A distributed system consists of a collection of (possibly) geographically separated processes31

that attempt to solve a problem by means of communication and local computation. Applic-32

ations of distributed systems range over small-scale networks of deeply embedded systems33

to monitoring a collection of sensors in smart buildings to large-scale cluster of servers34

in cloud services. However, design and analysis of such systems has always been a grand35

challenge due to their inherent complex structure, amplified by nondeterminism and the36

occurrence of faults. Reasoning about the correctness of distributed systems is particularly37

a tedious task, as nondeterministic choice of actions results in combinatorial explosion of38

possible executions. This makes exhaustive model checking techniques not scalable and39

under-approximate techniques such as testing not so e�ective.40

In this paper, we advocate for a runtime verification (RV) approach, where a monitor41

observes the behavior of a distributed system at run time and verifies its correctness with42

respect to a temporal logic formula. Distributed RV has to overcome a significant challenge.43

Although RV deals with finite executions, due to lack of a global clock, there may potentially44
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exist events whose order of occurrence cannot be determined by a runtime monitor. Addition-45

ally, di�erent orders of events may result in di�erent verification verdicts. Enumerating all46

possible orders at run time often incurs an exponential blow up, making it impractical. This47

is of course, on top of the usual monitor overhead to evaluate an execution. For example,48

consider the distributed computation in Fig. 1, where processes P1 and P2 host discrete49

variables x1 and x2 , respectively. Let us also consider LTL formula Ï = (x1 +x2 Æ 1). Since50

events x1 = 1 and x2 = 2 are concurrent (i.e., it is not possible to determine which happened51

before or after which in the absence of a global clock), the formula can be evaluated to52

both true and false, depending upon di�erent order of occurrences of these events. Handling53

concurrent events generally results in combinatorial enumeration of all possibilities and,54

hence, intractability of distributed RV. Existing distributed RV techniques operate in two55

extremes: they either assume a global clock [1], which is unrealistic for large-scale distributed56

settings or assume complete asynchrony [20, 19], which do not scale well.57

P1

P2

x1 = 0 x1 = 1

x2 = 0 x2 = 2

Figure 1 Distributed computation.

We propose a sound and complete solution to the58

problem of distributed RV with respect to LTL formu-59

las by incorporating a middle-ground approach. Our60

solution uses a fault-proof central monitor, and may61

be summarized as follows. In order to remedy the ex-62

plosion of di�erent interleavings, we make a practical63

assumption, that is, a bounded skew ‘ between local64

clocks of every pair of processes, guaranteed by a fault-proof clock synchronization algorithm65

(e.g., NTP [17]). This means time instants from di�erent clocks within ‘ are considered con-66

current, i.e., it is not possible to determine their order of occurrence. This setting constitutes67

partial synchrony, which does not assume a global clock but limits the impact of asynchrony68

within clock drifts. Following the work in [14], we augment the classic happened-before69

relation [16] with the bounded skew assumption. This way, concurrent events are limited70

to those that happen within the ‘ time window, and those cannot be ordered according to71

communication. We transform our monitoring decision problem into an SMT solving problem.72

The SMT instance includes constraints that encode (1) our monitoring algorithm based on73

the 3-valued semantics of LTL [2], (2) behavior of communicating processes and their local74

state changes in terms of a distributed computation, and (3) the happened-before relation75

subject to the ‘ clock skew assumption. Then, it attempts to concretize an uninterpreted76

function whose evaluation provides the possible verdicts of the monitor with respect to the77

given computation. Furthermore, given the fact that distributed applications nowadays run78

on massive cloud services, we extend our solution to a parallel monitoring algorithm to utilize79

the available computing infrastructure and achieve better scalability.80

We have fully implemented our techniques and report results of rigorous experiments81

on monitoring synthetic data, as well as monitoring consistency conditions in data centers82

that run Cassandra [15] as their distributed database management system. We make the83

following observations. First, although our approach is based on SMT solving, it can be84

employed for o�ine monitoring (e.g., log analysis) as well as online monitoring for less85

intensive applications such as consistency checking in Google Drive. Secondly, we show how86

the structure of global predicates (e.g., conjunctive vs. disjunctive) and LTL formulas a�ect87

the performance of monitoring. Third, we illustrate how monitoring overhead is independent88

of the clock skews when practical clock synchronization protocols are applied, making the89

drift su�ciently small. Finally, we demonstrate how our parallel monitoring algorithm90

achieves scalability, especially for predicate detection.91

Organization. Section 2 presents the background concepts. Our SMT-based solution is92
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described in Section 3, while experimental results are analyzed in Section 4. Related work is93

discussed in Section 5. Finally, we make concluding remarks in Section 6.94

2 Preliminaries95

2.1 Linear Temporal Logic (LTL) for RV96

Let AP be a set of atomic propositions and � = 2AP be the set of all possible states. A trace97

is a sequence s0s1 · · · , where si œ � for every i Ø 0. We denote by �ú (resp., �Ê) the set98

of all finite (resp., infinite) traces. For a finite trace – = s0s1 · · · sk, |–| denotes its length,99

k + 1. Also, for – = s0s1 · · · sk, by –
i, we mean trace sisi+1 · · · sk of –.100

The syntax and semantics of the linear temporal logic (LTL) [21] are defined for infinite101

traces. The syntax is defined by the following grammar:102

Ï ::= p | ¬Ï | Ï ‚ Ï | Ï | Ï U Ï103

where p œ AP, and where and U are the ‘next’ and ‘until’ temporal operators respectively.104

We view other propositional and temporal operators as abbreviations, that is, true = p ‚ ¬p,105

false = ¬true, Ï æ Â = ¬Ï ‚ Â, Ï · Â = ¬(¬Ï ‚ ¬Â), Ï = true U Ï (eventually Ï),106

and Ï = ¬ ¬Ï (always Ï).107

The infinite-trace semantics of LTL is defined as follows. Let ‡ = s0s1s2 · · · œ �Ê, i Ø 0,108

and let |= denote the satisfaction relation:109

‡, i |= p i� p œ si

‡, i |= ¬Ï i� ‡, i ”|= Ï

‡, i |= Ï1 ‚ Ï2 i� ‡, i |= Ï1 or ‡, i |= Ï2

‡, i |= Ï i� ‡, i + 1 |= Ï

‡, i |= Ï1 U Ï2 i� ÷k Ø i.‡, k |= Ï2 and ’j œ [i, k) : ‡, j |= Ï1

Also, ‡ |= Ï holds if and only if ‡, 0 |= Ï holds.110

In the context of RV, the 3-valued LTL (LTL3 for short) [2] evaluates LTL formulas for111

finite traces, but with an eye on possible future extensions. In LTL3, the set of truth values is112

B3 = {€, ‹, ?}, where € (resp., ‹) denotes that the formula is permanently satisfied (resp.,113

violated), no matter how the current finite trace extends, and ‘?’ denotes an unknown verdict,114

i.e., there exists an extension that can violate the formula, and another extension that can115

satisfy the formula. Let – œ �ú be a non-empty finite trace. The truth value of an LTL3116

formula Ï with respect to –, denoted by [– |=3 Ï], is defined as follows:117

[– |=3 Ï] =

Y
__]

__[

€ if ’‡ œ �Ê : –‡ |= Ï

‹ if ’‡ œ �Ê : –‡ ”|= Ï

? otherwise.

118

q‹

q0

q€

{a}

{} {a, b}, {b}

true true

Figure 2 LTL3 mon-
itor for Ï = a U b.

For example, consider formula Ï = p, and a finite trace119

– = s0s1 · · · sn. If p ”œ si for some i œ [0, n], then [– |=3 Ï] = ‹,120

that is, the formula is permanently violated. Now, consider formula121

Ï = p. If p ”œ si for all i œ [0, n], then [– |=3 Ï] =?. This122

is because there exist infinite extensions to – that can satisfy or123

violate Ï in the infinite semantics of LTL.124

I Definition 1. The LTL3 monitor for a formula Ï is the unique deterministic finite state125

machine MÏ = (�, Q, q0, ”, ⁄), where Q is the set of states, q0 is the initial state, ” : Q◊� æ126
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Q is the transition function, and ⁄ : Q æ B3 is a function such that ⁄
!
”(q0, –)

"
= [– |=3 Ï],127

for every finite trace – œ �ú. ⌅128

For example, Fig. 2, shows the monitor automaton for formula Ï = a U b.129

2.2 Distributed Computations130

We assume a loosely coupled asynchronous message passing system, consisting of n reliable131

processes (that do not fail), denoted by P = {P1, P2, . . . , Pn}, without any shared memory or132

global clock. Channels are assumed to be FIFO, and lossless. In our model, each local state133

change is considered an event, and every message activity (send or receive) is also represented134

by a new event. Message transmission does not change the local state of processes and the135

content of a message is immaterial to our purposes. We will need to refer to some global136

clock which acts as a ‘real’ timekeeper. It is to be understood, however, that this global clock137

is a theoretical object used in definitions, and is not available to the processes.138

We make a practical assumption, known as partial synchrony. The local clock (or time) of
a process Pi, where i œ [1, n], can be represented as an increasing function ci : RØ0 æ RØ0,
where ci(‰) is the value of the local clock at global time ‰. Then, for any two processes Pi

and Pj , we have:
’‰ œ RØ0.|ci(‰) ≠ cj(‰)| < ‘

with ‘ > 0 being the maximum clock skew. The value ‘ is assumed to be fixed and known by139

the monitor in the rest of this paper. In the sequel, we make it explicit when we refer to140

‘local’ or ‘global’ time. This assumption is met by using a clock synchronization algorithm,141

like NTP [17], to ensure bounded clock skew among all processes.142

An event in process Pi is of the form e
i
·,‡, where ‡ is logical time (i.e., a natural number)143

and · is the local time at global time ‰, that is, · = ci(‰). We assume that for every two144

events e
i
·,‡ and e

i
· Õ,‡Õ , we have (· < ·

Õ) … (‡ < ‡
Õ).145

I Definition 2. A distributed computation on N processes is a tuple (E , ), where E is a146

set of events partially ordered by Lamport’s happened-before ( ) relation [16], subject to the147

partial synchrony assumption:148

In every process Pi, 1 Æ i Æ N , all events are totally ordered, that is,

’·, ·
Õ œ R+.’‡, ‡

Õ œ ZØ0.(‡ < ‡
Õ) æ (ei

·,‡  e
i
· Õ,‡Õ).

If e is a message send event in a process, and f is the corresponding receive event by149

another process, then we have e f .150

For any two processes Pi and Pj, and any two events e
i
·,‡, e

j
· Õ,‡Õ œ E, if · + ‘ < ·

Õ, then151

e
i
·,‡  e

j
· Õ,‡Õ , where ‘ is the maximum clock skew.152

If e f and f  g, then e g. ⌅153

I Definition 3. Given a distributed computation (E , ), a subset of events C ™ E is said154

to form a consistent cut i� when C contains an event e, then it contains all events that155

happened-before e. Formally, ’e œ E .(e œ C) · (f  e) æ f œ C. ⌅156

The frontier of a consistent cut C, denoted front(C) is the set of events that happen last in157

the cut. front(C) is a set of e
i
last for each i œ [1, |P|] and e

i
last œ C. We denote e

i
last as the158

last event in Pi such that ’e
i
·,‡ œ E .(ei

·,‡ ”= e
i
last) æ (ei

·,‡  e
i
last).159
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2.3 Problem Statement160

Given a distributed computation (E , ), a valid sequence of consistent cuts is of the form
C0C1C2 · · · , where for all i Ø 0, we have (1) Ci µ Ci+1, and (2) |Ci| + 1 = |Ci+1|. Let C
denote the set of all valid sequences of consistent cuts. We define the set of all traces of
(E , ) as follows:

Tr(E , ) =
Ó

front(C0)front(C1) · · · | C0C1C2 · · · œ C
Ô

.

Now, the evaluation of an LTL formula Ï with respect to (E , ) in the 3-valued semantics is
the following:

[(E , ) |=3 Ï] =
Ó

(–, ) |=3 Ï | – œ Tr(E , )
Ô

This means evaluating a distributed computation with respect to a formula results in a set161

of verdicts, as a computation may involve several traces.162

2.4 Hybrid Logical Clocks163

10 10 0
(· , ‡, Ê)

20 20 0 21 21 0 31 31 0
P1

0 10 1 1 10 2 2 10 5 20 20 0
P2

0 0 0 1 10 3 2 10 4 20 20 0
P3

3

C1

7

C0

7

C2

Figure 3 HLC example.

A hybrid logical clock (HLC) [14] is a tuple164

(·, ‡, Ê) for detecting one-way causality, where165

· is the local time, ‡ ensures the order of send166

and receive events between two processes, and167

Ê indicates causality between events. Thus, in168

the sequel, we denote an event by e
i
·,‡,Ê. More169

specifically, for a set E of events:170

· is the local clock value of events, where for any process Pi and two events e
i
·,‡,Ê, e

i
· Õ,‡Õ,ÊÕ171

œ E , we have · < ·
Õ i� e

i
·,‡,Ê  e

i
· Õ,‡Õ,ÊÕ .172

‡ stipulates the logical time, where:173

For any process Pi and any event e
i
·,‡,Ê œ E , · never exceeds ‡, and their di�erence is174

bounded by ‘ (i.e, ‡ ≠ · Æ ‘).175

For any two processes Pi and Pj , and any two events e
i
·,‡,Ê, e

j
· Õ,‡Õ,ÊÕ œ E , where event176

e
i
·,‡,Ê receiving a message sent by event e

j
· Õ,‡Õ,ÊÕ , ‡ is updated to max{‡, ‡

Õ
, ·}. The177

maximum of the three values are chosen to ensure that ‡ remains updated with178

the largest · observed so far. Observe that ‡ has similar behavior as · , except the179

communication between processes has no impact on the value of · for an event.180

Ê : E æ ZØ0 is a function that maps each event in E to the causality updates, where:181

For any process Pi and a send or local event e
i
·,‡,Ê œ E , if · < ‡, then Ê is incremented.182

Otherwise, Ê is reset to 0.183

For any two processes Pi and Pj and any two events e
i
·,‡,Ê, e

j
· Õ,‡Õ,ÊÕ œ E , where184

event e
i
·,‡,Ê receiving a message sent by event e

j
· Õ,‡Õ,ÊÕ , Ê(ei

·,‡,Ê) is updated based on185

max{‡, ‡
Õ
, ·}.186

For any two processes Pi and Pj , and any two events e
i
·,‡,Ê, e

j
· Õ,‡Õ,ÊÕ œ E , (· = ·

Õ)·(Ê <187

Ê
Õ) æ e

i
·,‡,Ê  e

j
· Õ,‡Õ,ÊÕ .188

In our implementation of HLC, we assume that it is fault-proof. Fig. 3 shows an HLC189

incorporated partially synchronous concurrent timelines of three processes with Á = 10.190

Observe that the local times of all events in front(C1) are bounded by Á. Therefore, C1 is a191

consistent cut, but C0 and C2 are not.192
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3 SMT-based Solution193

3.1 Overall Idea194

Recall from Section 1 (Fig. 1) that monitoring a distributed computation may result in195

multiple verdicts depending upon di�erent ordering of events. In other words, given a196

distributed computation (E , ) and an LTL formula Ï, di�erent ordering of events may reach197

di�erent states in the monitor automaton MÏ = (�, Q, q0, ”, ⁄) (as defined in Definition 1).198

In order to ensure that all possible verdicts are explored, we generate an SMT instance199

for (1) the distributed computation (E , ), and (2) each possible path in the LTL3 monitor.200

Thus, the corresponding decision problem is the following: given (E , ) and a monitor path201

q0q1 · · · qm in an LTL3 monitor, can (E , ) reach qm? If the SMT instance is satisfiable, then202

⁄(qm) is a possible verdict. For example, for the monitor in Fig. 2, we consider two paths203

q
ú
0
q‹ and q

ú
0
q€ (and, hence, two SMT instances). Thus, if both instances turn out to be204

unsatisfiable, then the resulting monitor state is q0, where ⁄(q0) =?.205

We note that since LTL3 monitors may contain cycles, we first transform the monitor206

into an acyclic monitor. To this end, we collapse each cycle into one state with a self-loop207

labeled by the sequence of events on the cycle (see Fig. 4 for an example). In the next two208

subsections, we present the SMT entities and constraints with respect to one monitor path209

and a distributed computation.210

3.2 SMT Entities211

q0

q1

q2q3

q4

qr

a1 a3

a5

a2

a4

˜̌

q0

q1

q3 q2

q4

qr

a1

a2a3a1

a2

a4

a3a1a2

a5

Figure 4 LTL3
Monitor cycle.

We now introduce the entities that represent a path in an LTL3 monitor212

MÏ = (�, Q, q0, ”, ⁄) for LTL formula Ï and distributed computation213

(E , ).214

Monitor automaton. Let q0

s0≠æ q1

s1≠æ · · · (qj
sj≠æ qj)ú · · · sm≠1≠≠≠æ qm215

be a path of monitor MÏ, which may or may not include a self-loop.216

We include a non-negative integer variable ki for each transition217

qi
si≠æ qi+1, where i œ [0, m ≠ 1] and si œ �. Observe that we include218

only one non-negative integer variable kj for the self-loop qj
sj≠æ qj .219

Distributed computation. In our SMT encoding, we represent the220

set E by a bit-vector for e�ciency. However, for simplicity, we keep221

referring to the events in a distributed computation by the set E . In222

order to express the happened-before relation in our SMT encoding,223

we conduct a pre-processing phase, where we create an |E|◊ |E| matrix224

E, such that E[i, j] = 1, if E[i]  E[j], else E[i, j] = 0. This225

pre-processing phase incorporates the HLC algorithm, described in226

Section 2.4, to construct the matrix. In the sequel, for simplicity, we227

keep using the  relation between events when needed.228

In order to establish the connection between events and atomic229

propositions in AP based on which the LTL formula Ï is constructed,230

we introduce a Boolean function µ : E ◊ � æ {true, false}. We231

note that if processes have non-Boolean variables and more complex232

relational predicates (e.g., x1 +x2 Ø 2), then function µ can be defined233

accordingly. Finally, in order to identify the sequence of consistent234

cuts whose run on the monitor starts from q0 and ends in qm, we235

introduce an uninterpreted function fl : ZØ0 æ 2E . That is, if the SMT236
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instance is satisfiable, then the interpretation of fl is the sequence of consistent cuts that237

ends in monitor state qm. Otherwise, no ordering of concurrent events results in the verdict238

given by state qm.239

3.3 SMT Constraints240

Once we define the necessary SMT entities, we move onto the SMT constraints.241

Consistent cut constraints over fl. We first identify the constraints over uninterpreted
function fl, whose interpretation is a sequence of consistent cuts that starts and ends in the
given monitor automaton path. Thus, we first require that each element in the range of fl

must be a consistent cut:

’i œ [0, m].’e, e
Õ œ E .

1
(eÕ  e) · (e œ fl(i))

2
æ

1
e

Õ œ fl(i)
2

Next, we require the sequence of consistent cuts that fl identifies to start from an empty set
of events and in each consistent cut of the sequence, there is one more event in the successor
cut:

’i œ [0, m]. |fl(i + 1)| = |fl(i)| + 1

Finally, the progression of consistent cuts should yield a subset relation. Otherwise, the
successor of a consistent cut is not an immediately reachable cut in (E , ):

’i œ [0, m]. fl(i) ™ fl(i + 1)

Monitoring constraints over fl. These constraints are responsible for generating a valid
sequence of consistent cuts given a distributed computation (E , ) that runs on monitor path
q1

s1≠æ q2 · · · q
ú
j · · · sm≠1≠≠≠æ qm. We begin with interpreting fl(km) by requiring that running

(E , ) ends in monitor state qm. The corresponding SMT constraint is:

µ(front(fl(km)), sm≠1)

For every monitor state qi, where i œ [0, m≠1], if qi does not have a self-loop, the corresponding
SMT constraint is:

µ(front(fl(ki+1 ≠ 1)), si) · (ki = ki+1 ≠ 1)

For every monitor state qj , where j œ [0, m ≠ 1], suppose qj has a self-loop (recall that a
cycle of r transitions in the monitor automaton is collapsed into a self-loop labeled by a
sequence of r letters). Let us imagine that this self-loop executed z number of times for some
z Ø 0. Furthermore, we denote the sequence of letters in the self-loop as sj1sj2 · · · sjr . The
corresponding SMT constraint is:

zfi

i=1

rfi

n=1

µ

1
front

!
fl(kj + r(i ≠ 1) + n)

"
, sjn

2

Again, since z is a free variable in the above constraint, the solver will identify some value
z Ø 0 which is exactly what we need. To ensure that the domain of fl starts from the empty
consistent cut (i.e., fl(0) = ÿ), we add:

k0 = 0.

Finally, let C denote the conjunction of all the above constraints. Recall that this
conjunction is with respect to only one monitor path from q0 to qm. Since there may be
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multiple paths in the monitor automaton that can reach qm from q0, we replicate the above
constraints for each such path. Suppose there are n such paths and let C1, C2, . . . , Cn be the
corresponding SMT constraints for these n paths. We include the following constraint:

C1 ‚ C2 ‚ C3 ‚ · · · ‚ Cn

This means that if the SMT instance is satisfiable, then computation (E , ) can reach242

monitor state qm from q0.243

3.4 Segmentation of Distributed Computation244

Since the RV problem is known to be NP-complete even for detecting predicates [9] (i.e.,
LTL formula of the form p) in the sizes of the processes, we are inherently dealing with a
computationally di�cult problem. This complexity can grow to higher classes in the presence
of nested temporal operators. In order to cope with this complexity, our strategy is to chop
a computation (E , ) into a sequence of small segments (seg1, )(seg2, ) · · · (segg, ) to
create more but smaller-size SMT problems. This is likely to improve the overall performance
dramatically. More specifically, in a computation whose duration is l, for g number of
segments (i.e., segment duration l

g ± ‘), the set of events in segment j, where j œ [1, g], is
the following:

segj =
Ó

e
n
·,‡,Ê | ‡ œ [max{0,

(j ≠ 1)l
g

≠ ‘},
jl

g
] · n œ [1, |P|]

Ô

Observe that monitoring a segment has to be conducted from ‘ time units before the segment245

actually starts. Also, when monitoring segment j is concluded, monitoring segment j + 1246

should start from all possible monitor states that can be reached by segment j. In Section 4,247

we show the impact of segmentation on the overall performance of monitoring.248

We now show that the verification of a sequence of segments of a distributed computation249

results in the same set of verdict as verification of the computation in one shot. This can be250

formally proved by construction as follows. Given (E , ) and Ï, where (E , ) is chopped251

into two segments (seg1, ) and (seg2, ), we have: [(E , ) |=3 Ï] = [(seg1seg2, ) |=3 Ï].252

Let Q1 be the set of all reachable monitor states at the end of verifying (seg1, ). This set253

represents the valuation of (seg1, ) with respect to Ï. Since in our algorithm verification of254

(seg2, ) starts with states in Q1 as initial states of the monitor, we do not lose the temporal255

order of events. In other words, Q1 encodes all the important observations in (seg1, ).256

This implies that by construction, the set Q2 of reachable monitor states after verification of257

(seg2, ) starting from Q1 is the set of all reachable monitor states when verifying (E , ).258

By induction, the same can be proved for g segments.259

3.5 Parallelized Monitoring260

Many cloud services use clusters of computers equipped with multiple processors and com-261

puting cores. This allows them to deal with high data rates and implement high-performance262

parallel/distributed applications. Monitoring such applications should also be able to exploit263

the massive infrastructure. To this end, we now discuss parallelization of our SMT-based264

monitoring technique.265

Let G be a sequence of g segments G = seg1seg2 · · · segg. Our idea is to create a job266

queue for each available computing core, and then distributing the segments evenly across267

all the queues to be monitored by their respective cores independently. However, simply268

distributing all the segments across cores is not enough for obtaining a correct result. For269
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example, consider formula Ï = a U b and two segments, seg1 and seg2 across two cores, Cr1270

and Cr2, respectively. In order for the monitor running on Cr2 to give the correct verdict, it271

must know the result of the monitor running on Cr1. In a scenario, where Cr1 observes one272

or more ¬a in seg1, a violation must be reported even if Cr2 does not observe b and no ¬a.273

Generally speaking, the temporal order of events makes independent evaluation of segments274

impossible for LTL formulas. Of course, some formulas such as safety (e.g., p) and co-safety275

(e.g., q) properties are exceptions.276

We address this problem in two steps. Let MÏ = (�, Q, q0, ”, ⁄) be an LTL3 monitor.277

Our first step is to create a 3-dimensional reachability matrix RM by solving the following278

SMT decision problem: given a current monitor state qj œ Q and segment segi, can this279

segment reach monitor state qk œ Q, for all i œ [1, g], and j, k œ [0, |Q| ≠ 1]. If the answer280

to the problem is a�rmative, then we mark RM [i][j][k] with true, otherwise with false.281

This is illustrated in Fig. 5 for the monitor shown in Fig. 2, where the grey cells are filled282

arbitrarily with the answer to the SMT problem. This step can be made embarrassingly283

parallel, where each element of RM can be computed independently by a di�erent computing284

core. One can optimize the construction of RM by omitting redundant SMT executions. For285

example, if RM [i][j][€] = true, then RM [iÕ][€][€] = true for all i
Õ œ [i, |Q| ≠ 1]. Likewise,286

if RM [i][j][‹] = true, then RM [iÕ][‹][‹] = true for all i
Õ œ [i, |Q| ≠ 1].287

The second step is to generate a verdict reachability tree from RM . The goal of the tree288

is to check if a monitor state qm œ Q can be reached from the initial monitor state q0. This289

is achieved by setting q0 as the root and generating all possible paths from q0 using RM .290

That is, if RM [i][k][j] = true, then we create a tree node with label qj and add it as a child291

of the node with the label qk. Once the tree is generated, if qm is one of the leaves, only then292

we can say qm is reachable from q0. In general, all leaves of the tree are possible monitoring293

verdicts. Note that creation of the tree is achieved using a sequential algorithm. For example,294

Fig.6 shows the verdict reachability tree generated from the matrix in Fig. 5.295

seg1 seg2 seg3 seg4

q0 q€ q‹ q0 q€ q‹ q0 q€ q‹ q0 q€ q‹
q0 T F F T T F T T T T T T

q0 q€ q‹ q0 q€ q‹ q0 q€ q‹ q0 q€ q‹
q€ F F F F T F F T F F T F

q0 q€ q‹ q0 q€ q‹ q0 q€ q‹ q0 q€ q‹
q‹ F F F F F T F F T F F T

Figure 5 Reachability Matrix for a U b

q0

q0

q0

q0

q0 q€ q‹

q€

q€

q‹

q‹

q€

q€

q€

Figure 6 Reachability Tree for a U b

4 Case Studies and Evaluation296

In this section, we evaluate our technique using synthetic experiments and a case study297

involving Cassandra, a distributed database 1. We emphasize although RV involves many298

dimensions such as instrumentation, data collection, data transfer to the monitor, etc., our299

goal in this section is to evaluate our SMT-based technique, as in a distributed setting, the300

analysis time is the dominant factor over other types of overhead.301

1 All experimental code and data is available at https://drive.google.com/file/d/
19lF-jfUXV-l8ssxuRli1sixw2vctmofA/view?usp=sharing
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4.1 Implementation and Experimental Setup302

Each experiment in this section consists of two phases: (1) data collection, and (2) verification.303

We developed a program that randomly generates a distributed computation (i.e., the behavior304

of a set of processes in terms of their local events and communication). We use a uniform305

distribution (0, 2) to define the type of the event (computation, send, receive). Then another306

program observes the execution of these processes and generates a trace log. Then, the307

monitor attempts to verify the trace log with respect to a given LTL specification using our308

monitoring algorithm.309

We use the Red Hat OpenStack Platform servers to generate data. We consider the310

following parameters: (1) number of processes |P|, (2) computation duration l, (3) number311

of segments g, (4) event rate per process per second r, (5) maximum clock skew ‘, (6)312

number of messages sent per second m, and (7) LTL formulas under monitoring, in particular,313

depth of the monitor automaton d. Our main metric to measure is the SMT solving time314

for each configuration of parameters. Note that in all the plots presented in this section,315

the time axis is shown in log-scale. When we analyze the e�ects of one parameter, all the316

other parameters are held at a relevant constant value. We use a MacBook Pro with Intel317

i7-7567U(3.5Ghz) processor, 16GB RAM, 512 SSD and Python 3.6.9 interface to the Z3318

SMT solver [7]. To evaluate our parallel algorithm, we also use a server with 2x Intel Xeon319

Platinum 8180 (2.5Ghz) processor, 768GB RAM 112 vcores and python 3.6.9 interface to320

the Z3 SMT solver [7].321

4.2 Analysis of Results – Synthetic Experiments322

In this set of experiments we attempt to exhaust all the available parameters and metrics323

discussed earlier. We aim to put all the parameters to test, and examine how they a�ect324

the runtime of the verifier. Since the data generated in this case is synthetic and does not325

depend on any external factors apart from the system configuration, we induce delay after326

every event in order to uniformly distribute these events throughout the execution of each327

process, and to achieve di�erent event rates. That is, the events were generated such that328

they were evenly spread out over the entire simulation. The value of each of the computation329

events were selected from a uniform distribution over the set �.330

Impact of assuming partial synchrony (single core)331

Figure 7a shows that with increase in the value of ‘, the runtime increases significantly. This332

is true for di�erent number of segments. This observation demonstrates that employing HLC333

and assuming bounded clock skew helps in ordering events and as ‘ increases so does the334

number of concurrent events, and in turn the complexity of verification. Figure 7a also shows335

that on breaking the computation into smaller segments, the runtime keeps on decreasing for336

each value of ‘. We will study the impact of segment duration in other experiments as well.337

Impact of predicate structure (single core)338

In this experiment (see Fig. 7b), we consider formula Ï, and ensure that it remains true339

throughout the computation duration. This is to ensure that the monitor does not reach a340

terminal state in the middle of the computation. We consider the following four di�erent341

predicate structures for Ï:342

O(n) Conjunctive: In a system of n processes, Ï is a conjunction of n atomic propositions,343

each depending on the local state of only one process. Over a set of increasing total344
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Figure 7 Comparison of how the clock skew ‘, structure of predicates and di�erent LTL formulas
play a role in monitoring with l = 2s, r = 10, and m = 1/s.

number of processes, we observe a linear increase in the runtime. This is somewhat345

expected, as it is known that monitoring conjunctive predicate is not computationally346

complex [11].347

O(n) Disjunctive: Similar to O(n) conjunctive predicates, here, we have a disjunction of n348

atomic propositions. Compared to its conjunctive counterpart, disjunction of propositions349

requires more time to verify. This follows the theoretical result that monitoring linear350

predicates is more complex than monitoring regular predicates [9].351

O(n2) Conjunctive: Here, Ï is a conjunction of atomic propositions, where each pro-352

position depends on the state of 2 processes, thereby having a total of
!n

2

"
predicates.353

Monitoring such predicates clearly require more time than O(n) conjunctive predicates,354

but surprisingly less than O(n) disjunctive predicates.355

O(n3) Conjunctive: Here, we consider a conjunction of
!n

3

"
predicates chosen symbolizing356

a situation where each predicate is dependent on the state of 3 processes. This case is357

the most time-consuming structure to monitor.358

Impact of LTL formula (single core)359

Given an LTL formula, the depth of the monitor automaton d is the length of the longest path360

from the initial to the accept/reject state. In Fig. 7c, we experimented with the following361

LTL formulas:362

Ï1 = (¬p) d = 2
Ï2 = r æ (¬p U r) d = 3
Ï3 = ((q · ¬r · r) æ (¬p U r)) d = 4
Ï4 = ((q · r) æ (¬p U (r ‚ (s · ¬p · (¬p U t))))) d = 5
Ï5 = r æ (s · (¬r U t) æ (¬r U (t · p))) U r d = 6
Ï6 = ((q · r) æ (p æ (¬r U (s · ¬r · (¬r U t)))) U r) d = 7

363

Clearly, deeper monitors incur greater overhead. The predicate structure used is O(1),364

meaning that the predicates are in terms of the state of all processes. Runtime for smaller365

values of d are comparable since the overall runtime is dominated by the evaluation of the366

uninterpreted function fl (defined in Section 3). As d increases, it starts to influence the367

overall runtime of the verification algorithm.368
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Figure 8 Impact of segment count and computation duration with ‘ = 250ms, O(1) predicates,
r = 10, m = 1, and formula ⇤p.

Impact of segment count (single core)369

As mentioned in Section 3, we anticipate that chopping a distributed computation into370

smaller segments tackles the intractability of distributed RV, as it may reduce the number of371

concurrent events. In Fig. 8a, we observe that the runtime keeps on decreasing with increase372

in the number of segments per computation duration, until it hits a certain level, after which373

it does not improve any further. This is due to the fact that the total runtime also contains374

the time required to set up the SMT solver. With increase in the number of segments, the375

total time required to setup the SMT solver also increases and dominates the speedup. Also,376

decreasing the segment duration beyond a certain point does not have any e�ect on the377

runtime. This is due to the clock skew ‘, which makes each segment start from ‘ before.378

Observe that in Fig. 8a, this result holds for di�erent number of processes, LTL formulas,379

and conjunctive/disjunctive predicates.380

Impact of computation duration (single core)381

The computation duration has a direct e�ect on the size of E , and thus, the number of events382

in a segment. With a unit increase in the number of events in the SMT formulation, the383

size of 2E doubles, increasing the SMT solver search space for fl. This makes the runtime in384

Fig. 8b increase significantly. Observe that in Fig. 8b, this result holds for di�erent number385

of processes, and conjunctive/disjunctive predicates.386

Impact of the event rate (single core)387

Until now, the event rate was fixed at 10 events/sec per process, following the latency388

time obtained in a real network of replicated database (Cassandra), discussed in detail in389

Section 4.3. Here, we change the event rate and study its e�ect on the verification runtime.390

In Fig. 9a, we see increasing the event rate causes the runtime to increase significantly. This391

result is valid for di�erent number of processes, though for more processes the increase is392

more dramatic.393
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Figure 9 Impact of event and message rates with l = 2s, ‘ = 250ms, and g = 21, formula ⇤p

with O(1) predicate structure.

Impact of the message rate (single core)394

Consider a send message event e
i
·,‡,Ê and its corresponding receive event e

j
· Õ,‡Õ,ÊÕ . This395

results in a  -relation between these two events. Such events are expected to reduce the396

number of concurrent events and consequently the monitor overhead. However, Fig.9b shows397

no e�ect on the monitor run time. This is due to the relatively short ‘ = 250ms, which is398

actually much larger than the maximum clock skew of o�-the-shelf protocols such as NTP.399

In other words, when ‘ dominates the impact of event ordering that message passing can400

achieve. This is another reason to believe that partial synchrony is an e�ective way to deal401

with distributed RV. We vary messages sent for inter-process communication, from 0 to 9402

with 10events/sec.403

Impact of parallelization404

To demonstrate the drastic increase in performance due to parallelization, we evaluate formula405

p on a distributed computation with l = 20s, r = 10, g = 20, and ‘ = 150ms, while varying406

the number of cores from 1 to 100, as shown in Fig. 10a. Observe that beyond 40 cores, there407

is no significant relative change in runtime regardless of the number of processes, as the time408

required to build the SMT formulation starts dominating the total run time. This graph409

also shows that parallelization can result in orders of magnitude speedup.410

411

412

4.3 Case Study: Cassandra413

Cluster 1

Node 11

Node 12

Node 13

Node 14 Node 21 Cluster 2

Node 22

Node 23

Figure 11 A network with two Cassandra
clusters, Node-12 and Node-21 are the seed nodes
of the respective clusters

Facebook developed Cassandra [15] as an414

open-source, distributed, No-SQL database415

management system. It is capable of hand-416

ling large amounts of data across many serv-417

ers (nodes), spanning over multiple data-418

centers, providing high availability with no419

single point of failure, and asynchronous mas-420
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Figure 10 Impact of parallelization.

terless replication of data. Cassandra is designed such that it has no master or slave nodes.421

All the nodes are part of a ring-type architecture, distributing data equally over all the nodes422

in the cluster. We simulate a system of multiple processes. Each process is responsible for423

inter-process communication apart from basic database operations (read, write and update).424

We deployed a system with two data centers (see Fig. 11), where Cluster 1, contains 4 nodes425

(Nodes 11 ≠ 14) and Cluster 2 contains 3 nodes (Node 21 ≠ 23). Node 12 and Node 21 are the426

seed nodes of the respective clusters. Data is replicated in all the nodes in both the clusters.427

Each of the nodes is art of the Red Hat OpenStack Platform with the following configuration:428

4 VCPUs, 4GB RAM, Ubuntu 1804, Cassandra 3.11.6, Java 1.8.0_252, and Python 3.6.9.429

We have tested ping time of servers on Google Cloud Platform, Microsoft Azure and430

Amazon Web Service. The fastest ping was received at 41ms. In a real-life datacenter,431

networks used to communicate within the nodes usually have a speed on the scale of few432

Gigabytes per second. Here, we use a private broadband that o�ers a speed of 100 Megabytes433

per second. We measure the latency time of our system to be around 100ms. We consider434

this to be our standard and setup all our experiments based on this assumption.435

Processes are capable of reading, writing, and updating all entries of the database. The436

exact type of the event is selected by a uniform distribution (0, 2). Each process selects the437

available node at run time. In order to prevent deadlocks, no two processes are allowed to438

connect to the same node at the same time. If there exists no free node at any point of439

time, it waits for a node to be released and then it continues with the task. Once there is a440

write or update, the process responsible for the change sends a message to each of the other441

processes notifying about the change. We assume that a message is read by the receiving442

process immediately upon receiving. All database operations (i.e. send and receive events)443

are considered to be separate.444

Consistency level in a database dictates the minimum number of replications that needs
to perform on an operation in order to consider the operation to be successfully executed.
Cassandra recommends that the sum of the read consistency and the write consistency be
more than the replication factor for no read or write anomaly in the database. By default,
the read and the write consistency level is set to one. For a database with replication factor
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Figure 12 Experimental results for Cassandra

3, our goal is to monitor and identify read/write anomalies in the database:

Ïrw =
nfi

i=0

1
write(i) æ read(i)

2

where n is the number of read/write requests.445

Since Cassandra does not allow normalization of database, the other two properties we
aim to monitor are write reference check and delete reference check. To give a sense of
database normalization, we use a database with two tables:

Student(id, name) Enrollment(id, course).

We enforce that if there is a write in the Enrollment table, it should be led by a write in446

the Student table with the same id. The id and name to be written are a random string of447

length 8. Likewise, in the case of deletion of some entry from Student table, it should be led448

by deletion of all entries with the same id from Enrollment table. These enforce that there is449

no insertion and delete anomaly, and thereby gives a sense of normalization in Cassandra:450

Ïwrc = ¬
1

¬write(Student.id) U write(Enrollment.id)
2

451

Ïdrc = ¬
1

¬delete(Enrollment.id) U delete(Student.id))452
453

Extreme load scenario454

Figures 12a and 12b, plot runtime vs segmentation frequency and runtime vs computation455

duration, respectively for the case where the processes experience full read/write load that456

network latency allows. Compared to the results plotted for the synthetic experiments, we457

see a bit of noise in the result. This owes to the fact that in synthetic experiments, the458

events are uniformly distributed over the entire computation duration, however, in case of459

Cassandra, the events are not uniform. Database operations like read, write and update take460

about 100ms of time but sending and receiving of message is relatively faster taking about461

20-30ms making the overall event distribution quite non-uniform.462
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Moderate load scenario463

In Figure 12a, with event rate r = 10, we are just about making it even for number of464

processes as 2 and with a computation duration of 20s. Now, consider Google Sheets API,465

which allows maximum 500 requests per 100 seconds per project and 100 requests per seconds466

per user, i.e., 5 events/sec per project and a user can generate 1 event/sec [12] on an average.467

To see how our algorithm performs in such a scenario, we increase the number of processes468

and so as the number of monitoring cores and analyze the time taken to verify such a trace469

log. We plot our findings in Figure 10b. We see that for processes 8, 9 and 10, we get the470

best results for event rate of both 1 and 2 event(s)/sec/process. We emphasize that the 2471

event(s)/sec/process is twice more than what Google Sheets allow to happen. This makes us472

confident that our algorithm can pave the path for implementation in a real-life setting.473

4.4 Discussion474

One may argue that our results can at best monitor a distributed system with only a few475

processes in an online fashion. We note that in industrial scale data centers, clusters of476

high performance servers make it possible to achieve up to one million writes per second477

(e.g., for Netflix). First, online monitoring of fine-grained read/write consistency is highly478

unlikely to be useful while the system is operational. Having said that, in a testing scenario,479

such a cluster of servers should also be monitored with a cluster of servers (typically a480

machine with 64GB RAM, 8 vCPUs, Intel Xeon processor, with a high network bandwidth is481

used, which when compared to our machine outperforms when executed in a multi-threaded482

environment).483

Furthermore, observe that for two processes reading/writing or updating tables, with484

the right segmentation frequency the monitoring overhead competes with the computation485

duration. Our experiments are encouraging in the sense that by employing acceptable486

computation power, and incorporating parallel monitors, monitoring highly frequent activities487

of a data center such as read/write consistency is within our reach.488

5 Related Work489

Lattice-theoretic centralized and decentralized online predicate detection in asynchronous490

distributed systems has been extensively studied in [4, 18]. Extensions of this work to include491

temporal operators appear in [20, 19]. The line of work in [4, 18, 20, 19, 22] operates in a492

fully asynchronous setting. On the contrary in this paper, we leverage a practical assumption493

and employ an o�-the-shelf clock synchronization algorithm to limit the time window of494

asynchrony. Predicate detection has been shown to be a powerful tool in solving combinatorial495

optimization problems [10] and our results show that our approach is pretty e�ective in496

handling predicate detection (e.g., Fig. 10b). In [24], the authors study the predicate detection497

problem using SMT solving. Also, knowledge-based monitoring of distributed processes was498

first studied in [22]. Here, the authors design a method for monitoring safety properties499

in distributed systems using the past-time linear temporal logic. This approach, however,500

su�ers from producing false negatives.501

Runtime monitoring of LTL formulas for synchronous distributed systems has been studied502

in [8, 6, 5, 1]. This approach has the shortcoming of assuming a global clock across all503

distributed processes. Predicate detection for asynchronous system has been studied in [23]504

but the assumption needed to evaluate happen-before relationship is too strong. We utilize505

HLC which not only is more realistic but also decreases the level of concurrency. Finally, fault-506
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tolerant monitoring, where monitors can crash, has been investigated in [3] for asynchronous507

and in [13] for synchronized global clock with no clock shew across all distributed processes.508

In this paper, we use a clock synchronization algorithm which guarantees bounded clock509

shews. Our solution is also SMT based and to our knowledge this is the first SMT based510

distributed monitoring algorithm for LTL, which results in better scalability.511

6 Conclusion and Future Work512

In this paper, we focused on runtime verification (RV) of distributed systems. Our SMT-based513

technique takes as input an LTL formula and a distributed computation (i.e., a collection of514

communicating processes along with their local events). We employed a partially synchronous515

model, where a clock synchronization algorithm ensures bounded clock skew among all516

processes. Such an algorithm significantly limits the impact of full asynchrony and remedies517

combinatorial explosion of interleavings in a distributed setting. We conducted detailed and518

rigorous synthetic experiments, as well as a case study on monitoring consistency conditions519

on Cassandra, a non-SQL replicated database management system used in data centers. Our520

experiments demonstrate the potential of scalability of our technique to large applications.521

As for future work, there are several interesting research directions. Our first step will522

be to scale up our technique to monitor cloud services with big data. This can be achieved523

by studying the tradeo� between accuracy and scalability. Another important extension524

of our work is distributed RV for timed temporal logics. Such expressiveness will allow525

us to monitor distributed applications that are sensitive to explicit timing constraints. A526

prominent example of such a setting is in blockchain and cross-chain protocols.527
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